137 research outputs found

    Integrated vehicle dispatching for container terminal

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Control of free-ranging automated guided vehicles in container terminals

    Get PDF
    Container terminal automation has come to the fore during the last 20 years to improve their efficiency. Whereas a high level of automation has already been achieved in vertical handling operations (stacking cranes), horizontal container transport still has disincentives to the adoption of automated guided vehicles (AGVs) due to a high degree of operational complexity of vehicles. This feature has led to the employment of simple AGV control techniques while hindering the vehicles to utilise their maximum operational capability. In AGV dispatching, vehicles cannot amend ongoing delivery assignments although they have yet to receive the corresponding containers. Therefore, better AGV allocation plans would be discarded that can only be achieved by task reassignment. Also, because of the adoption of predetermined guide paths, AGVs are forced to deploy a highly limited range of their movement abilities while increasing required travel distances for handling container delivery jobs. To handle the two main issues, an AGV dispatching model and a fleet trajectory planning algorithm are proposed. The dispatcher achieves job assignment flexibility by allowing AGVs towards to container origins to abandon their current duty and receive new tasks. The trajectory planner advances Dubins curves to suggest diverse optional paths per origin-destination pair. It also amends vehicular acceleration rates for resolving conflicts between AGVs. In both of the models, the framework of simulated annealing was applied to resolve inherent time complexity. To test and evaluate the sophisticated AGV control models for vehicle dispatching and fleet trajectory planning, a bespoke simulation model is also proposed. A series of simulation tests were performed based on a real container terminal with several performance indicators, and it is identified that the presented dispatcher outperforms conventional vehicle dispatching heuristics in AGV arrival delay time and setup travel time, and the fleet trajectory planner can suggest shorter paths than the corresponding Manhattan distances, especially with fewer AGVs.Open Acces

    Efficient yard storage in transshipment container hub ports

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Contributions to behavioural freight transport modelling

    Get PDF

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions

    Full Issue

    Get PDF
    corecore