

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Rostering and Task Scheduling
Applications in Manpower Planning

Dohn, Anders Høeg; Larsen, Jesper; Clausen, Jens

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Dohn, A. H., Larsen, J., & Clausen, J. (2010). Rostering and Task Scheduling: Applications in Manpower
Planning. Kgs. Lyngby: DTU Management. (PhD thesis; No. 9.2010).

http://orbit.dtu.dk/en/publications/rostering-and-task-scheduling(e7c0d448-0c77-4c75-8eeb-e0d871cd3a73).html

PhD thesis 9.2010

DTU Management Engineering

Anders Dohn
August 2010

Rostering and Task Scheduling
– Applications in Manpower Planning

Rostering and Task Scheduling
Applications in Manpower Planning

Anders Dohn

Kgs. Lyngby, 2010

Anders Dohn
Rostering and Task Scheduling - Applications in Manpower Planning
(Vagtplanlægning og opgaveallokering - Anvendelser i mandskabsplanlægning)
PhD Thesis, 2010

ISBN 978-87-90855-84-0

Department of Management Engineering
Technical University of Denmark
Produktionstorvet, Building 424
DK-2800 Kgs. Lyngby, Denmark
Phone: +45 45 25 48 00, Fax: +45 45 25 48 05
phd@man.dtu.dk
www.man.dtu.dk

Print: Vester Kopi, Virum

Resumé (Danish Summary)

I et moderne samfund er mandskab ofte en b̊ade begrænset og bekostelig
ressource. Kvalificerede medarbejdere er efterspurgte og udgør en stor del af
de samlede omkostninger i mange virksomheder. For at minimere omkostninger
og for at maksimere anvendelsen af det tilgængelige personale er det nødvendigt
med avancerede planlægningsværktøjer. Disse værktøjer gør det samtidig muligt
at sikre en høj tilfredshed blandt medarbejderne, da deres ønsker kan inkluderes
p̊a struktureret vis. Denne ph.d.-afhandling er udarbejdet med baggrund i ope-
rationsanalyse, som bl.a. beskæftiger sig med udvikling af algoritmer til automa-
tiseret planlægning. Med en struktureret tilgang skabes forbedrede løsninger til
komplekse praktiske optimeringsproblemer.

Afhandlingen indeholder seks videnskabelige artikler og en sammenfatning af
de vigtigste bidrag og konklusioner fra disse. En række industrielle problem-
stillinger indenfor mandskabsplanlægning præsenteres med særlig fokus p̊a ge-
neraliseret vagtplanlægning og p̊a opgaveallokering med tidslige afhængigheder
mellem opgaver. De betragtede problemstillinger stammer fra sundhedssek-
toren, lufthavne, transportvirksomheder og produktionsvirksomheder. De
vigtigste bidrag fra afhandlingen inkluderer udviklingen af en alsidig til-
gang til generaliseret vagtplanlægning. Endvidere præsenteres adskillige ud-
videlser af vagtplanlægningsproblemer. For opgaveallokering præsenteres en
generel modellering af tidslige afhængigheder, der inkluderes i en s̊akaldt
søjlegenereringsmetode. Søjlegenerering er en iterativ metode, der baseret p̊a
lineær programmering, kan give løsninger, som er beviseligt optimale. Denne
metode anvendes i afhandlingen p̊a størstedelen af de praktiske problemer med
lovende resultater. Endelig præsenteres en ny metode til kranstyring og lagerop-
timering i st̊alproduktion. Ogs̊a her er resultaterne yderst lovende.

iv

Summary

In a modern society, manpower can be both a scarce and an expensive resource.
Skilled personnel is usually in high demand and accounts for a significant part of
total expenses in many companies. When the work is divided in shifts, a roster is
compiled to allocate these to the employees. The rostering process is non-trivial
and especially when service is required around the clock, rostering may involve
considerable effort from a designated planner. Therefore, in order to minimize
costs and overstaffing, to maximize the utilization of available staff, and to
ensure a high level of satisfaction among the employees, sophisticated scheduling
methods are required. When approaching the day of operation, the detail level
of the planning becomes finer. With a given allocation of shifts to employees,
the focus is turned to tasks scheduling within those shifts. The objective is to
assign as much work as possible to the available staff, while respecting various
requirements and rules and while including possible transportation time between
tasks.

This thesis presents a number of industrial applications in rostering and task
scheduling. The applications exist within various contexts in health care, the
aviation industry, transportation, and production. The focus regarding roster-
ing is both on a generalized rostering problem, which captures most realistic
settings, and also on a more specific case, where particular issues and exten-
sions are examined. In task scheduling, the focus is restricted to scheduling
problems with temporal dependencies between tasks. However, these problems
appear in various contexts and with different properties. A group of the prob-
lems considered are related to vehicle routing problems, where transportation
and time windows are important factors that must be accounted for.

vi

Mathematical and logic-based models are presented for the problems considered.
Novel components are added to existing models and the modeling decisions are
justified. In one case, the model is solved by a simple, but efficient greedy
construction heuristic. In the remaining cases, column generation is applied.
Column generation is an iterative exact solution method based on the theory of
linear programming and is capable of providing provably optimal solutions. In
some of the applications, the approach is modified to provide feasible solutions of
high-quality in less time. The exceptional solution quality of column generation
is maintained, but the certificate of optimality is compromised.

The contribution of this thesis is partly in the introduction, extension, and re-
finement of mathematical models for practical planning problems. Further, the
contribution is in the proposed solution methods, which produce applicable and
superior results to a range of realistic manpower planning problems. The contri-
butions are presented in six scientific papers, which are compiled in the thesis.
These include the development of a versatile approach to generalized rostering,
building on an idea of compile-time customization. Several extensions of prac-
tical rostering problems are presented. For task scheduling, a general modeling
of temporal dependencies is introduced and included in the methodology of col-
umn generation. The approach is applied to several practical problems with
promising results. Lastly, a novel approach to crane scheduling with superior
results is presented.

Preface

This dissertation is submitted to DTU Management Engineering, Technical Uni-
versity of Denmark in partial fulfillment of the requirements for acquiring the
PhD degree. The work has been supervised by Professor Jens Clausen and
Associate Professor Jesper Larsen.

The thesis consists of an introduction to the project and a collection of six
research papers prepared during the period from December 2006 to April 2010.
Generally, American spelling rules are used in this thesis, but a few of the
research papers use British spelling, due to preferences of co-authors.

Kgs. Lyngby, Denmark, May 2010

Anders Dohn

viii

Scientific papers composed

The following papers have been composed as a part of this PhD. The papers
have been divided into two categories, where the first consists of the most sig-
nificant contributions, which are also found in the appendices of this thesis.
The remaining papers and reports have been produced during the work on the
projects. They may contain information that partially overlaps with what is
found in the papers of the first group.

x Scientific papers composed

Papers in appendices

• Paper A: Anders Dohn and Andrew Mason (2010). “A Nested Column
Generation Based Approach to the Generalized Rostering Problem us-
ing Compile-time Customization”. In: INFORMS Journal on Computing
(Submitted)

• Paper B: Richard Lusby, Anders Dohn, Troels Martin Range, and Jesper
Larsen (2010). “An Integrated Approach to the Ground Crew Rostering
Problem with Work Patterns”. In: Journal of the Operational Research
Society (Submitted)

• Paper C: Anders Dohn, Esben Kolind, and Jens Clausen (2009b). “The
manpower allocation problem with time windows and job-teaming con-
straints: A branch-and-price approach”. In: Computers and Operations
Research 36.4, pp. 1145–1157.

• Paper D: Matias Sevel Rasmussen, Tor Justesen, Anders Dohn, and Jes-
per Larsen (2010). “The Home Care Crew Scheduling Problem: Preference-
Based Visit Clustering and Temporal Dependencies”. In: European Jour-
nal of Operational Research (Submitted)

• Paper E: Anders Dohn, Matias Sevel Rasmussen, and Jesper Larsen
(2010c). “The Vehicle Routing Problem with Time Windows and Tem-
poral Dependencies”. In: Networks (Conditionally accepted)

• Paper F: Anders Dohn and Jens Clausen (2010). “Optimising the Slab
Yard Planning and Crane Scheduling Problem using a two-stage heuristic”.
In: International Journal of Production Research 48.15, pp. 4585–4608

xi

Other papers, reports, and abstracts

• Journal paper: Anders Dohn, Matias Sevel Rasmussen, Tor Justesen,
and Jesper Larsen (2008b). “The Home Care Crew Scheduling Problem”.
In: ORbit 13, pp. 19–23

• Journal paper: Anders Dohn and Esben Kolind (2009). “A Practical
Branch and Price Approach to the Crew Scheduling Problem with Time
Windows”. In: ORbit 14, pp. 23–27

• Conference paper (ICAPS’07): Anders Dohn (2007). “Optimizing the
Steel Plate Storage Yard Crane Scheduling Problem Using a Two Stage
Planning/Scheduling Approach”. In: ICAPS 2007 - Doctoral Consortium

• Conference paper (ICAPS’07): Anders Dohn, Esben Kolind, and Jens
Clausen (2007a). “The Manpower Allocation Problem with Time Win-
dows and Job-Teaming Constraints”. In: ICAPS 2007 - Proceedings, Sev-
enteenth International Conference on Automated Planning and Schedul-
ing, pp. 120–127

• Conference abstract (NOS’07): Anders Dohn, Esben Kolind, and Jens
Clausen (2007b). “The Manpower Allocation Problem with Time Windows
and Job-Teaming Constraints”. In: Nordic Optimization Symposium

• Conference abstract (MetMat’08): Anders Dohn and Jens Clausen
(2008a). “A Two-stage Planning/Scheduling Model”. In: Workshop: Met-
Mat

• Conference abstract (CG’08): Anders Dohn, Matias Sevel Rasmussen,
and Jesper Larsen (2008a). “Manpower Routing and Scheduling with Tem-
poral Dependencies Between Tasks”. In: International Workshop on Col-
umn Generation

• Conference abstract (IFORS’08): Anders Dohn and Jens Clausen
(2008d). “Optimizing the Steel Slab Yard Crane Scheduling Problem Us-
ing a Two Stage Planning/Scheduling Approach”. In: International Fed-
eration of Operational Research Societies Conference

• Conference paper (ICAOR’08): Anders Dohn, Matias Sevel Ras-
mussen, Tor Justesen, and Jesper Larsen (2008c). “The Home Care Crew
Scheduling Problem”. In: ICAOR’08 - Proceedings, 1st International Con-
ference on Applied Operational Research. Ed. by K. Sheibani. Tadbir In-
stitute for Operational Research, pp. 1–8

• Conference paper (ORSNZ’08): Anders Dohn and Esben Kolind
(2008). “Optimizing Manpower Allocation for Ground Handling Tasks in
Airports using Column Generation”. In: ORSNZ’08 - Proceedings - 43rd

xii Scientific papers composed

Annual Conference of the Operational Research Society of New Zealand,
pp. 2–11

• Conference paper (ORSNZ’09): Andrew J. Mason, David Ryan, and
Anders Dohn (2009). “Customised Column Generation for Rostering Prob-
lems: Using Compile-time Customisation to create a Flexible C++ Engine
for Staff Rostering”. In: ORSNZ’09 - Proceedings - 44rd Annual Confer-
ence of the Operational Research Society of New Zealand

• Technical report: Anders Dohn, Andrew Mason, and David Ryan
(2010a). A Generic Solution Approach to Nurse Rostering. Tech. rep. De-
partment of Management Engineering, Technical University of Denmark,
Kgs. Lyngby, Denmark

• Technical report: Anders Dohn, Esben Kolind, and Jens Clausen
(2007c). The Manpower Allocation Problem with Time Windows and Job-
Teaming Constraints: A Branch-and-Price Approach. Tech. rep. Richard
Petersens Plads, Building 321, DK-2800 Kgs. Lyngby: Informatics and
Mathematical Modelling, Technical University of Denmark, DTU

• Technical report: Anders Dohn, Matias Sevel Rasmussen, and Jesper
Larsen (2009a). Technical Report: The Vehicle Routing Problem with Time
Windows and Temporal Dependencies. Tech. rep. Department of Manage-
ment Engineering, Technical University of Denmark, Kgs. Lyngby, Den-
mark

• Technical report: Anders Dohn and Jens Clausen (2008b). Optimizing
the Slab Yard Planning and Crane Scheduling Problem using a Two-Stage
Approach. Tech. rep. DTU Management Engineering, Technical University
of Denmark

xiii

Projects supervised

• Master’s Thesis: Tor Justesen, Matias Sevel Rasmussen (2008). “The
Home Care Crew Scheduling Problem”, Department of Informatics and
Mathematical Modeling, Technical University of Denmark.

• Master’s Thesis: Thomas Vermehren Lins, Jonas Salee Vinther Jeppe-
sen (2010). “Manpower planning for Air Traffic Controllers”, Department
of Management Engineering, Technical University of Denmark.

• Master’s Thesis: Brian Ravn, Helene Martine Overø (2008). “Inte-
grated Crew Scheduling for Airlines”, Department of Informatics and
Mathematical Modeling, Technical University of Denmark.

• Bachelor Thesis: Thomas Vermehren Lins, Jonas Salee Vinther Jeppe-
sen (2008). “Skedulering af male-robotter”, Department of Management
Engineering, Technical University of Denmark.

• Bachelor Thesis: Julie Louise Munk Vejborg (2008). “The Crane
Scheduling Problem: Heuristic approach”, Department of Management
Engineering, Technical University of Denmark.

• Individual Course: Henrik Alsing Pedersen (2010). “Optimizing shifts
for Ground Staff”, Department of Management Engineering, Technical
University of Denmark.

xiv

Acknowledgements

First of all, I would like to thank my two supervisors, Professor Jens Clausen
and Associate Professor Jesper Larsen for their guidance throughout the three
years. I thank Jens for always believing in me, for being a constant source of
inspiration - all the way through my education, and for nominating me for the
EliteForsk Travel Grant. I thank Jesper for his (mostly) positive management
and for extensive and patient support. I am thankful for his constant willingness
to let me participate in the many interesting projects that emerged during the
last three years. Also, I am thankful for getting the chance to co-supervise
numerous student projects run by my two supervisors. I thank everybody in
the Section of Operations Research for three enjoyable years.

I thank Professor David Ryan for inviting me to New Zealand and for his ex-
ceptional hospitality during the stay. We enjoyed all the visits to the house in
Remuera, the bach on Waiheke, and the lodge in Whakapapa. We were very
honored by the time he and his wife, Ruth, took to ensure that our stay in New
Zealand was as joyful as possible. Further, I thank everybody at the University
of Auckland for making the trip to New Zealand an unforgettable experience.
In particular, I thank Senior Lecturer Andrew Mason for his commitment to my
research and for his great enthusiasm that was characteristic for all the work, we
did together. Furthermore, I am thankful to the Danish Agency for Technology
and Innovation for supporting my stay in New Zealand through the EliteForsk
Travel Grant.

I am thankful to all my co-authors for their contributions to individual projects.
Their contributions were essential to the existence of this thesis. In particular,
I thank Esben Kolind and Richard Lusby for proof reading the thesis. Special

xvi Acknowledgements

thanks to Richard for letting us borrow his car, while we lived in New Zealand.

Finally, I would like to thank my fiancée, Henriette, for her unlimited support
and for always being there, when I needed her. I thank her for quitting her job
to follow me to New Zealand and for always being eager to travel the world with
me.

xvii

xviii Contents

Contents

Resumé (Danish Summary) iii

Summary v

Preface vii

Scientific papers composed ix

Acknowledgements xv

I Background and synopsis 1

1 Introduction 3

1.1 Important terms . 6

1.2 Thesis structure . 7

2 Modeling 9

2.1 Rostering . 9

2.2 Task scheduling . 10

2.3 Interconnectivity . 14

2.4 Related problems . 14

3 Applications 23

3.1 Rostering . 25

3.2 Task scheduling . 28

3.3 Comparison . 32

xx CONTENTS

4 Solution Methods 35
4.1 Greedy heuristics . 36
4.2 Column generation . 37

5 Papers of Part II 47
5.1 Paper A: A Nested Column Generation Based Approach to the

Generalized Rostering Problem using Compile-time Customization 47
5.2 Paper B: An Integrated Approach to the Ground Crew Rostering

Problem with Work Patterns . 49
5.3 Paper C: The Manpower Allocation Problem with Time Windows

and Job-Teaming Constraints: A Branch-and-Price Approach . . 50
5.4 Paper D: The Home Care Crew Scheduling Problem: Preference-

Based Visit Clustering and Temporal Dependencies 51
5.5 Paper E: The Vehicle Routing Problem with Time Windows and

Temporal Dependencies . 52
5.6 Paper F: Optimizing the Slab Yard Planning and Crane Schedul-

ing Problem using a Two-Stage Heuristic 53

6 Conclusions 55
6.1 Main contributions . 58
6.2 Future work . 59

II Scientific Papers 69

A A Nested Column Generation Based Approach to the General-
ized Rostering Problem using Compile-time Customization 71
A.1 Introduction . 73
A.2 Model . 76
A.3 Solution method . 81
A.4 Implementation . 89
A.5 Example . 94
A.6 Computational results . 96
A.7 Conclusions . 100

B An Integrated Approach to the Ground Crew Rostering Prob-
lem with Work Patterns 105
B.1 Introduction . 106
B.2 Literature review . 108
B.3 The Ground Crew Rostering Problem with Work Patterns 110
B.4 Column Generation . 113
B.5 Enforcing Integrality of the Solution 120
B.6 Rostering Directly on the Forecast Workload 122
B.7 Robustness . 127

CONTENTS xxi

B.8 Experimental results . 129
B.9 Conclusion . 135

C The Manpower Allocation Problem with Time Windows and
Job-Teaming Constraints: A Branch-and-Price Approach 139
C.1 Introduction and Problem Description 140
C.2 Problem Definitions and Formulation 143
C.3 Decomposition . 145
C.4 Branching . 152
C.5 Computational Results . 155
C.6 Conclusion and future work . 159

D The Home Care Crew Scheduling Problem: Preference-Based
Visit Clustering and Temporal Dependencies 163
D.1 Introduction . 165
D.2 Problem formulation . 168
D.3 Decomposition . 172
D.4 Branching . 175
D.5 Clustering of visits and arc removal 179
D.6 Test instances . 181
D.7 Computational results . 182
D.8 Conclusion and future work . 190

E The Vehicle Routing Problem with Time Windows and Tem-
poral Dependencies 193
E.1 Introduction . 195
E.2 Model . 197
E.3 Decomposition . 202
E.4 Branching . 211
E.5 Benchmark instances . 216
E.6 Test results . 218
E.7 Conclusions and future work . 224

F Optimizing the Slab Yard Planning and Crane Scheduling Prob-
lem using a Two-Stage Heuristic 229
F.1 Introduction . 230
F.2 Problem Description . 234
F.3 The Slab Yard Planning Problem 236
F.4 The Crane Scheduling Problem 238
F.5 Solution Method . 253
F.6 Test results . 255
F.7 Conclusions . 257

xxii CONTENTS

Part I

Background and synopsis

Chapter 1

Introduction

The optimization of complex planning problems is the main focus of the science
of operations research. Using mathematical modeling, simulation, and computer
based optimization, operations research practitioners increase the quality of
solutions to practical planning and scheduling problems. Increased solution
quality is a result of a structured approach towards practical problems combined
with well founded optimization theory. This thesis is concerned with a subfield
of operations research focused on manpower planning. Manpower planning is
an area of constantly increasing importance in an industrialized and knowledge
intensive society.

There is a large potential gain in applying optimization theory to practical man-
power planning problems. E.g. Abbink et al. (2005) report annual savings of
USD 4.8 million for a crew scheduling application at Netherlands railways. Like-
wise, Butchers et al. (2001) state that their system has saved Air New Zealand
NZD 15.7 million (USD 11.2 million) per year. British Telecommunications im-
plemented an automated workforce allocation system that according to Lesaint
et al. (2000) introduced annual savings of USD 150 million. There are many
other similar success stories in the area of manpower planning and scheduling.

When tasks are fixed to a specific time or in other ways restricted in time,
the scheduling problem becomes nontrivial, and a structured approach to task
allocation is profitable. Tasks may occur around the clock and the rostering

4 Introduction

problem in turn becomes nontrivial, as one needs to consider a range of laws
and union rules on rest hours between shifts, maximum number of consecutive
working days, etc. Rostering and task scheduling problems are similar in many
aspects, as is apparent from the work presented in this thesis. A simplistic
definition of the two types of problems is:

Rostering: Assigning shifts to employees.
Task Scheduling: Assigning tasks to employees within shifts.

As evident from the above, the main difference is the level of detail considered
in the two types of problems. In rostering, the scheduling horizon (the roster
period) is typically a month or more and shifts of several hours are considered.
Usually, at most one shift is allocated per employee per day and the rostering
problem consists of distributing the shifts between the employees over the days
of the roster period. In task scheduling problems, the scheduling horizon is
typically 24 hours or less and each employee is already assigned to a specific
shift. Within this shift, a number of tasks can be allocated and the aim of task
scheduling problems is to use the available manpower as efficiently as possible.

In practice, many rostering and task scheduling problems have traditionally
been solved and verified manually. The motivation for using a decision support
system, based on the theory of operations research, is a potentially increased
utilization of the available manpower. At the same time, a decision support sys-
tem will be able to incorporate other desirable features and produce solutions,
which are superior in several aspects. Such features may include minimizing to-
tal expenses, maximizing efficiency, increasing robustness, maximizing employee
satisfaction, and ensuring fairness between employees. The idea of decision sup-
port is to provide superior solution suggestions, while also saving time for the
planner. Especially in disruption management, readily available solutions are
essential.

In this thesis, we consider a number of specific manpower planning problems,
which can all be characterized as rostering or task scheduling problems. We
present problems from various contexts and explain how these are associated.
As well as being related to each other, the practical problems are also related to
established problems from the literature. The first of the specific cases consid-
ered is from the health care sector, namely the nurse rostering problem. Nurse
rostering is related to airline ground crew rostering, where we describe another
application. This is followed by another interesting manpower planning prob-
lem. The problem is concerned with the allocation of airplane cleaning tasks
to mobile cleaning crews in some of Europe’s major airports. A closely related
problem, from the health sector, is the routing of home care personnel in Danish
municipalities. The next problem described is the vehicle routing problem with
time windows and temporal dependencies. It represents a context-free general-

5

ization of the routing problems encountered for ground crew in airports and for
the home care crew. A fairly related problem, with some interesting similarities
to the other applications, is the crane scheduling problem in steel production,
where daily work plans for crane operators are generated.

To solve practical problems like the ones listed above, we have a wide variety of
methods available. We expect the reader of the thesis to be familiar with the
basic terminology and methodology of operations research, linear programming,
and integer programming.

An intuitive idea, which is particularly useful for very hard problems, is that
of greedy heuristics. Greedy heuristics to some extent imitate the approach
that a manual planner is using. By utilizing the computational power of mod-
ern computers, we may be able to arrive at superior solutions in less time.
Greedy heuristics are often extended to metaheuristics, which are able to search
through a greater diversity of potential solutions. A few greedy heuristics will
be described in detail later, whereas metaheuristics are not part of the focus of
this thesis.

A different approach to solving the manpower planning problems is to describe
the problems by mathematical models and thereafter apply mathematically
based optimization methods to the models, which in our case will be integer
programming models. A straight forward approach is to use a standard solver
directly on the model, but the complexity of most problems call for sophisti-
cated customized approaches. The Dantzig-Wolfe decomposition principle has
formerly been applied to manpower planning problems and other related prob-
lems with great success. Therefore, much of the effort in this thesis has been
focused on the use of column generation in Dantzig-Wolfe decomposed models.

The aim of this thesis is not to capture all existing rostering and task scheduling
problems in a unified analysis. It is an exposition of certain practical problems
along with their suggested models and solution methods. The choice of problems
has been based on the selection of interesting cases existing with industrial
partners. However, as will be apparent, the cases have many characteristics
that relate them and justify their inclusion in the collection here.

6 Introduction

1.1 Important terms

In the following, we establish some basic terminology which is used throughout
the thesis. The individual papers may use variations of the terms, but will in
general follow the definitions given here.

Roster-line A line of shifts for a single employee for the full time horizon.

Roster A schedule/plan for all employees for the full time horizon. A set of
roster-lines, one for each employee, make up the roster.

Rostering The process of making a roster of shift assignments to employees.

Work-line A line of tasks for a single employee within a shift. This may also
be referred to as a route in vehicle routing.

Schedule The given task allocation to employees and time specifications of all
tasks, i.e. the collection of work-lines for all employees.

Task scheduling The process of scheduling tasks. The scheduling of tasks
includes the allocation of tasks to employees.

Workload A measure sometimes used in rostering to specify the expected
amount of work in a given time interval.

Demand / Shift demand / Cover demand / Requested cover The
number of people needed in a given time interval, for a given duty, or
on a given shift. The demands may be explicitly based on a forecasted
workload.

Cover / Shift Cover The actual number of people working in a specific time
interval.

Employee / Worker / Worker-group / Team These terms are used inter-
changeably to refer to the units for which a roster is made or tasks are
scheduled. As the terms indicate, the unit may consist of several people,
which, however, does not affect the structure of the model.

Temporal dependency A constraint expressing a relationship between two
tasks, where the scheduled time of one task may restrict when the other
task can be scheduled.

Attributes Attributes are defined for roster-lines and components of a roster-
line. Attributes are used to count the number of paid hours, days on,
weekends on, etc. Rules are defined on the values of the attributes.

1.2 Thesis structure 7

1.2 Thesis structure

This thesis consists of two major parts. Part I is a digest of the findings of
the thesis. A foundation for the work in this thesis is established and the
most important contributions and conclusions are summarized and put into
perspective. Part II consists of six individual scientific papers, which have been
or will be published in international scientific journals.

Part I is divided into several chapters. In Chapter 2, rostering and task schedul-
ing is described in broad terms and using generic models. The models are not
related to particular practical instances, but instead give a context-free de-
scription of the structures of the problems and allow for a comparison to well
established problems from the literature. The models are concretized for the
problems at hand in Chapter 3. The emphasis of this chapter is on a detailed
description of the problems as they exist in practice. The chapter also includes
a comparison of the problems. In the scientific papers of the second part of the
thesis, the reader is assumed to be familiar with common optimization methods.
Therefore, the purpose of Chapter 4 is to describe the methods in more detail, to
establish the foundation for the individual projects. The contents of the individ-
ual papers are summarized in Chapter 5. As the applications were introduced
earlier, the main focus of this chapter is on solution approaches, results, and
conclusions. The main conclusions of the thesis are found in Chapter 6.

Part II consists of the six scientific papers, which constitute the major part of
the work in this thesis. The papers appear in their most recent version, which
is either the version submitted or the post-print version. The papers have been
adjusted to the layout of this thesis and may therefore appear slightly different
from the published version.

Readers who are interested in the full thesis and all included papers, should start
with the synopsis and subsequently read the individual scientific papers in the
order in which they appear. Readers with a thorough knowledge of operations
research may skip Chapter 4. Readers with particular interest in one of the areas
considered in the thesis may just read the selected papers of Part II, possibly
supplemented by the corresponding descriptions in Chapter 3. One may also
refer to Chapter 5 to select particular papers of interests.

8 Introduction

Chapter 2

Modeling

In this thesis, various practical planning problems are considered. Many of these
problems are inherently related by the practical context in which they arise. In
the following, we will establish a common model for these problems, to show that
they are also closely related theoretically. The models are more general than
those of the individual papers and are hence less suitable as starting points
for a solution method. Instead, the models are intended to capture all of the
manpower planning problems of the thesis, to allow for a common understanding
of these. Furthermore, we will describe variants and related prototype problems
from the literature to establish the theoretical context in which we are working.

2.1 Rostering

Rostering is the problem of allocating shifts to employees to cover a prespec-
ified workload. There are various ways of modeling this. In the following, a
generalized set partitioning model will be used. Given is a set of employees E ,
which is divided into groups G. The size of group G is mg. In many rostering
problems, employees are uniquely defined and the model has one employee in
each group (the notion of groups can hence be disregarded). A set of demands
/ work requests, D, is defined. Demands specify a requested number of peo-
ple, bd, for a particular duty, where µ−d and µ+

d quantify the under-coverage or

10 Modeling

over-coverage, respectively. Under-coverage refers to a shortage compared to the
requested number of employees. Similarly, over-coverage refers to an excess in
the number of employees. Under-coverage usually introduces larger costs than
over-coverage. Tasks may be defined within shifts or may span multiple shifts
and may have skill requirements. Demands do in practice often coincide with
shifts. Let the decision variable xgd ∈ Z+ count the number of employees of
group g ∈ G that contribute to cover the demand d ∈ D. Xg defines for each
group g ∈ G all feasible combinations of shifts that the group may be given. A
generic rostering model can then be formulated:

min f(x, µ−i , µ
+
i) (2.1)∑

g∈G

∑
d∈D

xgd + µ−d − µ
+
d = bd ∀d ∈ D (2.2)

xg· ∈ Xg ⊆ Z|D|+ ∀g ∈ G (2.3)

µ−d ∈ R+, µ
+
d ∈ R+ ∀d ∈ D (2.4)

The objective (2.1) is a function of all decision variables. Constraints (2.2)
ensure that all demands are satisfied or the corresponding slack and surplus
variables are set appropriately. Constraints (2.3) define the roster-line feasibil-
ity for each group. The constraints are not easily described in a mathematical
model. The constraints are particularly complex in the current format, where
groups of employees are considered. Often, the roster-line feasibility is decom-
posed into a description of feasibility for a single roster-line and the rostering
problem is decomposed into two parts, where one part generates feasible roster-
lines and the other part combines these into a feasible roster. Attribute-based
descriptions have shown to be especially well suited for definition of feasibility
and cost in roster-lines. Attributes are used to count the number of paid hours,
days on, weekends on, etc. Rules are defined on the values of the attributes.
Constraints (2.4) set the domains of the remaining decision variables.

We will not go into more detail with the rostering model here. Paper A describes
a generic approach to rostering and gives details on the modeling as well.

2.2 Task scheduling

All of the task scheduling problems considered are basically asking the question:

“In an optimal schedule: Who does what, when?”

2.2 Task scheduling 11

It is possible to formulate a general mathematical model which expresses ex-
actly this question. Given is a workforce, i.e. a set of workers to which tasks
must be allocated. Workers may, according to the context, refer to employees,
crews, vehicles, operators, etc. K denotes the set of workers. I is the set of
tasks. Finally, T is a set of decision times, i.e. a discretization of time, where
the elements represent all points in time, when tasks can be scheduled. The
magnitude of the discretization may vary from seconds to hours.

With the sets given, a binary decision variable xkit, k ∈ K, i ∈ I, t ∈ T is
introduced, where xkit = 1 if task i is allocated to worker k at time t. xkit =
0 otherwise. The following generic model captures all the practical problems
that we have worked with. We refer to it as the compact formulation of task
scheduling problems:

min f(x) (2.5)

s.t. x ∈ X ⊆ B|K||I||T | (2.6)

The objective function is given in (2.5) and may be defined differently for each
application. X defines the feasible solution space. Neither the objective function
nor the solution space are easily described in this model. Therefore, the model
is not introduced as a means to solve any problems, but rather as a common way
of describing them. Admittedly, the task scheduling problems can be modeled
in various ways. The model presented here is concise and it is chosen as it has
a suitable detail level for the intended description.

Naturally, this very general model does capture other types of problems as well,
but the important property to notice, is that we can now describe any solution
to any of the task scheduling problems using only the x-variables. For the
task scheduling problems at hand, we may even refine the description of the
feasible region slightly. We introduce µ−i and µ+

i to represent the amount of
under-coverage and over-coverage for task i, respectively. bi is the demand (the
requested number of employees) for task i. We replace (2.5)-(2.6) by:

min f(x, µ−i , µ
+
i) (2.7)∑

k∈K

∑
t∈T

xkit + µ−i − µ
+
i = bi ∀i ∈ I (2.8)

xk·· ∈ Xk ⊆ B|I||T | ∀k ∈ K (2.9)

µ−i ∈ Z+, µ
+
i ∈ Z+ ∀i ∈ I (2.10)

12 Modeling

The objective (2.7) is a function of all the decision variables. Constraints (2.8)
are the generalized assignment constraints, which ensure that all tasks are al-
located or marked as unallocated by setting the slack and surplus variables
appropriately. Constraints (2.9) define the feasible schedules of each worker.
The extent and complexity of these constraints vary considerably from one con-
text to another. Constraints (2.10) set the domains of the slack and surplus
variables.

As is obvious from (2.7)-(2.10) the task scheduling model is very similar to
the rostering model (2.1)-(2.4). Actually, rostering may be seen as a special
case of task scheduling where the tasks (shifts) are fixed in time. Workers
need to be considered uniquely (not in groups) to fit the definition of task
scheduling problems and the decision variables are hence binary variables. The
big difference in the two formulations lies in the definition of feasible lines of
work, respectively Constraints (2.3) and Constraints (2.9). Very different rules
apply to the two sets of problems. However, using this unified view on the two
problem types, we are in the remainder of this thesis able to sketch ideas and
solution methods for task scheduling problems which are easily transferred to
rostering problems as a special case.

We will in this thesis focus particularly on task scheduling problems with tempo-
ral dependencies between tasks. Temporal dependencies represent restrictions
between tasks, where the scheduled time of one task may restrict when another
task can be schedule. Let T x be a set that describes exclusions between two
tasks i and j. An element (i, j, ti, tj) in T x prohibits the scheduling of task i
at time ti if task j is scheduled at time tj and vice versa. Constraints (2.11)
describe temporal dependencies between tasks and are added to model (2.7)-
(2.10):

xk1iti + xk2jtj ≤ 1 ∀k1, k2 ∈ K,∀(i, j, ti, tj) ∈ T x (2.11)

However, the temporal dependencies considered in this thesis can all be de-
scribed by generalized precedence constraints or disjunctive generalized prece-
dence constraints, which are less general than Constraints (2.11). To formu-
late the generalized precedence constraints, we introduce an auxiliary variable
ski =

∑
t∈T txkit. Assuming that

∑
t∈T xkit ≤ 1,∀i ∈ I,∀k ∈ K, ski denotes

the scheduled time of task i in the schedule of worker k. ski = 0 if task i is not
allocated to worker k. The generalized precedence constraints can be formulated
as:

2.2 Task scheduling 13

sk1i + δij ≤ sk2j ∀k1, k2 ∈ K,∀(i, j) ∈ ∆ (2.12)

∆ is the set of all task-pairs (i, j) for which generalized precedence constraints
exist and δij is the corresponding parameter that defines the necessary time-
difference between two tasks. For bi = 1 and µ−i = µ+

i = 0,∀i ∈ I, we may use
a compact formulation of the constraints:

∑
k∈K

ski + δij ≤
∑
k∈K

skj ∀(i, j) ∈ ∆ (2.13)

m
si + δij ≤ sj ∀(i, j) ∈ ∆ (2.14)

Constraint (2.14) is a simplification achieved by redefining si =
∑
k∈K ski. The

generalized precedence constraints may also be modeled with the original x-
variables. This and other details are presented in Paper E.

Disjunctive generalized precedence constraints describe a relationship where two
tasks are forced to keep a certain distance, but where it is up to the model to
decide which one is first. For the simple case (with bi = 1 and µ−i = µ+

i =
0,∀i ∈ I) the disjunctive constraints are formulated below. ∆∨ is the set of
task-pairs (i, j) for which disjunctive generalized precedence constraints exist.

si + δij ≤ sj ∨ sj + δji ≤ si ∀(i, j) ∈ ∆∨ (2.15)

The generic mathematical model of task scheduling problems allows for a com-
mon graphical presentation of solutions. For this, we use a chart similar to a
gantt-chart, with time running on the horizontal axis. The workers are listed
on the vertical axis, one under the other. If we, additionally, show the duration
of each task, we get a chart like the one shown in Figure 2.1. The chart may be
refined for each specific case, as we may want to include additional information
or as the problem may have a certain structure that we can make use of in a
graphical representation. The papers of Part II show various refinements of the
gantt-chart.

14 Modeling

10

w2

w1

i1

i2

i5

i6

2 3 4 5 6 7 8 9 10 11 12 13 14 15

w3 i3 i4

Figure 2.1: A generic graphical representation of a solution to a task scheduling
problem.

2.3 Interconnectivity

As mentioned, generalized precedence constraints are not part of all task
scheduling problems. Without these constraints, only Constraints (2.8) link
the individual work-lines of the workers. We define the interconnectivity of a
task scheduling problem in three levels, defined by the order of the number of
elements in ∆ (and ∆∨).

Level 0 ∆ = ∅.

Level 1 The number of elements in ∆ is in the order of |I|.

Level 2 The number of elements in ∆ is in the order of |I|2.

This measurement of interconnectivity is introduced, as we find that the amount
of interconnectivity has a significant effect on the complexity of the problem
and hence on the choice of solution method. Obviously, the difficulty of a
task scheduling problem also depends on the complexity of the single work-line
generation and on the size of the instances. Hence, when considering these
factors, we may quantify the difficulty of a problem. We will do this for our
practical problems and reflect on the result in Section 3.3.

2.4 Related problems

With the models for manpower planning problems in place, it is possible to
find a range of related problems and problems with overlapping definitions in
the literature. The intention of this section is to give an overview of the related
literature and to position the manpower planning problems in relation to similar
optimization problems.

2.4 Related problems 15

2.4.1 The assignment problem

A specification of both rostering problems and task scheduling problems is the
assignment problem, which is a well established problem in operations research.
A number of tasks is given along with the same number of workers. Each
combination of worker and task has a given cost, cki and the objective is to assign
each worker to a task at minimum total cost. One set of decision variables, xki,
is used, where xki = 1 if worker k ∈ K is assigned to task i ∈ I, and xki = 0
otherwise.

min ckixki (2.16)

s.t.
∑
k∈K

xki = 1 ∀i ∈ I (2.17)∑
i∈I

xki = 1 ∀k ∈ K (2.18)

x ∈ B|K||I| (2.19)

There is no temporal dimension in the assignment problem. We may consider
it as having a set of times with a single element, e.g. T = {0}. The objective
(2.16) is to minimize the sum of costs. It is clearly a specification of objective
(2.7). Constraints (2.17) and (2.18) give the one-to-one correspondence between
workers and tasks. The constraints are specifications of Constraints (2.8) and
(2.9), respectively. The domain of the x-variables (2.19) is the same as in the
general model. Hence, the assignment problem may be considered as a very
simple task scheduling problem. The same is true for the rostering model (2.1)-
(2.4).

The assignment problem can be solved in polynomial time by e.g. The Hun-
garian Method of Kuhn (1955). Many extensions and variants of the classical
assignment problem has been examined in the literature, including the quadratic
assignment problem (see Pardalos and Wolkowicz, 1993) and the generalized as-
signment problem (see Cattrysse and Van Wassenhove, 1992). In the latter, each
worker can be assigned to multiple tasks, i.e. Constraints (2.18) are changed to
‘less than or equal to’-constraints and the right hand sides can be integer values
larger than 1. In both rostering and task scheduling, workers can certainly be
assigned to multiple tasks and the model of the generalized assignment prob-
lem is therefore closer to those of rostering and task scheduling. However, it is
still a very simple problem, compared to the other two. For a recent book on
the assignment problem that contains a thorough survey of the literature and

16 Modeling

an exposition of numerous solution methods and problem variants see Burkard
et al. (2009).

2.4.2 Crew rostering

Crew rostering (also referred to as crew scheduling) comes in many different
variants from various contexts. In essence, most of these are extensions or
variations of the rostering model presented earlier (2.1)-(2.4).

An area which has had substantial impact on the practice of the industry is
in crew rostering for cabin crew in airlines. These problems are particularly
complex, as they contain an inherent geographical dimension, where rosters
need to ensure that employees end up in their home town before off-days can be
assigned. The complexity of the problems makes it very hard to generate good
rosters by hand and extensive savings are usually observed when the rostering
process is automated. Butchers et al. (2001) report savings of NZD 15.7 million
(USD 11.2 million) per year for Air New Zealand, which is more than 6% of the
estimated annual crew costs in the airline. Similarly, Anbil et al. (1991) report
savings in excess of USD 20 million at American Airlines. Naturally, because
of the large potential cost reductions, the rostering problem for cabin crew has
received a lot of attention in the literature. A good introduction to the problem
is found in Barnhart et al. (2003). Gopalakrishnan and Johnson (2005) present
a resent survey of approaches and solution methodology of the area. Kohl and
Karisch (2004) give a comprehensive description of the problem and describe
the challenges faced when implementing a crew rostering system in practice.

In this thesis, the focus is on rostering problems without the transportation
component. This still includes a variety of problems in areas such as call cen-
ters, health care systems, emergency services, civic services, venue management,
tourism, and manufacturing. Ernst et al. (2004a) present a long list of appli-
cations along with numerous references to problem descriptions and proposed
solutions approaches in the literature. Other recent surveys of the rostering
literature are found in Burke et al. (2004); Ernst et al. (2004b); Cheang et al.
(2003). In the literature, many different rostering problems have been presented
and the solution methods, as well, are plentiful. Typically, specific problems
are solved using explicit models and tailored solution methods. This makes
it complicated to adapt to similar problems or variants of the same problem,
which is also declared by Ernst et al. (2004b). This is also partially the reason
why, it can be hard, to get the industry to appreciate the solutions proposed
in academia, as pointed out by Kellogg and Walczak (2007). To support the
development of solution approaches that can eventually be applied in realistic
settings, it is important to solve the concrete problem and not a simplification

2.4 Related problems 17

hereof. At the same time, the approaches must be versatile enough to allow
transformation between similar setups.

Rostering problems are typically characterizes by having many preferences and
soft constraints, i.e. constraints that may be violated, if necessary. Preferences
are in many cases individual to the employees and the employees can therefore
not be treated in a unified perspective. The soft constraints stem from a number
of rules that have typically been introduced to describe some desired features of
a roster, where it is well known that no roster will be able to accommodate all
requirements.

2.4.3 The vehicle routing problem

Another well established problem in operations research is the vehicle routing
problem. A subset of the vehicle routing problems are constrained by time win-
dows, i.e. the vehicle routing problem with time windows (VRPTW). The time
window constraints give the vehicle routing problem a structure much similar to
the scheduling problems considered in this thesis. In VRPTW a set of customers
is served by multiple vehicles. The vehicles are constrained by their capacity
and must serve each customer within a predefined time window. VRPTW can
be considered as a task scheduling problem, where vehicles correspond to work-
ers and customers correspond to tasks. We use the notation from before, and
refer to customers in I and vehicles in K. We use decision variable yijk in the
model, as it is slightly different from the variable xkit of the general model. The
variable is defined so that yijk = 1 if vehicle k visits customer j immediately
after visiting customer i, and yijk = 0 otherwise. An integer variable, sik, spec-
ifies the start time of service for vehicle k at customer i. If customer i is not
visited by vehicle k, sik = 0. An auxiliary set of locations, N , is introduced,
which contains all customers and two representations of the depot, one where
each route must begin and one where each route must end.

18 Modeling

min
∑
i∈N

∑
j∈N

∑
k∈K

cijyijk (2.20)

∑
j∈N

∑
k∈K

yijk = 1 ∀i ∈ I (2.21)

∑
i∈I

di
∑
j∈N

yijk ≤ q ∀k ∈ K (2.22)

∑
j∈N

y0jk = 1 ∀k ∈ K (2.23)

∑
i∈N

yihk −
∑
j∈N

yhjk = 0 ∀h ∈ I,∀k ∈ K (2.24)

∑
i∈N

yi,n+1,k = 1 ∀k ∈ K (2.25)

sik + τij −M(1− yijk) ≤ sjk ∀i, j ∈ N ,∀k ∈ K (2.26)

αi
∑
j∈N

yijk ≤ sik ≤ βi
∑
j∈N

yijk ∀i ∈ I,∀k ∈ K (2.27)

yijk ∈ {0, 1} ∀i, j ∈ N ,∀k ∈ K (2.28)

sik ∈ R+ ∀i ∈ N ,∀k ∈ K (2.29)

VRPTW falls under the definition of task scheduling problems (2.7)-(2.10), with
the following variable transformation:

xkit =

{∑
j∈N yijk , if t = sik

0 , otherwise
(2.30)

With this definition, Constraints (2.21) reformulate to:

∑
k∈K

∑
t∈T

xkit = 1 ∀i ∈ I (2.31)

It is clear that Constraints (2.31) are specializations of Constraints (2.8) of the
general task scheduling model. Constraints (2.22)-(2.29) define the individual
routes and together are specializations of Constraints (2.9). The objective func-
tion (2.20) is not compactly described in terms of xkit, but the objective can be

2.4 Related problems 19

deducted from xkit and hence is a specialization of (2.7). There are no temporal
dependencies between vehicles, i.e. no constraints of type (2.11), in the ordinary
VRPTW. Hence, VRPTW has interconnectivity of level 0. An extension with
temporal dependencies is described in detail in Paper E. As the objective and all
constraints are specializations of Constraints (2.7)-(2.10), VRPTW may also be
considered as a task scheduling problem. In practice, some manpower planning
problems are indeed very similar to VRPTW. We show a few examples in the
applications considered in this thesis. An introduction to VRPTW is given in
Kallehauge et al. (2005). Early approaches to the problem are among others
presented by Desrosiers et al. (1984), Solomon (1987), and Kolen et al. (1987).
The field of research can be seen as going in two directions, where one direction
considers realistic problems, typically producing solutions with a pragmatic ap-
proach using heuristic solution methods. The other direction is concerned with
exact solution of prototype problems. The latter is the most relevant to the work
presented in this thesis. An early breakthrough was made with the column gen-
eration approach presented by Desrochers et al. (1992). Recent contributions
have developed the concepts significantly, see e.g. Chabrier (2006), Jepsen et al.
(2008), and Desaulniers et al. (2008).

Another variation of the vehicle routing problem with relevant similarities to the
problems considered here, is the vehicle routing problem with split deliveries
(VRPSD) as introduced by Dror and Trudeau (1989). When split deliveries
are allowed, multiple vehicles can serve the same customer to jointly meet the
customer demand. A survey of the literature is found in Lee et al. (2006). Frizzell
and Giffin (1995) were the first to include time windows in VRPSD to form the
vehicle routing problem with time windows and split deliveries. Desaulniers
(2009) present a recent exact approach to the problem.

2.4.4 Parallel machine scheduling

Parallel machine scheduling is another classic operations research problem with
a close relation to the applications considered in this thesis. Job shop schedul-
ing is perhaps the best know of these machine scheduling problems. A set of
jobs, J , each consisting of a sequence of operations, I, is to be scheduled on
a set of machines, K. The processing order of the operations in each job is
predetermined and each job can only be processed on one machine at a time.
Each machine has a maximum capacity of one and each operation has process-
ing time ti. Minimizing makespan is a frequently used objective. Variants of
job shop scheduling are open shop scheduling and flow shop scheduling. In all
three variants, the task allocation is predetermined. They are all specializations
of our general definition of task scheduling problems.

20 Modeling

A general model of parallel machine scheduling which, among many others prob-
lems, captures the three scheduling problems mentioned above, can be formu-
lated as follows. Given is a set of operations, I, and a set of machines, K. Each
operation has a release date αi and a deadline βi, which together define a time
window for the initiation of operation i, si. Each operation is allocated to a
machine. The allocation is represented by a binary variable xik, where xik = 1
if operation i is allocated to machine k, xik = 0 otherwise. The operations may
be subject to generalized precedence constraints. Some of these describe the se-
quencing of operations in jobs, because one operation of a job must finish before
another operation of the same job is started. With such precedence constraints,
the interconnectivity of the parallel machine scheduling is of level 2. Minimizing
makespan, we get the following model:

min max
i∈I

si + ti (2.32)

s.t.
∑
k∈K

xik = 1 ∀i ∈ I (2.33)

αi ≤ si ≤ βi ∀i ∈ I (2.34)

si + δij ≤ sj ∀(i, j) ∈ ∆ (2.35)

xik = 1 ∧ xjk = 1⇒ si + ti ≤ sj ∨ sj + tj ≤ si ∀i, j ∈ I,∀k ∈ K (2.36)

xik ∈ {0, 1} ∀i ∈ I,∀k ∈ K (2.37)

sik ∈ R+ ∀i ∈ I,∀k ∈ K (2.38)

The objective function (2.32) minimizes makespan, but various objectives can be
used. Constraints (2.33) enforce that each operation is allocated to exactly one
machine. All time windows must be respected (2.34) and likewise the generalized
precedence constraints (2.35). For operations on the same machine, there is
a strong precedence relation, i.e. one operation is finished before the next is
initiated (2.36). Constraints (2.37) and (2.38) give the domains of the variables.

The model again is a special case of the general task scheduling model stated ear-
lier. The objective function (2.32) is a specialization of (2.7). Constraints (2.33)
are specializations of Constraints (2.8). Constraints (2.34) and (2.36) can be
considered individually for each machine and are therefore together with Con-
straints (2.37) and (2.38) a specialization of Constraints (2.9). Finally, Con-
straints (2.35) describe temporal dependencies, which can also be modeled with
Constraints (2.11). We refer to Baptiste et al. (2001) for more on literature in
the context of constraint programming and for other variants of the problem.
van den Akker et al. (1999) are the first to present a column generation based
approach to the problem. Allahverdi et al. (2008) present a recent survey of
scheduling problems relevant to the work presented in this thesis.

2.4 Related problems 21

2.4.5 Cutting stock

The cutting stock problem can be found in various contexts in the industry,
where e.g. rolls of paper need to be cut into smaller pieces with as little waste as
possible. Obviously, the material is not important in the mathematical model
and it can be used to describe any problem, where something is cut into smaller
pieces. The problem can also be used in an abstract understanding, where
something needs to be divided, e.g. as stated in Paper B some rostering problems
may been seen as ‘cutting’ a roster-line into requested ‘pieces’ being the shifts.

A traditional formulation of the cutting stock problem is given below. Defined
is a set of possible patterns R which defines how a roll is cut into pieces that
belong to the set I. Each piece i ∈ I has a request of bi. The decision variables
xr, r ∈ R set the number of times pattern r ∈ R is used, at a cost of cr for
each. Parameter ari, r ∈ R, i ∈ I describes how many pieces of type i is cut in
pattern r.

∑
r∈R

crxr (2.39)

s.t.
∑
r∈R

arixr ≥ bi ∀i ∈ I (2.40)

xr ∈ Z+ ∀r ∈ R (2.41)

An early exposition of the cutting stock problem, which illustrates that opti-
mization of the problem has attracted attention for several decades, is given by
Gilmore and Gomory (1961). A more recent description of a column generation
solution method is given by Amor and Carvalho (2005).

2.4.6 Hoist scheduling and container stacking

The scheduling of cranes/hoists has attracted significant attention, particularly
in production of electronics, where production has usually been automated and
where a high efficiency is essential for a profitable operation. E.g., in circuit
board production, hoists are moving products between tanks with various chem-
icals. When hoists run on shared tracks or in other ways may block each other,
it is important to respect so-called anti-collision requirements, as described by
Lamothe et al. (1996). For more on hoist scheduling see Leung and Zhang (2003)
or refer to Zhu and Wilhelm (2006) for a recent literature review on general
scheduling problems with sequence-dependent setup times.

22 Modeling

In the context of this thesis, crane scheduling is considered in connection with a
container-stacking-like problem. Container stacking has, as a separate subject,
received a lot of attention. Container stacking is a complex problem, even when
only one crane is involved. Stacks of containers have to build so that the total
number of moves is minimized, while respecting a number of side-constraints.
See Steenken et al. (2004) for a recent literature review.

Chapter 3

Applications

The work in this thesis is based on a number of practical manpower planning
problems. In the following, we will describe each of the applications in their
context of either rostering or task scheduling. Following, the problems will be
compared to prototype problems from the literature and to each other, in order
to establish the context of this thesis.

Figure 3.1 illustrates the usual workflow in manpower planning. The workflow
is divided into the tasks that are usually part of the planning process.

In long term planning, the workload is forecasted and strategic decisions on
manpower capacity are made. The available manpower will typically have to
follow trends in forecasted demand and hiring/firing employees may be neces-
sary. From an estimated workload, a shift layout can be produced. Generating
the layout includes a specification of shift types with start and end times. Typ-
ically, the shifts are matched with a requested cover which is deduced from the
forecasted workload. The next step in the process is the rostering. Rosters are
made to closely fit the requested cover while respecting laws, union rules and
internal agreements. Figure 3.2 illustrates the relation between the workload,
the demand (requested cover) and the actual cover.

With the rosters available, the tasks are scheduled. This is often done when ap-
proaching the day of operation. From the roster, the number of people working

24 Applications

Forecasting /
Strategic
Planning

(Long term)

Shift
generation /

Demand
estimation

(Long term)

Rostering
(Mid term)

Task
scheduling

(Short Term)

Disruption
management
(Real time)

Day of
operation

1-2 weeks1-2 months+3 months

Home Care
Crew Scheduling

Manpower Allocation
for Ground Crew

Ground Crew Rostering

Nurse Rostering

Crane Scheduling

Vehicle Routing w.
Temporal Dependencies

Figure 3.1: The usual workflow in manpower planning.

each shift is known and tasks are distributed between the available employees.
There may be various dependencies internally between tasks, but the overall
goal is usually to schedule as many of the tasks as possible with the available
manpower. The last phase of the workflow is concerned with the real time op-
eration. Often, task schedules have to be adjusted according to disturbances on
the day of operation and this is done in an online planning module.

Obviously, there are variations and specifications of the workflow. A step which
is not included in the figure is concerned with roster disruption, which happens
anywhere from when the first roster is generated until the day of operation.
Also, the phases are not necessarily considered independently. There may be
advantages in combining e.g. shift generation with rostering or rostering with
task scheduling, as illustrated in Paper B.

Below the workflow, boxes with the practical problems that have been considered
in this thesis are given. The practical problems are located according to their
position in the workflow. The problems are described in more detail below.
From the figure, it can be observed that the focus of this thesis has been on mid
term and short term planning. As illustrated, two of the projects also include
components of long term planning and real time planning, respectively.

3.1 Rostering 25

0

10

20

30

40

50

60

70

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Figure 3.2: Example of a workload graph. The workload (gray area) is fore-
casted. Based on the workload, a requested cover is determined (dashed line).
The actual cover of the roster (full line) should fit the requested cover as closely
as possible. The unit on the vertical axis is ‘number of people’.

3.1 Rostering

Rosters are generated from a fixed set of shifts and from a requested cover.
Rosters consist of a number of roster-lines that are combined into a full roster,
where as many demands as possible are satisfied. Individual roster-lines are
generated for each employee or alternatively for a group of employees working
under the same contractual restrictions. Each roster-line can be decomposed
into a sequence of work-stretches. Work-stretches consist of a segment of days
on (a so called on-stretch) followed by a segment of days off (an off-stretch).
This relationship is illustrated in Figure 3.3.

The roster-lines have to respect a number of constraints on their shift com-
position, the on-days/off-days structure, as well as general restrictions on the
roster-line. The constraints can be defined for each of the components, i.e. some
constraints define feasibility of on-stretches, others define feasibility of work-
stretches and only rules that are concerned with multiple work-stretches are
defined on the roster-line level. In this thesis, only non-transportational rosters
are considered. There may be transportation during a shift, but nothing that
affects the roster as such. In e.g. rostering of cabin crew in the airline industry,
rosters have to incorporate a geographical dimension, as employees may end a

26 Applications

On-stretchOn-stretch Off-stretch Off-stretch

Work-stretch

Roster-line

Work-stretch

Shift Shift Shift Shift Shift

Figure 3.3: A roster-line and its components.

shift in a location far from the one, they started their shift in. This introduces
a number of complications that are disregarded here.

It takes a lot of experience to build good rosters manually and even with expe-
rience, the process of building the rosters is very time consuming. Therefore,
there is a significant demand for automated rostering tools. Within the last
decade the supply of software products has increased significantly to meet this
demand. It is not straight forward to create a solution, which is generic enough
to capture the many variations of rostering problems that one may encounter.
Therefore, it is important to have as few assumptions as possible.

In the work presented in this thesis, the following is assumed for the rostering
problems. A predefined set of shifts exists, where shifts have fixed start and
end times. Prespecified demands or workload estimates are defined and the
demands must be met, as closely as possible, by assigning employees to shifts.
A simple example of a demand is a single-shift-demand introducing a bound on
a single shift, e.g. a lower bound on a specific morning shift. Often demands
will involve several shifts, e.g. a lower bound on the number of employees on all
types of morning shifts. Demands can relate to anything from small 5-minutes
intervals to full day or monthly requirements. Demands may also involve skill
requirements.

All constraints on roster-lines and their components are described by attributes.
The values of the attributes are calculated as the roster-line is built. It is
assumed that all roster-line constraints can be described by attributes. Both
the literature and the examples considered here, show that almost any possible
constraint can indeed be formulated this way.

We confine our focus to rostering problems which can be described by a set
of demands and by the roster-line feasibility criteria and costs. The demands
may be declared as soft constraints, i.e. under-coverage and over-coverage is
permitted at a certain cost. Admittedly, this specification is not broad enough

3.1 Rostering 27

to cover any imaginable rostering problem, but it does capture most realistic
problems including those encountered in practice and those described in broad
literature surveys of e.g. Cheang et al. (2003) and Burke et al. (2009). See also
Ernst et al. (2004b) for a survey of the rostering literature.

3.1.1 Nurse rostering

The nurse rostering instances considered in Paper A are instantiations of a
generalized rostering model, which captures rostering problems from many in-
dustries. Nurse rostering problems are interesting as they contain most of the
complexities considered in any non-transportational rostering problem. There
is usually a 24-hour coverage requirement and the nurses have various skills and
competences. Often they are employed under varying contractual conditions
and have individual preferences. Preferences are on specific shifts as well as on
shift composition in the roster-line. On top of the individual preferences, nurse
rostering problems, typically, include an array of soft constraints, i.e. desirable
features of the roster that do not make the rosters infeasible, if they cannot be
satisfied. All instances considered here look at a 30-day roster period. Burke
et al. (2004) present a survey of the literature on nurse rostering.

3.1.2 Ground crew rostering

In Paper B, one specific ground crew rostering problem from the industry is
considered. The problem has a few distinctive characteristics. The crew is
working a 6-on/3-off pattern, meaning that all on-stretches are 6 days and are
always followed by a 3-day off-stretch. No individual preferences are considered,
and anonymous roster-lines are generated for 9 different employee groups, one for
each possible offset of the pattern. Demands are defined for 5-minute intervals
and are inferred directly from the corresponding airport workload.

As can be observed from Figure 3.1, the problem also considers shift generation
to a limited extent. A number of shift proposals are included in the model with
no requirements on which of these must be used or with what cover. Instead,
the objective is to cover the workload using the proposed shifts as desired. It
is not a full shift generation scheme, as it still requires a larger set of potential
shifts to choose from.

The roster period is half a year. To be able to solve for such a long roster period,
it is split into blocks of 2-3 weeks and each block can be solved separately with
certain conditions applying in the overlap of blocks.

28 Applications

Rostering for ground crew has not received nearly the same attention in the
literature as nurse rostering. A few important references are Brusco et al. (1995),
Dowling et al. (1997), and Chu (2007).

3.2 Task scheduling

From a given roster and hence a specification of workforce availability during
the day, tasks can be scheduled and assigned to employees. This is the focus in
the following applications.

3.2.1 Manpower allocation for ground crew

The manpower allocation problem with time windows and job-teaming con-
straints (MAPTWTC) is considered for ground crew in airports. It is the prob-
lem of assigning a number of teams to a set of tasks in a daily schedule. The
teams drive from one task to the next and therefore the necessary travel time
has to be included in the schedule. The teams are working individual shifts,
which give them an individual start and end times during the day. The tasks
are also constrained by time windows, restricting the time at which they can be
scheduled. MAPTWTC was first described by Lim et al. (2004) and Li et al.
(2005). What differentiates MAPTWTC from the uncapacitated VRPTW is the
job-teaming, where several teams may cooperate on a single task. Also, it is
usually impossible to allocate all tasks to teams and therefore the objective is
to allocate as many as possible. The classical variants of VRPTW that most re-
semble MAPTWTC are the vehicle routing problem with split deliveries and the
vehicle routing problem with a limited number of vehicles. In the first of these,
several vehicles may service each customer, and in the latter some customers
may not be visited. MAPTWTC also contains a number of characteristics from
crew scheduling, e.g. staff skills and mandatory breaks.

The job-teaming constraint may be interpreted as a synchronization constraint
between several identical sub-tasks that together make up the original task.
With this interpretation, MAPTWTC nicely falls under the definition of task
scheduling problems of Chapter 2. The manpower allocation problem considered
in Paper C concerns schedules of ground handling crew in airports.

Between arrival and subsequent departure of an aircraft, numerous jobs includ-
ing baggage handling and cleaning must be performed. It may be necessary to
have several teams cooperating on one task in order to complete it within the

3.2 Task scheduling 29

time window. Hence, job-teaming is required. Often, airlines buy the ground
handling service from so called ground handling companies. The ground han-
dling companies end up with a large amount of tasks on each day and hence
some interesting optimization problems.

The number of synchronization constraints is between 10% and 40% of the total
number of tasks (interconnectivity of level 1).

3.2.2 Home care crew scheduling

The home care crew scheduling problem (HCCSP) is a variant of MAPTWTC
and is considered in Paper D. In home care, a number of citizens request services
in their own home. The services may include cleaning and laundry assistance and
support for other everyday tasks. They may also include assistance with respect
to more personal needs, e.g. getting out of bed, bathing, dressing, preparing
food, and taking medicine. As a consequence of the variety of services offered,
people with different competences are employed as caretakers.

HCCSP deals with the assignment of visits to caretakers and the scheduling of
these visits. The main goal is to cover all visits, if possible. In addition, all visits
are associated with a priority and it is important to only reschedule and cancel
less significant visits. Furthermore, it is important to service each citizen from
a small subgroup of the whole workforce, as this establishes confidence with the
citizen.

The problem also contains shared visits. These are visits requiring the presence
of more than one caretaker, and consequently each visit must be included in the
route of several caretakers, where the interconnected visits must be synchro-
nized. Other tasks have internal temporal dependencies, e.g. some tasks have to
be separated by a prespecified gap to allow time for a washing machine to finish
or because of medical prescriptions. The number of temporal dependencies is
always lower than the number of tasks (interconnectivity of level 1).

The home care crew scheduling problem has previously been described in several
papers. This work builds on top of the findings of Thomsen (2006) and Les-
sel (2007), who describe home care problems in Denmark. A similar study in
Sweden is described by Eveborn et al. (2006), Bredström and Rönnqvist (2007),
and Bredström and Rönnqvist (2008). Studies in other countries are conducted
by e.g. Bertels and Fahle (2006) and Begur et al. (1997).

30 Applications

3.2.3 Vehicle routing with time windows and temporal de-
pendencies

The vehicle routing problem with time windows and temporal dependencies
(VRPTWTD) is closely related to MAPTWTC and has in this thesis been used
to test if the conclusions from the task allocation problems also hold for the
well studied vehicle routing problems. VRPTWTD is described in Paper E.
VRPTWTD is an extension of VRPTW where temporal dependencies between
customers exist. As in the traditional VRPTW all customers must be visited
using an unrestricted number of vehicles. The objective is to visit all customers,
while minimizing the total distance travelled. As VRPTWTD is a new problem,
the relevant literature is on similar variants of vehicle routing (see e.g. Toth and
Vigo (2001)).

The instances considered are randomly generated based on well known VRPTW
instances from the literature. Various temporal dependencies are added and the
number of temporal dependencies in the test instances is varied between 0 and
the number of tasks (interconnectivity of level 1).

3.2.4 Slab yard planning and crane scheduling

Paper F describes the slab yard planning and crane scheduling problem. It has
its origin in steel production facilities, where steel slabs are stored in stacks in a
large yard. Two gantry cranes on a shared track operate in the yard, where slabs
are hoisted and moved one by one using electromagnets. Slabs are added to the
yard from trains, which arrive in one end of the yard. The cranes move the slabs
from the trains to stacks in the yard, where they may be moved around, until
they are eventually needed in production. When asked for, the slabs are moved
to a roller table on which they leave the yard. Each slab has distinct properties
and is therefore, in practice, considered to be unique. Figure 3.4 sketches the
layout of the slab yard. The work presented here is based on the research of
Hansen (2003), who also gives a detailed problem description.

The problem can be considered in two stages. The first stage consists of the slab
yard planning, which is concerned with the layout of the yard. Decisions are
made on the movement of slabs. The goal is to arrange the yard so that slabs
are not blocking each other, thereby minimizing the total number of slab moves
needed. Also, the gantry cranes run on a shared track and can therefore not
pass each other. In the planning stage it is ensured that the cranes will not wait
too much for each other while moving slabs. The planning problem is related
to similar problems in container yard planning, but it is slightly different from

3.2 Task scheduling 31

16 rows x 16 columns

Railway track
(Incoming slabs)

Roller Table
(Outgoing slabs)

The two gantry cranes

Crane trolley

Figure 3.4: Overview of a slab yard.

the other problems considered in this thesis.

The second part of the problem is concerned with the scheduling of the cranes
and can be considered as a task scheduling problem. Assuming that all move-
tasks are generated in the planning stage, the crane scheduling problem consists
of scheduling these tasks, i.e. allocating the tasks to the cranes and finding a
feasible schedule for each of the cranes. It is possible to model the problem as
a regular machine scheduling problem. Disjunctive precedence constraints are
common in scheduling problems and represent the property that either task A
is scheduled and finished before task B or vice versa. Such a relationship may
exist internally on a machine as well as between tasks on different machines.
In the crane scheduling problem, disjunctive generalized precedence constraints
are used to ensure that one crane enters and leaves an area of the yard before
the other crane enters it, or vice versa. The crane scheduling problem can hence
be interpreted as a task scheduling problem with an interconnectivity of level
2, as the number of temporal dependencies for each task is in the order of the
number of tasks.

32 Applications

3.3 Comparison

As demonstrated in the previous sections, the manpower planning problems
are related to various problems from the literature. The relation to existing
literature is sketched in Figure 3.5. The figure is meant to give a rough idea of the
resemblance between the individual problems that have been considered in this
thesis and well established problems from the literature. A bold arrow indicates
that the problem has many properties similar to the prototype problem. A
regular full arrow means that there are some similarities between the problems.
Finally, a dashed arrow indicates that there are partial or vague similarities.

Container
Stacking

Hoist Scheduling

Parallel Machine
Scheduling

Vehicle Routing
(Time Windows)

Staff Rostering

Cutting Stock

Nurse Rostering

Ground Crew
Rostering

Manpower Allocation
for Ground Crew

Vehicle Routing
(Split Deliveries)

Home Care
Crew Scheduling

Vehicle Routing w.
Temporal

Dependencies

Slab Yard Planning
and Crane Scheduling

Figure 3.5: Relations between the applications considered and established prob-
lems from the literature.

From Figure 3.5, it is evident that the problems of this thesis have much in
common with prototype problems of the literature. The figure can also be used
to consider the similarities between the applications of this thesis. The division
in rostering problems and task scheduling problems is evident, and again the slab
yard planning and crane scheduling problem stands out as a slightly different
application. It is an interesting observation that several of the problems are

3.3 Comparison 33

related both to routing and scheduling and actually one may question what
differentiates routing from scheduling, except from the practical context in which
the problems usually appear. A detailed investigation is conducted by Beck et
al. (2003); Beck et al. (2006).

Problem
Intercon-
nectivity
(level)

Complexity
of work-line
generation

Instance size

Nurse rostering 0 NP Medium

Ground crew rostering 0 P Large

Manpower allocation for
ground crew

1 NP+ Medium-Large

Home care crew schedul-
ing

1 NP+ Medium-Large

Vehicle routing with time
windows and temporal de-
pendencies

1 NP+ Small-Medium

Slab yard planning and
crane scheduling

2 NP+ Large

Table 3.1: Properties that affect the expected computational difficulty of the
problems at hand.

In Table 3.1, we try to estimate how hard it is to find good solutions for the indi-
vidual problems at hand, i.e. the expected computational difficulty. We assume
that the computational difficulty depends primarily on three factors, namely:
interconnectivity between workers, complexity of the work-line generation prob-
lem, and the size of the instances. The level of interconnectivity is based on the
definition of Section 2.3. The complexity of the work-line generation is stated
as the complexity of the subproblem in a Dantzig-Wolfe decomposition, i.e. the
problem of finding the best possible work-line for an employee, given costs on
each task/shift. P means that it is solvable in polynomial time. NP means that
it is an NP-hard problem and therefore no polynomial algorithms exist (unless
P = NP). NP+ means that the problem is NP-hard in the strong sense and
therefore no pseudo-polynomial solution algorithms exist (unless P = NP). The
instance size is a rough estimate and includes both the number of employees and
the number of tasks/shifts.

The ground crew rostering and nurse rostering problems have no interconnectiv-
ity and the patterns and the few resources in the ground crew rostering instances

34 Applications

make work-line generation easy. The ground crew rostering instances are how-
ever significantly larger than the nurse rostering problems at hand, both in terms
of number of employees and in terms of the scheduling horizon.

The vehicle routing problems with temporal dependencies may have up to one
temporal dependency for each task. It is a routing problem, and therefore the
creation of single work-lines is harder, as the underlying graph is not inherently
acyclic. However, the size of the instances has been chosen to allow optimal
solution of the majority of the problems. The work-line creation of home care
crew scheduling is slightly complicated by incomplete transportation networks.
On the other hand, the manpower allocation problem for ground crew is slightly
easier as one can utilize the fact that many tasks are similar and that the cost
is only on tasks and not on transport. For both applications, it is possible to
find optimal solutions in most cases. Finally, crane scheduling has a higher level
of interconnectivity with many tasks and therefore stands out as the hardest
problem to solve.

Chapter 4

Solution Methods

In this chapter, we describe a range of solution methods. The most detailed
descriptions are given for the methods that have been applied in one or more of
the projects. In the individual papers, it is assumed that the reader is familiar
with the standard methods and with the related terminology. Therefore, we
will describe the basic concepts and review the relevant theory that has been
applied in the projects. Column generation has been the method of choice in
several of the projects and hence receives significant attention in this chapter.

Heuristics are applied to find near optimal solutions of optimization problems
and may be very different in their approach. In operations research, the term
heuristic is used for methods which are not guaranteed to find optimal solutions.
Heuristics are typically used for hard problems as a means to find high-quality
solutions in reasonable time. Some heuristics mimic the corresponding manual
planning process or apply simple rules to build and modify solutions. Such
heuristics are typically easier to implement than optimization based methods
and they may be the method of choice for that reason. Other heuristics are
built from extensive theory and are applied mainly for their computational
properties. In the following, we distinguish between four types of heuristics:
Meta-heuristics, approximation algorithms, greedy heuristics, and optimization
based heuristics.

A meta-heuristic is a method which combines a generic methodology with a

36 Solution Methods

problem specific setup. Meta-heuristics describe ideas and techniques in generic
terms. For each problem, depending on the choice of heuristic, certain problem
specific components have to be defined. With such definitions in place, the
algorithm follows a procedure dictated by the meta-heuristic.

Several meta-heuristics have been proposed in the last 50 years. A group of
these rely on the definition of neighborhoods. From a feasible solution (or in
some cases an almost feasible solution) a neighborhood defines a set of similar
solutions. Neighborhoods are attractive, as it is often possible to find better so-
lutions in the neighborhood of already good solutions. The difference between
neighborhood based meta-heuristics usually stems from their way of ensuring
diversification, i.e. how effective they are at exploring large parts of the solution
space. Examples of neighborhood based meta-heuristics are: simulated anneal-
ing (Kirkpatrick et al., 1983), tabu search (Glover, 1989), and greedy randomized
adaptive search procedure (Feo and Resende, 1995). Other meta-heuristics are
genetic algorithms (Holland, 1975) and ant colony algorithms (Dorigo, 1992).
As the names indicate, many meta-heuristics take their names from the natural
phenomenon that they have been inspired by. Meta-heuristics have not received
much attention in this thesis. We refer to Glover and Kochenberger (2003) for
a general introduction to meta-heuristics.

Approximation algorithms are applied to find near optimal solutions to specific
optimization problems. Approximation algorithms are able to give a guarantee
on the solution quality as well as the run time. They are, however, less generic
and, as they are defined for a specific problem, are typically less useful for
realistic practical problems. Hence, approximation algorithms have not been
part of the focus of the work in this thesis. See Vazirani (2001) for more on
approximation algorithms.

Greedy heuristics and optimization based heuristics are described in the follow-
ing.

4.1 Greedy heuristics

A greedy heuristic is a simple algorithm, where decisions are made one after the
other and when a decision has been made, it is fixed and will not be revised.
This approach typically leads to very fast algorithms, but the solution quality
may suffer from the restricted perspective in which decisions are made. A greedy
heuristic which is used to build a new solution from scratch is also referred to
as a construction heuristic.

4.2 Column generation 37

Most heuristics that mimic manual planning are greedy, as this is a natural ap-
proach to manually solve realistic planning problems. A planner would typically
know about critical parts of the problem and will therefore fix the most impor-
tant decisions first. Local decisions are made with the rest of the problem in
mind. Doing it this way, does not ensure that the complete solution is feasible,
but it makes it more likely. The same is true for costs. The solution is obviously
not guaranteed to be optimal, but even though decisions are made iteratively,
their effect on future decisions is not disregarded completely. Greedy heuristics
are usually designed to reasonably balance the immediate effects and the poten-
tial implied effects on future decisions. The heuristics are typically tailor-made
for each application and as a result are not very versatile. For further details,
we refer to Cormen et al. (2001).

4.2 Column generation

Column generation is a methodology developed specifically for optimization
problems with certain characteristics. It has its foundation in mathematical
programming and has been shown to perform extremely well on rostering and
routing problems, because they naturally decompose into a master problem and
a subproblem, as described in the following. Column generation considers a
limited set of columns, which, depending on the context, refer to roster-lines,
work-lines, paths, etc. A master problem combines the available columns to
cover a given demand as tightly as possible. A pricing problem is called iter-
atively, to generate new promising columns. The iterative procedure may be
continued until an optimal solution is found. Column generation can be em-
bedded in a branch-and-bound structure and the resulting algorithm is referred
to as a branch-and-price algorithm. We describe the main principles of column
generation, based on its use in the context of rostering and task scheduling. We
have deliberately chosen to keep the description specific to the focus of this the-
sis. For a general introduction to column generation, we refer to the extensive
literature available in the area. See e.g. Barnhart et al. (1998) or Desrosiers and
Lübbecke (2005) for an introduction to column generation.

4.2.1 The master problem

In Chapter 2, we defined the so called compact formulation of rostering and
task scheduling problems. It is possible to use an alternative formulation, where
they are formulated as the problem of finding good individual work-lines and
subsequently combining these into the optimal overall rosters/schedules. The

38 Solution Methods

problem of combining work-lines can be modeled as a mixed integer program.
In the following, we will treat rostering and task scheduling in a unified model.

Given is a set of groups/employees, K, and a set of all tasks/shifts I. Initially,
assume that for each group, k ∈ K, we have a set,Rk, of all feasible work-lines for
that group. Each task requires a certain number of workers, where a violation of
this requirement may either be considered infeasible or may introduce a penalty.
In many applications, exactly one worker is required per task.

Associated with each line of work, r, is a cost crk. arkit describes the individual
lines of work, i.e. arkit = 1 if task i is scheduled at time t in work-line r of group
k, arkit = 0 otherwise. A decision variable λrk is introduced. λrk specifies the
number of workers of group k working line r. The relation to the variables of
the compact formulation (2.7)-(2.10) of Chapter 2 is: xkit =

∑
r∈Rk a

r
kitλ

r
k. In

some applications under-coverage and over-coverage is allowed. µ−i and µ+
i are

decision variables representing the amount of under-coverage and over-coverage,
which comes at a cost, which is denoted c−i and c+i , respectively. µ−i and µ+

i

are identical to the corresponding variables of the compact formulation.

With the introduced parameters and variables, we can formulate the task
scheduling problem below. The model corresponds closely to model (2.7)-
(2.11) of Chapter 2. The cost is linear in the cost of the work-lines plus the
slack/surplus costs. This is a specialization of the cost defined in (2.7). Nonethe-
less, it can be used for all applications that we consider. We refer to the model
as the master problem.

min
∑
k∈K

∑
r∈Rk

crkλ
r
k +

∑
i∈I

(
c−i µ

−
i + c+i µ

+
i

)
(4.1)

s.t.
∑
r∈Rk

λrk = mk ∀k ∈ K (4.2)

∑
t∈T

∑
k∈K

∑
r∈Rk

arkitλ
r
k + µ−i − µ

+
i = bi ∀i ∈ I (4.3)

∑
r∈Rk1

ark1itiλ
r
k1 +

∑
r∈Rk2

ark2jtjλ
r
k2 ≤ 1 ∀k1, k2 ∈ K,∀(i, j, ti, tj) ∈ T x (4.4)

λrk ∈ Z+ ∀k ∈ K,∀r ∈ Rk (4.5)

µ−i ≥ 0, µ+
i ≥ 0 ∀i ∈ I (4.6)

In this model, it is assumed that only the individual costs of work-lines together
with costs from under-coverage and over-coverage, contribute to the objective

4.2 Column generation 39

function (4.1). Constraints (4.2) enforce the inclusion of the correct number of
workers of each group. Constraints (4.3) ensure that all tasks are allocated and
correspond directly to Constraints (2.8) of the compact model. Constraints (4.4)
describe the temporal dependencies and correspond to Constraints (2.11). Con-
straints (4.5) and (4.6) set the domains of the variables.

We observe that (4.1)-(4.6) is a mixed integer program. This is essential for
column generation to be applied. However, column generation is based on linear
programming and we therefore need to relax the integer variables in order to
obtain a linear programming (LP) problem, referred to as the relaxed master
problem. In the relaxed master problem, Constraints (4.5) are replaced by:

λrk ≥ 0 ∀k ∈ K,∀r ∈ Rk (4.7)

Another important observation is that the sets of work-lines, Rk, are pro-
hibitively large. In all practical applications the sets are so large that it is
impossible to represent them explicitly. The idea in column generation is to add
work-lines to a restricted set of work-lines, R′k, when they are needed. A pricing
problem is solved in order to identify work-lines, which may contribute to the
full schedule. Columns corresponding to variables µ−i and µ+

i are represented

explicitly. The relaxed master problem with a restricted set of work-lines, R′k,
is denoted the restricted master problem. Formally, column generation is a tech-
nique to find the optimal solution to the relaxed master problem by repeatedly
solving the restricted master problem. All columns are implicitly considered
and added when needed.

As the restricted master problem is an LP-problem, we are able to utilize
fundamental simplex theory to solve it. Consider a general LP-problem (P):
z = min{c>x|Ax ≥ b∧x ∈ Rn+}. For a basic feasible solution of P, it is possible
to calculate the reduced cost of all variables as c̄ = c − cBB−1A, where c is
the original cost of the variables. cB is the original cost of the current basic
variables and B is the current basis matrix. The value of the dual variables are
y = cBB

−1 and hence the reduced costs can be calculated as c̄ = c− yA. Con-
sequently, for a single variable xj the reduced cost is c̄j = cj −

∑
i∈I yiAij . In

the simplex method, variables with negative reduced cost are iteratively added
to the basis until no more negative reduced costs exist. Therefore, in order
to solve the relaxed master problem to optimality, we must be able to identify
such variables, if they exist. In column generation, this is exactly the purpose
of the pricing problem. For any variable xj with cost cj and the column of
matrix coefficients A·j the calculation of c̄j is straight forward. The challenge is
to implicitly consider all variables, without having to represent them explicitly.

40 Solution Methods

We refer to Hillier and Lieberman (2001) for a detailed exposition of simplex
theory.

For the restricted master problem, we are able to find an optimal primal solution
(λ, µ−, µ+) along with a corresponding dual solution (τ, π, σ). τ , π, and σ are
the dual variables of Constraints (4.2), (4.3), and (4.4), respectively. A variable
λrk has reduced cost c̄rk:

c̄rk = crk −
(
τk +

∑
i∈I

∑
t∈T

arkitπi

+
∑
k′∈K

∑
(i,j,ti,tj)∈T x

(
arkitiσkk′ (i,j,ti,tj) + arkjtjσk′k(i,j,ti,tj)

))
(4.8)

When considering a problem with bi = 1,∀i ∈ I and µ−i = µ+
i = 0,∀i ∈ I a

compact formulation of Constraints (4.4) may be used:

∑
k∈K

∑
r∈Rk

(
arkitiλ

r
k + arkjtjλ

r
k

)
≤ 1 ∀(i, j, ti, tj) ∈ T x (4.9)

This in turn gives a slightly simplified reduced cost calculation:

c̄rk = crk −
(
τk +

∑
i∈I

∑
t∈T

arkitπi +
∑

(i,j,ti,tj)∈T x

(
arkiti + arkjtj

)
σ(i,j,ti,tj)

)
(4.10)

As described earlier, some problems do not have temporal dependencies and
hence have no constraints of Type (4.4). Also, for problems with temporal de-
pendencies, we may choose to relax Constraints (4.4), and let the constraints be
enforced by e.g. the branching scheme instead of by the master problem. In both
cases, the relaxed master problem consists of Constraints (4.1)-(4.3),(4.6),(4.7)
and the reduced cost calculation becomes:

c̄rk = crk −

(
τk +

∑
i∈I

∑
t∈T

arkitπi

)
(4.11)

4.2 Column generation 41

4.2.2 The pricing problem

From a current dual solution of the restricted master problem, the pricing prob-
lem finds one or more variables with negative reduced cost to enter the basis or
proves that no such variables exists. One way of doing that is by solving the
optimization problem:

min c̄k(xk) (4.12)

s.t. xk·· ∈ Xk ⊆ B|I||T | ∀k ∈ K (4.13)

Constraints (4.13) define the feasible schedules of each worker like Con-
straints (2.9) of the general model in Chapter 2.

For all task scheduling problems considered in this thesis, it is possible to for-
mulate the pricing problem as a number of resource constrained shortest path
problems. Nodes represent tasks/shifts and resources are used to track attributes
like time and capacity. Each task i is represented by a node with cost −πi. The
reduced cost contributions from Constraints (4.4) or (4.9) depend on resource
consumption. Two additional nodes are introduced, namely a source node and
a sink node. A shortest path problem is formulated for each group k ∈ K. A
fixed cost, −τk, applies to all columns of the group and is typically set as a cost
in the source node. The problem is to find a feasible path from the source to
the sink which minimizes the total cost.

The resource constrained shortest path problem is usually solved with a label
setting algorithm built on the concept of dynamic programming. In short, the
algorithm keeps track of a set of labels representing partial paths trough the
graph. Labels are compared and unpromising labels are eliminated along with
infeasible ones. The promising labels are extended to longer partial paths and ul-
timately to full paths. Desrochers et al. (1992) presented a dynamic algorithm
for the non-elementary version of the problem. The algorithm was adapted
to the elementary resource constrained shortest path problem by Feillet et al.
(2004). An important contribution to the acyclic variant of the problem is de-
scribed by Dumitrescu and Boland (2003). See Irnich and Desaulniers (2005) for
a recent survey of the literature on resource constrained shortest path problems.

The definition of the subproblem varies greatly from case to case and the
methodology is usually customized to fit with individual settings. In this thesis,
when column generation is used, the corresponding pricing problem is described
individually for the specific setup. As the solution of the pricing problem usu-
ally constitutes a significant part of the total solution time, it is important to

42 Solution Methods

have as efficient methods as possible. This is achieved by the use of efficient
customizations for individual problems building on top of a well founded basic
algorithmic setup.

4.2.3 Branch-and-bound

So far we have focused on the solution of the relaxed master problem. Ulti-
mately, we want to solve the original mixed integer problem. Therefore, the
column generation procedure is embedded in a branch-and-bound framework,
which will reintroduce the constraints that were relaxed. In branch-and-bound,
a dynamic decision tree is built. Starting from a root node, the solution space
is split whenever the optimal solution of the relaxed formulation is found to be
infeasible in the original formulation. Each of the subspaces is stored in a child
node of the root node and the corresponding restricted problem is solved in the
child node. A complete branching scheme has the property that the relaxed
solution space is split into two or more subsets, where the union of the subsets
contains all feasible solution of the original formulation. The current infeasible
solution is not in any of the subsets and hence each of the subsets will provide a
new solution, which is either feasible or where another branching decision can be
applied. A bounding scheme limits the amount of fruitless work. For a detailed
exposition of branch-and-bound, we refer to Wolsey (1998).

In a standard column generation setup, only the integer properties of some
variables are relaxed, e.g. Constraints (4.5). As mentioned earlier, in this
thesis, it has also been tested to relax interconnecting constraints, i.e. Con-
straints (4.4). Either way, the relaxed constraints can be implicitly enforced by
applying branching decisions to the problem. Branching decisions are applied
repeatedly until no violations of the original constraints exist.

When column generation is included in branch-and-bound, it is usually referred
to as branch-and-price. It is also possible to reintroduce relaxed constraints or
generate new ones, by the generation of cuts. An example of constraint reintro-
duction can be found in Paper E. When using both column- and cut generation,
the approach is referred to as a branch-and-cut-and-price method. The flow
of a branch-and-cut-and-price algorithm has been sketched in Figure 4.1. See
Ralphs et al. (2003) for an introduction to branch-and-cut-and-price algorithms
and their implementation.

4.2 Column generation 43

Is solution
feasible wrt. original

formulation?

Is solution
better than current

incumbent?

Construct root node
(Start)

Solve current restricted
master problem

Were new
columns
added?

Generate and add
column(s)

Generate and add cut(s)

Were new
cuts added?

Optimal solution found
(End)

Find most promising
branching candidate

Create children nodes
for current node

Select most promising
node

Do promising
nodes exist?

Update incumbent

Yes

No

Discard node

Yes

No

Yes

No

Yes

No

Yes

No

Figure 4.1: Flowchart of a branch-and-cut-and-price algorithm. The flowchart of
a branch-and-price algorithm is identical, where the processing step “Generate
and add cut(s)” has no effect.

4.2.4 Optimization based heuristics

Traditionally, LP-based methods are used to find the exact solution of optimiza-
tion problems. As we turn our attention towards practical problems, it is usually
ineffective to solve problems to optimality. In this thesis, various approaches
have been applied to achieve significant speedups. When heuristic speedups are
applied, the methods lose the theoretical property of providing an exact solu-
tion and hence compete on equal terms with other heuristics. In a practical
context, the lost theoretical property is seldom of concern. If exact solutions

44 Solution Methods

are required, heuristics may still be used at an early stage in the algorithm.
They must eventually be replaced by exact components to prove optimality.

One possible heuristic approach is to remove parts of the solution space which
appear to be unattractive, before initiating the algorithm. If we disallow certain
unpromising combinations of workers and tasks, the sizes of the subproblems
decrease and the generation of columns is accelerated. Another positive effect
on solution time is that the diversity of columns decreases, which in turn leads
to a less fractional LP-solution and hence to less branching. However, decreased
diversity may also reduce solution quality, and the excluded parts of the solution
space must therefore be chosen carefully. A workaround to this is an iterative
method, where the solution space is reduced significantly from the outset of
the algorithm. Certain parts of it are later reintroduced, when it becomes
clear which features the best solutions are likely to have. The algorithm finds
solutions in the reduced solution space, along with a list of complications which
may be resolved by reintroducing parts of the solution space. See Paper D for an
example. Other authors applying this idea are e.g. Rezanova and Ryan (2010).

Premature branching and pruning can be introduced to speed up the solution of
the master problem. Traditionally, the optimal solution of the restricted master
problem is found in each iteration. If the simplex algorithm contributes with
a significant part of the total solution time, it may be preempted to decrease
solution time. Another option is to declare the master problem solved even
when more variables could be priced out. The solution value of the master
problem often converges much slower, when it is close to the optimal value, and
premature branching and pruning may be applied to avoid this effect. If bounds
are updated appropriately, optimal solutions may still be provided ultimately.
The technique is applied in Paper A.

Heuristic pricing may introduce significant speed improvements in the pricing
problem. First of all, we do not need to always find the least cost variable.
What we do need in order to prove optimality of a solution is a sound certificate
for the non-existence of variables with negative reduced cost. This can be done
by using exact pricing only when heuristic pricing fails. If exact pricing fails
to produce columns with negative reduced cost, it is because there are no such
columns. This idea is applied in Paper C. We may also choose to compromise
overall optimality and use only heuristic pricing. In Paper A, this approach
gave very good results. It has previously also been applied in vehicle routing
with success, see e.g. Savelsbergh and Sol (1998) or Chabrier (2006).

Another way to speed up the algorithm is by limiting the part of the branch-and-
bound tree which is explored. Nodes of the branch-and-bound tree are removed
heuristically to allow for a quicker exploration of the tree. The selection may
be based on bounds or other features of the branching decision. In the extreme

4.2 Column generation 45

case, we may apply a greedy search of the branch-and-bound tree, where the
algorithm from the outset dives in the branch-and-bound tree. This leads to
a much faster algorithm, but may also have a very bad influence on solution
quality. The greedy approach has often been used in the literature, especially for
rostering; see e.g. Day and Ryan (1997). See Paper B for a successful application
in this thesis.

Paper B also describes a decomposition of the problem, where a rolling horizon
is considered. A limited part of the full horizon is considered and a solution is
found to only that part of the problem. The rolling horizon is pushed forward
and partial problems are solved iteratively. Finally, the partial solutions are
merged to form a solution of the full problem. Similar ideas have been described
in the literature by e.g. Eveborn and Rönnqvist (2004).

The suggested heuristic components may be combined to achieve better run
times than what can be obtained by each of them individually. As solutions
are no longer guaranteed to be optimal, it may be valuable to subsequently
reoptimize in order to improve the found solution. To summarize the possible
heuristic improvements, we list the elements of a traditional branch-and-price
framework along with the heuristic modifications that may be introduced.

• Problem description: Define a reduced solution space or alternatively de-
compose the problem and merge parts to a full solution.

• Master problem: Premature branching and pruning.

• Pricing problem: Heuristic pricing.

• Branch-and-bound: Heuristically remove parts of the tree.

46 Solution Methods

Chapter 5

Papers of Part II

In the following, we describe the papers which together constitute the major part
of this thesis. The problem instances considered were introduced in Chapter 3.
Here, we describe the implemented solution approaches, results and conclusions.

5.1 Paper A: A Nested Column Generation
Based Approach to the Generalized Ros-
tering Problem using Compile-time Cus-
tomization

This paper describes a solution approach to the generalized rostering problem.
The paper builds on a comprehensive technical report (Dohn et al., 2010a),
which describes the setup in more detail. Implementation details, in particular,
are discussed thoroughly and the technical report makes a good starting point,
if one wants to build a solution algorithm based on the ideas presented. The
work is also described in the conference proceedings of ORSNZ’09 (Mason et al.,
2009).

A column generation approach is applied to solve a generalized rostering prob-

48 Papers of Part II

lem. The setup is generic and can therefore solve a wide variety of rostering
problems. Problem specific knowledge is included using an attribute-based de-
scription of rules and costs. This idea is similar to that described by Kohl and
Karisch (2004) for a commercial system. A traditional decomposition of the
problem is used, where feasible roster-lines for individual employees are com-
bined using a generalized set covering model solved with column generation.
The set covering model is generic by nature and seldom needs modification to
fit with any realistic rostering problem. Contrary to the master problem, the
roster-line generation in the pricing problem needs to be customized for each
individual problem. The idea, presented in the paper, is to automatically in-
clude the attribute-based description of rules and costs at compile time. The
description is parsed into the code and in this way the algorithm is customized
at compile-time. Any problem describable with the attribute-based language
can hence be solved, solely by parsing the new description to the compiler.

Three different practical nurse rostering problems are solved to illustrate the
versatility of the setup. In a former report by Engineer (2003) it is shown that
the setup easily models rostering problems from other industries as well. The
test results from the three instances are very promising. High-quality solutions
are found in less than 15 minutes for all three. The algorithm can be setup to
prioritize exact solution over runtime and optimal solutions are found for two
of the three instances. The algorithm is compared to a former approach, where
customization happens at runtime and the results show that the compile-time
customization is on average 20 times faster, for the specific instance available to
both implementations. A better bounding procedure for the subproblem is also
presented, and the test shows that the number of labels in roster-line creation
is reduced by more than 60%.

The contribution of the paper is mainly in the novel approach to the generalized
rostering problem. The idea allows an approach which is more versatile than
what has been seen before. Any constraint and cost observed in the literature
can be modeled in the attribute-based setup and the corresponding instances are
therefore solved without any further modifications necessary in the algorithm.
Not only is the method more versatile, it is also much more efficient in its
implementation and significant speed ups compared to a similar former version
of the algorithm are observed. In a survey of the literature, Ernst et al. (2004b)
point out that:

Another important area requiring further work is generalisation of
models and methods. Currently, models and algorithms often require
significant modification when they are to be transferred to a different
application area, or to accommodate changes within an organisation.

5.2 Paper B: An Integrated Approach to the Ground Crew Rostering
Problem with Work Patterns 49

The presented approach alleviates exactly this problem.

5.2 Paper B: An Integrated Approach to the
Ground Crew Rostering Problem with
Work Patterns

A crew rostering problem from a major European airline is considered in Pa-
per B.

The problem considered may be seen as a specification of the generalized ros-
tering problem. However, the focus of the paper is slightly different from that
of Paper A. Like in the generalized rostering project, the rostering problem is
solved by column generation on a generalized set covering master problem with
a resource constrained shortest path subproblem. An integrated approach is
applied, where the rosters are generated directly on the estimated workload,
while including robustness. The number of employees is large and the variables
are not restricted to binary values. This makes it very hard to apply a tradi-
tional branching. Instead a greedy column bounding scheme is applied, where
the value of fractionally selected columns are iteratively pushed upwards to in-
teger values. This approach is much faster than a traditional branch-and-price
approach, but it comes at the cost of a decreased solution quality. As the roster
period is half a year, modeling the problem as a single set covering problem
makes the problem intractable. Instead, the roster period is decomposed into
blocks which are solved iteratively. Each block is solved with column genera-
tion and integer solutions are found for the block. Overlaps between the blocks
ensure continuity throughout the roster period. Decisions from one block fix
some of the decisions in the next block. The decomposition makes the problem
tractable, but solution quality may again be affected.

To evaluate the efficiency of the approach, a number of test cases are introduced.
Three realistic instances from a major European Airline are available. From
these, another 10 random instances are generated. The tests clearly illustrate
the capability of the approach. On the three realistic instances, the workload is
covered almost perfectly and robustness is built into the solution. It is showed
that it is even possible to cover the workload well with fewer people, and hence
increase efficiency. The results indicate that neither the decomposition into
blocks nor the aggressive variable fixing affect the solution quality significantly.

The contribution of the paper is in the solution of an interesting real-life problem
as well as in the development of efficient new heuristic techniques that decrease

50 Papers of Part II

the needed solution time significantly without compromising solution quality
considerably. The integration of demand estimation and rostering by directly
creating the roster from a workload estimation is novel and the results indicate
that it is a very valuable idea. The objective function includes a robustness
measure which is easily incorporated into the model. By introducing a large set
of shifts that the rostering process can choose from, the cover is fitted nicely to
the estimated workload and includes robustness, as well.

5.3 Paper C: The Manpower Allocation Prob-
lem with Time Windows and Job-Teaming
Constraints: A Branch-and-Price Approach

Paper C describes the manpower allocation problem with time windows and job-
teaming constraints. The paper has been published in Computers & Operations
Research. An early version of the paper exists as a technical report (Dohn et
al., 2007c). Furthermore, the project has been presented at several conferences
and is described in conference proceedings of ICAPS’07 (Dohn et al., 2007a)
and ORSNZ’08 (Dohn and Kolind, 2008). Finally, the project is also described
in the journal of the Danish Operations Research Society (Dohn and Kolind,
2009).

A compact mathematical model is presented along with a Dantzig-Wolfe decom-
position of the model. The approach is inspired by a similar successful approach
to VRPTW. The decomposition results in a master problem with the structure
of a generalized set covering problem and a pricing problem that can be solved as
a resource constrained shortest path problem. The LP-relaxation of the master
problem is solved with a standard LP-solver. Synchronization between tasks is
enforced by time window branching. Integrality is further enforced by a second
branching scheme, where employee/task allocations are forced to binary values.
The pricing problem is solved with a label setting algorithm.

The computational results are based on 12 full-size realistic instances from
ground handling companies in two of Europe’s major airports. The focus is
on solution optimality, rather than on solution speed, and for the same reason,
the timeout limit is 10 hours. In 11 of the 12 instances, the optimal solution
is found. In the remaining case, the best solution is very close to optimality.
Interestingly, only half of the optimal solutions could be found in an initial run.
When the algorithm is restarted with a good initial solution, the method is able
to make a better choice on the branching candidates resulting in quick solution
of all but one instance.

5.4 Paper D: The Home Care Crew Scheduling Problem: Preference-Based
Visit Clustering and Temporal Dependencies 51

The main contributions of the paper are a novel approach to MAPTWTC, which
is able to find optimal solutions to full-size realistic instances in almost all cases.
Particularly, the handling of synchronization constraints between tasks had not
been approached before in an exact optimization context. The paper also con-
tributes with some algorithmic insights. It is discussed how to evaluate branch-
ing candidates against each other and how to select the best possible branching
candidates. Also, the paper presents improvements to column generation with
non-identical subproblems. It is concluded that the approach is useful, not in
a real-time setting, but as a pre-operational tool or as a benchmarking tool for
real-time heuristics.

5.4 Paper D: The Home Care Crew Scheduling
Problem: Preference-Based Visit Clustering
and Temporal Dependencies

The home care crew scheduling problem is described in Paper D. Preliminary
results were presented at the ICAOR’08 conference (Dohn et al., 2008c), where
the paper was awarded with the Best Paper Award. A similar description of
the project is found in the journal of the Danish Operations Research Society
(Dohn et al., 2008b).

The approach taken to solve the HCCSP is similar to the one presented in
Paper C. The problem is modeled as a generalized set covering problem and
column generation is used to solve it. The structure introduced, by having a
limited number of preferred caretakers for each citizen, is utilized in the algo-
rithm, where the network of each caretaker is initially limited to the citizens of
which they are preferred. This introduces a significant speedup, but it is not
always possible to service citizens with preferred caretakers and therefore citi-
zens are added iteratively to networks of all caretakers, when allocation issues
are detected.

The computational test are carried out on a total of 94 realistic instances, in-
cluding four real-life instances from Danish municipalities, 60 similar instances
generated from the four real-life instances and another 30 made available by
Bredström and Rönnqvist (2007). The tests compare a number of different set-
tings with and without the clustering scheme and it is clear that the clustering
of visits decreases solution time. However, it is also apparent that there is a
tradeoff between getting lower solution times and better solution quality. The
tests show that by using a cluster with only preferred visits, the run time can
be lowered by 50−70%. With the right settings, the clustering entails a quality

52 Papers of Part II

loss only in a few instances.

The contribution of the paper is the proposed solution algorithm to the HCCSP
and in particular the clustering of visits which results in a subproblem network
reduction with iterative expansion. Furthermore, the paper presents a solution
method to a practical problem, which is able to produce solution superior to
current best practice in an acceptable time.

5.5 Paper E: The Vehicle Routing Problem with
Time Windows and Temporal Dependencies

The vehicle routing problem with time windows and temporal dependencies is
described in Paper E and in a preceding technical report (Dohn et al., 2009a).

The findings from Paper C and Paper D are transferred to generic settings in
vehicle routing, considering academic benchmark instances. It is shown that
most temporal dependencies can be modeled by generalized precedence con-
straints. Two different compact mathematical formulations are proposed. One
is a traditional VRPTW formulation extended with generalized precedence con-
straints modeled with a continuous time-variable for each customer. The other
is a time-indexed formulation containing solely binary variables. Dantzig-Wolfe
decompositions of the compact formulations are presented and four master prob-
lem formulations are derived: the direct formulation, the full time-indexed, the
limited time-indexed, and the relaxed formulation. The formulations can be
ranked according to the tightness with which they describe the solution space.
Any of the master problems allows for a solution method based on column
generation with a resource constrained shortest path subproblem. A thorough
exposition of time window branching is given along with an essential time win-
dow reduction technique. Time window branching is used as a means to remove
violations of generalized precedence constraints as well as to enforce integrality.
It is shown that time window branching with generalized precedence constraints
is theoretically as strong as the specialized synchronization branching used in
Paper C.

A set of test instances are introduced to evaluate the computational value of each
of the models and to assess the consequence of adding temporal dependencies.
The test instances are generated from a benchmark data set from the literature
with no temporal dependencies, where the dependencies are added gradually.
The direct formulation is not included in the tests, as the implementation is not
straight forward and as it is expected to perform worse than the other three
formulations. The results clearly show that the full time-indexed formulation

5.6 Paper F: Optimizing the Slab Yard Planning and Crane Scheduling
Problem using a Two-Stage Heuristic 53

performs worse than the remaining two. The performance of the limited time-
indexed formulation and the relaxed formulation are comparable.

The contribution of the work is in the generic approach to temporal dependen-
cies. In contrast to previous work, this paper describes temporal dependencies
in an academic context on modifications of well known benchmark instances.
Temporal dependencies are modeled with generalized precedence constraints
and the proof that synchronization modeled with two generalized precedence
constraints is as strong as a specialized modeling is a significant contribution.
Furthermore, the introduction of a time-indexed model is novel and even though
the results of the model are comparable to those of the relaxed model, it has
some properties that may be utilized in future work.

5.6 Paper F: Optimizing the Slab Yard Planning
and Crane Scheduling Problem using a Two-
Stage Heuristic

The slab yard planning and crane scheduling problem is described in Paper F. An
extensive technical report (Dohn and Clausen, 2008b) describes details that were
not included in the paper. Preliminary results were presented at the conference
ICAPS’07 (Dohn, 2007).

As the name indicates, the slab yard planning and crane scheduling problem can
be considered in two stages, namely a planning stage and a scheduling stage.
In the planning stage, a greedy heuristic generates move-actions, which takes
the slab yard from an initial state to a desired goal state. In the goal state,
all slabs that are needed in production have been moved to a roller table, on
which they will leave the yard. Also, there are incoming slabs which need to
be stored in the stacks of the yard. Additional moves, the so called reshuffle
actions, may be needed in order to access slabs which are not on top of their
stack. From the generated plan of move-actions, the crane scheduling problem
can be formulated. The cranes are regarded as machines in a traditional ma-
chine scheduling problem, where the move-actions are the tasks of the machines
and disjunctive generalized precedence constraints are introduced to avoid crane
collision in the schedule. Another greedy heuristic is applied to do the schedul-
ing. Tasks are considered one by one and are scheduled as early as time windows
and generalized precedence constraints allow. Mandatory tasks that will serve
the production line with slabs are prioritized. When time allows it, the schedule
will include tasks that move incoming slabs to the yard and tasks that reshuffle
stacks in the yard preparing the yard for future production.

54 Papers of Part II

The introduced two-stage approach is compared to a simulation of manual plan-
ning. The simulation is setup to imitate the behavior of the cranes when they are
under the control of the individual crane operator. The results of the two-stage
approach are significantly better than those of the simulated manual planning.
Especially, when the throughput of the yard is gradually increased, the two-
stage approach is consistently performing well, while the simulation incurs more
and more serious deadline violations.

The main contribution of the paper is a novel modeling of the slab yard planning
and crane scheduling problem and a corresponding solution approach. The
setup of especially the scheduling problem is not straight forward and requires
careful calculation of parameters for the generalized precedence constraints. The
structured approach and in particular the decomposition of the problem in two
stages facilitates a transparent evaluation of the schedule quality.

Chapter 6

Conclusions

In the following, the main findings of the thesis will be summarized, and the
contributions will be highlighted. Finally, we will give our opinion on the most
promising directions for future work.

In this thesis, the modeling and solution of complex planning problems in ros-
tering and task scheduling has been described. The work is based on six specific
applications. All applications are inspired by industrial problems and in most
cases, the analysis and conclusions are based directly on data from the industry.
Manpower planning can be seen as a sequence of planning stages, starting with
long term strategic planning and ending on the day of operation with real time
disruption management. As the title of this thesis indicates, the focus has been
on the planning stages in the mid term and short term planning, namely on
rostering and task scheduling. Also, to keep a confined focus, the thesis has
been limited to certain applications with specific properties.

Two different approaches to rostering were considered. In the first (Paper A),
a generic and very versatile setup was described. The model incorporates most
realistic rostering problems by being able to include their definition from an
external problem description and by not including any problem specific features
in the algorithm. The goal of this work was to create an approach which can
solve almost any realistic rostering problem, while keeping performance compa-
rable to similar customized methods. The computational tests on three nurse

56 Conclusions

rostering problems clearly demonstrate the versatility of the setup and at the
same time show the strength of the approach by its ability to provide applicable
rosters of high-quality. The versatility of the setup is further confirmed in a
description of all common rules found in the literature. It is therefore concluded
that the rather ambitious goal is definitely within reach. The solution speed
has to be increased for the algorithm to be fully comparable to state-of-the-art
heuristic methods.

The second rostering project (Paper B) had a slightly different focus. The
versatility of the setup was not given priority. Instead, a number of surrounding
features and extensions were examined. The roster period was extended to half
a year, which made it intractable to create a full roster at once. Instead, the
full period was divided into overlapping blocks and the problem was solved by
considering blocks sequentially. The focus of the project was extended from
the traditional rostering context to include shift demand estimation as part
of the decision problem. It was established how to quantify demand so that
robustness of the rosters was also ensured. Instead of using a predetermined shift
demand, the estimated workload was used directly in the rostering process and
the process of generating shift demands from the workload was circumvented.
The immediate advantage of combining the two stages was a better workload
cover, where a roster with the given cover is directly available. The solution time
was in all cases acceptable and the quality of the rosters was significantly better
than the quality of the rosters which are currently used in practice. Furthermore,
it was shown that the solution values were in all cases very close to an established
lower bound.

Two variants of manpower allocation problems with temporal dependencies were
considered in the thesis. The first problem (Paper C) describes a practical set-
ting from ground handling in airports. A large number of tasks must be allocated
to teams of workers respecting time and skill prerequisites. Job-teaming require-
ments introduce synchronization constraints between teams and the fact that
the workforce is not big enough to take on all tasks makes the objective one of
minimizing the number of unallocated tasks. Synchronization was relaxed in the
initiation of the solution algorithm and reinforced by the branching scheme. The
results indicate that the approach is viable. In close to all instances, the optimal
solution is found. However, the current solution times prohibit a real-time ap-
plication of the approach. The solution quality and theoretical properties of the
method make it ideal as a pre-operational tool and for benchmarking purposes.

The second manpower allocation application (Paper D) is in home care crew
scheduling, where home care personnel is allocated to practical tasks in the
homes of elderly citizens. The application represents an extension to the for-
mer project in two concerns. The synchronization between tasks is extended
to other temporal dependencies. Furthermore, the citizens have preferences on

57

care takers and this is utilized in a problem reduction, where the set of fea-
sible care takers for each citizen is limited to the preferred ones. The set is
iteratively expanded when needed. The computational results clearly show that
the approach is capable of producing high-quality solutions. Furthermore, it is
apparent that the problem reduction constitutes a significant enhancement.

In another project (Paper E), the findings of the two manpower allocation prob-
lems are generalized to a generic context of vehicle routing with time windows
and temporal dependencies. Numerous benchmark instances are generated with
varying characteristics. Generalized precedence constraints are applied to model
temporal dependencies. The computational analysis serves two purposes. It is
an assessment of the capabilities of the proposed models in the vehicle routing
context. At the same time, it is a computational analysis of the instances and
their properties. It is shown that the best performance is achieved with the so
called, relaxed model, or the limited time-indexed model. Further, the limited
time-indexed model has some nice theoretical properties. It is concluded that
the temporal dependencies introduce additional complexity to the problems, as
expected.

The final application (Paper F) is the slab yard planning and crane scheduling
problem. The problem is slightly different from the other ones considered. The
focus of the project is in the modeling of the application and a greedy heuris-
tic is applied in computational tests. A novel two-stage approach is presented,
where the planning problem and the crane scheduling problem are considered
individually. It is shown that the structured approach to the problem is sig-
nificantly better than a simulation of manual planning. Not only does it give
better solutions, it also allows for a much more transparent management of the
slab yard, where problems and bottlenecks can be identified earlier.

In summary, six individual projects have been considered in the thesis. A gen-
eralized approach to rostering has been examined with great success and exten-
sions and variations have been explored. The approach, based on column gen-
eration, proved to be extremely versatile while also producing superior results.
Furthermore, it was shown that the approach adapts well, when the prerequisites
and objectives are slightly modified. The focus in the task scheduling problems
was confined to problems with certain characteristics, namely task scheduling
problems with temporal dependencies between tasks. Again, a column gener-
ation based approach proved to be of high value. It was shown how to model
various realistic task dependencies in a unified manner and high-quality solu-
tions were found for almost all realistic instances. However, the approaches are
in none of the above cases able to produce solutions as fast as the best available
heuristics. On the other hand, the approaches are able to provide solutions of
superior quality and being based on linear programming theory, the optimality
of many solutions can be proved. The last project had a slightly different focus,

58 Conclusions

but clearly illustrates the value of a structured and well-founded approach to
the slab yard planning and crane scheduling problem.

6.1 Main contributions

The main contributions of this thesis are primarily the contributions of the
individual projects and are therefore also discussed in the corresponding papers.
Below, the most important contributions are listed.

• A versatile approach to generalized rostering has been developed. The ap-
proach represents state-of-the-art in both versatility and solution quality.
The value is validated on three realistic nurse rostering instances from the
industry.

• On top of its immediate value for the rostering application, the compile-
time customization constitutes a contribution in itself. The idea illustrates
how generalized approaches to optimization problems can be built so that
extensions and variations are easily accommodated. The generalization
introduces only minor challenges in the development.

• A roster block structure with partial overlaps has been developed. The
blocks allow solutions of rostering problems with long roster periods, where
solution time grows only linearly with the size of the problem. The so-
lution quality of the test instances was only marginally affected by the
decomposition.

• An integrated approach to shift demand estimation and rostering has been
presented. The approach applies the rostering algorithm directly on the
workload estimation. The integration proved to be of high value in the
realistic instances tested.

• A general modeling of temporal dependencies in task scheduling problems
has been introduced. When a presented time reduction technique is ap-
plied, it is shown that inclusion of synchronization in the general modeling
scheme is as tight as a customized modeling of synchronization.

• An iterative network expansion technique is developed for manpower al-
location problems with preferences. The technique allows for solution of
larger instances and only compromises solution quality slightly.

• The solution of realistic task scheduling problems in ground handling and
home care is a contribution in itself. A novel methodology for the problems

6.2 Future work 59

was developed and it was shown that it was capable of providing high-
quality solutions.

• A novel, structured approach to the slab yard planning and crane schedul-
ing problem constitutes an important contribution, as well. The compu-
tational results clearly indicate the high value of a structured approach
based on mathematical and logic-based models.

6.2 Future work

Future work can follow a number of different directions. For all projects, it
would be interesting to include more industrial applications. Realistic applica-
tions have the ability to validate the computational capabilities of the methods.
At the same time, they typically inspire relevant extensions and variations of
the problem under consideration. It is particularly important to include addi-
tional problems for generalized rostering, where the ultimate goal is to capture
the features of all realistic rostering problems. Only by examining a large num-
ber of diverse problems can the approach truly prove its versatility. Including
additional realistic instances will also contribute to the identification of areas
where algorithmic improvements are needed. For the task scheduling problems,
it would be interesting to examine how the models behave for other applica-
tions. The setup for the slab yard planning and crane scheduling problem has
not been tested directly on any industrial instances and this is naturally of high
importance in potential future development.

Another prospective improvement which will contribute to all the column gen-
eration based methods of the thesis, is the development of column generation
based heuristics. One approach is to adapt well known mixed integer program-
ming (MIP) heuristics to the dynamic structure of column generation. Examples
of MIP-heuristics are Local Branching (Fischetti and Lodi, 2008), Relaxation
Induced Neighbourhood Search (Danna et al., 2005), Pivot and Shift (Balas et
al., 2004), and Feasibility Pump (Fischetti and Salvagnin, 2009). The adaption
will result in a framework having the modeling capabilities of column generation
but with improved computational performance. The ability of providing exact
solutions will be sacrificed to allow for a significant speed improvement. Care-
ful research is needed to ensure that the exceptional solution quality inherent in
column generation methods is not compromised more than absolutely necessary.

Another promising direction for enhancing the performance of the column gen-
eration based methods, is in the advancement of the subproblem solution algo-
rithms. Any improvement of the algorithm transfers directly to the performance

60 Conclusions

of the full column generation and it is therefore worth considering. An area,
which has received limited attention, concerns heuristic solutions of subprob-
lems, see e.g. Savelsbergh and Sol (1998) or Chabrier (2006). As described for
MIP-heuristics, the ability to provide provably optimal solutions may ultimately
be given up. However, for the subproblems, another option exists. By solving
subproblems heuristically only in parts of the process, where no theoretical cer-
tificates are needed, the full algorithm profits from a speed enhancement without
losing solution quality. Finally, an addition which is often used together with
column generation is dynamic cut generation. Cut generation has not been
given much attention in this thesis and it is therefore an interesting direction of
development. The introduction of cuts was predicted to have a considerable ef-
fect, especially for the vehicle routing problem with time windows and temporal
dependencies.

A very interesting perspective in rostering is to combine the two projects pre-
sented in this thesis. The conclusions from the rostering of ground crew transfer
to the generalized settings of the first rostering project. Hence, the extension of
the roster period and the broadening of the problem focus, to consider workload
directly, can be included in the settings of the generalized rostering problem.
Ideally, the project on generalized rostering should capture as many extensions
and variations as possible.

The idea of compile-time customization which was presented for the generalized
rostering problem can be transferred to problems not considered in this thesis. In
many practical applications of operations research, problems eventually need to
be modified, remodeled, or extended. By using a generic approach, as presented
for rostering problems, developed algorithms are easily adapted to extensions of
exiting problems or new similar problems. The customization idea allows for an
adaption without performance drawbacks and is therefore ideal for problems,
where high performance is a requirement.

Additional directions for future work are sketched in the individual papers.

Bibliography

Abbink, E., M. Fischetti, L. Kroon, G. Timmer, and M. Vromans (2005).
“Reinventing crew scheduling at Netherlands railways”. In: Interfaces 35.5,
pp. 393–401.

Allahverdi, A., C. Ng, T. Cheng, and M. Kovalyov (2008). “A survey of schedul-
ing problems with setup times or costs”. In: European Journal of Operational
Research 187.3, pp. 985–1032.

Amor, H. B. and J. V. de Carvalho (2005). “Cutting Stock Problems”. In:
Column Generation. Ed. by G. Desaulniers, J. Desrosiers, and M. Solomon.
Springer. Chap. 5, pp. 131 –161.

Anbil, R., E. Gelman, B. Patty, and R. Tanga (1991). “Recent advances in
crew-pairing optimization at American Airlines”. In: Interfaces 21.1, pp. 62
–74.

Balas, E., C. Wallace, and S. Schmieta (2004). “Pivot and shift - A mixed integer
programming heuristic”. In: Discrete Optimization 1.1, pp. 3–12.

Baptiste, P., C. Le Pape, and W. Nuijten (2001). Constraint-based Scheduling:
Applying Constraint Programming to Scheduling Problems. International se-
ries in operations research & management science. Springer.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P.
H. Vance (1998). “Branch-and-Price: Column Generation for Solving Huge
Integer Programs”. In: Operations Research 46.3, pp. 316–329.

Barnhart, C., A. M. Cohn, E. L. Johnson, D. Klabjan, G. L. Nemhauser, and P.
H. Vance (2003). “Airline Crew Scheduling”. In: Handbook of Transportation
Science. Ed. by Randolph W. Hall. Kluwer Academic Publishers.

Beck, J., P. Prosser, and E. Selensky (2003). “Vehicle routing and job shop
scheduling: what’s the difference?” Ed. by E. Giunchiglia. In: Proceedings,

62 BIBLIOGRAPHY

Thirteenth International Conference on Automated Planning and Scheduling,
pp. 267–76.

Beck, J., P. Prosser, and E. Selensky (2006). “A case study of mutual routing-
scheduling reformulation”. In: Journal of Scheduling 9.5, pp. 469–491.

Begur, S., D. Miller, and J. Weaver (1997). “An integrated spatial DSS
for scheduling and routing home-health-care nurses”. In: Interfaces 27.4,
pp. 35–48.

Bertels, S. and T. Fahle (2006). “A hybrid setup for a hybrid scenario: com-
bining heuristics for the home health care problem”. Ed. by Louis-Martin
Rousseau Michel Gendreau Gilles Pesant. In: Computers and Operations Re-
search 33.10, pp. 2866–2890.

Bredström, D. and M. Rönnqvist (2007). A branch and price algorithm for the
combined vehicle routing and scheduling problem with synchronization con-
straints. Tech. rep. Department of Finance, Management Science, Norwegian
School of Economics, and Business Administration.

Bredström, D. and M. Rönnqvist (2008). “Combined vehicle routing and
scheduling with temporal precedence and synchronization constraints”. In:
European Journal of Operational Research 191.1, pp. 19–31.

Brusco, M. J., L. W. Jacobs, R. J. Bongiorno, D. V. Lyons, and B. Tang (1995).
“Improving Personnel Scheduling at Airline Stations”. In: Operations Re-
search 43.5, 741–751 and 172029.

Burkard, R., M. Dell’Amico, and S. Martello (2009). Assignment problems.
Philadelphia : SIAM, Society for Industrial and Applied Mathematics.

Burke, E. K., P. de Causmaecker, G. V. Berghe, and H. Van Landeghem (2004).
“The State of the Art of Nurse Rostering”. In: Journal of Scheduling 7.6,
pp. 441–499.

Burke, E. K., T. Curtois, R. Qu, and G. Vanden-Berghe (2009).
Problem Model for Nurse Rostering Benchmark Instances. Tech. rep.
http://www.cs.nott.ac.uk/∼tec/NRP/papers/ANROM.pdf. ASAP, School
of Computer Science, University of Nottingham, Jubilee Campus, Notting-
ham, UK.

Butchers, E., P. Day, A. Goldie, S. Miller, J. Meyer, D. Ryan, A. Scott, and
C. Wallace (2001). “Optimized crew scheduling at Air New Zealand”. In:
Interfaces 31.1, pp. 30–56.

Cattrysse, D. and L. Van Wassenhove (1992). “A survey of algorithms for the
generalized assignment problem”. In: European Journal of Operational Re-
search 60.3, pp. 260–272.

Chabrier, A. (2006). “Vehicle Routing Problem with elementary shortest path
based column generation”. Ed. by Louis-Martin Rousseau Michel Gendreau
Gilles Pesant. In: Computers and Operations Research 33.10, pp. 2972–2990.

Cheang, B., H. Li, A. Lim, and B. Rodrigues (2003). “Nurse rostering problems–
a bibliographic survey”. In: European Journal of Operational Research 151.3,
pp. 447–460.

BIBLIOGRAPHY 63

Chu, S. C. K. (2007). “Generating, scheduling and rostering of shift crew-duties:
Applications at the Hong Kong International Airport”. In: European Journal
of Operational Research 177, pp. 1764 –1778.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001). Introduction
to Algorithms. Second Edition. MIT Press and McGraw-Hill.

Danna, E., E. Rothberg, and C. L. Pape (2005). “Exploring relaxation induced
neighborhoods to improve MIP solutions”. In: Mathematical Programming
102.1, pp. 71–90.

Day, P. R. and D. M. Ryan (1997). “Flight attendant rostering for short-haul
airline operations.” In: Operations Research 45.5, pp. 649 –661.

Desaulniers, G., F. Lessard, and A. Hadjar (2008). “Tabu Search, Partial Ele-
mentarity, and Generalized k-Path Inequalities for the Vehicle Routing Prob-
lem with Time Windows”. In: Transportation Science 42.3, p. 387.

Desaulniers, G. (2009). “Branch-and-Price-and-Cut for the Split-Delivery Ve-
hicle Routing Problem with Time Windows”. In: Operations Research To
appear.

Desrochers, M., J. Desrosiers, and M. Solomon (1992). “A new optimization
algorithm for the vehicle routing problem with time windows”. In: Operations
Research 40.2, pp. 342–354.

Desrosiers, J. and M. E. Lübbecke (2005). “A Primer in Column Generation”.
In: Column Generation. Ed. by G. Desaulniers, J. Desrosiers, and M.M.
Solomon. Springer, New York. Chap. 1, pp. 1–32.

Desrosiers, J., F. Soumis, and M. Desrochers (1984). “Routing with time win-
dows by column generation”. In: Networks 14.4, pp. 545–565.

Dohn, A. (2007). “Optimizing the Steel Plate Storage Yard Crane Scheduling
Problem Using a Two Stage Planning/Scheduling Approach”. In: ICAPS
2007 - Doctoral Consortium.

Dohn, A. and J. Clausen (2008a). “A Two-stage Planning/Scheduling Model”.
In: Workshop: MetMat.

Dohn, A. and J. Clausen (2008b). Optimizing the Slab Yard Planning and Crane
Scheduling Problem using a Two-Stage Approach. Tech. rep. DTU Manage-
ment Engineering, Technical University of Denmark.

Dohn, A. and J. Clausen (2008d). “Optimizing the Steel Slab Yard Crane
Scheduling Problem Using a Two Stage Planning/Scheduling Approach”.
In: International Federation of Operational Research Societies Conference.

Dohn, A. and J. Clausen (2010). “Optimising the Slab Yard Planning and Crane
Scheduling Problem using a two-stage heuristic”. In: International Journal
of Production Research 48.15, pp. 4585–4608.

Dohn, A. and E. Kolind (2008). “Optimizing Manpower Allocation for Ground
Handling Tasks in Airports using Column Generation”. In: ORSNZ’08 -
Proceedings - 43rd Annual Conference of the Operational Research Society
of New Zealand, pp. 2–11.

Dohn, A. and E. Kolind (2009). “A Practical Branch and Price Approach to the
Crew Scheduling Problem with Time Windows”. In: ORbit 14, pp. 23–27.

64 BIBLIOGRAPHY

Dohn, A. and A. Mason (2010). “A Nested Column Generation Based Approach
to the Generalized Rostering Problem using Compile-time Customization”.
In: INFORMS Journal on Computing (Submitted).

Dohn, A., E. Kolind, and J. Clausen (2007a). “The Manpower Allocation Prob-
lem with Time Windows and Job-Teaming Constraints”. In: ICAPS 2007 -
Proceedings, Seventeenth International Conference on Automated Planning
and Scheduling, pp. 120–127.

Dohn, A., E. Kolind, and J. Clausen (2007b). “The Manpower Allocation Prob-
lem with Time Windows and Job-Teaming Constraints”. In: Nordic Opti-
mization Symposium.

Dohn, A., E. Kolind, and J. Clausen (2007c). The Manpower Allocation Prob-
lem with Time Windows and Job-Teaming Constraints: A Branch-and-Price
Approach. Tech. rep. Richard Petersens Plads, Building 321, DK-2800 Kgs.
Lyngby: Informatics and Mathematical Modelling, Technical University of
Denmark, DTU.

Dohn, A., M. S. Rasmussen, and J. Larsen (2008a). “Manpower Routing and
Scheduling with Temporal Dependencies Between Tasks”. In: International
Workshop on Column Generation.

Dohn, A., M. S. Rasmussen, T. Justesen, and J. Larsen (2008c). “The Home
Care Crew Scheduling Problem”. In: ICAOR’08 - Proceedings, 1st Inter-
national Conference on Applied Operational Research. Ed. by K. Sheibani.
Tadbir Institute for Operational Research, pp. 1–8.

Dohn, A., M. S. Rasmussen, T. Justesen, and J. Larsen (2008b). “The Home
Care Crew Scheduling Problem”. In: ORbit 13, pp. 19–23.

Dohn, A., M. S. Rasmussen, and J. Larsen (2009a). Technical Report: The Vehi-
cle Routing Problem with Time Windows and Temporal Dependencies. Tech.
rep. Department of Management Engineering, Technical University of Den-
mark, Kgs. Lyngby, Denmark.

Dohn, A., E. Kolind, and J. Clausen (2009b). “The manpower allocation prob-
lem with time windows and job-teaming constraints: A branch-and-price
approach”. In: Computers and Operations Research 36.4, pp. 1145–1157.

Dohn, A., A. Mason, and D. Ryan (2010a). A Generic Solution Approach to
Nurse Rostering. Tech. rep. Department of Management Engineering, Tech-
nical University of Denmark, Kgs. Lyngby, Denmark.

Dohn, A., M. S. Rasmussen, and J. Larsen (2010c). “The Vehicle Routing Prob-
lem with Time Windows and Temporal Dependencies”. In: Networks (Con-
ditionally accepted).

Dorigo, M. (1992). “Optimization, Learning and Natural Algorithms”. PhD the-
sis. Politecnico di Milano, Italy.

Dowling, D., M. Krishnamoorthy, H. Mackenzie, and D. Sier (1997). “Staff ros-
tering at a large international airport”. In: Annals of Operations Research
72, pp. 125 –147.

Dror, M. and P. Trudeau (1989). “Savings by Split Delivery Routing”. In: Trans-
portation Science 23.2, pp. 141–149.

BIBLIOGRAPHY 65

Dumitrescu, I. and N. Boland (2003). “Improved preprocessing, labeling and
scaling algorithms for the weight-constrained shortest path problem”. In:
Networks 42.3, pp. 135–153.

Engineer, F. G. (2003). “A Solution Approach to Optimally Solve the Gener-
alized Rostering Problem”. MA thesis. Department of Engineering Science,
University of Auckland, New Zealand.

Ernst, A. T., H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier (2004a).
“An Annotated Bibliography of Personnel Scheduling and Rostering”. Ed.
by Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. In: Annals of
Operations Research 127.1-4, pp. 21–144.

Ernst, A. T., H. Jiang, M. Krishnamoorthy, and D. Sier (2004b). “Staff schedul-
ing and rostering: A review of applications, methods and models”. Ed. by E.
Burke and S. Petrovic. In: European Journal of Operational Research 153.1,
pp. 3–27.

Eveborn, P. and M. Rönnqvist (2004). “Scheduler - A System for Staff Plan-
ning”. Ed. by Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. In:
Annals of Operations Research 128.1-4, pp. 21–45.

Eveborn, P., P. Flisberg, and M. Rönnqvist (2006). “Laps Care—an operational
system for staff planning of home care”. Ed. by J. Krarup L. Sakalauskas.
In: European Journal of Operational Research 171.3, pp. 962–976.

Feillet, D., P. Dejax, M. Gendreau, and C. Gueguen (2004). “An exact algorithm
for the elementary shortest path problem with resource constraints: applica-
tion to some vehicle routing problems”. In: Networks 44.3, pp. 216–229.

Feo, T. A. and M. G. C. Resende (1995). “Greedy Randomized Adaptive Search
Procedures”. In: Journal of Global Optimization 6.2, pp. 109–133.

Fischetti, M. and A. Lodi (2008). “Repairing MIP infeasibility through local
branching”. Ed. by John W. Chinneck. In: Computers and Operations Re-
search 35.5, pp. 1436–1445.

Fischetti, M. and D. Salvagnin (2009). “Feasibility pump 2.0”. In: Mathematical
Programming Computation 1.2-3, pp. 201–222.

Frizzell, P. W. and J. W. Giffin (1995). “The Split Delivery Vehicle Scheduling
Problem with Time Windows and Grid Network Distances”. In: Computers
and Operations Research 22.6, pp. 655–667.

Gilmore, P. C. and R. E. Gomory (1961). “A Linear Programming Approach
to the Cutting-Stock Problem”. In: Operations Research 9.6, 849–859 and
167051.

Glover, F. (1989). “Tabu search. 1”. In: ORSA Journal on Computing 1.3,
pp. 190–206.

Glover, F. and G. A. Kochenberger, eds. (2003). Handbook of Metaheuristics.
Vol. 57. International Series in Operations Research & Management Science.
Springer.

Gopalakrishnan, B. and E. L. Johnson (2005). “Airline Crew Scheduling: State-
of-the-Art”. Ed. by Monique Guignard-Spielberg and Kurt Spielberg. In:
Annals of Operations Research 140.1, pp. 305–337.

66 BIBLIOGRAPHY

Hansen, J. (2003). “Industrialised application of combinatorial optimization”.
PhD thesis. Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby:
Informatics and Mathematical Modelling, Technical University of Denmark,
DTU.

Hillier, F. S. and G. J. Lieberman (2001). Introduction to Operations Research.
McGraw-Hill.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor.

Irnich, S. and G. Desaulniers (2005). “Shortest Path Problems with Re-
source Constraints”. In: Column Generation. Ed. by G. Desaulniers, Jacques
Desrosiers, and M.M. Solomon. GERAD 25th Anniversary Series. Springer.
Chap. 2, pp. 33–65.

Jepsen, M., B. Petersen, S. Spoorendonk, and D. Pisinger (2008). “Subset-Row
Inequalities Applied to the Vehicle-Routing Problem with Time Windows”.
In: Operations Research 56.2, pp. 497–511.

Kallehauge, B., J. Larsen, O. B. Madsen, and M. Solomon (2005). “The Vehi-
cle Routing Problem with Time Windows”. In: Column Generation. Ed. by
Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. GERAD 25th
anniversary series. New York: Springer. Chap. 3, pp. 67–98.

Kellogg, D. L. and S. Walczak (2007). “Nurse Scheduling: From Academia to
Implementation or Not?” In: Interfaces 37.4, pp. 355 –369.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). “Optimization by Sim-
ulated Annealing”. In: Science 220.4598, 671–680 and 1690046.

Kohl, N. and S. E. Karisch (2004). “Airline Crew Rostering: Problem Types,
Modeling, and Optimization”. Ed. by Houyuan Jiang, Mohan Krishnamoor-
thy, and David Sier. In: Annals of Operations Research 127.1-4, pp. 223–257.

Kolen, A. W. J., A. H. G. R. Kan, and H. W. J. M. Trienekens (1987). “Vehicle
Routing with Time Windows”. In: Operations Research 35.2, pp. 266–273.

Kuhn, H. W. (1955). “The Hungarian method for the assignment problem”. In:
Naval Research Logistics Quarterly 2, pp. 83–87.

Lamothe, J., C. Thierry, and J. Delmas (1996). “A multihoist model for the
real time hoist scheduling problem”. In: Symposium on Discrete Events and
Manufacturing Systems. CESA’96 IMACS Multiconference. Computational
Engineering in Systems Applications, pp. 461–6.

Lee, C.-G., M. A. Epelman, C. C. W. III, and Y. A. Bozer (2006). “A Shortest
Path Approach to the Multiple-Vehicle Routing Problem with Split Pick-
Ups”. In: Transportation Research Part B 40, pp. 265–284.

Lesaint, D., C. Voudouris, and N. Azarmi (2000). “Dynamic workforce schedul-
ing for British Telecommunications plc”. In: Interfaces 30.1, pp. 45–56.

Lessel, C. R. (2007). “Ruteplanlægning i hjemmeplejen”. MA thesis. Informatics
and Mathematical Modelling, Technical University of Denmark.

Leung, J. and G. Zhang (2003). “Optimal cyclic scheduling for printed cir-
cuit board production lines with multiple hoists and general process-

BIBLIOGRAPHY 67

ing sequence”. In: IEEE Transactions on Robotics and Automation 19.3,
pp. 480–484.

Li, Y., A. Lim, and B. Rodrigues (2005). “Manpower allocation with time
windows and job-teaming constraints”. In: Naval Research Logistics 52.4,
pp. 302–311.

Lim, A., B. Rodrigues, and L. Song (2004). “Manpower allocation with time win-
dows”. In: Journal of the Operational Research Society 55.11, pp. 1178–1186.

Lusby, R., A. Dohn, T. M. Range, and J. Larsen (2010). “An Integrated Ap-
proach to the Ground Crew Rostering Problem with Work Patterns”. In:
Journal of the Operational Research Society (Submitted).

Mason, A. J., D. Ryan, and A. Dohn (2009). “Customised Column Generation
for Rostering Problems: Using Compile-time Customisation to create a Flex-
ible C++ Engine for Staff Rostering”. In: ORSNZ’09 - Proceedings - 44rd
Annual Conference of the Operational Research Society of New Zealand.

Pardalos, P. M. and H. Wolkowicz, eds. (1993). Quadratic Assignment and Re-
lated Problems. American Mathematical Society.

Ralphs, T., L. Ladányi, and M. Saltzman (2003). “Parallel branch, cut, and
price for large-scale discrete optimization”. In: Mathematical Programming
98.1-3, pp. 253–280.

Rasmussen, M. S., T. Justesen, A. Dohn, and J. Larsen (2010). “The Home Care
Crew Scheduling Problem: Preference-Based Visit Clustering and Temporal
Dependencies”. In: European Journal of Operational Research (Submitted).

Rezanova, N. J. and D. M. Ryan (2010). “The train driver recovery problem-A
set partitioning based model and solution method”. Ed. by Jesper Larsen
Jens Clausen Allan Larsen. In: Computers and Operations Research 37.5,
pp. 845–856.

Savelsbergh, M. and M. Sol (1998). “Drive: Dynamic Routing of Independent
Vehicles”. In: Operations Research 46.4, 474–490 and 223126.

Solomon, M. M. (1987). “Algorithms for the Vehicle Routing and Scheduling
Problems with Time Window Constraints”. In: Operations Research 35.2,
pp. 254–265.

Steenken, D., S. Voß, and R. Stahlbock (2004). “Container terminal operation
and operations research - a classification and literature review”. In: OR Spec-
trum 26.1, pp. 3–49.

Thomsen, K. (2006). “Optimization on Home Care”. MA thesis. Informatics
and Mathematical Modelling, Technical University of Denmark.

Toth, P. and D. Vigo (2001). The Vehicle Routing Problem. Society for Industrial
and Applied Mathematics Philadelphia, PA, USA.

van den Akker, J. M., J. A. Hoogeveen, and S. L. v. d. Velde (1999). “Parallel
Machine Scheduling by Column Generation”. In: Operations Research 47.6,
pp. 862–872.

Vazirani, V. V. (2001). Approximation Algorithms. Springer-Verlag, Berlin.
Wolsey, L. A. (1998). Integer Programming. John Wiley & Sons, Inc.

68 BIBLIOGRAPHY

Zhu, X. and W. Wilhelm (2006). “Scheduling and lot sizing with sequence-
dependent setup: a literature review”. In: IIE Transactions 38.11,
pp. 987–1007.

Part II

Scientific Papers

Appendix A

A Nested Column Generation
Based Approach to the

Generalized Rostering
Problem using Compile-time

Customization

Anders Dohn and Andrew Mason

Submitted to: INFORMS Journal on Computing (2010).

72
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

A Nested Column Generation Based Approach
to the Generalized Rostering Problem using

Compile-time Customization ∗

Anders Dohn1, Andrew Mason2

We present a novel column-generation based solution approach to
the generalized staff rostering problem. The problem is defined by a
generic set partitioning model, which is able to capture all commonly
occurring problem characteristics from the literature. Columns of
the set partitioning problem are generated dynamically by solving
a pricing sub-problem and constraint branching in a branch-and-
bound framework is used to enforce integrality. The pricing prob-
lem is formulated as a novel three-stage nested shortest path problem
with resource constraints that exploits the inherent problem struc-
ture. Careful use of the C++ pre-processor allows the pricing model
to be customized for the target problem at compile-time, resulting
in a both versatile and very efficient solution method. The solution
method for the pricing problem is presented along with a bounding
scheme for resources. Comparison with a more-standard run-time
customization approach shows that speedups of around a factor 20
are achieved using our new approach. The adaption to a new prob-
lem is simple and the implementation is automatically adjusted in-
ternally according to the new definition. We present results for three
practical nurse rostering problems. The approach captures all fea-
tures of each problem and is able to provide high-quality solutions in
less than 15 minutes. In two of the three instances, even the optimal
solution is found within this time frame.

Keywords: generalized rostering problem, nurse rostering, nurse scheduling,
column generation, branch-and-price, set partitioning, set covering, integer
programming, linear programming, shortest path problem with resource con-
straints, dynamic programming, label setting.

∗Submitted to: INFORMS Journal on Computing (2010).
1Department of Management Engineering, Technical University of Denmark, Produktion-

storvet, 2800 Kongens Lyngby, Denmark.
2Faculty of Engineering, University of Auckland, Auckland, New Zealand.

A.1 Introduction 73

A.1 Introduction

The generalized rostering problem is the problem of generating a feasible high-
quality staff schedule (‘roster’) for a group of staff working collectively to provide
some service. The roster will specify, for each staff member the sequence of shifts
and days off (termed the ‘roster-line’) to be worked during the roster period.
This roster must satisfy pre-specified demand constraints which typically express
minimum staffing requirements for individual shifts or time periods, and may
include requirements for staff with certain skills or meeting particular contract
conditions. The roster-line worked by each staff member is typically strictly
governed by laws, union regulations and internal agreements, and has an asso-
ciated quality measure. These requirements together can make it hard to create
feasible rosters, let alone high quality ones.

Rosters have traditionally been created manually by the head of the section or by
an experienced member of the staff. Often, the rosters were made by modifying
former rosters or by putting together roster-lines and parts of roster-lines which
were known to be good. It takes a lot of experience to build good rosters and
even with experience, the process of building the rosters is very time consuming.
Therefore, there has been and still is a large demand for automated rostering
tools. Within the last decade the supply of software products has increased
significantly to meet this demand.

One of the major obstacles to developing rostering software has been the varying
requirements from one application to another. As a result, many rostering
systems have been custom made to match the exact requirements of a particular
company or institution. The main issue with this approach is the time and
money needed for development of the system. For the same reason, automated
scheduling systems have in the past been reserved for institutions with a large
and very apparent need for automation. Our focus here is on developing a
flexible but still efficient generic software framework that can be applied to a
large variety of rostering problems. Our system has to be adapted to a given
application, but this adaptation is easy and fast. Hence, using our approach,
an effectively tailor-made product can be produced at significantly lower costs
than before.

Staff rostering has already received a lot of attention in the literature. We refer
to the extensive literate reviews of Burke et al. (2004), Ernst et al. (2004b), and
Cheang et al. (2003). Also, Ernst et al. (2004a) present a massive collection of
references to papers on rostering. The EURO Working Group on Automated
Timetabling (Curtois, 2010) provides a good up-to-date overview of the litera-
ture.

74
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

The solution method presented here builds on the idea of column generation.
Column generation is embedded in a branch-and-bound framework resulting in
a so called branch-and-price algorithm; for an introduction to column genera-
tion, see Desrosiers and Lübbecke (2005). Naturally, the literature on column
generation based solution methods to rostering is of special interest. Jaumard
et al. (1998) solve a nurse rostering problem using column generation. The
subproblem is formulated as a shortest path problem with resource constraints,
where each possible shift is represented by a node. It is solved with a two-
stage algorithm proposed by the authors. Bard and Purnomo (2005b) solve a
nurse rostering problem with individual preferences for the nurses. Columns
are generated by a, so called, double swapping heuristic. High-quality solu-
tions are found within minutes. In Bard and Purnomo (2005a) the model is
extended to allow downgrading of workers with higher level skills. Beliën and
Demeulemeester (2006) schedule trainees in a hospital using branch-and-price.
Interestingly, columns are generated for activities instead of the conventional
columns for roster-lines of employees. The described problem of scheduling
trainees is somewhat simpler than the generalized rostering problem, and only
for this reason, is it possible to use the alternative column generation model.
In a succeeding paper by the same authors (Beliën and Demeulemeester, 2007),
it is concluded that the activity-decomposed approach does not have the same
modeling power. However, if the problem allows this model to be used, the
performance may be enhanced by doing so.

A column generation approach to the nurse rostering problem is also described
in Maenhout and Vanhoucke (2008). The approach has a number of features
in common with our approach. The authors describe different pruning and
branching strategies, e.g. Lagrangian dual pruning and branching on the residual
problem. Beliën and Demeulemeester (2008) extend the nurse rostering model
to include scheduling of the operating room and show that considerable savings
can be made by integrating the two scheduling problems.

Eitzen et al. (2004) present a set covering model for a crew scheduling prob-
lem at a power station. Three column generation based solution methods are
proposed to solve the set covering model: the column expansion method, the
reduced column subset method, and branch-and-price. In the first, three phases
are solved, where the skill set of each employee is gradually enlarged from one
phase to the next. In the second, a restricted number of columns are generated
randomly with no guarantee on quality. The latter method integrates dynamic
column generation and constraint branching in a branch-and-bound framework.
Al-Yakoob and Sherali (2008) solve a crew rostering problem for a large number
of gas stations using a column generation approach. The model takes the in-
dividual preferences of the employees into account. A heuristic founded on the
column generation algorithm is able to solve realistic problems.

A.1 Introduction 75

In the column generating subproblem presented here, two shortest path prob-
lems with resource constraints are solved. Much literature has been published
on shortest path problems with resource constraints. Desrosiers et al. (1984)
present an early version of the algorithm with time as the only resource, which
is generalized by Desrochers (1988). Lübbecke (2005) suggests discarding all
labels that cannot lead to a column with negative reduced cost. Dumitrescu
and Boland (2003) introduce a more extensive preprocessing scheme. Righini
and Salani (2006) present a significant improvement in performance by using
bidirectional search. Chabrier (2006) utilize an idea on the potential value of
each node to improve performance further. See Irnich and Desaulniers (2005)
for a literature review.

The idea behind the generic modeling of rules and preferences that we present
is similar to that of an industrial system, described by Kohl and Karisch (2004).
The authors describe a modeling tool, which is essentially a rule programming
language, where the end user can maintain and modify rules in a flexible way.
However, they also explain that the optimization method can only ‘ask’ simple
questions about legality and cost.

The work presented here is based primarily on the work of Smith (1995), Nielsen
(2003) and Engineer (2003). Smith presents a column generation setup to solve
a nurse rostering problem from Middlemore Hospital in Auckland. Following
the promising results for this initial application, two projects followed, with the
aim of building a generalized rostering framework which would be able to solve
various rostering problems. Nielsen describes a general modeling framework
for rostering problems. Roster-lines are generated by an enumerative scheme
including some constraint programming techniques. Nielsen uses experimental
data from Auckland Healthcare. Engineer applies column generation to various
rostering problems. He formulates the pricing problem as a three stage nested
shortest path problem with resource constraints as described by Mason and
Smith (1998) and solves it using label setting. The algorithm developed proved
to be both efficient and at the same time versatile enough to allow solution
of applications with very different characteristics. The work presented in this
paper extends and improves these earlier approaches.

The contribution of this paper is the novel approach to the generalized rostering
problem, where any constraint and cost observed in the literature can be mod-
eled in the attribute-based setup. New instances are therefore solved without
any modifications in the algorithm. Not only is the method versatile, it is also
very efficient in its implementation. In a survey of the literature, Ernst et al.
(2004b) point out that:

Another important area requiring further work is generalisation of

76
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

models and methods. Currently, models and algorithms often require
significant modification when they are to be transferred to a different
application area, or to accommodate changes within an organisation.

The presented approach alleviates exactly this problem in a very efficient way.

In Section A.2, we define the generalized rostering problem, and give details of
our integer programming formulation and an overview of the column generation
sub-problem. We also discuss the generality of our approach. Our solution
method is described in Section A.3. The implementation allows compile-time
customization by including a user defined problem definition. The details are
described in Section A.4. Following, an example is presented in Section A.5 and
computational results for three realistic nurse rostering instances are discussed
in Section A.6. Finally, our conclusions are presented in Section A.7.

A.2 Model

The inputs to a generalized rostering problem include staff, skills, shifts, and
demands. Each shift is defined by a start date, start time and a duration that
specifies when staff assigned to this shift will be at work. Each staff member has
an associated subset of skills. These skills are combined with shifts to specify
demands. For example, the company may specify that 2 or more ’supervisor’
and/or ’clinician’ staff shall be on duty from 10am to 12pm next Tuesday. If
the shifts that cover this time period are the Tuesday 8am-8pm ’D’ shift and
10am-7pm ’M’ shift, then this demand is expressed as a lower bound on the
number of such shifts worked by staff with the clinician or supervisor skill. The
earliest and latest shifts together define the scheduling time horizon of interest.
The roster produced as output will specify the roster-line (sequence of shifts
and days off) worked by each staff member during the scheduling horizon. We
generally assume each staff member works no more than one shift per day. A
roster is feasible if all demands are satisfied using feasible roster-lines.

The generalized rostering problem can be modeled as a generalized binary set
partitioning problem. Each column corresponds to a possible roster-line for
a certain staff member, while each row corresponds to a demand constraint.
Some demands may be defined as soft constraints and a penalty is applied if
the demand is not met. The master problem combines the roster-lines in order
to meet the demand constraints, while the column generation subproblem must
generate feasible roster-lines.

The difficulty when modeling rostering problems is typically associated with

A.2 Model 77

the generation of high quality feasible roster-lines. The rules these roster-lines
must satisfy may vary significantly from one problem to another as illustrated
in Section A.2.3. A column generator must be sufficiently flexible to handle
these rules. We now formally define the master problem for which columns are
generated.

A.2.1 Master problem

Given a set of employees, E , and a set of demands, D, the objective of the
master problem is to find a combination of roster-lines, one for each employee,
such that all demands are met at the lowest possible cost (where a low cost
corresponds to a high quality). The set Re holds all feasible roster-lines for
employee e ∈ E . Because of the vast number of feasible roster-lines, columns
are generated during the solution process. The set R′e contains the roster-lines
of employee e generated so far. Three sets of decision variables are used. λre is
a binary decision variable, where λre = 1 if roster-line r is chosen for employee e
and λre = 0 otherwise. s−d is the amount of under-coverage (slack) for demand
d. Similarly, s+

d is the amount of over-coverage (surplus) for demand d. The
amount of permitted under- and over-coverage is regulated by bounds on s−d
and s+

d , respectively.

Three sets of costs apply to the master problem. cre gives the cost of roster-line
r of employee e. c−d and c+d specify the cost of under- and over-coverage for
demand d, respectively. Parameter ared describes the roster-lines, with ared = 1
if roster-line r of employee e contributes to demand d, and ared = 0 otherwise.
bd is the demand level to be met. The master problem is formulated as:

min
∑
e∈E

∑
r∈R′e

creλ
r
e +

∑
d∈D

c−d s
−
d +

∑
d∈D

c+d s
+
d (A.1)

∑
r∈R′e

λre = 1 ∀e ∈ E (A.2)

∑
e∈E

∑
r∈R′e

aredλ
r
e + s−d − s

+
d = bd ∀d ∈ D (A.3)

λre ∈ {0, 1} ∀e ∈ E ,∀r ∈ R′e (A.4)

0 ≤ s−d ≤ u
−
d , 0 ≤ s

+
d ≤ u

+
d ∀d ∈ D (A.5)

The objective (A.1) is to minimize the total cost of all roster-lines while also
minimizing penalties from under- and over-coverage. A feasible solution contains

78
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

one roster-line for each employee (A.2). All demands must be met or the ap-
propriate slack and surplus variables are adjusted accordingly (A.3). (A.4) and
(A.5) set the domains of the decision variables, where u−d and u+

d give the max-
imum under- and over-coverage permitted. The LP-relaxation of (A.1)-(A.5) is
denoted the Restricted Master Problem.

For any solution of the master problem given by λre, s
−
d , and s+

d , a dual solution
exists. Let τe be the dual variables of Constraints (A.2) and similarly, let πd
be the dual variables of Constraints (A.3). If a primal solution does not exist,
the dual problem is unbounded and no meaningful dual values can be found.
Instead, τe, πd denote a dual ray that gives information on how to restore primal
feasibility.

A.2.2 Subproblem

The subproblem, also referred to as the pricing problem, generates new columns
for the master problem. Given a vector of dual values, the subproblem returns
a column with negative reduced cost, if one exists. Such a column will enter
the basis in the master problem and dual values are updated. If no additional
columns exist, the master problem solution is optimal.

On-stretchOn-stretch Off-stretch Off-stretch

Work-stretch

Roster-line

Work-stretch

Shift Shift Shift Shift Shift

Figure A.1: The entities of a roster and their association.

The subproblem is formulated as a three stage model and follows the setup de-
scribed by Mason and Smith (1998). A roster-line is considered to be constructed
from underlying entities. The association between the entities is illustrated in
Figure A.1. A shift entity defines a period of time during which an employee is
working. A series of shifts worked in succession (typically one per day) forms
an on-stretch entity. The length of on-stretches may be constrained in terms of
minimum and maximum number of hours, shifts, days, etc. A period of time
where the employee is not working is referred to as an off-stretch. An on-stretch
followed by an off-stretch forms a work-stretch. There are often restrictions
on how on-stretches and off-stretches can be combined. Finally, a roster-line

A.2 Model 79

consists of a sequence of work-stretches. A roster-line spans the full scheduling
horizon and typically has to respect constraints on the total amount of hours
worked, the number of weekends worked, etc.

Shifts and off-stretches are referred to as simple entities while on-stretches, work-
stretches and roster-lines are composite entities. Entities have attributes which
are tracked as the entities are constructed and extended. Attributes of a simple
entity is part of the input data, whereas the attributes of a composite entity are
calculated when the entity is created, using the attribute values of its component
entities. A set of rules, typically stated as bounds on attribute values, define the
validity of an entity. Rules may define hard constraints that must be satisfied or
soft constraints for which a penalty (termed an attribute cost) is applied when
a rule violation occurs. The attribute values are also used to calculate the cost
associated with each entity. The cost of a new entity is typically calculated
using costs derived from the entity’s attribute values and/or costs associated
with its component entities. These entity costs may be employee dependent if
staff have expressed individual preferences such as shifts requests.

Different rules and preferences may apply to each employee; therefore a separate
subproblem exists for each of the employees. Given a set of legal shifts, Se, for
employee e, a set of feasible on-stretches, Oe, can be found. A set of legal work-
stretches, We, is created for all compatible combinations of on-stretches in Oe
and all legal off-stretches, Fe. By sequencing legal work-stretches, roster-lines
are generated and together define the set R̄e.

The objective of the subproblem for employee e is to find the feasible roster-line
with the most negative reduced cost or to prove that no roster-line with negative
reduced cost exists. For a given employee e, we can compute an effective dual
value for each shift by summing the dual values πd of the demands d ∈ D that
are contributed to by this shift when worked by employee e. The reduced cost
of any entity can then be computed by subtracting from its cost the sum of the
effective duals of the shifts contained in that entity. Off-stretches have fixed
costs only. In the case of a roster-line, the dual of the corresponding employee
constraint, τe, must also be included. When the subproblem is used to restore
primal feasibility in the master problem, the reduced costs are based solely on
the values of the dual ray, with all other costs treated as zero.

As we discuss next, our use of this structure of nested entities, and the corre-
sponding nested column generator we have developed, allows a computationally
efficient expression of a wide range of rules and preferences. The user is free to
specify what attributes need to be tracked by each entity type, and how these
attribute values are calculated and used to determine the feasibility and/or cost
of an entity. The use of nested entities allows the rules and preferences to be ex-
pressed where they naturally occur, ensuring that illegal or poor quality entities

80
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

are rejected early in the column generation process.

A.2.3 Applicability of the model

The extent to which our system can model and solve different rostering problems
is limited by the modeling power of the master problem and the column genera-
tor. As we now discuss, our experience with problems drawn from the literature
and from our own industry contacts suggests that this modeling approach, and
in particular the nested column generation, can express and efficiently process
all common rules and requirements.

In a bibliographic survey by Cheang et al. (2003) a list of commonly occurring
constraints in the literature is presented, where the constraints are grouped
into 16 different categories. Burke et al. (2009) in a similar way list 26 sets of
constraints that occur in practical nurse rostering problems. The list is a slight
revision of a list originally formulated by Berghe (2002).

Furthermore, the work of Bliddal and Tranberg (2002), Nielsen (2003), Engi-
neer (2003) and Poulsen (2004) together describe 10 practical problems. The
practical problems have been given special attention in this project. From the
reports, a number of common characteristics can be found. The problems have
a fixed planning period and a fixed set of shifts. Each nurse has individual
preferences and their own paid hours targets. Some specific shift transitions are
banned and shift assignments may be fixed in advance. These characteristics
are all captured by our current model.

Each problem has individual rules. To illustrate, a few examples are listed
below.

• On all days: at least one of the nurses was also there the day before
(Bliddal and Tranberg, 2002).

• A nurse cannot work two consecutive weekends (Poulsen, 2004).

• Minimize the number of different shifts in an on-stretch (Poulsen, 2004).

• One week with 60 hours or more allows only 16 hours the following week
(Poulsen, 2004).

• If working night shifts, at least two consecutive night shifts must be sched-
uled (Nielsen, 2003).

A.3 Solution method 81

These constraints can easily be included in the model using appropriately defined
attributes. Indeed, by introducing customized attributes, any of the constraints
concerning internal roster-line rules can be implemented. A few rules reported
in the literature concern roster-lines of multiple employees, and thus impact
the master problem. Most of these can be modeled as demand constraints of
the form presented in Constraint (A.3). The remaining rule concerns tutorship,
where one employee can only work if another employee is working as well. This
can be modeled by introducing demands where some employees may have a
negative contribution, i.e. ared = −1 in Constraint (A.3).

With the suggested extension, the model presented here is able to deal with
all the constraints of Cheang et al. (2003) and Burke et al. (2009) and with all
constraints seen in the 10 industry examples mentioned earlier.

A.3 Solution method

A.3.1 Master Problem Solution

The relaxed restricted master problem as defined in Section A.2.1 is an LP-
problem and a standard solution tool (like CPLEX) can be applied to solve
it.

Branching is applied to remove fractional solutions from the solution space of the
LP-relaxed master problem. In regular branch-and-bound algorithms, variable
branching is the method of choice. It is, however, complex and in most cases
highly inefficient to apply variable branching in a branch-and-price algorithm.
Instead, we use constraint branching where certain constraints are (implicitly)
introduced in the current restricted master problem.

Here, we use a specialization of the constraint branching method proposed by
Ryan and Foster (1981). If the solution of the restricted master problem is frac-
tional, the columns of one or more employees are in the solution with a fractional
value. As two columns of an employee are never identical, two fractionally se-
lected columns will differ in at least one of the included shifts. This in turn
means that the employee is not assigned to that shift with a value of 1. In a
feasible integer solution, employees are always assigned to shifts (with a value
of 1) or not assigned to them at all (a value of 0). We may therefore branch on
the employee/shift assignment.

When branching on an employee/shift assignment, the set of feasible columns of

82
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

the employee is split into two subsets. One subset contains all columns for that
employee, where the shift is in the roster-line. The other subset contains the
remaining columns for that employee. The two branches are created by removing
the relevant roster-lines from the first and the second subset, respectively. In a
branch-and-price setup, the branching decisions are imposed on new columns by
forcing the subproblem of the particular employee to either include or exclude
the shifts that have been branched on.

During our computational testing (Section A.6), we identified a number of
strategies that reduced the solution times for our problems. Firstly, the solutions
to the linear programming relaxations often satisfy employee preferences to some
fractional degree, meaning that some employee has a mix of roster-lines whose
costs come from only a few alternative values. Our experiments showed that
where there are many possible branching candidates (fractional employee/shift
assignments), one should avoid branches in which the banned columns on either
side of the branch have similar costs, and instead prefer branches where these
costs differ to the greatest degree. This quickly resolves the fractional preference
satisfaction and gives an immediate impact on overall cost and/or feasibility. Fi-
nally, when solving an LP after branching and/or adding more columns, it was
also found to have a positive effect to stop the solution process as soon as the
LP value is equal to the lower bound of the root node. Traditionally, genera-
tion continues as long as columns with negative reduced cost exist. However,
if the LP value is equal to the lower bound, such columns are only included in
the basis because of degeneracy in the LP problem and will never decrease the
objective value.

A.3.2 Column Generation Subproblem Solution

As discussed in Section A.2.2, the column generation subproblem involves the
following steps as introduced by Mason and Smith (1998).

1. Shifts are combined into on-stretches.

2. On-stretches and off-stretches are paired to form work-stretches.

3. Roster-lines are generated by sequencing work-stretches.

Our column generator always builds the complex entities by combining two
simpler entities. For example, instead of describing an on-stretch by all the
shifts it contains, we describe it by its last shift and its ‘parent’ on-stretch
which contains all but the last shift in the on-stretch. This is illustrated in

A.3 Solution method 83

O1 := (Ø, S1):= S1

S1 S2 S3

O2 := (O1, S2) := S1 → S2

O3 := (O2, S3) := S1 → S2 → S3

Figure A.2: Illustration of the recursive definition of on-stretches. On-stretch
3, O3, containing shifts S1, S2, S3, is defined as the combination of the two-shift
on-stretch O2 and the third shift S3.

Figure A.2. Note that the parent on-stretch may be an infeasible on-stretch,
and may be null if the on-stretch contains only one shift. The definition of the
composite entities that follows from this approach gives:

on-stretch + shift → on-stretch
on-stretch + off-stretch → work-stretch
roster-line + work-stretch→ roster-line

The three stages give rise to their own resource constrained shortest path prob-
lems. Attributes are algorithmically represented by resource. Each of shortest
path problems is solved by dynamic programming using label setting (Irnich and
Desaulniers, 2005), where an entity is labeled using the values calculated for its
attributes. Dominance is used to prevent unpromising entities proceeding to
the next stage. The dominance rules associated with an attribute form part of
the definition of that attribute. Each of these three problems is now addressed
in detail.

A.3.3 On-stretch generation

The first stage of the column generation algorithm is to generate on-stretches
from shifts. Shifts might have costs given by employee preferences, and will have
dual values associated with them, as described earlier. There might also be costs
associated with shift transitions, while typical attributes to track might include
paid hours or the number of undesirable shifts. On-stretches are considered
unique if they differ in their start time or end time, or if they have different
non-dominated attribute values. We seek all unique minimum reduced cost
on-stretches.

84
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

The on-stretch generation problem is modeled as a shortest path problem with
resources in a graph where nodes represent shifts. An example of such a graph is
shown in Figure A.3. The graph consists of a node for each shift. Arcs between
nodes exist when the two shifts are allowed to be consecutive in an on-stretch,
i.e. they can be neither too close nor too far apart in time. To generate all on-
stretches the all-to-all shortest paths problem is solved. This is done by solving
a one-to-all shortest path problem from each of the nodes in the graph. For each
of these problems, the start node is selected and the remaining graph is reduced
to only allow on-stretches up to the maximum on-stretch length. Figure A.3
shows the shortest path problem with Node 1 as start node. If the maximum
on-stretch length is 4 days, all arcs leaving nodes 16-20 are removed.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Day 1 Day 2 Day 3 Day 4 Day 5

6

7

8

9

10

1

2

3

4

5

Figure A.3: Graph representation of the on-stretch generation. Note that this
employee cannot work shift 10 and the node is therefore removed from the graph.

Nodes may be excluded in the graph in order to generate roster-lines without
certain shifts. In Figure A.3, shift 10 has been excluded. Shifts may be disal-
lowed if the employee does not have the appropriate skills and employees may
simply be restricted from certain shifts as part of the input data for the problem,
e.g. it is common to have employees that can never work night shifts or must
have days off on particular days.

The shortest path problems are solved with a label setting algorithm. The
graph is acyclic and has an inherent topological order and the nodes are treated
accordingly. All on-stretches are validated by checking the attribute values
against the feasibility criterion given in the problem definition, and checks are
performed to remove dominated entities (see Section A.3.6). All unique non-
dominated feasible on-stretches are sent to stage two.

A.3 Solution method 85

A.3.4 Work-stretch generation

The second stage is the simplest of the three. On-stretches from stage one are
combined with off-stretches to form work-stretches. The start time of an off-
stretch is not specified exactly, but instead an off-stretch start time window is
given along with a minimum off-stretch duration in hours. An on-stretch/off-
stretch pair is considered compatible if the on-stretch finish time occurs within
the off-stretch’s start time window. All compatible on-stretch/off-stretch pairs
are constructed, and the resulting work-stretch attribute values are calculated
and checked for feasibility. Domination tests are performed (see Section A.3.6)
to remove unpromising work-stretches before proceeding to the third stage. The
second stage is visualized in Figure A.4.

11 16

11 18

15 20

14 19

Offstretch161

71

91

93

Offstretch2

Offstretch4

Offstretch5

Offstretch3

Figure A.4: Visualization of the work-stretch generation problem.

A.3.5 Roster-line generation

The roster-line generation problem is another acyclic shortest path problem
with resource constraints. The problem has a node for each day in the horizon.
The work-stretches generated in stage two are the transitions between days and
hence become the arcs of the graph. Usually, the arc leads to the day after the
work-stretch ended.

In the generalized rostering problem, we have a predetermined start and end
day, and this transfers to a source node and a sink node in the graph. The
problem becomes a one-to-one shortest path problem. The labels applied to
the end node represent complete roster-lines. Again, roster-line attributes of
these roster-lines have to respect the feasibility criterion given in the problem
definition. The best feasible roster-line is also the optimal solution to the pricing
problem. A visualization of the shortest path problem is given in Figure A.5.

For some attributes, it is possible to predict infeasibility prior to reaching the
end node. Labels that can never lead to a feasible roster-line or a roster-line with
negative reduced cost should be removed, as this results in fewer entities being

86
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

1

1 2 3 4 5 6 7 8

80 2 3 4 5 6 7 ………

Days:

s

Figure A.5: Graph representation of the roster-line generation problem.

constructed and hence a more efficient algorithm. We describe the approaches
we implement; see Dumitrescu and Boland (2003) for a detailed discussion of
this area. Note that in the following discussion, reduced cost can be considered
a resource like any other and hence needs no special attention. As only columns
with negative reduced cost are of interest, the reduced cost is considered to have
an imposed upper bound of zero.

In the general case, the feasibility of an attribute can be described by an ar-
bitrary set of values. This feasibility requirement is generally specified for the
roster-line as a whole, and so applies to the attribute values at the end node.
However, in some cases there are feasibility requirements on intermediate nodes,
for e.g. feasibility rules applied at fortnightly intervals. Define the set F̂ai as the
feasible values of attribute a in node i, as determined by the problem formu-
lation. If there are no particular requirements in node i, the set contains all
possible values of a. To move the feasibility criterion from a node to a previous
node, an inverse accumulation function is required.

The inverse accumulation function of an additive attribute is subtraction. For a
particular attribute, each outgoing arc of a node will add a certain amount to the
value of this attribute. The arc leads to a succeeding node, and feasible values
of the current node are found by subtracting the accumulation value from each
of the feasible values of the succeeding node. The complete set of feasible values
of the current node is the union of the feasible value sets of all the outgoing arcs.
As the graph is acyclic, the feasible values of all nodes are found by running
through the nodes in a reverse topological order. For a node i, let δ+

i denote the
set of outgoing arcs and δ−i the set of incoming arcs. accaw is the accumulation
function for attribute a on arc w, and correspondingly invaccaw is the inverse
accumulation function. The arc w represents a transition from a node worig to

a node wdest. The feasibility set for attribute a of the end node is Fai = F̂ai and

A.3 Solution method 87

for any other node i:

Fai = F̂ai
⋂ ⋃

w∈δ+i

⋃
x∈Fawdest

invaccaw(x)

For additive attributes, the accumulation function is defined by an accumulation
value, accvalaw, which is added when traversing the arc w. If we let the feasibility
of an attribute be defined by bounds on the attribute value, the calculations
are simplified. The set of feasible values for attribute a is now defined by a

lower bound, lbai , and an upper bound, ubai , with initial values l̂b
a

i and ûb
a

i ,
respectively. The lower bound of a node is set to the minimum of all successor
lower bounds minus the respective accumulation value of the successor arc.
Analogously, the upper bound is the maximum of succeeding upper bounds
minus accumulation values. This gives

lbai = max

{
min
w∈δ+i

(
lbawdest − accvalaw

)
, l̂b

a

i

}

ubai = min

{
max
w∈δ+i

(
ubawdest − accvalaw

)
, ûb

a

i

}

Instead of requiring additivity for all attributes, the attributes are divided into
two categories: additive attributes with bounds that can be propagated and
attributes for which we will not propagate the feasibility criterion. In our system,
each attribute, a, has an initialization function initaw on arc w, which gives the
value of attribute a if the roster-line contains only work-stretch w. For additive
attributes, it is assumed that accvalaw = initaw, and hence the user does not have
to provide an inverse accumulation function for the attribute. For non-additive
attributes and attributes where accvalaw 6= initaw, bounds are disabled. This
restriction has been introduced solely to limit the input required from the user.

In the same way as bounds can be propagated backward from the end node, we
can also propagate the set of possible attribute values forward from the start
node. In this way, for each node, i, and each attribute a, we get the value
domain, Dai , defined as:

Dai =
⋃
w∈δ−i

⋃
x∈Daworig

accaw(x)

In most cases, the domain may for an attribute a of node i be defined by bounds

88
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

[dlai , du
a
i], which are calculated as:

dlai = max

{
min
w∈δ−i

(
accaw(dlaworig)

)
, lbai

}

duai = min

{
max
w∈δ−i

(
accaw(duaworig)

)
, ubai

}

The value domains can be used to eliminate arcs from the graph. We check all
arcs against the value domain of their tail (origin) combined with the feasibility
set of their head (destination). If, using that arc, none of the values of the
domain accumulate to values of the feasibility set, the arc can be removed from
the graph, i.e. for an arc w to be effectual, the following must hold:

∃x ∈ Daworig : accaw(x) ∈ Fawdest .

When the sets are described by bounds, this is equivalent to:

accaw(dlaworig) ≤ ubawdest ∧ accaw(duaworig) ≥ lbawdest

The arc is removed if it is non-effectual for one or more of the attributes. The
bound propagation may be repeated to find tighter bounds for the resulting
graph. Figure A.6 shows an example of bound and domain propagation.

The bounding scheme utilizes the nested subproblem structure. The arcs are the
work-stretches generated in the second stage of the nested subproblem, and as
the bounds are calculated based on the arcs of the graph the nested subproblem
structure is essential for the bounding scheme.

A.3.6 Domination

Domination is an important concept in all three stages of the subproblem solu-
tion algorithm. An entity e1 is said to be dominated by entity e2 if any roster-line
containing e1 is worse (or no better) than a new roster-line created by replacing
e1 by e2. For example, a 3-day on-stretch O1 = S1 → S2 → S3 containing shifts
S1, S2, S3 might be dominated by O2 = S1 → S4 → S3 if S2 and S4 are equiv-
alent in paid hours, but S4 is preferred by the employee. An efficient column
generation algorithm must be able to identify and remove dominated entities.

A.4 Implementation 89

1 2 3 4 5 6 7

[10;14][8;12][4;11][2;11][3;7][-2;9]

5

12

3

3

7

11

13

[dl7;du7][8;10][4;8][2;6][3;5][1;1][0;0]

Bounds:

Domains:

8

10

5

2

5

[lb1;ub1]

1 2

Figure A.6: Example of attribute bound and domain propagation. The value
given for each arc is the value of a single attribute a. Only selected arcs of the
graph are shown. The three arcs which have been crossed out in the figure can
be eliminated. The missing values are calculated as:
lb1 = min{−2− 1, 3− 2, 2− 5, 4− 5, 8− 8, 8− 10, 10− 11, 10− 13} = −3
ub1 = max{9− 1, 7− 2, 11− 5, 11− 5, 12− 8, 12− 10, 14− 11, 14− 13} = 8
dl7 = max(min{0 + 11, 0 + 13, 1 + 5, 1 + 12, 3 + 7, 2 + 3, 4 + 3, 8 + 2}, 10) =
max(5, 10) = 10
du7 = min(max{0 + 11, 0 + 13, 1 + 5, 1 + 12, 5 + 7, 6 + 3, 8 + 3, 10 + 2}, 14) =
min(13, 14) = 13

In general, entity e1 is dominated by e2 if all e1’s attribute values are equal
to, or worse than, e2’s. The definition of ‘equal to or worse than’ is attribute
dependent, and thus dominance rules must be specified by the user as part of
the attribute definition. Careful attention must be paid to the dominance rules
specified for attributes that are used to calculate other attribute values.

A.4 Implementation

A major contribution of this work is the design of a software framework that
allows an efficient implementation of our nested column generation framework.

90
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

This implementation must be versatile enough to capture any common prop-
erty of rostering problems, while at the same time being as efficient as a tailored
implementation. This rather ambitious goal is met by the creation of a cus-
tomizable software framework, where the problem definition is part of the input
to the compiler, and thus the compiled code implicitly includes the problem def-
inition. This setup requires the code to be recompiled whenever a new problem
is encountered, or new rules are added to a problem. It is thereafter possible to
solve multiple instances of the same problem with the executable program.

A.4.1 The problem definition

The definitions of all the entity attributes, together with the demands, make
up the full definition of the problem. The problem definition is parsed into the
code and in this way, the algorithm is customized for the problem being solved.

The user must specify the attributes to be tracked by each entity. Start time and
end time are mandatory attributes, but all other attributes are customizable.
Because these attributes are being specified at compile time, the specification
includes code for tasks such as calculating new attribute values. The entities
and their attributes can be listed as:

Shift := (shift start time,shift end time,
shift custom att1, . . . , shift custom attn)

Offstretch := (offstretch start time,offstretch end time,
offstretch custom att1, . . . , offstretch custom attn)

Onstretch := (onstretch start time,onstretch end time,
onstretch custom att1, . . . , onstretch custom attn)

Workstretch:= (workstretch start time,workstretch end time,
workstretch custom att1, . . . , workstretch custom attn)

Rosterline := (rosterline start time,rosterline end time,
rosterline custom att1, . . . , rosterline custom attn)

The definition of attributes of simple entities is straight forward and simply
introduces the attribute with a name and a numeric type such as integer or
floating point number.

The definition of attributes of composite entities requires more information as
attribute values need to be calculated whenever new entities are formed. Recall
that entities are always created by adding one entity to another parent entity.
We generally describe this operation ‘accumulation’. The case where an object
is created without a parent is called ‘initialization’. Thus, we have the following

A.4 Implementation 91

entity creation events:

Initialization:
shift(s) → on-stretch
on-stretch(o) + off-stretch(f) → work-stretch
work-stretch(w) → roster-line

Accumulation:
on-stretch(o) + shift(s) → on-stretch
roster-line(r) + work-stretch(w)→ roster-line

In the attribute definitions for these composite entities, we have to specify the
code used to calculate an attribute’s value during these events. Dominance,
costs and feasibility details must also be given. Thus, in addition to the attribute
name and type, the following must be specified for these attributes:

• Feasibility type: Whether or not bounds apply on the feasible attribute
values.

• Cost type: Any contribution that this attribute makes to the cost of the
entity.

• Initialization code and Accumulation code: The code that runs to calculate
the attribute’s value when a new entity instance is created.

• Domination criterion: What it means for one entity’s attribute value to
be ‘equal or worse than’ another’s.

All entities have start time and end time attributes specified in integer minutes
from the start of the roster period. The definitions of these two attributes are
shown below for on-stretches, and illustrate typical attribute definitions. Note
that the initialization function of the on-stretch refers to the shift (s) from
which it is initialized. Likewise, the accumulation function may use values of
the parent on-stretch (o) and the new shift (s). The functions may also look up
the value of any other attributes of these entities.

Attribute: onstretch start time
Numeric Type: Integer
Feasibility type: All values feasible
Cost type: No cost
Initialization function: onstretch start time = s.shift start time
Accumulation function: onstretch start time = o.onstretch start time
Domination Criterion: Dominate on equal values

92
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

Attribute: onstretch end time
Numeric Type: Integer
Feasibility type: All values feasible
Cost type: No cost
Initialization function: onstretch end time = s.shift end time
Accumulation function: onstretch end time = s.shift end time
Domination Criterion: Dominate on equal values

The start time and the end time of work-stretches and roster-lines are defined
similarly.

In our framework, attributes are implemented as objects that have user-specified
procedures for implementing feasibility checks, cost calculations, domination
and initialization. For example, the onstretch start time attribute class defini-
tion might provide the following methods:

onstretch start time.IsFeasible() {return true}
onstretch start time.CalculateCost() {return 0}
onstretch start time.Initialize(Shift s) {return s.shift start time}
onstretch start time.Accumulate(Onstretch o, Shift s)

{return o.onstretch start time}
onstretch start time.Dominates(Onstretch o)

{return (value == o.shift start time)}

To simplify the task of defining attributes, the code framework provides
many standard implementations for IsFeasible(), CalculateCost() and
Dominates() that cover the most commonly occurring cases. These are imple-
mented efficiently by using C++ templates.

Once the attributes have been defined, the code framework forms entity objects
that contain the user-specified set of attributes for that entity. Entity objects
also provide methods for feasibility checks, cost calculations, domination and
initialization.

The code framework automatically generates these functions. For an
on-stretch, for example, these include: Onstretch.Accumulate() and
Onstretch.Initialize(), which accumulate/initialize all the attributes in an on-
stretch; Onstretch.IsFeasible() which returns true if and only if IsFeasible()
is true for all the attributes; Onstretch.CalculateCost(), which returns the
sum of the costs of the attributes; and Onstretch.Dominates() which is true

(and hence allows domination) only if all the attributes allow domination.

A.4 Implementation 93

A.4.2 Code generation

The standard way to implement a system such as we have described in C++
would be to build a class framework with a ‘base’ attribute classes that would
then be specialized by the user using inheritance. To provide the entity func-
tions such as IsFeasible() and CalculateCost(), the entity classes would then
contain loops that iterated through all the attributes in the entity calling the
appropriate attribute method. There are significant efficiency penalties associ-
ated with this approach. Firstly, a run time penalty is incurred every time an
attribute call is made because (1) a function call must be made which has over-
head, and (2), because the functions must be ‘virtual’, the exact attribute class
to be called must be determined at run time (termed ‘late binding’). Secondly,
compile time optimizations such as loop unrolling and code in-lining cannot be
performed.

The approach we have taken instead is implement the required loops at compile
time by using the Boost Preprocessor Library of Karvonen and Mensonides
(2001); see Dohn et al. (2010b) for full details of our implementation. At the
conceptual level, the Boost library allows us to write code such as:

Onstretch.Initialize(Shift s) {
for all on-stretch attributes do

attribute.Initialize(s)
}

The Boost preprocessor unrolls this loop to give the following code which is then
compiled.

Onstretch.Initialize(Shift s) {
onstretch start time.Initialize(s)
onstretch end time.Initialize(s)
onstretch custom att1.Initialize(s)

...
onstretch custom attn.Initialize(s)

}

Because each attribute is referred to explicitly in this expanded code, its type
is available to the compiler, and so the correct Initialize() function is called
directly without the run-time overhead of late binding. Furthermore, because
functions such as Initialize() are typically very simple, they can be inlined

94
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

by the compiler, thereby removing the need for a function call. As we discuss
shortly, these efficiency gains lead to significantly reduced run times.

A.5 Example

To illustrate how the framework can be set up for a particular problem, an
example is introduced below. The example is a nurse rostering problem from
Middlemore Hospital in Auckland, New Zealand, which was also used by Smith
(1995) and Engineer (2003). For clarity, a slight simplification of the problem is
presented. The entities are defined below.

Shift := (shift start time,shift end time,
shift type,
shift paid hours,
shift number of days on)

Offstretch := (offstretch start time,offstretch end time,
offstretch number of days off,
offstretch number of weekends off,
offstretch single day off)

Onstretch := (onstretch start time,onstretch end time,
onstretch paidhours,
onstretch number of days on)

Workstretch:= (workstretch start time,workstretch end time,
workstretch paidhours,
workstretch number of days on,
workstretch number of days off,
workstretch number of single days off,
workstretch feasible on off combination)

Rosterline := (rosterline start time,rosterline end time,
rosterline paidhours,
rosterline number of days on,
rosterline number of days off,
rosterline number of single days off)

The definition of most of the attributes is straight forward. For example, the
number of hours worked is accumulated in the attribute paidhours in all entities
except in off-stretches, where it is not applicable. For on-stretches the attribute
is defined as:

A.5 Example 95

Attribute: onstretch paidhours
Numeric Type: Integer
Feasibility type: All values feasible
Cost type: No cost
Initialization function: onstretch paidhours = s.shift paid hours
Accumulation function: onstretch paidhours =

o.onstretch paidhours + s.shift paid hours
Domination Criterion: Dominate on equal values

The definition of workstretch paidhours is similar, where the initialization
function becomes workstretch paidhours = o.onstretch paidhours. In roster-
line paidhours the value is accumulated over workstretch paidhours and the fea-
sibility type is changed to ‘Bounded by upper and lower bound’. The actual
values of the bounds are read as part of the data input and individually for each
employee.

This problem includes a penalty discouraging long on-stretches. To imple-
ment this, the attribute onstretch number of days on has a piecewise linear
cost function. The problem also specifies that 5 or more days on must be
followed by at least 2 days off. This is modeled by the attribute work-
stretch feasible on off combination defined as:

Attribute: workstretch feasible on off combination
Numeric Type: Boolean
Feasibility type: Must be true

Cost type: No cost
Initialization function: workstretch feasible on off combination =

(o.onstretch number of days on ≤ 4)
or (f.offstretch number of days off ≥ 2)

Domination Criterion: Ignore this for domination

Most of the other attributes have similarly simple definitions. These definitions
are all specified in a single header file using a mixture of C++ code and Boost
preprocessor commands.

The problem definition described above together with the actual data instance
is all that is needed to solve a new problem. The problem definition is given in
a modeling language type of description, where the problem definition is parsed
into the code.

In addition to the problem definition, instance-specific data must be provided.
This input data consists of four data sets. Two of these list the shifts and

96
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

off-stretches with values of start time, end time and the customized attributes.
Another set holds the demands that specify staff requirements in terms of com-
binations of overlapping shifts and staff skills. Finally, the fourth data set lists
the employees along with their skills, preferences and employee-specific costs
and bounds.

A.6 Computational results

To illustrate the capabilities of the algorithm, three real nurse rostering data
instances are introduced, one from a hospital in New Zealand, and two from
hospitals in Denmark. The three instances have different characteristics and it
is therefore essential to have a versatile setup in order to be able to solve all
three instances with the same approach. All three instances have a scheduling
horizon of four weeks.

Instance A has 85 nurses which must be allocated shifts of 5 different types.
This is the same instance as described in Section A.5 and Engineer (2003) also
presents computational results for this instance. There are penalties for long
on-stretches, split-weekends and for certain shift transitions. The roster includes
a mix of full time and part time staff, with the exact number of hours to be
worked in a roster-line being specified for each different nurse group. The nurses
have skills and contractual agreements that limit each nurse to work a subset of
all shifts and prohibit certain shift sequences. Demands are specified for various
combinations of skills, and typically involve more than one shift type.

Instance B contains 28 nurses and 4 shift types. Several demands with varying
skill requirements exist for each shift. 10 of the nurses are part time employees.
The hours to be worked for the four weeks is specified with a small tolerance
being allowed. A nurse cannot work two consecutive weekends and never more
than one shift during a weekend. Furthermore, a sophisticated cost structure
applies that distributes weekend shifts fairly and distributes off-days evenly over
the weeks. This cost structure makes it very hard to find near-optimal solutions.

In Instance C, 40 nurses are scheduled on 18 shift types in two wards. Each
nurse has an individually specified requirement on work hours per four weeks
and a set of individual requests and preferences on shifts. Continuity is desired
in one of the wards and a sequence of less than three successive shifts in the
ward is penalized. Consecutive weekends on are undesired and no more than
two weekends on duty in a month can be scheduled for each nurse.

To test the nested column generator using our compile-time customization ap-

A.6 Computational results 97

proach, we embedded our new C++ column generator within the branch-and-
cut-and-price framework of COIN-OR (Lougee-Heimer, 2003). To reduce the
run times (and sacrifice guarantees of optimality), we followed the approach de-
scribed by Engineer (2003) of allowing the user to artificially limit the number of
entities generated in the subproblem, with the code then discarding poor entities
when this limit was reached. We also used a partial depth first search referred
to as diving in the branch-and-bound tree to find feasible solutions faster. Some
tuning experiments were undertaken that indicated the best number of columns
to add to the master from each column generation was 15.

Tests were run on a PC with a Dual Core AMD Opteron(tm) Processor 175
running 64 bit Linux with 2GB of RAM. The results of these are summarized in
Table A.1. The runs detailed in the upper table are heuristic in that they were
performed with artificial limits applied to the number of entities allowed during
each column generation. The table shows LP and IP solution values, detailed
timing and entity count information for the LP, branch and bound, and each
of the different entity creation phases used by the nested generator. The total
number of entities generated over each run are also shown, as well as how this
number is reduced by dominance rules and feasibility tests and by applying the
attribute bounds discussed in Section A.3.5. Note that the order in which this
filtering is applied is different for the different entities. For reference, the true
lower bound and the optimal solution from a test without entity limits are listed
in the bottom of the table.

For Instances B and C, the root node lower bound is larger than the solution
value of the best feasible solution. This is a consequence of the imposed entity
limit, where columns with negative reduced cost may not be generated and hence
the bounds may not be correct. On the other hand, the entity limits introduce
a significant speed up, as evident from the run times as well as from the number
of entities before and after discarding. Note that the algorithm terminates after
finding a solution with value equal to or less than the lower bound. However,
when bounds are heuristic, the solution found at this point is not guaranteed to
be optimal.

The time distribution within the algorithm is clearly problem dependent. In one
case (Instance C), the major part of the time is spent in the master problem.
In another (Instance B), it is spent mainly in the subproblem and in the third
(Instance A), time is divided equally between these. The distribution of time
spent creating the different entity types within the pricing problem is again
problem dependent and emphasizes the fact that each component of the column
generator must be optimized to ensure high performance for all instances.

In all three instances, high-quality feasible solutions are found within 15 minutes.
In Instance A and Instance C, the best solution found is optimal. The low values

98
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

Instance A Instance B Instance C

Heuristic root node LP value 19.667 288.822 1.500
Heuristic first feasible IP solution value 23 296 21
Heuristic best feasible IP solution value 23 281 1

Seconds in root node 7.50 89.63 74.59
Seconds to find first IP feasible solution 23.95 180.77 562.99
Seconds to find best IP feasible solution 23.95 186.20 690.96
Total runtime (s) 26.91 192.56 722.04

- Solving LP 41.3% 10.2% 81.4%
- Branching 1.2% 0.2% 0.2%
- Overhead 13.1% 3.8% 5.2%
- Pricing 44.5% 85.8% 13.1%

- Setup 5.0% 1.4% 0.5%
- On-stretch 6.1% 0.7% 4.7%
- Work-stretch 25.7% 1.2% 7.0%
- Rosterline 7.7% 82.6% 0.9%

Tree size (number of nodes) 771 371 1,023
Max depth 383 185 329
Pricing problems solved 4,445 1,489 5,551
Columns generated 1,919 7,982 22,654
Onstretches Generated 1,941,902 3,823,761 167,578,440
Onstretches After Domination 1,656,646 2,789,875 150,308,919
Onstretches After Discard 1,656,646 2,365,988 49,509,176
Onstretches Feasible 1,422,949 2,298,844 49,509,176
Workstretches Generated 24,038,014 8,021,722 200,873,954
Workstretches Feasible 23,090,067 8,021,722 200,873,954
Workstretches After Bounding 7,978,248 7,682,419 153,047,740
Workstretches After Domination 5,888,045 3,016,510 146,601,429
Workstretches After Discard 5,888,045 3,016,510 3,478,809
Rosterlines Generated 27,358,806 848,767,690 51,165,962
Rosterlines After Bounding 8,499,618 318,240,021 31,683,310
Rosterlines After Domination 490,657 251,973,111 29,692,367
Rosterlines After Discard 490,657 12,501,839 1,150,622

True root LP value 19.667 234.000 1.000
Optimal IP solution value 23 235∗ 1
Seconds to find true root LP value 8.08 2,024.72 2,639.36
Seconds to find optimal IP solution 27.48 > 10 h 5,652.58
∗ For Instance B, it was not possible to prove optimality of this solution within 10 hours.
However, the gap to the LP-lower bound is less than 0.5%.

Table A.1: Test results for the three data instances. Each instance has been
solved twice. First, the column generator was run in heuristic mode (with limits
applied to the number of entities created). Detailed statistics are given for these
runs. For comparison, each problem is solved again to proven optimality (when
possible).

A.6 Computational results 99

for Instance A and C represent rosters with very few preferences being violated.
In the latter case, only a single roster-line for one employee contains an undesired
shift sequence, with all other preferences being met. In all three instances, all
demand constraints are met without any violations.

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700

Time (s)

O
b
je

ct
iv

e
v
al

u
e

LP-value
New branch-and-bound node
Incumbent

Figure A.7: Development of the LP values and integer incumbent solution over
time when solving Instance C.

Figure A.7 shows the sequence of new LP and IP solution values generated over
time when solving Instance C. The plot also indicates when a new node was
selected in the branch and bound tree. The new node is often the child node
of the previously solved node. In each node of the branch-and-bound tree, the
LP-value is decreased by adding columns with negative reduced cost. Branch-
ing decisions remove columns and thereby increase the LP-value. Hence, the
LP-value ”jumps” when branching is applied. After 520 seconds, the objective
values observed are slightly worse than before. This is a consequence of a tree
diving strategy that favors depth-first search to quickly find feasible solutions.
This strategy is successful, with the first feasible solution (with objective value
21) being found after 563 seconds. The subsequent search finds another feasi-
ble solution (with objective value 4) after 566 seconds and finally the optimal
solution (with objective value 1) after 691 seconds. In column generation, there
can be long sequences with no improvement in the objective value, because of
degeneracy in the master problem. As explained in Section A.3.1, the solution
process in each node is interrupted as soon as the LP value is equal to the lower
bound of the root node. In our case, it is enough to remove the worst effects of

100
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

degeneracy.

An important contribution of this work is the new compile-time customization
approach and the benefit this gives over the more standard approach used in
Engineer (2003) in which a single executable modifies its behavior based on
problem-specific data loaded at run time. To quantity the speed differences
between the two approaches, our new software was run on Instance A, and
the dual vectors (and associated staff member) used for each column generate
recorded. The column generator from Engineer (2003) was then run on Instance
A using these 338 different dual values. The tests were run without entity limits.
Detailed run times and entity counts were recorded for each entity generator.
These showed that the number of on-stretches and work-stretches generated by
the two systems are very similar. However, the new bounding scheme presented
in Section A.3.5 reduced the number of roster-lines to 37% of those generated
by the older system. After correcting for this, we found that over the 338 tests,
speedup factors between 5 and 100 were observed, giving a weighted average of
approximately 20. Clearly, the compile time approach is giving us a significant
performance improvement.

A.7 Conclusions

We have successfully implemented a branch-and-price algorithm to solve the
generalized rostering problem. The solution approach builds on a generic model
and hence allows solution of problems with varying characteristics. From the
literature and by looking at the rostering problems at hand, it was clear that
a solution approach to the generalized rostering problem must be very flexible.
At the same time, rostering problems are typically highly constrained and it is
often a demanding task to even find feasible solutions. Therefore the solution
approach must not only be flexible, but also very efficient.

To meet these requirements, we have modeled the problem as a generalized set
partitioning problem and built a new branch-and-price algorithm to solve the
problem. The pricing problem is solved in three stages which allows us to ex-
ploit the structure inherent in rostering problems, helping make the problem
tractable in realistic settings. By explicitly embedding the problem definition
in the program code, and compiling a separate executable for each new prob-
lem definition, we can ensure a high efficiency throughout the algorithm. Using
this approach, it is possible to model all constraints seen in the 10 application
of former projects (Bliddal and Tranberg, 2002; Nielsen, 2003; Engineer, 2003;
Poulsen, 2004), as well as all commonly occurring constraints listed by Cheang
et al. (2003) and Burke et al. (2009). By embedding the problem definition in

A.7 Conclusions 101

the code, we can realize much of the efficiency of a purpose built implemen-
tation without the software development costs typically associated with such
bespoke work. In a comparison to a former method, where the customization
is included at run-time, a speed up of a factor 20 was observed. Furthermore,
by running just the pre-processor, it is possible to view, compile and then de-
bug the problem-specific code. This makes software development more intuitive
as the actual problem is given explicitly in the code rather than embedded in
complex data structures.

The value of the algorithm was illustrated for three different nurse rostering
applications. The model captures all features of the realistic problems and
provides high-quality solutions in less than 15 minutes for a scheduling horizon
of four weeks. Heuristic components can be introduced in the future to allow
for additional speedups.

Burke et al. (2004) state that:

The current state of the art is represented by interactive approaches
which incorporate problem specific methods and heuristics (that are
derived from specific knowledge of the problem and the required con-
straints) with powerful modern metaheuristics, constraint based ap-
proaches and other search methods.

We believe that we have provided a viable alternative to these methods. Fur-
thermore, our compile-time customization constitutes a contribution not only to
rostering. This approach can be applied to a wide range of optimization prob-
lems, and is likely to deliver similar improvements in run time performance.

Acknowledgements

The first author was supported by the EliteForsk-grant of the Danish Ministry
of Science, Technology and Innovation.

References

Al-Yakoob, S. M. and H. D. Sherali (2008). “A column generation approach for
an employee scheduling problem with multiple shifts and work locations”.
In: Journal of the Operational Research Society 59.1, pp. 34–43.

102
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

Bard, J. F. and H. W. Purnomo (2005a). “A column generation-based approach
to solve the preference scheduling problem for nurses with downgrading”. In:
Socio-Economic Planning Sciences 39.3, pp. 193–213.

Bard, J. F. and H. W. Purnomo (2005b). “Preference scheduling for nurses using
column generation”. In: European Journal of Operational Research 164.2,
pp. 510–534.

Beliën, J. and E. Demeulemeester (2006). “Scheduling trainees at a hospital
department using a branch-and-price approach”. In: European Journal of
Operational Research 175.1, pp. 258–278.

Beliën, J. and E. Demeulemeester (2008). “A branch-and-price approach for in-
tegrating nurse and surgery scheduling”. In: European Journal of Operational
Research 189.3, pp. 652–668.

Beliën, J. and E. Demeulemeester (2007). “On the trade-off between staff-
decomposed and activity-decomposed column generation for a staff schedul-
ing problem”. In: Annals of Operations Research 155.1, pp. 143–166.

Berghe, G. V. (2002). “An Advanced Model and Novel Meta-Heuristic Solu-
tion Methods to Personnel Scheduling in Healthcare”. PhD thesis. School of
Computer Science and Information Technology, University of Nottingham.

Bliddal, C. and O. Tranberg (2002). “Vagtplanlægning Med Constraint Pro-
gramming”. MA thesis. Informatics and Mathematical Modelling, Technical
University of Denmark, Denmark.

Burke, E. K., P. de Causmaecker, G. V. Berghe, and H. Van Landeghem (2004).
“The State of the Art of Nurse Rostering”. In: Journal of Scheduling 7.6,
pp. 441–499.

Burke, E. K., T. Curtois, R. Qu, and G. Vanden-Berghe (2009).
Problem Model for Nurse Rostering Benchmark Instances. Tech. rep.
http://www.cs.nott.ac.uk/∼tec/NRP/papers/ANROM.pdf. ASAP, School
of Computer Science, University of Nottingham, Jubilee Campus, Notting-
ham, UK.

Chabrier, A. (2006). “Vehicle Routing Problem with elementary shortest path
based column generation”. Ed. by Louis-Martin Rousseau Michel Gendreau
Gilles Pesant. In: Computers and Operations Research 33.10, pp. 2972–2990.

Cheang, B., H. Li, A. Lim, and B. Rodrigues (2003). “Nurse rostering problems–
a bibliographic survey”. In: European Journal of Operational Research 151.3,
pp. 447–460.

Curtois, T. (2010). EURO Working Group on Automated Timetabling. Home-
page. http://www.asap.cs.nott.ac.uk/watt/resources/employee.html.

Desrochers, M. (1988). An Algorithm for the Shortest Path Problem with Re-
source Constraints. Tech. rep. Technical Report Les Cahiers du GERAD
G-88-27, University of Montreal, Montreal.

Desrosiers, J. and M. E. Lübbecke (2005). “A Primer in Column Generation”.
In: Column Generation. Ed. by G. Desaulniers, J. Desrosiers, and M.M.
Solomon. Springer, New York. Chap. 1, pp. 1–32.

A.7 Conclusions 103

Desrosiers, J., F. Soumis, and M. Desrochers (1984). “Routing with time win-
dows by column generation”. In: Networks 14.4, pp. 545–565.

Dohn, A., A. Mason, and D. Ryan (2010b). A Generic Solution Approach to
Nurse Rostering. Tech. rep. Technical University of Denmark, Department
of Management Engineering.

Dumitrescu, I. and N. Boland (2003). “Improved preprocessing, labeling and
scaling algorithms for the weight-constrained shortest path problem”. In:
Networks 42.3, pp. 135–153.

Eitzen, G., D. Panton, and G. Mills (2004). “Multi-Skilled Workforce Optimisa-
tion”. Ed. by Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. In:
Annals of Operations Research 127.1-4, pp. 359–372.

Engineer, F. G. (2003). “A Solution Approach to Optimally Solve the Gener-
alized Rostering Problem”. MA thesis. Department of Engineering Science,
University of Auckland, New Zealand.

Ernst, A. T., H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier (2004a).
“An Annotated Bibliography of Personnel Scheduling and Rostering”. Ed.
by Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. In: Annals of
Operations Research 127.1-4, pp. 21–144.

Ernst, A. T., H. Jiang, M. Krishnamoorthy, and D. Sier (2004b). “Staff schedul-
ing and rostering: A review of applications, methods and models”. Ed. by E.
Burke and S. Petrovic. In: European Journal of Operational Research 153.1,
pp. 3–27.

Irnich, S. and G. Desaulniers (2005). “Shortest Path Problems with Re-
source Constraints”. In: Column Generation. Ed. by G. Desaulniers, Jacques
Desrosiers, and M.M. Solomon. GERAD 25th Anniversary Series. Springer.
Chap. 2, pp. 33–65.

Jaumard, B., F. Semet, and T. Vovor (1998). “A generalized linear programming
model for nurse scheduling”. In: European Journal of Operational Research
107.1, pp. 1–18.

Karvonen, V. and P. Mensonides (2001). Preprocessor Metaprogramming. C++
library. http://www.boost.org/ (Boost 1.36.0: 14/08/2008).

Kohl, N. and S. E. Karisch (2004). “Airline Crew Rostering: Problem Types,
Modeling, and Optimization”. Ed. by Houyuan Jiang, Mohan Krishnamoor-
thy, and David Sier. In: Annals of Operations Research 127.1-4, pp. 223–257.

Lougee-Heimer, R. (2003). “The Common Optimization INterface for Opera-
tions Research: Promoting Open-Source Software in the Operations Research
Community”. In: IBM Journal of Research and Development 47.1, pp. 57–66.

Lübbecke, M. E. (2005). “Dual variable based fathoming in dynamic programs
for column generation”. Ed. by S. Martello and E. Pesch. In: European Jour-
nal of Operational Research 162.1, pp. 122–125.

Maenhout, B. and M. Vanhoucke (2008). Branching Strategies in a Branch-and-
Price Approach for a Multiple Objective Nurse Scheduling Problem. Tech.
rep. Faculty of Economics and Business Administration, Ghent University,
Belgium.

104
A Nested Column Generation Based Approach to the Generalized

Rostering Problem using Compile-time Customization

Mason, A. J. and M. C. Smith (1998). “A Nested Column Generator for Solving
Rostering Problems with Integer Programming”. In: International Confer-
ence on Optimisation: Techniques and Applications. Ed. by L. Caccetta, K.
L. Teo, P. F. Siew, Y. H. Leung, L. S. Jennings, and V. Rehbock, pp. 827–834.

Nielsen, D. (2003). “A Broad Application Optimisation-Based Rostering
Model”. PhD thesis. Department of Engineering Science, University of Auck-
land, New Zealand.

Poulsen, H. T. (2004). “Vagtplanlægning for Sygeplejersker - et Kombinatorisk
Optimeringsproblem”. MA thesis. Datalogisk Institut, University of Copen-
hagen, Denmark.

Righini, G. and M. Salani (2006). “Symmetry helps: Bounded bi-directional dy-
namic programming for the elementary shortest path problem with resource
constraints”. Ed. by Ulrich Faigle, Leo Liberti, Francesco Maffioli, and Stefan
Pickl. In: Discrete Optimization 3.3, pp. 255–273.

Ryan, D. M. and B. Foster (1981). “An integer programming approach to
scheduling”. Ed. by A. Wren. In: Computer Scheduling of Public Transport.
Urban Passenger Vehicle and Crew Scheduling. Proceedings of an Interna-
tional Workshop, pp. 269–280.

Smith, M. C. (1995). “Optimal Nurse Scheduling Using Column Generation”.
MA thesis. Department of Engineering Science, University of Auckland, New
Zealand.

Appendix B

An Integrated Approach to
the Ground Crew Rostering

Problem with Work Patterns

Richard Lusby, Anders Dohn, Troels Martin Range, and Jesper Larsen

Submitted to: Journal of the Operational Research Society (2010).

106
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

An Integrated Approach to the Ground Crew
Rostering Problem with Work Patterns∗

Richard Lusby1, Anders Dohn1, Troels Martin Range2 and Jesper Larsen1

This paper addresses the Ground Crew Rostering Problem with
Work Patterns, an important manpower planning problem arising
in the ground operations of airline companies. We present a cutting
stock based integer programming formulation of the problem and
describe a powerful decomposition approach, which utilizes column
generation and variable fixing, to construct efficient rosters for a six
month time horizon. The time horizon is divided into smaller blocks,
where overlaps between the blocks ensure continuity. The proposed
methodology is able to circumvent one step of the conventional ros-
ter construction process by generating rosters directly based on the
estimated workload. We demonstrate that this approach has the ad-
ditional advantage of being able to easily incorporate robustness in
the roster. Computational results on real-life instances confirm the
efficiency of the approach.

Keywords: Manpower Planning, Optimization, Cutting Stock
Problem.

B.1 Introduction

In this paper, we consider the Ground Crew Rostering Problem with Work
Patterns (GCRPWP) for a major European airline. Ground crew comprises all
of the crew that an airline employs at an airport to take care of passengers and
aircrafts in order to facilitate a smooth operation. This could be, for instance,
customer service representatives or ramp service workers. The rostering of these
workers is a complex, multi-stage planning process, which starts with the initial
forecast of labour requirements and concludes with the construction of a roster
that covers the anticipated workload as well as possible. The roster specifies
what days of a prespecified time horizon each employee will work as well as the
type of work they will do. At this airline, the roster is published before the

∗Submitted to: Journal of the Operational Research Society (2010).
1Department of Management Engineering, Technical University of Denmark, Produktion-

storvet, 2800 Kongens Lyngby, Denmark.
2Department of Business and Economics, University of Southern Denmark, Campusvej 55,

5230 Odense M, Denmark.

B.1 Introduction 107

start of each season and states what each person will be doing for the next six
months.

Rostering staff can be seen as the process of assigning an employee to a sequence
of shifts. A shift refers to a block of work, typically around nine hours in
duration and is associated with a specific task. Here, it is assumed that shifts
have already been defined and the challenge is to generate an efficient roster for
the employees while respecting the legislation and the staff agreements. The
most important requirement, in this particular problem, is that all staff work
the same work pattern. A work pattern specifies the number of consecutive days
of work as well as the number of required days of rest in between. For instance,
the airline uses a 6&3 pattern, which states that an employee will be assigned
six days of work and then receive three days rest. The roster should typically
cover the workload, while ensuring a certain degree of robustness. Uncovered
work is allowed, but incurs a penalty. Robustness is incorporated by providing
over coverage on the estimated workload.

In this paper, we propose a cutting stock based mixed integer programming
(MIP) formulation of the problem. Initially, it is assumed that the required
staffing level is specified for each shift. To solve the model, we decompose
the six month time horizon into smaller, computationally tractable blocks. A
procedure that combines column generation and variable fixing is developed to
solve each block. The blocks are solved sequentially and consistency between
the rosters of successive blocks is enforced by shift fixing in the overlaps of
blocks. The initial model is then extended to generate rosters directly on the
forecast workload, and demands by shift are made dispensable. The number of
employees working any given shift is determined by the new model as a part
of the solution and robustness is built into the solution. Finally, we test and
compare the proposed methodology on several instances arising in practice.

The outline of the paper is as follows. Section B.2 presents a review of the
research in this area. Section B.3 provides a more formal definition of the prob-
lem and presents the mathematical programming formulation. A discussion of
the proposed optimization-based heuristic is given in Sections B.4 and B.5. In
Section B.6, the initial model is modified to generate rosters directly from the
workload, while Section B.7 explains how we incorporate robustness. Computa-
tional results on real-life instances are presented in Section B.8 and conclusions
from this research are summarized in Section B.9.

108
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

B.2 Literature review

Crew rostering is a classical optimization problem. It is a very important prob-
lem as people are often both a critical and an expensive part of the operations.
Utilizing the available manpower as effectively as possible can lead to signif-
icant potential savings. Furthermore, good crew planning ensures a high job
satisfaction, which in turn results in higher productivity.

An improved productivity can be obtained by using computerized decision-
support tools based on advanced optimization techniques. The development has
been pioneered by the airline industry (see e.g. Barnhart et al., 2003). Nowa-
days, the rostering of pilots and cabin crew without such tools is unthinkable
for all of the major airlines. In Ryan and Foster (1981), the authors estimate
the annual savings of Air New Zealand to be around NZD 15 million, more than
6% of the annual estimated crew costs. Similarly, in Anbil et al. (1991) annual
savings in excess of USD 20 million are reported. This is roughly 1% of the an-
nual estimated crew costs. The underlying optimization techniques have since
penetrated into other areas of manpower planning and rostering. For example,
many train companies now use optimization methods for rostering drivers and
conductors (see e.g. Abbink et al., 2005). Other prominent areas of rostering
are call centres, protection and emergency services, venue management, retail,
and civic services. A review can be found in Ernst et al. (2004c).

While there has been a large and continued focus on optimization within the
rostering of pilots and cabin crew, the successful results have not lead airlines to
thoroughly investigate the potential of applying similar methods to the rostering
of ground crew. This is evidenced by the lack of research in this area. One of the
few papers is by Dowling et al. (1997). The authors present a solution approach
for rostering around 500 staff at a large international airport. The proposed
algorithm is based on simulated annealing and rosters airline ground staff over
a monthly planning period, where the objective is to minimize idle time. Other
contributions include Brusco et al. (1995) and Chu (2007). Brusco et al. describe
a manpower planning tool for United Airlines (UA). This tool produces tour
schedules for which employees bid using a seniority-based system and is used by
UA at over 100 airports. It is a two-phase approach; the first phase generates
requirements for labour using a set cover formulation, while the second phase is
a simulated annealing based metaheuristic that attempts to improve the tours
found in the first phase. Chu proposes a goal programming approach to generate
daily schedules for baggage handling at Hong Kong International Airport.

Despite not being a well studied problem itself, the GCRPWP does bare strong
similarities to many other rostering problems arising in various contexts. In
particular, nurse rostering and physician scheduling, both of which arise in the

B.2 Literature review 109

area of health care, are two problems which possess the strongest similarities. In
nurse rostering, one must usually provide suitably qualified nurses to cover the
workload demand based on the number of patients in the ward, while satisfying
a wide range of local and national working regulations. Similarly, in physician
scheduling, one must construct rosters for doctors at hospitals so each shift of
every day is covered by exactly one physician. Although these problems can
be modelled similarly, they are slightly more complicated than the GCRPWP.
Firstly, the lengths of the on and off periods are typically not fixed, as is the
case here, but should be within certain bounds. Furthermore, both problems
attempt to satisfy as many individual staff requests as possible, while we attempt
to construct anonymous rosters for groups of staff members. The most recent
surveys on the nurse rostering problem are Cheang et al. (2003) and Burke et al.
(2004), while a good overview on physician scheduling can be found in Gendreau
et al. (2006a). In addition, some interesting questions on the lack of transition
from academia to industry are raised in Kellogg and Walczak (2007).

The use of work patterns is, however, also not uncommon in rostering problems.
For example, Alfares (2002) describes a particular rostering problem where a
14&7 work pattern is required. The author considers cyclic weekly demand
and, besides minimizing the size of the labour force, attempts to use as few
different patterns as possible. Both Vohra (1987) and Alfares (1997) consider
day off scheduling assuming a 5&2 work pattern. Alfares (1997) presents a
two-phase algorithm for finding the optimal allocation of patterns, while Vohra
(1987) provides results on the minimum workforce size required. The three
papers consider a somewhat simpler problem than the GCRPWP in that they
are only concerned with determining an optimal allocation of days off. In the
GCRPWP we must also include the subsequent step of shift allocation if an
employee is assigned a particular day on.

One major difficulty with the GCRPWP is the length of the rostering horizon.
Six months is far too large to solve in one model. We develop a decomposition
approach that breaks the rostering horizon into blocks of manageable size and
then solve a sequence of integrated optimization models to construct rosters
that span the six month period. This approach can be seen as a form of the
iterative sweeping method described in Eveborn and Rönnqvist (2004). Since
excessive solution times are undesirable, to accelerate the solution times for each
of the optimization models we implement a heuristic variable fixing routine when
forcing integrality. This is a well-known approach (see e.g. Desaulniers et al.,
2002 and Danna and Pape, 2005). Wäscher and Gau (1996) evaluate several
integer fixing heuristics for the cutting stock problem.

When solving practical optimization problems, it is also essential that one in-
cludes some degree of robustness in the solution. That is, one should incorporate
flexibility in the solution to guard against unexpected uncertainties in the input

110
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

data. This is becoming an increasingly popular field of research as companies
realize the potential savings by not having to re-optimize their schedule when
something unforeseen occurs. The majority of recent contributions have ap-
peared in the airline industry (see e.g. Clausen et al. (2010); Burke et al. (2010);
Weide et al. (2010)). Here, robustness is incorporated by specifying a certain
contingency of over coverage. This is to account for any unexpected increases
and/or delays in the forecast workload, and can also compensate for absent
employees.

The proposed solution approach has similarities with the set partitioning for-
mulations usually found in the literature on scheduling. Possible solution meth-
ods include Mehrotra et al. (2000), where shift scheduling problems are solved
by a branch-and-cut approach, and Eveborn and Rönnqvist (2004), where a
branch-and-price approach forms the basis of a practical scheduling system.
Branch-and-price has also been applied with success in many cabin crew roster-
ing problems; see e.g. Day and Ryan (1997). This research contributes to the
literature on crew rostering by providing a powerful decomposition method to
the GCRPWP, which is capable of finding robust solutions, which are proven
to be within a few percent of optimality.

B.3 The Ground Crew Rostering Problem with
Work Patterns

In this section, we consider the GCRPWP in more detail. In particular, we pro-
vide a formal definition of the problem and present a cutting stock based integer
programming formulation. To aid in the discussion, we begin by introducing the
required terminology and notation.

The GCRPWP entails assigning a set of employees E (where |E| = n) to a set of
shifts S (indexed from 1, . . . , S). The required employee demand on each shift
s ∈ S must be satisfied as closely as possible. Having too few employees on any
given shift is termed under coverage, which is undesirable.

In this context, a shift refers to a block of work that has a given start time
es, a given end time ls, and a day d ∈ D on which the shift starts. Within a
shift, there are breaks, where no work is carried out. It is important to account
for breaks, when calculating the amount of work that can be done within a
shift. The set D (indexed from 1, . . . , D) denotes the set of all days in the time
horizon, while we denote the set of all shifts on day d ∈ D as Sd ⊆ S. The
number of employees required for shift s ∈ S is given as qs. It is assumed
that each staff member can perform at most one shift on any given day. In

B.3 The Ground Crew Rostering Problem with Work Patterns 111

constructing a sequence of shifts for any employee, one must respect several
practical constraints. Typically, one must ensure that each employee has a
certain minimum rest time between any pair of consecutive shifts and that no
employee is assigned more than a certain number of consecutive night shifts. The
classification of a shift as being a night shift depends on the shift start time.
As stated earlier, it is also required that all employees work the same work
pattern. This specifies the number of days an employee will work consecutively,
(on-stretch), and the number of days of consecutive break, (off-stretch). During
an off-stretch an employee can not be assigned any shifts. Here, we consider
a 6&3 work pattern. That is, each employee must be assigned six consecutive
days (i.e. six shifts) of work before being assigned a three day consecutive break.
Hence, this is a work pattern of length nine days. The fixed nature of the work
pattern ensures that all employees work, on average, the same number of days
per week. A legal sequence of on and off stretches spanning the time horizon
gives a roster-line for a particular employee or group of employees. The set of
roster-lines for all employees together constitute the roster.

The use of work patterns limits the number of feasible roster-lines; however, the
pattern is staggered across the employees to ensure an even distribution of off
days. One can hence identify a set of pattern groups G based on a given work
pattern. For example, an employee could start the time horizon on the first day
of the 6&3 pattern and thus work the first six days of the time horizon, or the
employee could start on the eighth day of the pattern and therefore have the
first day of the time horizon off. Naturally, all combinations in between are also
possible and this yields nine groups with different pattern offsets. A pattern
group consists of the employees always working on the same days. Associated
with each pattern group g ∈ G is an upper bound mg on the number of employees
in the pattern group. This can be used, for instance, to force consistency with
a previously generated set of roster-lines.

In addition to the hard constraints, which must be respected, it is often desirable
to satisfy several soft constraints when constructing rosters. A soft constraint
is a constraint that one tries to satisfy if possible; however, it can be violated
if necessary. If it is violated, the violation is minimized. An important soft
constraint in the GCRPWP is that employees should receive the maximum
number of hours off during their three day break. That is, the first shift of an
on-stretch should be a shift starting late in the day, while the last shift should
be one finishing early in the day. Inclusion of this soft constraint is described
in Section B.4.2.

A key difference between the GCRPWP and many other rostering problems is
that the aim is not to find individual roster-lines directly, but rather roster-
lines that several employees may work. All staff are assumed to be able to
work any shift and due to the 6&3 work pattern, it is impossible to take into

112
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

consideration such individual preferences as particular weekends on or off. One
can hence formally define the GCRPWP as follows: Given a set of employees,
a set of shifts (each demanding a certain number of employees), and a pattern,
find an allocation of employees to legal roster-lines such that the total cost of
the roster is minimized.

The GCRPWP can be formulated as the following mixed integer program (MIP).
In what follows, we denote the set of all legal roster-lines as R. We introduce
a general integer decision variable xr for each roster-line r ∈ R that counts the
number of times roster-line r is used in the solution. We also introduce the
binary indicator variables asr and agr. The former indicates whether or not
shift s ∈ S is contained in roster-line r ∈ R, while the latter indicates whether
or not roster-line r ∈ R belongs to pattern group g ∈ G. Additionally, we define
a decision variable us for each shift s ∈ S, which indicates the level of under
coverage on the shift. A unit of under cover on shift s ∈ S is assumed to cost
čs. Finally, we denote the cost of any legal roster-line r ∈ R as cr. This cost
reflects the penalties incurred in not satisfying soft constraints.

min
∑
r∈R

crxr +
∑
s∈S

čsus, (B.1)

s.t.∑
r∈R

asrxr + us ≥ qs ∀s ∈ S, (B.2)∑
r∈R

agrxr ≤ mg ∀g ∈ G, (B.3)∑
r∈R

xr ≤ n, (B.4)

us ≥ 0 ∀s ∈ S, (B.5)

xr ∈ Z+ ∀r ∈ R. (B.6)

The objective function (B.1) minimizes the total cost of the roster-lines as well
as the sum of the penalties incurred in not satisfying the demand of each shift.
The first set of constraints (B.2) ensures that the total demand for any shift is
satisfied, possibly through the use of the relevant under cover variable. Con-
straints (B.3) restrict the number of roster-lines of a particular pattern group
to be no more than the maximum number permitted, while (B.4) is a constraint
on the total number of staff. It prevents one from assigning more roster-lines
than there are employees. Constraints (B.5) and (B.6) ensure that all decision
variables are non-negative. In addition, all xr variables are also required to
be integer. One can observe that the above formulation possesses strong sim-

B.4 Column Generation 113

ilarities to the well known cutting stock formulation (see Amor and Carvalho,
2005). While there are relatively few constraints (|G| + |S| + 1), there can po-
tentially be an exponential number of variables. In the next section, we briefly
introduce the column generation approach for solving problems of this nature,
before describing, in detail, how it can be applied to the GCRPWP.

B.4 Column Generation

Column generation is a well known technique for solving large scale linear pro-
gramming problems in which it is impossible to explicitly consider all of the
variables in the problem. The approach requires one to decompose the original
problem into two optimization problems, which are termed the master and the
pricing problem, respectively.

B.4.1 The Master Problem

The master problem is a restricted version of the original problem, containing
only a subset of the variables, while the pricing problem is an optimization
problem that attempts to identify potential entering variables (columns) for
the master problem. The fundamental idea of column generation is that since
the majority of the variables in the original problem will be non-basic at an
optimal solution, one need only consider, and generate, those variables that
have the potential to improve the objective function. The objective function
of the pricing problem is hence the reduced cost calculation for the non-basic
variables given the dual variable values for the optimal master solution.

Column generation is an iterative procedure between the master and pricing
problem. The master problem solves to optimality a restricted version of the
original problem and the pricing problem, using the dual variables of the optimal
master solution, implicitly prices all non-basic variables and finds the one with
the most negative reduced cost. This variable is then added to the master
problem. This procedure continues until the pricing problem can not identify
a master variable with negative reduced cost. In which case, optimality of the
original problem has been obtained. If one is solving a MIP, integrality can
be achieved by embedding the LP column generation methodology in a branch-
and-bound framework, termed branch-and-price. For an introduction to column
generation, we refer to Desrosiers and Lübbecke (2005).

To apply column generation to the GCRPWP, we first relax the integrality

114
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

requirements on the xr variables. That is, constraints (B.6) are replaced with

xr ∈ R+, ∀r ∈ R. (B.7)

The relaxed master problem can then be identified as model (B.1)-(B.5) and
(B.7). The relaxed master problem with only a subset of the possible roster-
lines from R is termed the restricted master problem. Using the dual vector of
the optimal solution of the restricted master problem, the role of the pricing
problem is to identify the non-basic roster-line with the most negative reduced
cost. That is, one must find:

min
r∈R

cr −∑
s∈S

asrπs −
∑
g∈G

agrµg − γ

 , (B.8)

where πs is the dual variable value on the constraint of type (B.2) associated with
shift s ∈ S, µg is the dual variable value on the constraint of type (B.3) associ-
ated with pattern group g ∈ G, and γ is the dual variable on Constraint (B.4).
All constraints defining feasibility of a roster-line must be included in the pricing
problem. For the GCRPWP, identifying the most negative reduced cost roster
in the pricing problem entails solving a resource constrained shortest path prob-
lem.

In solving the GCRPWP, we must construct rosters that span a six month
period. Since it is computationally intractable to consider such a long time
horizon in one MIP, we present a decomposition approach that divides the six
month time horizon into several shorter blocks, each of which has an associated
master problem and a pricing problem. The blocks are solved in sequence where
the partial roster of one block is used as input to the subsequent block. To allow
any partial roster to be easily augmented with that of the successive block, the
blocks are defined so that they have an overlapping time period equal to the
number of days in the on-stretch. The size of the overlap is the smallest that
ensures that each pattern group has at least one day off in the overlap or on the
day immediately following the overlap. Days off are important in this context
since they provide a starting point for the pricing problem in which all shift
transitions are feasible. Proceeding from a day off allows one to easily enforce
the continuation of particular patterns rather than individual roster-lines in the
pricing problem of the subsequent block. Furthermore, providing an overlap
allows the succeeding block to resolve part of the preceding block and correct
for any bad choices made as a result of optimizing over a time horizon that is
too short. Hence, our strategy within the overlap is to roll back to the last day

B.4 Column Generation 115

off for each pattern, fix all shifts assigned up until this point, and resolve all
later days in the optimization of the subsequent block. As a result, the pricing
problems of all blocks (other than those of the first block) have a different time
horizon.

Days
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Group 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1
Group 2 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1
Group 3 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1
Group 4 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1
Group 5 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1
Group 6 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
Group 7 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
Group 8 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0
Group 9 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

Figure B.1: Block overlap and shift fixing

Figure B.1 further explains the block overlap and shift fixing concept. Let us
suppose we are rostering a 6&3 pattern, that the first block runs from day 1 to
day 18, and that the second block begins on day 13. The overlap contains days
13 to 18. Figure B.1 indicates for each day of the 19 day period, if a pattern is on
(with a one) or if a pattern is off (with a zero). The (pattern, day) combinations
marked with gray give the shifts that will be fixed in the second block, while
all other days on within the overlap are resolved. For example, all shifts for
roster-lines on pattern 3 are fixed on day 13, but resolved for days 17 and 18.
Hence, the pricing problem for this pattern in the second block is defined from
day 17 onwards only.

B.4.2 Pricing Problem

As described previously, the pricing problem determines whether any columns
with negative reduced costs exist. If such columns exist, then these must be
generated. In this paper, we will use a pricing problem for each group as it
makes the identification of legal roster-lines easier. To identify legal roster-
lines for a given group, we construct a directed acyclic graph, where the nodes
represent possible activities and the arcs represent transitions between activities.
An activity can be to work a shift on a certain day or to have the day off. With
some additional constraints described below, the identification of a legal roster-
line amounts to solving a resource constrained shortest path problem in an
acyclic graph. A feasible roster-line must satisfy the following hard constraints:

1. no staff member can perform more than one shift on any day,

116
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

2. an employee must have at least 10 hours of rest between consecutive shifts,

3. given group g ∈ G, an employee has to work the work pattern correspond-
ing to that group,

4. no more than three consecutive night shifts are allowed.

Constraints 1-3 can be handled in the construction of the directed acyclic graph,
whereas Constraint 4 must be enforced using a resource. In addition to the hard
constraints, we also have the following soft constraints

5. the first shift on an on-stretch should be a late shift,

6. the last shift on an on-stretch should be an early shift.

The soft constraints are handled in the objective function of the pricing problem
and will be discussed later.

Before describing the pricing algorithm in detail, we first expand the notation.
We let S ′ = S ∪{S+ 1, . . . , S+D} be the index set of activities, where activity
S + d corresponds to having day d off. Hence, we let S ′d = Sd ∪ {S + d} be
the possible activities on day d. To be able to distinguish between night shifts
and the remaining shifts, we define N ⊆ S as the index set of night shifts. We
let v = (v0, . . . , vp) be a binary vector of length (p + 1) corresponding to the
number of days in the work pattern. For example, v has length 9 when applying
a 6&3 work pattern. Each entry in v indicates whether the day is a day on
or a day off. The pattern (1, 1, 1, 1, 1, 1, 0, 0, 0) states that the six first days is
the on-stretch and the three last days is the off-stretch. Since we may need
to use the pricing problem in different settings, e.g. for different day intervals
and different work patterns, we construct a representation which is sufficiently
general to accommodate the required settings.

The individual roster-lines are sequences of on-stretches and off-stretches. Each
activity has a time interval of execution and this gives a natural ordering of
activities, where some activities are successors of others. This ordering gives
rise to an acyclic directed graph, which we refer to as the underlying graph. In
the following, we denote ω as the origin and δ as the destination. For a given
day interval [d1, d2] we denote

V ′(d1, d2) =

d2⋃
d=d1

S ′d

B.4 Column Generation 117

as the index set of shift nodes joined with the index set of the day-off nodes
for all days between d1 and d2. The set of vertices of the graph will then be
V(d1, d2) = {ω, δ} ∪ V ′(d1, d2).

We will refer to A(d1, d2) as the set of arcs in the graph. On each day, exactly
one activity has to be carried out. This constitutes layers in the graph, i.e. one
layer for each day d in the interval [d1, d2]. In the set of nodes V ′(d1, d2) it is
only possible to progress from one day to the next day, thus only arcs between
nodes i ∈ S ′d and j ∈ S ′d+1 for d = d1, . . . , d2 − 1 are included. The origin ω
only has arcs leaving it. For shift fixing, we need to be able to fix activities for
days d1 to day h where h ≤ d2. To make this possible, we include an arc from
the origin to all nodes i ∈ V ′(d1, d2). Later, we will eliminate the arcs which are
not allowed from the origin. The destination node δ only has entering arcs. As
we have to have exactly one activity each day, it is only possible to enter the
destination from the last day in the interval. Hence, the only arcs (i, δ) that
are allowed to enter the destination are those with i ∈ S ′d2 . Note that we also
eliminate any transition between two shifts that does not satisfy the 10-hour
rule.

ω

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

δ

20 21 22 23 24 25 26 27 28

Figure B.2: Example of 6&3 pattern

In Figure B.2 we give an example of the underlying graph for the day interval
[20, 28]. Each of the days has a column of nodes corresponding to the possible
activities on that day. The black nodes are day-off nodes, the gray nodes are the
night-shift nodes and the white nodes are the remaining shifts. The nodes are
therefore partitioned horizontally. Each partition may have multiple nodes, of
each kind, in each column, but for simplicity we have only shown one node. The
transitions between activities are shown as arcs between the layers. The black
arcs are those which are penalized due to soft constraint violations, whereas the
gray arcs have a cost of zero. The difference between dashed arcs and filled arcs
is explained later.

118
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

A path P = (w0, . . . , wp) from the origin w0 = ω to the destination wp = δ can
be translated directly into a roster-line (and vice versa) as the nodes in the path
correspond to individual activities. Furthermore, any path will have at most
one shift each day and will satisfy the 10-hour rule. We still need to satisfy the
constraints on the specific patterns for each group and the requirement that no
employee can have more than three consecutive night shifts.

One can easily apply a work pattern to the underlying graph. With any arc
(i, j) ∈ A(d1, d2) we associate a binary value u(i, j), which is equal to 1, if
and only if, we allow the arc to be used in the solution. We put the value of
u(i, j) = 1 for all arcs (i, j) ∈ A(d1, d2) unless it is stated otherwise. This value
allows us to use the same underlying graph for several different setups of the
pricing problem.

First, we use the u(i, j) to apply the patterns. Suppose that we are given the
pattern v = (v0, . . . , vp) and wish to apply this as a work pattern. We assume
that the pattern is applied from the first day index of D, i.e. v0 states whether
day 0 should be a work day or not. In general, given a day d ∈ D we have that
v(d mod (p+1)) states whether or not day d is a day on or a day off. Now, for
each day d ∈ [d1, d2] we have the following two cases:

1. if v(d mod (p+1)) = 1 then day d is a day on and it should not be allowed
to enter the day-off node m+ d for day d. Hence, for all arcs (i,m+ d) ∈
A(d1, d2) we set u(i,m+ d) = 0.

2. if v(d mod (p+1)) = 0 then day d is a day off and it should not be allowed
to enter any shift nodes j ∈ Sd. Hence, for all arcs (i, j) ∈ A(d1, d2) with
j ∈ Sd we set u(i, j) = 0.

Hence, we can modify the underlying graph to satisfy any pattern vector. Given
that d is the first day which is not fixed, we put u(ω, j) = 0 for all j /∈ S ′d. This
ensures that we can only visit nodes in S ′d as the first node after the origin.

In Figure B.2, we have applied the work pattern (v0, v1, . . . , v8) = (1, 1, 1, 0,
0, 0, 1, 1, 1). The dashed arcs are those which have to be eliminated to accom-
modate the pattern. According to this pattern, day 20 will be a day on as
v(20 mod 9) = v2 = 1 and day 21 will be the first day off in the off stretch.
The frame around the nodes for days 21-23 indicates that these days are days
off. Note that we have not eliminated all unnecessary arcs, but only a sufficient
subset of arcs to enforce the pattern. A more substantial elimination is possible,
but in practice it does not have a significant impact on the running time of the
algorithm.

B.4 Column Generation 119

The direct cost of a roster is based on the penalties given for violating the soft
constraints. We assume that the soft constraints are constraints on individual
transitions between shifts. Let cij be the penalty of using arc (i, j). Let λij be
the dual price of using arc (i, j). The reduced cost accumulated along path Pr
is

c(Pr) =

p−1∑
q=0

(
c(wrq ,wrq+1) − λ(wq,wq+1)

)
.

The objective of the pricing problem is given in problem (B.8), in which we have
λij = πj for all (i, j) ∈ A(d1, d2) with j ∈ Sd and λij = 0 for all (i, j) ∈ A(d1, d2)
with j /∈ S. Since all groups g ∈ G are independent, for all roster-lines r ∈ R
we have that agr = 1 for exactly one group g ∈ G and agr = 0 for all other
groups. Furthermore, as there are only a small number of groups, e.g. nine for
the 6&3 work pattern, we may keep the group fixed and solve one problem for
each group. For each group g ∈ G we have the following decision problem:

min
r∈R:agr=1

c(Pr)− µg − γ < 0, (B.9)

which checks whether or not a negative reduced cost roster-line exists for the
group.

Once we have the underlying graph, we can try to identify feasible (ω, δ)-paths.
Such a path will correspond to a roster satisfying the work pattern v. The
GCRPWP has, however, an additional restriction for a roster-line, which cannot
be handled directly by modifying the underlying graph, and for which we use
the notion of resources and resource extension functions. We refer the reader to
Desaulniers et al. (1998), Irnich and Desaulniers (2005), and Irnich (2008) for
an introduction to resource extension functions. The requirement that no more
than three consecutive night shifts is modelled by a resource. The intuition is
that the resource is initialized at zero and is incremented by one each time a
night shift is undertaken. When the accumulated resource is equal to three, then
it should not be possible to transition to another night shift. As it is not the total
number of night shifts which is bounded but the number of consecutive night
shifts, we have to reinitialize the resource at zero whenever a non-night-shift
activity is undertaken. The resource extension function has the property that
given two paths P and P ′ both ending in node i with a resource consumption
of Ti and T ′i , respectively, such that Ti ≤ T ′i , then for any extension of P ′, we
can identify a similar extension of P with at most the same consumption as the
extension of P ′. Thus, we will consider P to be a better path than P ′ with
respect to the resource.

120
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

To identify a cost-minimizing and resource-feasible path in the underlying graph,
we turn to dynamic programming. This type of problem is often referred to as
a shortest path problem with resource constraints. The fundamental idea is to
construct paths by extending partial paths to all possible successor nodes and do
this repeatedly until no path can be extended. If this is done carefully, we will
end up with at least one cost-minimizing and resource feasible path. We briefly
describe the dynamic programming procedure we use, but refer the reader to
Irnich and Desaulniers (2005) for a review of dynamic programming algorithms
for resource constrained shortest path problems. The structure of the pricing
problem will allow us to solve the problem efficiently.

To each path P we associate a state (or a label) L(P) = (c(P), T (P)) which is
the vector of accumulated reduced cost and the number of current consecutive
night shifts. Given two paths P and P ′, both ending in node i, we would like
to determine which one is the most promising. If the two states L(P) 6= L(P ′)
are distinct and, in addition, we have c(P) ≤ c(P ′) and T (P) ≤ T (P ′), then
the path P is the most promising. We say that the path P dominates the path
P ′ and write L(P) ≺ L(P ′). In this case, we call P the dominant path and
P ′ the dominated path. When a dominated path is extended, the resulting
path will also be dominated by an identical extension of the dominant path.
Hence, we can eliminate the dominated path. For any node i, we let Fi be
the set of all known states with paths ending in node i. Furthermore, we let
Ei = {L(P) ∈ Fi|@L(P ′) : L(P ′) ≺ L(P)} be the set of efficient states. It is
sufficient to extend the paths having states in Ei as the paths with states in
Fi \ Ei will be dominated by at least one path in Ei. From the layers of the
graph, the nodes have an inherent topological order. Hence, we need only to
extend paths from each node once, when using the ordering (n1, . . . , n|V |). Thus
we have a natural iterative approach for the dynamic programming, where we
iterate through the nodes given their topological ordering.

The acyclic resource constraint shortest path problem can be solved in pseudo-
polynomial time (Desrochers and Soumis, 1988). The algorithm is pseudo-
polynomial on the resource width, i.e. on the number of feasible values of the
resources. As our pricing problem has only one resource and as that resource is
bounded by the pattern length, the pricing problem can actually be solved in
polynomial time for a given work pattern.

B.5 Enforcing Integrality of the Solution

As mentioned earlier, column generation is used to solve the relaxed master
problem. However, to solve the GCRPWP, we need a solution to the original

B.5 Enforcing Integrality of the Solution 121

master problem and hence we reintroduce the integer requirement for variables
xr, where it is violated. The traditional approach to reintroduce integrality is by
including the column generation procedure in a branch-and-price framework. In
a standard MIP-model, variable branching is usually the branching method of
choice. In variable branching the solution space is partitioned into two disjoint
subspaces (branches), constructed by splitting the value set for a single variable
with a current fractional value xb = x∗b . In the left branch, the variable is
bounded downwards, i.e. xb ≤ bx∗bc, and in the right branch it is bounded
upwards, i.e. xb ≥ dx∗be. Unfortunately, it is hard to transfer this approach
directly to a column generation context. In column generation, the property
that keeps us from regenerating existing columns is the fact that any variable in
an optimal basic solution has a reduced cost of zero and all existing non-basic
variables have non-negative reduced costs. This is not true for variables with
an upper bound. These may have negative reduced cost, even if they are in the
basis. The variable bound may instead be enforced by an additional constraint
in the master problem. The dual of the new constraint would be reflected in the
reduced cost of the variable, and the variable would therefore be non-negative
in an optimal solution. However, in the pricing problem, it is not trivial and
usually highly inefficient to deal with dual costs for specific variables.

As variable branching is not well suited for column generation, another ap-
proach is usually taken, namely the use of constraint branching. For set parti-
tioning problems, the approach introduced by Ryan and Foster (1981) is widely
used. Unfortunately, it does not carry over to the generalized set covering
problem, which we are considering here. Desaulniers (2009) proposes a four
layered branching strategy to the split delivery vehicle routing problem, where
the master problem is similar to that of the GCRPWP. An assumption for the
completeness of the branching strategy is that there is only one, so called, split
customer. In the split delivering vehicle routing problem this assumption always
holds, but we do not have the corresponding property in the GCRPWP. The
branching strategy may be applied, but as it is not complete, there may be frac-
tional solutions where no branching candidate exists. For a complete constraint
branching strategy, we consider another related problem, namely the cutting
stock problem. Amor and Carvalho (2005) describe a branching strategy for a
model similar to the master problem presented here. Branching is applied to
aggregated arc flows. To get a complete branching scheme, nodes of the pricing
problem may need to be split into several nodes.

Rostering problems contain a high level of degeneracy and as a consequence, it
is often possible to find many different optimal solutions. Indeed, initial tests on
the GCRPWP showed that this was the case, and the fractionality of solutions
did usually only decrease after introducing a very large number of branching
constraints. As described above, it is theoretically possible to find the optimal
solution for any instance of the GCRPWP by exploring the full branch-and-

122
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

bound tree. However, as small run times are desired here, instead we introduce
a greedy approach to achieve integrality.

From a fractional solution, the idea is to iteratively apply variable fixing to the
variables in the optimal LP-solution. As described above, in column generation,
it is computationally hard to bound variables with an upper bound. Therefore,
we introduce solely lower bounds on the variables. The bounding will in most
cases have an identical effect to that of true variable fixing.

In the following, we describe the variable bounding scheme. Consider an optimal
solution to the relaxed master problem, x∗. If x∗r ∈ Z+, ∀r ∈ R then x∗ is also
a solution to the original formulation and the algorithm terminates. Otherwise,
we look at the fractional part of the variable values, f∗r = x∗r − bx∗rc. Given a
prespecified threshold, τ (with 0 < τ < 1), we impose the following bounds:

xr ≥ dx∗re, ∀r ∈ R : f∗r ≥ τ. (B.10)

If f∗r < τ for all r ∈ R, we instead impose the bound on the variable with the
largest fractional part:

{r ∈ R : f∗r ≥ τ} = ∅ ⇒ xr ≥ dx∗re, r = argmax
r

f∗r . (B.11)

As we can introduce an additional bound for any fractional solution and as
the value of any variable in an optimal solution of the GCRPWP is finite, this
approach eventually gives a feasible integer solution, assuming thatmg is integer.
The approach may be seen as a special case of variable branching, where the
left branch is never explored.

B.6 Rostering Directly on the Forecast Work-
load

In Section B.3, the mathematical model of the GCRPWP was introduced. The
model assumes that the employee demand has been defined for each shift, i.e. qs
is defined for any shift, s ∈ Sd. Determining the value of qs is an optimization
problem in itself, but we have so far assumed that it is predetermined, usually
by an experienced manual planner.

B.6 Rostering Directly on the Forecast Workload 123

0

5

10

15

20

25

30

35

40

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Figure B.3: A workload graph with a suggested shift cover.

Figure B.3 shows a workload graph over one day. The gray area is the forecast
workload discretized in 5 minute intervals. The dashed bold line shows the
suggested shift cover. As shifts contain breaks, the actual cover is sometimes
lower than the shift cover. The actual cover is depicted with the full bold line
in the figure. For each time interval, the cover has been found by summing the
demands of all shifts that overlap with that time interval.

In the following, we introduce a model, where the roster is constructed to directly
cover the forecast workload. As a consequence, we are going to disregard the
values of qs and the process of defining shift demands becomes superfluous.
Figure B.4 shows how one step of the usual rostering workflow is circumvented
with this approach.

We introduce a discretization of time and refer to an individual time interval
in the set of intervals as t ∈ T . The set St ⊆ S contains all shifts that overlap
with time interval t. The forecast workload of period t is denoted wt. čt refers
to the cost of under coverage in interval t. The mathematical model becomes:

124
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

Workload
estimation

Shift
demands

Roster

Shift generation Rostering

Rostering directly
on workload

Figure B.4: The workflow in rostering, where the intermediate step of creat-
ing shift demands is made superfluous by rostering directly on the workload
estimation.

min
∑
r∈R

crxr +
∑
t∈T

čtut, (B.12)

s.t. ∑
s∈St

∑
r∈R

asrxr + ut ≥ wt ∀t ∈ T , (B.13)

∑
r∈R

agrxr ≤ mg ∀g ∈ G, (B.14)∑
r∈R

xr ≤ n, (B.15)

ut ≥ 0 ∀t ∈ T , (B.16)

xr ∈ Z+ ∀r ∈ R. (B.17)

The model is similar to that of Section B.3. The objective (B.12) sums the
cost of under coverage for all intervals. For each interval, the workload is either
fully covered or the corresponding under coverage is registered in ut (B.13).
Constraints (B.14)-(B.17) correspond directly to Constraints (B.3)-(B.6).

An issue with this model is the number of constraints of the form (B.13), as the
set T may be very large. To alleviate this problem, we aggregate the time inter-
vals. In the following, we describe how to do this without losing any information
in the model.

The idea is to aggregate all time intervals for which the cover is always equal.
The covers of two separate time intervals are equal if they overlap with an
identical set of shifts. Let T1, . . . , Tq refer to a partitioning of time intervals in
q partitions, where all time intervals in a set Ti have the same shift cover. The
partitioning is made so that T1 ∪ . . . ∪ Tq = T and for any two sets Ti and Tj :

B.6 Rostering Directly on the Forecast Workload 125

i 6= j ⇒ Ti ∩ Tj = ∅. Any set can hold only consecutive elements. As explained
in Section B.3, each shift contains a break and the cover of a shift does therefore
not contain a set of consecutive time intervals. In this work, we assume that
each shift contains only one break, starting at time ebs ending at lbs. The model
is easily extended to consider multiple breaks.

The partitioning into these sets is straight forward. Let the set T p =
{tp1, t

p
2, . . . , t

p
q , t

p
q+1} =

⋃
s∈S{es, ls, ebs, lbs} contain all split times in sorted or-

der. We define Ti = tpi , . . . , t
p
i+1 − 1, i = 1, . . . , q. From the partitioning of T

define a new set of time intervals Θ = θ1, . . . , θq, where the start times and the
end times of the new time intervals are the split times of T p. The definition of
St easily transfers to Sθ for θ ∈ Θ. However, the workload in a time intervals
θi is not necessarily constant and hence the under cover is not as easily defined
as in the previous model.

Let wθi = maxt∈Ti wt and introduce the decision variables uθij , i = 1, . . . , q, j =
1, . . . , wθi with 0 ≤ uθij ≤ 1.

∑wθi
j=1 uθij denotes the under coverage for time

interval θi. By defining the under coverage as a sum of variables, we are able
to introduce a piecewise linear cost function for under coverage. The cost of
each piece of the function is defined by the number of original time intervals,
for which the cover is insufficient. The cost of uθij is čθij and is calculated as:

čθij =
∑

t∈Ti:wt>wθi−j
čt. (B.18)

čθij sums the cost of all original time periods, which will not be fully covered if
the interval θi has under coverage of j or more.

Figure B.5 shows a workload graph zoomed in on one interval, θ′, covering the
time from 15:00 to 16:00. The gray area is the workload. The curve above
the workload area with a shape similar to the workload represents robustness,
which is described in Section B.7. We disregard this right now. In the example,
wθ′ = 25. As an under coverage of 1 (relative to wθ′) only introduces under
coverage in interval 5: čθ′1 = č5. Following the same argument, čθ′2 = č5. Under
coverage of 3 or 4 introduces under coverage in more intervals and therefore:
čθ′3 = čθ′4 = č1 + č2 + č3 + č4 + č5 + č6. The cost coefficients for further under
coverage are calculated similarly. Hence, the aggregated model becomes:

126
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

15:00 15:05 15:10 15:15 15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00

r

 wθ’

 wθ’

1 2 3 4 5 6 7 8 9 10 11 12

Figure B.5: Example of cost calculation for aggregated time intervals.

min
∑
r∈R

crxr +
∑
θ∈Θ

wθ∑
j=1

čθjuθj , (B.19)

s.t. ∑
s∈Sθ

∑
r∈R

asrxr +

wθ∑
j=1

uθj ≥ wθ ∀θ ∈ Θ, (B.20)

∑
r∈R

agrxr ≤ mg ∀g ∈ G, (B.21)∑
r∈R

xr ≤ n, (B.22)

0 ≤ uθj ≤ 1 ∀θ ∈ Θ,∀j = 1, . . . , wθ, (B.23)

xr ∈ Z+ ∀r ∈ R. (B.24)

The constraints of the model correspond directly to Constraints (B.12)-(B.17)
with the described aggregation. čθj is increasing over j and therefore, in an
optimal solution, we have that uθ1 ≥ uθ2 ≥ . . . ≥ uθwθ , as intended. At most
one uθj is fractional. If wθ is integer, all uθj are binary.

In practice, we want to limit the number of variables as much as possible. čθj
is often unchanged for a sequence of values of j. In this case, we may remove

B.7 Robustness 127

all but one of the associated variables by increasing the upper bound of the
remaining variable, accordingly.

B.7 Robustness

In the previous section, we assumed that there was no preference between rosters
that cover the forecast workload equally well. In practice, the actual workload
on a given day is not going to match the forecast workload exactly, and we
therefore introduce robustness measures to create a roster, which deals well
with small changes in workload.

To be able to handle a larger workload than anticipated, we add a certain
percentage to the original forecast workload. We refer to this contingency as
rc, e.g. rc = 0.2 for a 20% contingency. Furthermore, we expect some tasks to
be delayed. This will result in a delayed workload. We define rd as the number
of minutes of slippage that need to be accounted for, e.g. rd = 15. We want to
cover both cases as well as possible.

Let črt be the cost per unit of not covering the workload with the added con-
tingency or of not covering the slipped workload, whatever is more demanding.
The objective of the disaggregated model (B.12) is changed and two additional
constraints are added:

min
∑
r∈R

crxr +
∑
t∈T

(čtut + črtu
r
t), (B.25)∑

s∈St

∑
r∈R

asrxr + ut + urt ≥ d(1 + rc)wte ∀t ∈ T , (B.26)

∑
s∈St

∑
r∈R

asrxr + ut + urt ≥ wt−rd ∀t ∈ T . (B.27)

A new set of variables, urt , has been introduced to correctly penalize inadequate
robustness. The right hand side of Constraints (B.26) is converted to an integer
for simplicity. This means that under coverage is always integer if the workload
estimations are.

The changes to the model carry over to the aggregated model easily. Each
time interval may now contribute to the cost of the aggregation with either čt
or črt . The right hand sides of Constraints (B.20) hold the necessary coverage

128
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

for no penalty to apply, including penalties from robustness. Hence, we define:
wrθi = maxt∈Ti(max{(1 + rc)wt, wt−rd}). We also introduce the subset T rij =
{t ∈ Ti : d(1 + rc)wte > wrθi − j ∨ wt−rd > wrθi − j}. The right hand side of
(B.20) is replaced by wrθi and the coefficients of the objective function become
(i = 1, . . . , q, j = 1, . . . , wrθi):

črθij =
∑

t∈Ti:wt>wrθi−j
čt +

∑
t∈T rij

črt . (B.28)

As a consequence, the right hand sides of (B.20) are increased, but the costs
are decreased correspondingly. For črt = 0 the total cost is equal to the cost of
the model without robustness. Assuming that črt ≤ čt, in an optimal solution
we still have uθ1 ≥ uθ2 ≥ . . . ≥ uθwrθ with no fractional uθj for integer wrθ .

As an example, refer again to Figure B.5. Under coverage is now relative to
wrθ′ . Again, an under coverage of 1 or 2 (relative to wrθ′) only introduces
under coverage in interval 5 and therefore: čθ′1 = čθ′2 = čr5. The subse-
quent coefficients are calculated as: čθ′3 = čθ′4 = čr1 + čr2 + čr3 + čr4 + čr5 + čr6,
čθ′5 = čr1 + čr2 + čr3 + čr4 + čr5 + čr6 + čr9 + čr10 + čr11. The coefficient of an under
coverage of six includes the original costs as well: čθ′6 = čr1 + . . . + čr11 + č5.
The calculations for the remaining coefficients are similar. The final model with
time interval aggregation and robustness becomes:

min
∑
r∈R

crxr +
∑
θ∈Θ

wrθ∑
j=1

črθjuθj , (B.29)

s.t. ∑
s∈Sθ

∑
r∈R

asrxr +

wrθ∑
j=1

uθj ≥ wrθ ∀θ ∈ Θ, (B.30)

∑
r∈R

agrxr ≤ mg ∀g ∈ G, (B.31)∑
r∈R

xr ≤ n, (B.32)

0 ≤ uθj ≤ 1 ∀θ ∈ Θ,∀j = 1, . . . , wrθ , (B.33)

xr ∈ Z+ ∀r ∈ R. (B.34)

B.8 Experimental results 129

B.8 Experimental results

In this section, we present the results obtained for the proposed methodology
on three real-life instances supplied by the airline. Due to its superiority from
a robustness modelling perspective, we only test Model (B.29)-(B.34). The
instances, denoted W07, S08, and S10 below, each have a rostering horizon of
189 days and contain 65, 95, and 139 staff members, respectively. All instances
have 11 different shifts, three of which are night shifts. To incorporate flexibility
with respect to breaks, three copies of each shift are created and differ only in
the break time of the shift. The workload demand is cyclic with a period of one
week and all staff are assumed to be working a 6&3 pattern.

Since this is a somewhat small test set, an additional ten artificial instances
have been constructed and used in the analysis of the algorithm’s performance.
All artificial instances are based on the real-life instances and are, in particular,
an attempt to stress test the approach given more dramatic workload demands.
That is, the artificial instances are identical in structure to the real-life instances
in terms of the number of shifts and rostering horizon; however, each has a dif-
ferent workload demand and number of staff. These instances are referred to as
A01-A10 below. The entire algorithm has been written in the C++ programming
language and utilizes the commercial solver Cplex 10.0 with default parameters
to solve the master problem. All computational experiments have been per-
formed on a 64 bit Linux operating system equipped with a dual core AMD 2.2
GHz processor and 2GB of RAM.

We begin with an analysis of how the model and solution approach perform over
a 63 day time horizon. Before considering a longer time horizon, we want to
ascertain the effect on solution quality of decomposing the rostering horizon into
shorter, more tractable, overlapping blocks. Also the heuristic shift fixing and
branching routines described in Sections B.4 and B.5 will compromise solution
quality. The question is, to what degree. In the 63 day time horizon, we are able
to calculate the optimal solution to the LP relaxation of the non-decomposed
problem and thus provide a lower bound on the value of the decomposed integer
solution obtained. Furthermore, as 63 is the lowest common multiple of the
pattern length and the period of the workload demand, if the obtained rosters
are wrappable, then one can simply copy the rosters to any rostering horizon
that is a multiple of 63 days. A wrappable roster is one in which it is possible
for all staff on a particular pattern group to transition from their last shift (on
day 63) to one of the shifts worked by the pattern group on the first day. One
cannot guarantee this to always be the case, since such shift transitions are not
taken into consideration in our approach.

To test our decomposition approach the 63 day horizon is divided into an initial

130
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

Instance LPI IPI LPD IPD LPN GD GN tDIP (s) tNLP (s)
A01 59.18 59.18 39.90 39.90 39.90 0.00% 0.00% 110.67 614.94
A02 375.18 377.89 251.43 254.14 250.36 1.08% 1.51% 805.84 2516.2
A03 365.20 366.96 241.55 243.31 242.17 0.73% 0.47% 692.48 4783.25
A04 740.31 740.51 495.93 496.12 495.97 0.04% 0.03% 236.87 1316.6
A05 327.78 328.17 218.43 218.82 218.57 0.18% 0.11% 1122.08 3041.76
A06 7182.80 7183.84 4799.55 4800.59 4799.94 0.02% 0.01% 711.48 2933.6
A07 0.55 0.55 0.35 0.35 0.35 0.00% 0.00% 27.29 204.02
A08 1630.88 1631.00 1099.57 1099.69 1099.60 0.01% 0.01% 130.69 546.72
A09 232.15 237.60 150.41 155.86 152.07 3.62% 2.49% 2079.08 6378.47
A10 4595.07 4597.57 3171.40 3173.90 3172.17 0.08% 0.05% 713.56 2211.54
S08 0.00 0.00 0.00 0.00 0.00 0.00% 0.00% 19.05 45.48
S10 306.68 306.83 217.46 217.61 217.48 0.07% 0.06% 147.92 965.84
W07 0.85 0.85 0.57 0.57 0.57 0.00% 0.00% 49.24 305.71

Table B.1: Results for a 63 Day Rostering Horizon

block of 23 days and 5 additional blocks with a length of 14 days. Each additional
block contains 8 new days and 6 days of the preceding block (that will be
resolved). For this discretization one has many possibilities; we tried various
values, and the above parameters appeared to work well. In all experiments the
cost of one hour of uncovered work is assumed to be 10 units, while an hour
of uncovered robustness costs 1 unit. Given that we are dealing with a cyclic,
weekly workload demand and that staff are working a fixed 6&3 work pattern,
a preallocation step that equalizes the number of staff working each pattern
group is performed. That is, the algorithm does not determine how many staff
members will work each pattern group.

Table B.1 provides the results of the initial experiments. For each instance,
the table gives the inflated LP and IP objective values (LPI and IPI) as well
as the deflated LP and IP objective values (LPD and IPD). The inflated LP
and IP values are simply the sum of the respective LP and IP objective values
found in each of the blocks. This is an inaccurate indication of the total cost
since the cost contribution from each block overlap is counted twice. IPD is the
true cost of the 63 day roster. This value is obtained by correctly adjusting the
costs incurred in the overlaps. LPD, on the other hand, is obtained by reducing
the LPI by the difference between the IPI and IPD. Due to the heuristic shift
fixing in the overlaps one cannot obtain an optimal decomposed LP solution.
The purpose of the LPD is to provide a lower bound when the non-decomposed
bound (LPN) cannot be obtained (i.e. for longer time horizons). Table B.1 also
reports the time taken to solve the decomposed model (tDIP) as well as the time
taken to solve the LP for the non-decomposed model (tNLP), both of which are in
seconds. The percentage gap between the deflated LP and IP objective values
(GD) and the optimality gap between the decomposed IP objective value and
the non-decomposed LP objective values (GN) are also given.

One can observe that the algorithm performs very efficiently with small opti-

B.8 Experimental results 131

Instance LPI IPI LPD IPD 3IPD63 GD tDIP (s)
A01 198.76 198.76 120.19 120.19 119.7 0.00% 249.19
A02 1265.19 1274.04 751.73 760.58 762.42 1.18% 1581.17
A03 1213.80 1220.55 724.89 731.64 729.93 0.93% 1040.34
A04 2485.13 2485.69 1488.10 1488.66 1488.36 0.04% 555.58
A05 1096.74 1098.43 656.11 657.80 656.46 0.26% 1920.91
A06 23936.35 23941.99 14405.78 14411.42 14401.77 0.04% 798.84
A07 1.78 1.78 1.05 1.05 1.05 0.00% 65.30
A08 5470.04 5470.24 3310.39 3310.59 3299.07 0.01% 251.30
A09 768.96 782.49 453.08 466.60 467.58 2.98% 2753.54
A10 15686.69 15695.55 9520.05 9528.92 9521.70 0.09% 945.74
S08 3.30 3.30 3.30 3.30 0.00 0.00% 54.32
S10 1047.70 1048.26 648.05 648.61 652.83 0.09% 322.95
W07 2.87 2.87 1.70 1.70 1.71 0.00% 121.58

Table B.2: Results for a 189 Day Rostering Horizon

mality gaps between the best found integer solution using the decomposition
approach and the optimal LP objective value for the non-decomposed model.
Excluding instances A02, A03, and A09, all optimality gaps are less than 0.20%.
The fact that LPD ≈ LPN indicates that the larger part of the gap is an inte-
grality gap, caused by the relaxation of the integrality property for xr. Hence,
we conclude that the block structure does not reduce solution quality signif-
icantly. It is very encouraging to see that the block decomposition produces
close to optimal integer solutions much faster than it can find the optimal LP
objective value of the non-decomposed model. Furthermore, LPD appears to
be a slightly pessimistic approximation of LPN as it is smaller in all but one
instance (A02). However, both gaps, in general, are small enough that one can
be confident of the superior performance of the algorithm. Finally, the results
suggest that the real-life instances can be solved extremely efficiently, while it
is just the artificial instances that create some difficulties.

Table B.2 gives the results of similar experiments in which the rostering horizon
is increased from 63 days to 189 days. The results are very similar to those
of Table B.1, with a small percentage gap between the IPD and the LPD as
well as acceptable running times, particularly for the real-life instances. One
can also observe that the best found solutions are approximately a factor three
more than those found for the 63 day experiments (3IPD63). As was mentioned
earlier, there is no guarantee that a solution with the latter objective value is
even feasible. In some cases, i.e. A02, A05, A09, S10, and W07, the value IPD

is at least as good as 3IPD63. This is due to the unpredictable behaviour of the
heuristic shift fixing and the branching routines in the block decomposition.

A particularly interesting graph is given in Figure B.6 which illustrates the cost
incurred on each day of the rostering horizon for S10. It is clear that the cost
has a cyclic behaviour. A closer inspection shows that the costs are highly
dependent on the weekday, which is not surprising, as the workload estimation

132
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180
Day

C
os

t

Day 12, Cost = 8.42

Figure B.6: The cost incurred on each day of the rostering horizon for S10.

is by weekday, but not over weeks. The workload graph for a day of the horizon
with highest cost, Day 12, is shown in Figure B.7. Day 12 is a Friday and all
the larger costs of the horizon are observed on Fridays. It is clear that even on
the worst days, the cover is fairly good and the major contribution to the cost
is from the robustness measure. S10 is the realistic instance, where it is, by far,
the most difficult to find a satisfactory cover. As the figure illustrates, even the
worst day here has an acceptable cover. We conclude that the proposed method
is very well suited for solving the problems at hand.

As can be seen from Table B.2, the worst cover is obtained in instance A06.
To sketch the worst case scenario, Figure B.8 shows the workload graph of the
most costly day of A06. Indeed, the amount of uncovered work is severe, but it
is observed that this not due to a bad distribution of available manpower. The
assigned manpower covers the estimated workload tightly, but there are simply
too few employees to cover all the work. Also, this particular instance has a
very jagged workload estimation, which makes it difficult to cover the highest
peeks. The artificial instances were introduced to stress test the algorithm and
to show what happens, when very hard instances are encountered. The figure
illustrates that A06 is well suited for this purpose.

Table B.3 provides a breakdown of the total cost (IP) into total roster-line costs
(RC) and total coverage costs (CC). The RC component indicates how many
late to early sequences are not satisfied in the chosen roster-lines, while CC

B.8 Experimental results 133

0

10

20

30

40

50

60

70

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Figure B.7: Workload graph for the most costly day of S10 with the cover of
the found solution.

0

5

10

15

20

25

30

35

40

45

50

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Figure B.8: Workload graph for the most costly day of A06 with the cover of
the found solution.

134
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

Instance IP RC CC UWL UR IE
A01 120.19 0.00 120.19 0.00 4.45 59.28%
A02 760.58 17.00 743.58 0.53 22.24 65.12%
A03 731.64 0.00 731.64 0.10 26.10 61.52%
A04 1488.66 6.00 1482.66 1.23 42.61 62.11%
A05 657.80 0.00 657.80 0.02 24.16 65.18%
A06 14411.42 593.00 13818.43 37.92 132.59 59.08%
A07 1.05 0.00 1.05 0.00 0.04 50.53%
A08 3310.59 373.00 2937.59 6.60 42.80 56.90%
A09 466.60 0.00 466.60 0.00 17.28 67.77%
A10 9528.92 916.00 8612.92 18.73 131.70 62.12%
S08 3.30 2.00 1.30 0.00 0.05 45.98%
S10 648.61 60.00 588.61 0.03 21.50 55.30%
W07 1.70 0.00 1.70 0.00 0.06 57.07%

Table B.3: Solution Statistics for 189 Day Rosters

states the cost incurred from uncovered workload and uncovered robustness. In
Table B.3, we also give both the number of uncovered workload hours on average
per week (UWL) and the number of uncovered hours of robustness on average
per week (UR). Here one can see that uncovered hours of robustness is the main
component of the coverage cost in most cases. It is not surprising to see that
the instances with the largest number of uncovered workload hours (A06, A08,
and A10) also have the largest RC cost contribution. Here the model is simply
attempting to cover the workload as well as possible, often disregarding the late
to early sequence preference for the roster-line. Finally, IE gives the Implied
Efficiency of the obtained roster. Implied efficiency is the percentage of time
that people at work are actually working.

To provide an indication of how the solutions to S08, S10, and W07 in Table B.2
compare to the airline’s solutions, Table B.4 makes a comparison of the average
number of uncovered workload hours per week, the average number of uncovered
hours of robustness, and the implied efficiency of each of the rosters. In Table
B.4, column headings with an A superscript denote the airline’s value. For all
instances, we perform much better, significantly improving the robustness of
the roster. It is not possible to improve implied efficiency without reducing the
staffing level. Instances S08′, S10′, and W07′ are identical to S08, S10, and W07
in which the staffing level has been reduced by 10-12%. Here we see that we can
provide a similar coverage and more robustness than the airline, while at the
same time improving efficiency by around 7-11%. Although instance S10 has
0.33 uncovered workload hours per week on average, this equates to around 20
minutes per week and can be considered negligible. It should also be mentioned
that in increasing the efficiency there is only a very slight increase in the RC for
instance S10.

B.9 Conclusion 135

Instance UWLA UWL URA UR RC IEA IE
S08 4.42 0.00 12.52 0.05 0.00 46.10 45.98
S10 0.00 0.03 147.69 21.50 60.00 55.29 55.30
W07 0.00 0.00 41.28 0.06 0.00 57.14 57.07

S08′ 4.42 0.00 12.52 0.01 0.00 46.10 51.52
S10′ 0.00 0.33 147.69 36.40 63.00 55.29 59.57
W07′ 0.00 0.00 41.28 2.56 0.00 57.14 61.60

Table B.4: Comparison with Airline’s Solutions

B.9 Conclusion

In this paper, we have considered the GCRPWP arising at a major European
airline. We have proposed a cutting stock based integer programming formu-
lation of the problem, which is not only able to circumvent one step of the
roster construction process but which can also accurately incorporate the neces-
sary robustness measures. A powerful decomposition approach utilizing column
generation and variable fixing is developed to solve a sequence of integrated op-
timization problems. This is combined with a shift fixing routine to ensure the
roster-lines obtained for each of the smaller problems can be pieced together to
construct a roster for the entire six month planning horizon. Computational re-
sults on three real-life instances and 10 artificial instances confirm the efficiency
of the proposed methodology. Not only do we find better solutions than those
implemented by the airline, particularly from a robustness perspective, but we
have also shown that more robust solutions can be obtained even if staffing
levels are reduced by 10-12%.

References

Abbink, E., M. Fischetti, L. Kroon, G. Timmer, and M. Vromans (2005).
“Reinventing crew scheduling at Netherlands railways”. In: Interfaces 35.5,
pp. 393–401.

Alfares, H. K. (1997). “An efficient two-phase algorithm for cyclic days-off
scheduling”. In: Computers and Operations Research 25.11, pp. 913–923.

Alfares, H. K. (2002). “Optimum Workforce Scheduling Under the (14,21) Days-
Off Timetable”. In: Journal of Applied Mathematics and Decision Sciences
63.3, pp. 191 –199.

Amor, H. B. and J. V. de Carvalho (2005). “Cutting Stock Problems”. In:
Column Generation. Ed. by G. Desaulniers, J. Desrosiers, and M. Solomon.
Springer. Chap. 5, pp. 131 –161.

136
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

Anbil, R., E. Gelman, B. Patty, and R. Tanga (1991). “Recent advances in
crew-pairing optimization at American Airlines”. In: Interfaces 21.1, pp. 62
–74.

Barnhart, C., A. M. Cohn, E. L. Johnson, D. Klabjan, G. L. Nemhauser, and P.
H. Vance (2003). “Airline Crew Scheduling”. In: Handbook of Transportation
Science. Ed. by Randolph W. Hall. Kluwer Academic Publishers.

Brusco, M. J., L. W. Jacobs, R. J. Bongiorno, D. V. Lyons, and B. Tang (1995).
“Improving Personnel Scheduling at Airline Stations”. In: Operations Re-
search 43.5, 741–751 and 172029.

Burke, E. K., P. de Causmaecker, G. V. Berghe, and H. Van Landeghem (2004).
“The State of the Art of Nurse Rostering”. In: Journal of Scheduling 7.6,
pp. 441–499.

Burke, E. K., P. De Causmaecker, G. De Maere, J. Mulder, M. Paelinck, and
G. Vanden Berghe (2010). “A multi-objective approach for robust airline
scheduling”. Ed. by Jesper Larsen Jens Clausen Allan Larsen. In: Computers
and Operations Research 37.5, pp. 822–832.

Cheang, B., H. Li, A. Lim, and B. Rodrigues (2003). “Nurse rostering problems–
a bibliographic survey”. In: European Journal of Operational Research 151.3,
pp. 447–460.

Chu, S. C. K. (2007). “Generating, scheduling and rostering of shift crew-duties:
Applications at the Hong Kong International Airport”. In: European Journal
of Operational Research 177, pp. 1764 –1778.

Clausen, J., A. Larsen, J. Larsen, and N. J. Rezanova (2010). “Disruption man-
agement in the airline industry-Concepts, models and methods”. Ed. by
Jesper Larsen Jens Clausen Allan Larsen. In: Computers and Operations
Research 37.5, pp. 809–821.

Danna, E. and C. L. Pape (2005). “Branch-and-Price Heuristics: A Case Study
on the Vehicle Routing Problem with Time Windows”. In: Column Gener-
ation. Ed. by Jacques Desrosiers Guy Desaulniers and Marius M. Solomon.
Springer. Chap. 4, pp. 99–129.

Day, P. R. and D. M. Ryan (1997). “Flight attendant rostering for short-haul
airline operations.” In: Operations Research 45.5, pp. 649 –661.

Desaulniers, G., J. Desrosiers, I. Ioachim, M. Solomon, F. Soumis, and D. Vil-
leneuve (1998). “A Unified Framework for Deterministic Time Constrained
Vehicle Routing and Crew Scheduling Problems”. In: Fleet Management and
Logistics. Ed. by T. Crainic and G. Laporte. Kluwer Academic Publishers.
Chap. 3, pp. 57 –94.

Desaulniers, G., J. Desrosiers, and M. M. Solomon (2002). “Accelerating Strate-
gies in Column Generation Methods for Vehicle Routing and Crew Schedul-
ing Problems”. In: Essays and Surveys in Metaheuristics. Ed. by C.C. Riveiro
and P. Hansen. Kluwer, Norwell, pp. 309–324.

Desaulniers, G. (2009). “Branch-and-Price-and-Cut for the Split-Delivery Ve-
hicle Routing Problem with Time Windows”. In: Operations Research To
appear.

B.9 Conclusion 137

Desrochers, M. and F. Soumis (1988). “A Reoptimization Algorithm for the
Shortest Path Problem with Time Windows”. In: European Journal of Op-
erational Research 35.2, pp. 242–254.

Desrosiers, J. and M. E. Lübbecke (2005). “A Primer in Column Generation”.
In: Column Generation. Ed. by G. Desaulniers, J. Desrosiers, and M.M.
Solomon. Springer, New York. Chap. 1, pp. 1–32.

Dowling, D., M. Krishnamoorthy, H. Mackenzie, and D. Sier (1997). “Staff ros-
tering at a large international airport”. In: Annals of Operations Research
72, pp. 125 –147.

Ernst, A., H. Jiang, M. Krishnamoorthy, and D. Sier (2004c). “Staff Scheduling
and rostering: A review of applicaitons, methods, and models”. In: European
Journal of Operations Research 153, pp. 3 –27.

Eveborn, P. and M. Rönnqvist (2004). “Scheduler - A System for Staff Plan-
ning”. Ed. by Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. In:
Annals of Operations Research 128.1-4, pp. 21–45.

Gendreau, M., J. Ferland, B. Gendron, N. Hail, B. Jaumard, S. Lapierre, G. Pe-
sant, and P. Soriano (2006a). “Physician Scheduling in Emergency Rooms”.
In: Practice and Theory of Automated Timetabling VI. 6th International
Conference, PATAT. Springer-Verlag.

Irnich, S. and G. Desaulniers (2005). “Shortest Path Problems with Re-
source Constraints”. In: Column Generation. Ed. by G. Desaulniers, Jacques
Desrosiers, and M.M. Solomon. GERAD 25th Anniversary Series. Springer.
Chap. 2, pp. 33–65.

Irnich, S. (2008). “Resource extension functions: properties, inversion, and gen-
eralization to segments”. In: OR Spectrum 30.1, pp. 113–148.

Kellogg, D. L. and S. Walczak (2007). “Nurse Scheduling: From Academia to
Implementation or Not?” In: Interfaces 37.4, pp. 355 –369.

Mehrotra, A., K. Murphy, and M. Trick (2000). “Optimal shift scheduling: a
branch-and-price approach”. In: Naval Research Logistics 47.3, pp. 185–200.

Ryan, D. M. and B. Foster (1981). “An integer programming approach to
scheduling”. Ed. by A. Wren. In: Computer Scheduling of Public Transport.
Urban Passenger Vehicle and Crew Scheduling. Proceedings of an Interna-
tional Workshop, pp. 269–280.

Vohra, R. V. (1987). “The cost of consecutivity in the (5, 7) cyclic staffng
problem”. In: IIE Transactions 29, pp. 942 –950.

Wäscher, G. and T. Gau (1996). “Heuristics for the integer one-dimensional
cutting stock problem: a computational study”. In: OR Spektrum 18.3,
pp. 131–144.

Weide, O., D. Ryan, and M. Ehrgott (2010). “An iterative approach to robust
and integrated aircraft routing and crew scheduling”. Ed. by Jesper Larsen
Jens Clausen Allan Larsen. In: Computers and Operations Research 37.5,
pp. 833–844.

138
An Integrated Approach to the Ground Crew Rostering Problem with Work

Patterns

Appendix C

The Manpower Allocation
Problem with Time Windows

and Job-Teaming Constraints:
A Branch-and-Price Approach

Anders Dohn, Esben Kolind, and Jens Clausen

Published in: Computers and Operations Research (2009) 36.4, pp. 1145-1157.

140
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

The Manpower Allocation Problem with Time
Windows and Job-Teaming Constraints:

A Branch-and-Price Approach∗

Anders Dohn1, Esben Kolind1, and Jens Clausen1

In this paper, we consider the Manpower Allocation Problem with
Time Windows, Job-Teaming Constraints and a limited number of
teams (m-MAPTWTC). Given a set of teams and a set of tasks,
the problem is to assign to each team a sequential order of tasks
to maximize the total number of assigned tasks. Both teams and
tasks may be restricted by time windows outside which operation is
not possible. Some tasks require cooperation between teams, and
all teams cooperating must initiate execution simultaneously. We
present an Integer Programming model for the problem, which is
decomposed using Dantzig-Wolfe decomposition. The problem is
solved by column generation in a Branch-and-Price framework. Si-
multaneous execution of tasks is enforced by the branching scheme.
To test the efficiency of the proposed algorithm, 12 realistic test in-
stances are introduced. The algorithm is able to find the optimal
solution in 11 of the test instances. The main contribution of this
article is the addition of synchronization between teams in an exact
optimization context.

Keywords: Manpower allocation; Crew scheduling; Vehicle routing with time
windows; Synchronization; Simultaneous execution; Branch-and-Price; Branch-
ing rules; Column generation; Decomposition; Set covering; Integer program-
ming.

C.1 Introduction and Problem Description

The Manpower Allocation Problem with Time Windows, Job-Teaming Con-
straints and a limited number of teams (m-MAPTWTC) is the problem of
assigning m teams to a number of tasks, where both teams and tasks may be
restricted by time windows outside which operation is not possible. Tasks may

∗Published in: Computers and Operations Research (2009) 36.4, pp. 1145-1157.
1Informatics and Mathematical Modelling, Technical University of Denmark, Building 321,

Richard Petersens Plads, 2800 Lyngby, Denmark.

C.1 Introduction and Problem Description 141

require several individual teams to cooperate. Due to the limited number of
teams, some tasks may have to be left unassigned. The objective is to maximize
the number of assigned tasks.

The problem arises in various contexts where cooperation between teams / work-
ers, possibly with different skills, is required to solve tasks. An example is the
home care sector, where the personnel travel between the homes of the patients
who may demand collaborative work (e.g. for lifting). The problem also occurs
in hospitals where a number of doctors and nurses are needed for surgery and
the composition of staff may vary for different tasks. Another example is in
the allocation of technicians to service jobs, where a combination of technicians
with individual skills is needed to solve each task.

This study focuses on the scheduling of ground handling tasks in some of Eu-
rope’s major airports. Between arrival and the subsequent departure of an
aircraft, numerous jobs including baggage handling and cleaning must be per-
formed. Typically, specialized handling companies take on the jobs and assign
crews of workers with different skills. Any daily work plan must comply with
the time windows of tasks, the working hours of the staff, the skill requirements
of tasks, and union regulations. It may be necessary to have several teams co-
operating on one task in order to complete it within the time window. The
workload has to be divided equally among the cooperating teams. Furthermore,
all teams involved must initiate work on the task simultaneously (synchronized
cooperation), as only one of the team leaders is appointed as responsible su-
pervisor. In the remainder of this paper, a team is a fixed group of workers,
whereas when referring to job-teaming or cooperation, we refer to a temporary
constellation of teams joined together for a specific task. In the airport setting,
all tasks require exactly one skill each.

MAPTWTC has previously been treated by Lim et al. (2004) and Li et al. (2005)
in a metaheuristic approach. They study an example originating from the Port
of Singapore, where the main objective is to minimize the number of workers
required to carry out all tasks, rather than carrying out the maximum number
of tasks with a given workforce. Both papers describe secondary objectives as
well.

Our problem is closely related to the Vehicle Routing Problem with Time Win-
dows (VRPTW) which has been studied extensively in the literature.

The Synchronized Vehicle Dispatching Problem (SVDP) as presented by
Rousseau et al. (2003) is a dynamic vehicle routing problem similar to
MAPTWTC. In SVDP, the visits of the vehicles may require additional assis-
tance from other vehicles or special teams, and hence the vehicles and the special
teams have to be synchronized. A number of benchmark problems are solved by

142
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

a constraint programming based greedy procedure with post-optimization using
local search.

The Vehicle Routing Problem with Split Deliveries (VRPSD) allows a customer
to be visited by several vehicles, each fulfilling some of the demand. The problem
was introduced by Dror and Trudeau (1989). See Lee et al. (2006) for an overview
of the literature. Frizzell and Giffin (1995) were the first to include the time
window extension in the split delivery problem (VRPTWSD). They solve the
problem heuristically. A tabu search for VRPTWSD is developed by Ho and
Haugland (2004).

Lau et al. (2003) formulate the vehicle routing problem with time windows and
a limited number of vehicles (m-VRPTW) and solve it using a tabu search
approach. See Lim and Zhang (2005) and Li et al. (2004) for other heuristic
approaches to the same problem.

The most promising recent results for exact solution of VRPTW use column gen-
eration. Ioachim et al. (1999) describe a routing problem with synchronization
constraints and use column generation to solve this problem. The synchroniza-
tion constraints are modeled in the master problem with the consequence that a
large number of columns with a small variation in departure time are generated.

Boussier et al. (2007) describe a Branch-and-Price algorithm for solving
m-VRPTW and report promising results. The work is a continuation of prelim-
inary work by Gueguen (1999). In this work, Gueguen also describes an exact
approach to VRPTWSD. Gendreau et al. (2006b) consider the VRPTWSD as
well and introduce a new set covering model for this problem. Properties of
the model are studied, and a column generation based solution method is pre-
sented. With the method, they are able to solve a number of smaller instances
to optimality.

Column generation for the pure VRPTW was initiated by Desrochers et al.
(1992). They solve the pricing problem as a Shortest Path Problem with Time
Windows (SPPTW). Their approach proved very successful and was further
applied and developed by Kohl (1995), Kohl et al. (1999), Larsen (1999), Cook
and Rich (1999), Kallehauge et al. (2001), Righini and Salani (2006), Irnich and
Villeneuve (2006).

Recently, Feillet et al. (2004) suggested solving the pricing problem as an El-
ementary Shortest Path Problem with Time Windows (ESPPTW) building on
the ideas of Beasley and Christofides (1989). Chabrier (2006), Danna and Pape
(2005), and Jepsen et al. (2006) have extended the ideas and achieved very
promising results.

C.2 Problem Definitions and Formulation 143

Finally, we turn the attention to recent work by Bredström and Rönnqvist which
is described in a discussion paper (Bredström and Rönnqvist, 2007) extending
the work of an earlier discussion paper (Bredström and Rönnqvist, 2006). The
problem considered is similar to MAPTWTC and is dealing with an application
in home care. The problem is solved using a Branch-and-Price setup and the
conclusions of the paper correspond nicely with the findings that we present in
this paper.

The remainder of this paper is structured as follows. In Section C.2, we present
an Integer Programming (IP) formulation of m-MAPTWTC. In Section C.3, the
formulation is decomposed into a master problem and a pricing problem using
Dantzig-Wolfe decomposition. This decomposition allows us to solve the prob-
lem using column generation in a Branch-and-Price framework. In Section C.4,
the necessary branching rules are described. This includes branching to enforce
integrality as well as synchronized cooperation on tasks. The computational
results on a number of real-life problems are presented in Section C.5. Finally,
in Section C.6 we conclude on our work and discuss possible areas for future
research.

C.2 Problem Definitions and Formulation

C.2.1 IP Formulation of m-MAPTWTC

Consider a set C of n tasks and a workforce of inhomogeneous teams V . All
shifts begin at a service center, referred to as location 0. The set of tasks together
with the service center is denoted N . For each task i ∈ C a time window is
defined as [ai, bi] where ai and bi are the earliest and the latest starting times
for task i, respectively. ri is the number of teams required to carry out task
i (Task i is divided into ri split tasks). Each team k ∈ V has a time window
[ek, fk], where the team starts at the service center at time ek and must return
no later than fk. Between each pair of tasks (i, j), we associate a time tij which
contains the travel time from i to j and the service time at task i. Further, gik
is a binary parameter defining whether team k has the required qualifications
for task i (gik = 1) or not (gik = 0).

We assume that ai, bi, ek, and fk are non-negative integers and that each tij is
a positive integer. We also assume that the triangular inequality is satisfied for
tij .

To solve the problem, two sets of decision variables have to be defined:

144
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

xijk is binary with xijk =
{

1, if team k goes directly from task i to task j.
0, otherwise

si is an integer variable and defines the start time of task i.

m-MAPTWTC can be formulated mathematically as:

max
∑
k∈V

∑
i∈C

∑
j∈N

xijk (C.1)

∑
k∈V

∑
j∈N

xijk ≤ ri ∀i ∈ C (C.2)

xijk ≤ gik ∀i ∈ C,∀j ∈ C,∀k ∈ V (C.3)∑
j∈N

x0jk = 1 ∀k ∈ V (C.4)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ N, ∀k ∈ V (C.5)

ek + t0j −M(1− x0jk) ≤ sj ∀j ∈ C,∀k ∈ V (C.6)

si + ti0 −M(1− xi0k) ≤ fk ∀i ∈ C,∀k ∈ V (C.7)

si + tij −M(1− xijk) ≤ sj ∀i ∈ C,∀j ∈ C,∀k ∈ V (C.8)

ai ≤ si ≤ bi ∀i ∈ C (C.9)

xijk ∈ {0, 1} ∀i ∈ N, ∀j ∈ N, ∀k ∈ V (C.10)

si ∈ Z+ ∪ {0} ∀i ∈ C (C.11)

The objective (C.1) is to maximize the number of assigned tasks. A task is
counted multiple times if split between teams (ri ≥ 2). The constraints (C.2)
guarantee that each task is assigned the right number of teams or possibly less,
if some of its split tasks are left unassigned. Only teams with the required skill
can be assigned to a specific task (C.3). Furthermore, we have to ensure that all
shifts start in the service center (C.4). Constraints (C.5) ensure that no shifts
are segmented. Any task visited by a team must be left again. The next four
constraints deal with the time windows. First, we ensure that a team can only
be assigned to a task during their working hours (C.6)-(C.7). Next, we check
if the time needed for traveling between tasks is available (C.8). If a customer
i is not visited, the large scalar M makes the corresponding constraints non-
binding. Constraints (C.9) enforce the task time windows. Finally, constraints

C.3 Decomposition 145

(C.10)-(C.11) are the integrality constraints. The introduction of a service start
time removes the need for sub-tour elimination constraints, since each customer
can only be serviced once during the scheduling horizon because tij is positive.

C.2.2 Relations to Vehicle Routing

As mentioned earlier, m-MAPTWTC is closely related to VRPTW. Consider
the teams as vehicles driving from one customer to another as they in m-
MAPTWTC move from one task to another. The service that the teams deliver
is an amount of their time, unlike the vehicles that deliver goods which have
taken up a part of the total volume. Hence, in that sense m-MAPTWTC is
uncapacitated. Except for the binding between teams inflicted by the possibil-
ity of cooperation on tasks, the problem is similar to the Uncapacitated Vehicle
Routing Problem with Time Windows and a limited number of vehicles (m-
VRPTW).

Column generation has proven a successful technique for exact solution of
VRPTW and as m-MAPTWTC is also NP-hard (see Li et al., 2005) the so-
lution procedure in this article is built on the principles of column generation
in a Branch-and-Price framework.

C.3 Decomposition

We present the Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) of m-
MAPTWTC. First, we introduce the notion of a path. A feasible path is defined
as a shift starting and ending at the service center, obeying time windows and
skill requirements, but disregarding the constraints dealing with interaction be-
tween shifts. By this definition the feasibility of a path can be determined
without further knowledge about other paths. We define Pk as the set of all
feasible paths for team k ∈ V . Let the set Ti be the set of all possible start times
for task i. Each path is defined by the tasks it visits and the time of initiation
of each task. Let âptik = 1 if task i is initiated at time t on path p for team k

and âptik = 0 otherwise.

146
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

C.3.1 Master Problem

In the integer master problem we solve the problem of optimally choosing one
feasible path for each team, maximizing the total number of assigned tasks. In
the original formulation, the equations (C.3)-(C.9) are used to ensure feasibility
of paths. In the master problem, the set Pk is used to guarantee this feasibility.
The use of only one si for each task had the effect that cooperating teams would
initiate work simultaneously. In the master problem this is enforced by a new
binary decision variable γti . Ioachim et al. (1999) and van den Akker et al.
(2006) describe versions of the master problem model, where the si variables
are introduced directly in the master problem. This, however, introduces non-
binary coefficients in the master problem, and that is usually a feature that
leads to highly fractional solutions when solving the LP-relaxation.

Now, the integer programming master problem is formulated as below, where
λpk are binary variables, which for each vehicle k are used to select a path p from
Pk. γti is a binary variable deciding if task i is initiated at time t. Any feasible
solution to the master problem is a feasible solution to the original formulation.

max
∑
k∈V

∑
i∈N

∑
p∈Pk

∑
t∈Ti

âptikλ
p
k (C.12)

∑
k∈V

∑
p∈Pk

âptikλ
p
k ≤ riγ

t
i ∀i ∈ C, ∀t ∈ Ti (C.13)

∑
t∈Ti

γti = 1 ∀i ∈ C (C.14)

∑
p∈Pk

λpk = 1 ∀k ∈ V (C.15)

λpk ∈ {0, 1} ∀k ∈ V,∀p ∈ Pk (C.16)

γti ∈ {0, 1} ∀i ∈ C, ∀t ∈ Ti (C.17)

The objective still is to maximize the number of assigned tasks (C.12). (C.13)
has two effects. For each team it ensures that a path can only be selected if
all tasks in the path comply with their respective time of initiation. Further, it
ensures that each task is not assigned more teams than requested. In (C.14) we
force all tasks to have only one time of initiation, and (C.15) guarantees that
all teams have exactly one path assigned to them.

To apply column generation, the integrality constraints are relaxed to allow
solution of the master problem by a standard linear solver. Unfortunately,

C.3 Decomposition 147

the γti -variables lose all significance when LP-relaxed. Consider the LP-relaxed
problem, i.e. (C.12)-(C.15) with the relaxed constraints 0 ≤ λpk ≤ 1,∀k ∈ V,∀p ∈
Pk and 0 ≤ γti ≤ 1,∀i ∈ C,∀t ∈ Ti. The LP-problem is a relaxation of the
following problem:

max
∑
k∈V

∑
i∈N

∑
p∈Pk

∑
t∈Ti

âptikλ
p
k (C.18)

∑
k∈V

∑
p∈Pk

∑
∀t∈Ti

âptikλ
p
k ≤ ri ∀i ∈ C (C.19)

∑
p∈Pk

λpk = 1 ∀k ∈ V (C.20)

0 ≤ λpk ≤ 1 ∀k ∈ V,∀p ∈ Pk (C.21)

Proof. According to Wolsey (1998): A problem (PR) zR = max{f(x) : x ∈ T ⊆
Rn} is a relaxation of (P) z = max{c(x) : x ∈ X ⊆ Rn} if:

1. X ⊆ T

2. f(x) ≥ c(x), ∀x ∈ X

Take any feasible solution λ′ to (C.18)-(C.21). Set each γ′ti equal to the portion
of paths where time t is used for task i:

γ′ti =
∑
k∈V

∑
p∈Pk

âptikλ
p
k /
∑
k∈V

∑
p∈Pk

∑
t′∈Ti

âpt
′

ik λ
p
k

Using (C.19), (C.13) is satisfied since:

∀i ∈ C, ∀t ∈ Ti : riγ
′t
i = ri

∑
k∈V

∑
p∈Pk

âptikλ
p
k/
∑
k∈V

∑
p∈Pk

∑
t′∈Ti

âpt
′

ik λ
p
k

=
∑
k∈V

∑
p∈Pk

âptikλ
p
k (ri/

∑
k∈V

∑
p∈Pk

∑
t′∈Ti

âpt
′

ik λ
p
k)

≥
∑
k∈V

∑
p∈Pk

âptikλ
p
k

γ′ti obviously satisfies (C.14) and (C.15) is identical to (C.20). So for each
solution to (C.18)-(C.21) there is a corresponding solution to the LP-relaxation

148
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

of (C.12)-(C.17). Since the objective functions (C.12) and (C.18) are identical,
the projection of the LP-relaxation of (C.12)-(C.17) onto the λ-subspace is a
relaxation of (C.18)-(C.21).

Hence, instead of using the model directly, we relax the constraint on syn-
chronized cooperation by using the model (C.18)-(C.21). We define apik =∑
∀t∈Ti

âptik,∀i ∈ C,∀k ∈ V,∀p ∈ Pk, where apik = 1 if task i is in path p for

vehicle k and apik = 0 otherwise. At the same time, we choose to change from
a maximization problem to a minimization problem by introducing δi as the
number of unassigned split tasks of task i. This is our relaxed master problem.
Finally, to decrease the size of the problem, a set of promising paths P ′k (⊆ Pk)
is used instead of Pk. In a column generation context P ′k contains all paths
generated for team k in the pricing problem so far. We arrive at the restricted
master problem (RMP):

min
∑
i∈C

δi (C.22)

δi +
∑
k∈V

∑
p∈P′k

apikλ
p
k ≥ ri ∀i ∈ C (C.23)

∑
p∈P′k

λpk = 1 ∀k ∈ V (C.24)

λpk ≥ 0 ∀k ∈ V,∀p ∈ P ′k (C.25)

δi ≥ 0 ∀i ∈ C (C.26)

The sum of δi over all tasks is minimized (C.22). (C.19) is changed to a greater-
than inequality constraint, penalizing inadequate assignment to a task by adding
δi (C.23). This change allows tasks to be done more times than required, which
is useful in a column generation setting, where an existing column may enter the
solution basis, and we do not have to generate a new, almost identical column
containing a subset of the tasks. As a consequence, the estimates of the final
dual variables improve (see Kallehauge et al., 2005). The new master problem
has the form of a generalized set-covering problem.

On the downside, any solution may now contain overcovering, i.e. we may have
tasks which are assigned to more teams than requested. However, in the new
formulation, overcovering can be removed without altering the objective value
by unassigning the superfluous number of teams for each task. The modified
solution is still feasible and the overcovering can hence easily be removed from
an optimal solution.

C.3 Decomposition 149

If the master problem contains no columns representing paths from the outset
of the column generation procedure, the problem will be infeasible due to the
team constraints (C.24). Therefore, we add an empty path λ0

k (a0
ik = 0,∀i ∈ C)

for each team to ensure feasibility whether regular paths are present or not.
An empty path can only be part of an optimal solution if the presence of the
team can not decrease the number of unassigned tasks. This will be the case if
manpower is available in abundance or the skills or working hours of the team
do not match those of the tasks.

The solution to the restricted master problem may not be integer. In addi-
tion, we have relaxed the constraint on synchronization of tasks. Both of these
properties must be enforced by a branching scheme.

The solution to the restricted master problem is not guaranteed to be optimal
either, since only a small subset of feasible paths is considered. For each primal
solution λ to the restricted master problem we obtain a dual solution [π, τ],
where π and τ are the dual variables of constraints (C.23) and (C.24) respec-
tively. In column generation, the dual solution is used in the pricing problem
to ensure the generation of columns leading to an improvement of the solution
to the master problem.

C.3.2 Pricing problem

The pricing problem specifies all the requirements of a feasible path. The objec-
tive is to find the path with the lowest possible reduced cost. In m-MAPTWTC
with inhomogeneous teams as described above, we obtain m = |V | separate pric-
ing problems. Each pricing problem is an Elementary Shortest Path Problem
with Time Windows (ESPPTW). The binary variable xij is defined as xij = 1 if
the team goes directly from task i to task j and xij = 0 otherwise. For a team
k′ ∈ V the pricing problem is formulated as:

150
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

min
∑
i∈Ck′

∑
j∈Ck′

−πixij − τk′ (C.27)

∑
j∈Nk′

x0j = 1 (C.28)

∑
i∈Nk′

xih −
∑
j∈Nk′

xhj = 0 ∀h ∈ Nk′ (C.29)

ek′ + t0j −M(1− x0j) ≤ sj ∀j ∈ Ck′ (C.30)

si + ti0 −M(1− xi0) ≤ fk′ ∀i ∈ Ck′ (C.31)

si + tij −M(1− xij) ≤ sj ∀i ∈ Ck′ ,∀j ∈ Ck′ (C.32)

ai ≤ si ≤ bi ∀i ∈ Ck′ (C.33)

xij ∈ {0, 1} ∀i ∈ Nk′ ,∀j ∈ Nk′ (C.34)

si ∈ Z+ ∪ {0} ∀i ∈ Ck′ (C.35)

The constraints match the constraints of the original formulation except for the
relation between vehicles (C.2). The skill requirements are respected by fixing
xij = 0 for all tasks where gik = 0 and hence excluding those tasks from the
sets: Ck′ and Nk′ .

The pricing problem can be interpreted as a graph problem. Consider a graph
G(NG, EG, c, t), where the nodes NG are all tasks plus the service center and EG
is the set of edges connecting all nodes. With each edge e ∈ EG is associated a
travel time te = tij and a cost ce = cij = −πi, where i and j are the two nodes
connected by e. To simplify, the service center is usually split into two vertices:
a start vertex 0 and an end vertex n + 1. The objective is to find a path in G
from 0 to n + 1 with a minimum sum of edge costs that does not violate any
time windows.

Solution methods to the Shortest Path Problem with Time Windows have
been studied extensively in the literature and successful algorithms for solv-
ing SPPTW have been built on the concept of dynamic algorithms. We solve
the elementary version of the problem (ESPPTW), where no cycles are al-
lowed. Dror (1994) proves that the problem is NP-hard in the strong sense
and thus no pseudo-polynomial algorithms are likely to exist. We use a la-
bel setting algorithm built on the ideas of Chabrier (2006) and Jepsen et al.
(2006). The authors of both papers have recently succeeded in solving previ-
ously unsolved VRPTW benchmarking instances (from the Solomon Test-sets
of Solomon, 1987) by ESPPTW-based column generation. Furthermore, Feillet
et al. (2005), Feillet et al. (2004) address the Vehicle Routing Problem with
Profits (similar to the Vehicle Routing Problem with a limited number of vehi-

C.3 Decomposition 151

cles) and state that solving the elementary shortest path problem as opposed to
the relaxed version is essential to obtain good bounds.

We will not go into the details of the label setting algorithm, since the problem
is almost identical to the pricing problem of VRPTW. We have a shortest path
problem where all arc costs out of a node are identical and hence can be moved
to the node. The pricing problems are first solved in a heuristic label setting
approach and if no columns can be added, we switch to the exact label setting
algorithm.

C.3.3 Linking the Pricing Problem to the Master Problem

Team Priorities

As described earlier, each team has its separate pricing problem. This introduces
the challenge of choosing the pricing problem in each iteration that is most
likely to return usable columns. Initially, we implement a round-robin style
mechanism, where each team is picked in turn. If a whole round is completed
without at least one pricing problem returning a path with negative reduced
cost, optimality is proven for the relaxed master problem.

Typically, some teams have less tight schedules than others and good columns
are generated earlier in the process. We introduce another scheme to utilize
this feature. We associate each team with a team priority, which is set equal
to the reduced cost of the latest returned column. If no column was returned
for team k, the team priority is set to a positive number higher than all other
priority values to ensure that all other teams are treated before considering team
k again.

By using team priorities, the teams which have recently shown the biggest im-
provements are treated first. Notice, that in some iterations we may not find
the column with minimum reduced cost as it may be associated with a dif-
ferent team. However, when terminating the column generation, optimality is
guaranteed in the same way as for the simple round-robin scheme.

Store Last Solved Pricing Problem

Having a number of separate teams with different skills and scheduling hori-
zons means that the pricing problems of some teams do not change for many
iterations. In the extreme case, we sometimes see master problems which are

152
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

actually separable, i.e. the assignment of tasks to one team has no way of alter-
ing the dual variables for the pricing problem of another team. In these cases
we may solve the exact same pricing problem repeatedly. To avoid this, we save
the last solved pricing problem for each team, if it did not return any columns
with negative reduced cost. If it did return such a column, there is no point in
saving the problem as the dual variables will now have changed.

Prior to solving a pricing problem, it is checked whether any circumstances
have changed since last time. These circumstances include dual variables and
relevant branching decisions.

C.4 Branching

C.4.1 Branching to get integral solutions

Various branching strategies for VRPTW have been proposed. See Kallehauge
et al. (2005) for a more thorough review of branching strategies for VRPTW. In
the MAPTWTC setting, a 0-1 branching on an original flow variable xijk (pro-
posed independently by Halse, 1992 and Desrochers et al., 1992) is equivalent
to forcing team k to do (banning team k from doing, respectively) task j imme-
diately after task i. The branching is enforced by removing illegal columns in
the master problem in each child node and removing illegal arcs in the network
formulation of the pricing problem for team k. In VRPTW, another possibility
is to perform a 0-1 branching on

∑
k xijk thus imposing the above constraint on

all teams simultaneously. However, since the teams are inhomogeneous due to
different qualifications and work hours and since tasks i and j may need several
teams to cooperate, the branching rule is no longer a 0-1 branching and the ad-
vantage of keeping just one identical pricing problem for all teams is obviously
lost.

Instead, we focus on a 0-1 branching scheme based on
∑
j xijk which simply

implies that team k is either forced to or banned from an assignment to task i.
Unlike the two strategies above, there is no need to keep track of the status of
individual arcs in the pricing problems of the child nodes. The node correspond-
ing to task i is either removed from the network (along with all arcs incident
to it) or given a very low (negative) cost to ensure its inclusion in any optimal
solution to the pricing problem.

C.4 Branching 153

C.4.2 Synchronized Cooperation using branching

Consider an optimal solution to the relaxed master problem, fractional or inte-
gral, and let spi be the point in time where execution of task i begins on path p
(if i is not a part of p, spi is irrelevant). The solution violates the synchronized
cooperation constraint for some task i if there exist positive variables λp1k1 and
λp2k2 associated with the two paths p1 and p2 (p1 6= p2), both containing i where

sp1i 6= sp2i

If the solution is fractional, the teams k1 and k2 may be identical. In this case,
the team can be perceived as cooperating with itself.

Define s∗i = d(sp1i + sp2i) /2e as the split time. Now, split the problem into two
new branches and define new time windows for task i as

a′i ≤ si ≤ s∗i − 1 and s∗i ≤ si ≤ b′i
respectively, where a′i ≤ si ≤ b′i was the time window of task i in the current
branch. Existing columns not satisfying the new time windows are removed from
the corresponding child nodes and new columns generated must also respect
the updated time window. In this way, the current solution is cut off in both
branches and the new subspaces are disjoint. Since time has been discretized
the branching strategy is guaranteed to be complete.

The idea behind this branching scheme is to restrict the number of points in
time, where the execution of task i can begin. If the limited time window makes
it inconvenient for the teams to complete task i, the lower bound will increase
and the branch is likely to be pruned at an early stage. On the other hand,
if the limited time window contains an optimal point in time for the execution
of task i, it may be necessary to continue the time window branching until a
singleton interval is reached. The time is discretized into a finite number of
steps (minutes), and hence this will always be possible. However, since the
label setting algorithm for the pricing problem aims at placing tasks as early as
possible (see Desrochers et al., 1992), the actual number of different positions in
time for any task is rather small. In fact, as the time windows are reduced, the
tasks are more and more likely to be placed at the very beginning of their time
window. This property greatly reduces the number of branching steps needed.

Using time window branching, the solution will eventually become feasible with
respect to the synchronized cooperation constraint. It is not guaranteed to be

154
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

integral, though, and it may therefore be necessary to apply the regular
∑
j xijk

branching scheme, branching on a combination of a task and a team. As both
schemes have a finite number of branching candidates, the solution algorithm
will terminate when they are used in combination. In general, when none of
the feasibility criteria (integrality and synchronized cooperation) are fulfilled,
we have a choice of branching scheme.

Our algorithm has been set to use time window branching whenever applicable.
The restricted time windows reduce flexibility in the column generation which,
in turn, limits the possibilities of combining fractional columns when solving
the master problem. Thus, time window branching is also expected to have a
positive influence on the integrality of the solution as observed by Gélinas et
al. (1995) for VRPTW. This property has also been observed in practice when
testing the algorithm, hence the choice of prioritizing time window branching.

We now focus on how good branching candidates are selected for branching. Let
Pi be the set of all paths p including task i with λpk > 0 in the current solution
to the restricted master problem. If

sp1i 6= sp2i

for any two paths p1, p2 ∈ Pi, task i is stored in the set C ′ of possible candidates.
We determine the split time as

s∗i =

⌈
minp∈Pi (spi) + maxp∈Pi (spi)

2

⌉
,∀i ∈ C ′

When ranking the branching candidates, we prefer candidates that provide a
balanced search tree. That is, the paths in Pi should be divided equally into
the two child nodes when weighted according to the variable values λpk. Define

Si =
∑

k∈V,p∈Pi

λpk,∀i ∈ C
′

as the sum of all positive variables containing i and let

S<i =
∑

k∈V,p∈Pi|spi<s∗i

λpk,∀i ∈ C
′

be the same sum restricted to the variables where task i is executed before the
split time. The branching candidate i∗ is now determined by

C.5 Computational Results 155

i∗ = arg min
i∈C′

∣∣∣∣S<iSi − 0.5

∣∣∣∣
C.5 Computational Results

The Branch-and-Price algorithm has been implemented in the Branch-and-Cut-
and-Price framework of COIN-OR (Lougee-Heimer, 2003, Coin, 2006) and tests
have been run on 2.7 GHz AMD processors with 2 GB RAM. The implemen-
tation has been tuned to the problems at hand and parameter settings have
been made on the basis of these problems. The algorithm is set to do strong
branching (Achterberg et al., 2005) with 25 branching candidates and adds up
to 10 columns with negative reduced cost per pricing problem.

The test data sets originate from real-life situations faced by ground handling
companies in two of Europe’s major airports. This gives rise to four different
problem types, since the two airports each produce problems of two distinctive
types. Each type is represented by three problem instances, each spanning
approximately one 24-hour day, thus, a total of 12 test instances are available.

Generally, the four problem types can be summarized as (In brackets: The total
number of tasks after splitting into requested split tasks):

Type A Small instances, Airport 1. 12-13 teams and 80 (120) tasks

Type B Medium instances, Airport 2. 27 teams and 90 (150) tasks.

Type C Small instances, Airport 2. 15 teams and 90 (110) tasks.

Type D Large instances, Airport 1. 19-20 teams and 270 (300) tasks.

The problem instance A.1 and its optimal solution is illustrated in Figure C.1.
The figure depicts the distribution of tasks over the day and the skill require-
ments for these. The execution time of tasks and the length of their time
windows are similar in the other problem types. In our problem instances, each
team must be given a predefined number of breaks during their day and within
certain time windows. Breaks are treated as regular tasks, with the exceptions
that they can only be assigned to the related team, and they cannot be left
unassigned in a feasible solution.

The individual schedules of the teams are captured in the 13 boxes, which
clearly show the start and end time of each shift. Each task is represented by

156
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

Figure C.1: Problem instance A.1 and its optimal solution.

one or more small boxes labeled with the task ID (Breaks have ID: ”BR”). The
superscript denotes the number of teams that the task must be split between.
This number therefore corresponds to the total number of boxes labeled with
the task ID of this task. Above each task is a thin box depicting the time
window of the task. Furthermore, each task has a color pattern revealing its
skill requirement. Each team has between one and three skills, identified by the
small squares to the left of the team ID. To assign a task to a team, the color
pattern of the task must match that of one of these small squares.

To illustrate how to read the figure, we go through the work plan of team 9. The
first task carried out is task 6 which requires skill C. The task is scheduled from
6:10 to 7:10 and hence the time window of the task is respected, since execution
cannot start before 6 o’clock and must be finished by 7:30. The task is solved
in collaboration with team 6. The light gray box in front of the task gives the
required travel time. Next, the team takes care of task 52 (requires skill A),
this time cooperating with team 7. After this, team 9 is given their daily break.
Subsequently, they will carry out 71, 49, and 22, where task 49 and task 22 are

C.5 Computational Results 157

dealt with by team 9 alone.

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 ∗7 1 0 3 5 ∗3 ∗6 ∗10 ∗29 24 ∗31
Lower Bound⊗ 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 133 OM 2663 120 172 97 OM OM OM TO 2719 TO
- LP (%) 15 46 20 10 10 11 29 9 34 2 5 3
- Branching (%) 68 7 70 82 82 78 34 81 32 5 10 4
- Pricing Problem (%) 4 8 2 1 2 2 4 4 9 93 83 91
- Overhead (%) 13 39 8 7 6 9 33 6 25 0 2 2

Tree size 605 42435 3207 537 597 507 188623 87843 69637 4961 487 2741
Max. depth 160 162 168 264 291 253 122 166 204 219 235 228

Pricing Problems 13292 3 · 106 107320 15554 17240 14813 3 · 106 2 · 106 2 · 106 379799 20728 247634

Vars added 12268 2 · 106 109810 4074 5223 4321 2 · 106 1 · 106 1 · 106 231209 16659 204614

Table C.1: Results of the Branch-and-Price algorithm with no initial solution.
OM = Out-of-Memory was encountered. TO = The Time-Out limit of 10 hours
was reached.
∗ The solution given is the best feasible solution found.
⊗ Lower Bound (more details in Table C.3).

In Table C.1 the results from the 12 datasets are given. From the table we
conclude the following. 6 of the 12 datasets were solved to optimality within
one hour. The remaining 6 instances are split in two cases: one case for the small
and medium-sized problems (Type A-C) and one case for the large instances
(Type D). For the unsolved problems of Type A-C we see an explosion in the
size of the branching tree. In these cases the time-out limit is never reached,
since we run out of memory before time out. The reported results for these
instances have been recorded after 2 hours, which in these cases is just before the
memory limit is reached. For Type D the results indicate that the generation
of columns is now in itself a time-consuming task and time-out is encountered
with a relatively small tree-size.

The branching trees from the above test have been built without a good initial
solution. For each of the unfinished problems, we restart the algorithm with an
initial solution, namely the best feasible solution of Table C.1. The results of
the new test are displayed in Table C.2.

It is interesting that most of these instances are now solved to optimality within
seconds. It clearly indicates that inexpedient branching decisions were made in
the first run and more reliable branching is possible when promising columns
exist initially. Another observation is that solving C.1 under default settings
leads to another out-of-memory failure, whereas changing the settings slightly
gives an optimal solution within one second. This is another indication of the
importance of making the right branching decisions and the consequence of not
doing so. It has been tested that the settings giving a fast solution in this case
are not superior in general.

Systematic exploitation of these features is outside the scope of this article.

158
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 7 1 0 3 5 ×3 4 9 ∗29 24 31

Lower Bound⊗ 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 0.84 0.80 36 0.97 TO 235
- LP (%) 33 25 21 17 0 5
- Branching (%) 5 8 25 8 0 0
- Pricing Problem (%) 18 6 14 8 100 95
- Overhead (%) 44 61 40 67 0 0

Tree size 11 19 981 59 447 9
Max. depth 3 5 46 28 40 4
Pricing Problems 530 561 32921 1358 42284 6415
Vars added 785 758 16406 475 37212 6104

Table C.2: Results of the Branch-and-Price algorithm with initial solution from
the test of Table C.1.
TO = The Time-Out limit of 10 hours was reached.
∗ The solution given is the best feasible solution found.
× After OM on the first run, the pricing problem solver was in this case changed
to not create heuristic columns.
⊗ Lower Bound (more details in Table C.3).

Automatic restart of the branching procedure could be implemented fairly easy.
Beck et al. (2006) describes a more sophisticated approach, where a number
of promising solutions are saved and the tree search is restarted from one of
these solutions, when the search seems to be stuck. A similar methodology may
prove to be very efficient in our case. To achieve even faster results, a variety of
acceleration strategies should be investigated. Look to Danna and Pape (2005)
for more on this topic.

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 0.96 1.10 1.37 0.64 0.77 0.80 1.18 1.86 1.65 75 413 2196
- LP (%) 16 8 15 6 4 3 19 25 10 17 10 2
- Branching (%) 7 0 0 0 0 1 39 24 49 17 8 1
- Pricing Problem (%) 45 74 69 19 22 30 9 11 17 62 81 97
- Overhead (%) 32 18 16 75 74 67 33 40 24 4 1 0

Tree size 3 3 1 1 3 3 11 21 19 35 83 97
Max. depth 1 1 0 0 1 1 5 8 9 17 41 22
Pricing Problems 163 93 291 103 80 81 288 481 367 4450 8783 9811
Vars added 407 350 663 309 222 212 586 683 435 4489 7773 14111

Table C.3: Results of the Branch-and-Price algorithm with no constraint on
synchronized coordination.
All solution values can be used as lower bounds on the original formulation.

To reveal the complexity added by the synchronized cooperation requirement,
we also show results for a version of the problem where no branching on time
windows is done (Table C.3). This means that cooperation is no longer syn-
chronized, but we are able to reach optimal solutions faster. Since the latter is
a relaxation of the original problem, we are able to use the solution values as
lower bounds on our problem.

Solution times of Table C.3 should be compared to the times of Table C.1 and

C.6 Conclusion and future work 159

reveal that solving the relaxed problem evidently is much faster and optimal
solutions are found in all cases. The running times for the small and medium
problems are up to 2 seconds, where one of the large problem instances uses
around 37 minutes.

It is conspicuous that all the optimal solutions found in Table C.1 are equal to
the lower bound found in Table C.3. The lower bound found by the unsynchro-
nized model is naturally closely related to the lower bound found in the root
node of the branching tree of the problems in Table C.1 and these results stress
how important a good lower bound is.

C.6 Conclusion and future work

The Manpower Allocation Problem with Time Windows, Job-Teaming Con-
straints and a limited number of teams is successfully solved to optimality using
a Branch-and-Price approach. By relaxing the synchronization constraint and
using Dantzig-Wolfe decomposition, the problem is divided into a generalized
set covering master problem and an elementary shortest path pricing problem.
Applying branching rules to enforce integrality as well as synchronized execu-
tion of divided tasks enables us to arrive at optimal solutions in half of the test
instances. Running a second round of the optimization, initiated from the best
solution found in round one, uncovers the optimal solution to all but one of
the 12 test instances. The test instances are all full-size realistic problems orig-
inating from scheduling problems of ground handling tasks in major airports.
Synchronization between teams in an exact optimization context has not previ-
ously been treated in the literature. We have successfully integrated the extra
requirements into the solution procedure and the results are promising.

Future work could aim at creating a structured approach to utilize the effect
of restarting the branching mechanism. By simply restarting the algorithm
once, we see a remarkable increase in the number of solvable problems, and an
extended strategy may shorten solution time significantly and it may further
increase the chance of finding optimal solutions. Other acceleration strategies
are likely to reveal improved results as well.

Acknowledgements

We thank the anonymous referees for their constructive feedback and useful
references.

160
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

References

Achterberg, T., T. Koch, and A. Martin (2005). “Branching Rules Revisited”.
In: Operations Research Letters 33.1, pp. 42–54.

Beasley, J. E. and N. Christofides (1989). “An Algorithm for the Resource Con-
strained Shortest Path Problem”. In: Networks 19, pp. 379–394.

Beck, J., P. Prosser, and E. Selensky (2006). “A case study of mutual routing-
scheduling reformulation”. In: Journal of Scheduling 9.5, pp. 469–491.

Boussier, S., D. Feillet, and M. Gendreau (2007). “An exact algorithm for team
orienteering problems”. In: 4OR 5.3, pp. 211–230.

Bredström, D. and M. Rönnqvist (2006). Combined Vehicle Routing and
Scheduling with Temporal Precedence and Synchronization Constraints. Dis-
cussion Paper 2006/18. Norway: Norwegian School of Economics, Business
Administration (NHH) - Department of Finance, and Management Science.

Bredström, D. and M. Rönnqvist (2007). A branch and price algorithm for the
combined vehicle routing and scheduling problem with synchronization con-
straints. Tech. rep. Department of Finance, Management Science, Norwegian
School of Economics, and Business Administration.

Chabrier, A. (2006). “Vehicle Routing Problem with elementary shortest path
based column generation”. Ed. by Louis-Martin Rousseau Michel Gendreau
Gilles Pesant. In: Computers and Operations Research 33.10, pp. 2972–2990.

Coin (2006). COmputational INfrastructure for Operations Research (COIN-
OR). http://www.coin-or.org/.

Cook, W. and J. L. Rich (1999). A Parallel Cutting-Plane Algorithm for the
Vehicle Routing Problem with Time Windows. Tech. rep. Rice Uni, Houston,
TX, USA.

Danna, E. and C. L. Pape (2005). “Branch-and-Price Heuristics: A Case Study
on the Vehicle Routing Problem with Time Windows”. In: Column Gener-
ation. Ed. by Jacques Desrosiers Guy Desaulniers and Marius M. Solomon.
Springer. Chap. 4, pp. 99–129.

Dantzig, G. B. and P. Wolfe (1960). “Decomposition Principle for Linear Pro-
grams”. In: Operations Research 8.1, pp. 101–111.

Desrochers, M., J. Desrosiers, and M. Solomon (1992). “A new optimization
algorithm for the vehicle routing problem with time windows”. In: Operations
Research 40.2, pp. 342–354.

Dror, M. (1994). “Note on the Complexity of the Shortest Path Models for
Column Generation in VRPTW”. In: Operations Research 42.5, pp. 977–978.

Dror, M. and P. Trudeau (1989). “Savings by Split Delivery Routing”. In: Trans-
portation Science 23.2, pp. 141–149.

Feillet, D., P. Dejax, and M. Gendreau (2005). “Traveling Salesman Problems
with Profits”. In: Transportation Science 39.2, pp. 188–205.

Feillet, D., P. Dejax, M. Gendreau, and C. Gueguen (2004). “An exact algorithm
for the elementary shortest path problem with resource constraints: applica-
tion to some vehicle routing problems”. In: Networks 44.3, pp. 216–229.

C.6 Conclusion and future work 161

Frizzell, P. W. and J. W. Giffin (1995). “The Split Delivery Vehicle Scheduling
Problem with Time Windows and Grid Network Distances”. In: Computers
and Operations Research 22.6, pp. 655–667.

Gélinas, S., M. Desrochers, J. Desrosiers, and M. Solomon (1995). “A new
branching strategy for time constrained routing problems with application
to backhauling”. In: Annals of Operations Research 61, pp. 91–109.

Gendreau, M., P. Dejax, D. Feillet, and C. Gueguen (2006b). Vehicle Rout-
ing with Time Windows and Split Deliveries. Tech. rep. 851. Laboratoire
d’Informatique d’Avignon.

Gueguen, C. (1999). “Méthodes de Résolution Exacte Pour Les Problèmes de
Tournées de Véhicules (Exact Methods for Solving Vehicle Routing Prob-
lems)”. PhD thesis. Laboratoire Productique Logistique, École Centrale
Paris.

Halse, K. (1992). “Modeling and Solving Complex Vehicle Routing Problems”.
PhD thesis. Technical University of Denmark.

Ho, S. C. and D. Haugland (2004). “A Tabu Search Heuristic for the Vehicle
Routing Problem with Time Windows and Split Deliveries”. In: Computers
and Operations Research 31.12, pp. 1947–1964.

Ioachim, I., J. Desrosiers, F. Soumis, and N. Bélanger (1999). “Fleet assign-
ment and routing with schedule synchronization constraints”. In: European
Journal of Operational Research 119.1, pp. 75–90.

Irnich, S. and D. Villeneuve (2006). “The Shortest Path Problem with Resource
Constraints and k-cycle Elimination for k ≥ 3”. In: INFORMS Journal on
Computing 18.3.

Jepsen, M., B. Petersen, S. Spoorendonk, and D. Pisinger (2006). A Non-Robust
Branch-and-Cut-and-Price Algorithm for the Vehicle Routing Problem with
Time Windows. Tech. rep. Department of Computer Science, University of
Copenhagen, Denmark.

Kallehauge, B., J. Larsen, and O. B. G. Madsen (2001). Lagrangean Duality Ap-
plied on Vehicle Routing with Time Windows - Experimental Results. Tech.
rep. IMM, Technical University of Denmark, Copenhagen, Denmark.

Kallehauge, B., J. Larsen, O. B. Madsen, and M. Solomon (2005). “The Vehi-
cle Routing Problem with Time Windows”. In: Column Generation. Ed. by
Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. GERAD 25th
anniversary series. New York: Springer. Chap. 3, pp. 67–98.

Kohl, N. (1995). “Exact Methods for Time Constrained Routing and Related
Scheduling Problems”. PhD thesis. Informatics and Mathematical Mod-
elling, Technical University of Denmark, DTU, Denmark.

Kohl, N., J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis (1999).
“2-Path Cuts for the Vehicle Routing Problem with Time Windows”. In:
Transportation Science 33.1, pp. 101–116.

Larsen, J. (1999). “Parallelization of the Vehicle Routing Problem With Time
Windows”. PhD thesis. Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, Denmark.

162
The Manpower Allocation Problem with Time Windows and Job-Teaming

Constraints: A Branch-and-Price Approach

Lau, H. C., M. Sim, and K. M. Teo (2003). “Vehicle Routing Problem with
Time Windows and a Limited Number of Vehicles”. In: European Journal of
Operational Research 148, pp. 559–569.

Lee, C.-G., M. A. Epelman, C. C. W. III, and Y. A. Bozer (2006). “A Shortest
Path Approach to the Multiple-Vehicle Routing Problem with Split Pick-
Ups”. In: Transportation Research Part B 40, pp. 265–284.

Li, Y., A. Lim, and B. Rodrigues (2005). “Manpower allocation with time
windows and job-teaming constraints”. In: Naval Research Logistics 52.4,
pp. 302–311.

Li, Z., S. Guo, F. Wang, and A. Lim (2004). “Improved GRASP with Tabu
Search for Vehicle Routing with Both Time Window and Limited Number
of Vehicles”. In: Innovations in Applied Artificial Intelligence. 17th Interna-
tional Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, IEA/AIE 2004, pp. 552–561.

Lim, A. and X. Zhang (2005). “A Two-Stage Heuristic for the Vehicle Routing
Problem with Time Windows and a Limited Number of Vehicles”. In: Pro-
ceedings of the Proceedings of the 38th Annual Hawaii International Confer-
ence on System Sciences (HICSS’05) - Track 3 - Volume 03. IEEE Computer
Society, pp. 82c–82c.

Lim, A., B. Rodrigues, and L. Song (2004). “Manpower allocation with time win-
dows”. In: Journal of the Operational Research Society 55.11, pp. 1178–1186.

Lougee-Heimer, R. (2003). “The Common Optimization INterface for Opera-
tions Research: Promoting Open-Source Software in the Operations Research
Community”. In: IBM Journal of Research and Development 47.1, pp. 57–66.

Righini, G. and M. Salani (2006). “Symmetry helps: Bounded bi-directional dy-
namic programming for the elementary shortest path problem with resource
constraints”. Ed. by Ulrich Faigle, Leo Liberti, Francesco Maffioli, and Stefan
Pickl. In: Discrete Optimization 3.3, pp. 255–273.

Rousseau, L.-M., M. Gendreau, and G. Pesant (2003). The Synchronized Vehicle
Dispatching Problem. Tech. rep. CRT-2003-11. Conference paper, Odysseus
2003. Centre de Recherche sur les Transports, Université de Montréal,
Canada.

Solomon, M. M. (1987). “Algorithms for the Vehicle Routing and Scheduling
Problems with Time Window Constraints”. In: Operations Research 35.2,
pp. 254–265.

van den Akker, J., J. Hoogeveen, and J. van Kempen (2006). “Parallel machine
scheduling through column generation: Minimax objective functions”. In:
Lecture Notes in Computer Science 4168, pp. 648–659.

Wolsey, L. A. (1998). Integer Programming. John Wiley & Sons, Inc.

Appendix D

The Home Care Crew
Scheduling Problem:

Preference-Based Visit
Clustering and Temporal

Dependencies

Matias Sevel Rasmussen, Tor Justesen, Anders Dohn, and Jesper Larsen

Submitted to: European Journal of Operational Research (2010).

164
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

The Home Care Crew Scheduling Problem:
Preference-Based Visit Clustering and Temporal

Dependencies∗

Matias Sevel Rasmussen1, Tor Justesen1, Anders Dohn1, and Jesper Larsen 1

In the Home Care Crew Scheduling Problem a staff of caretakers has
to be assigned a number of visits to patients’ homes, such that the
overall service level is maximised. The problem is a generalisation
of the vehicle routing problem with time windows. Required travel
time between visits and time windows of the visits must be respected.
The challenge when assigning visits to caretakers lies in the existence
of soft preference constraints and in temporal dependencies between
the start times of visits.

We model the problem as a set partitioning problem with side con-
straints and develop an exact branch-and-price solution algorithm,
as this method has previously given solid results for classical vehicle
routing problems. Temporal dependencies are modelled as gener-
alised precedence constraints and enforced through the branching.
We introduce a novel visit clustering approach based on the soft pref-
erence constraints. The algorithm is tested both on real-life problem
instances and on generated test instances inspired by realistic set-
tings. The use of the specialised branching scheme on real-life prob-
lems is novel. The visit clustering decreases run times significantly,
and only gives a loss of quality for few instances. Furthermore, the
visit clustering allows us to find solutions to larger problem instances,
which cannot be solved to optimality.

Keywords: Home care, Health care, Home health care, Crew scheduling, Ve-
hicle routing, Vehicle routing with time windows, Visit clustering, Clustering,
Preferences, Generalised precedence constraints, Temporal dependency, Tem-
poral dependencies, Synchronisation, Real-life application, Branch-and-price,
Column generation, Dantzig-Wolfe decomposition, Set partitioning, Scheduling,
Routing, Integer programming

∗Submitted to: European Journal of Operational Research (2010).
1Department of Management Engineering, Technical University of Denmark, Produktion-

storvet, 2800 Kongens Lyngby, Denmark.

D.1 Introduction 165

D.1 Introduction

The Home Care Crew Scheduling Problem (HCCSP) described in this paper has
its origin in the Danish health care system. The home care service was intro-
duced in 1958 and since then, there has been a constant increase in the number
of services offered. The primary purpose is to give senior citizens and disabled
citizens the opportunity to stay in their own home for as long as possible. The
HCCSP is the problem of scheduling caretakers in a way that maximises the
service level, possibly even at a reduced cost.

When a citizen applies for home care service, a preadmission assessment is ini-
tiated. The result of the assessment is a list of granted services. The services
may include cleaning, laundry assistance, preparing food, and support for other
everyday tasks. They may also include assistance with respect to more per-
sonal needs, e.g. getting out of bed, bathing, dressing, and dosing medicine.
As a consequence of the variety of services offered, people with many different
competences are employed as caretakers.

Given a list of services for each of the implicated citizens, a long-term plan
is prepared. In the long-term plan, each service is assigned to specific time
windows, which are repeated as frequently as the preadmission assessment pre-
scribes. The citizens are informed of the long-term plan, and hence they know
approximately when they can expect visits from caretakers. From the long-term
plan, a specific schedule is created on a daily basis. In the daily problem, care-
takers are assigned to visits. A route is built for each caretaker, respecting the
competence requirements and time window of each visit and working hours of
the caretaker.

In the following, we restrict ourselves to looking at the daily scheduling prob-
lem only. The problem is a crew scheduling problem with strong ties to vehicle
routing with time windows. However, we have a number of complicating issues
that differentiates the problem from a traditional vehicle routing problem. One
complication is the multi-criteria nature of the objective function. It is, natu-
rally, important to minimise the overall operation costs. However, the operation
costs are not very flexible in the daily scheduling problem. More important is it
to maximise the level of service that can be provided. The service level depends
on a number of different factors. Often, it is impossible to fit all visits into the
schedule in their designated time windows. Hence, some visits may have to be
rescheduled or cancelled. In our solutions, a visit is either scheduled within the
given restrictions or marked as uncovered. The manual planner will deal with
uncovered visits appropriately. The main priority is to leave as few visits uncov-
ered as possible. Also, all visits are associated with a priority and it is important
to only reschedule and cancel less significant visits. Furthermore, it is impor-

166
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

tant to service each citizen from a small subgroup of the whole workforce (the
so-called preferred caretakers), as this establishes confidence with the citizen.
Another complication compared to traditional vehicle routing, is that we have
temporal dependencies between visits. The temporal dependencies constrain
and interconnect the routes of the caretakers.

HCCSP generalises the Vehicle Routing Problem with Time Windows
(VRPTW) for which column generation solution algorithms have proven suc-
cessful, see Kallehauge et al. (2005). Therefore, we model HCCSP as a Set
Partitioning Problem (SPP) with side constraints and develop a branch-and-
price solution algorithm. Temporal dependencies are modelled by a single type
of constraints: generalised precedence constraints. These constraints are en-
forced through the branching. Different visit clustering schemes are devised for
the problem. The schemes are based on the existence of soft preference con-
straints. The visit clustering schemes for the exact branch-and-price framework
are novel. The visit clustering will naturally compromise optimality, but will
allow us to solve larger instances. We will compare the different visit clustering
schemes by testing them both on real-life problem instances and on generated
test instances inspired by realistic settings. To our knowledge, we are the first
to enforce generalised precedence constraints in the branching for real-life prob-
lems. The contribution of this paper is hence twofold. Firstly, we devise visit
clustering schemes for the problem, and secondly, we enforce generalised prece-
dence constraints in the branching for the first time for real-life problems.

Optimisation methods for crew scheduling are widely used and described in the
literature, especially regarding air crew scheduling. However, when it comes to
scheduling of home care workers the literature is sparse. This work builds on
top of two recent Master’s theses, Lessel (2007) and Thomsen (2006). The most
recent of these, Lessel (2007), uses a two-phase approach which first groups
the visits based on geographical position, competences, and preferences. A
caretaker is associated to each group and the second phase considers each group
as a Travelling Salesman Problem with Time Windows (TSPTW).

The other thesis, Thomsen (2006), treats the problem as a Vehicle Routing Prob-
lem with Time Windows and Shared Visits (VRPTWSV) and uses an insertion
heuristic to feed a tabu search with initial solutions. The models and solution
methods in Lessel (2007) and Thomsen (2006) can only handle connected visits
where two caretakers are at the same time at the citizen.

With offset in the Swedish home care system, Eveborn et al. (2006) describe a
system in operation. They use a Set Partitioning Problem model and solve the
problem heuristically by using a repeated matching approach. The matching
combines caretakers with visits. Eveborn et al. (2006) report that the travelling
time savings in a moderate guess are 20% and that the time savings on the

D.1 Introduction 167

planning correspond to 7% of the total working time. Bredström and Rönnqvist
(2008) show a mathematical model that can handle synchronisation constraints
and precedence constraints between pairs of visits. The model is a VRPTW with
the additional synchronisation and precedence constraints that tie the routes
together. They solve the model using a heuristic. Bredström and Rönnqvist
(2007) develop a branch-and-price algorithm to solve the model of Bredström
and Rönnqvist (2008), but without the precedence constraints. The model is
decomposed to an SPP and the integrality requirement on the binary decision
variables is relaxed. Also, the synchronisation constraints are removed from the
SPP. Instead, integrality and synchronisation are handled by the branching, and
to our knowledge they are the first to use a non-heuristic solution approach to
home care problems. Their subproblem is an Elementary Shortest Path with
Time Windows (ESPPTW).

Bertels and Fahle (2006) use a combination of linear programming, constraint
programming and metaheuristics for solving what they call the Home Health
Care Problem. However, they do not incorporate connected visits, which makes
their approach less interesting for our situation. Begur et al. (1997) describe a
decision support system (DSS) in use in the United States. The DSS provides
routes for caretakers by using GIS systems. Their model is a Vehicle Routing
Problem (VRP) without time windows and without shared visits, which again
is not suitable for our needs. Cheng and Rich (1998) describe the Home Health
Care Routing and Scheduling Problem which they model as a Vehicle Routing
Problem with Time Windows (VRPTW). They distinguish between full-time
and part-time caretakers. They use a two-phase heuristic approach, in which
they first find an initial solution using a greedy heuristic. Next, the solution is
improved using local search. The model does not include temporal connections
between visits.

Related to the HCCSP is the Manpower Allocation Problem with Time Win-
dows (MAPTW). A demanded number of servicemen must be allocated to each
location within the time windows. Primarily the number of used servicemen
must be minimised, and secondarily the used travel time. The jobs have differ-
ent locations, skill requirements, and time windows. This problem is dealt with
by Lim et al. (2004). More closely related to HCCSP is the Manpower Alloca-
tion Problem with Time Windows and job-Teaming Constraints (MAPTWTC).
Li et al. (2005) present a construction heuristic combined with simulated an-
nealing for solving MAPTWTC instances. Their model adds synchronisation
constraints to the model of Lim et al. (2004), but does not include precedence
constraints. MAPTWTC is also solved in Dohn et al. (2009c), again with mul-
tiple teams cooperating on tasks. An exact solution approach is introduced.
They decompose to a set partitioning problem and develop a branch-and-price
algorithm. The subproblem in the column generation is an ESPPTW.

168
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

The HCCSP can be seen as a VRPTW, but with the addition of the compli-
cating connections between visits, and with another objective than the regular
minimisation of total distance. When only synchronised visits are considered
as connection type, the problem can be referred to as shared visits, yielding
the VRPTWSV. The literature on VRPTW is huge. We refer to Kallehauge
et al. (2005) and Cordeau et al. (2002). Recently, a variant of VRPTW very
similar to the HCCSP has been described in Dohn et al. (2009d). The authors
formalise the concept of temporal dependencies in the Vehicle Routing Problem
with Time Windows and Temporal Dependencies (VRPTWTD) and investigate
the effectiveness of different formulations and solution approaches.

The remainder of the paper is organised as follows. In Section D.2, we present
an IP formulation of HCCSP. In Section D.3, we introduce a decomposed version
of this formulation. In Section D.4, we present the specialised branching scheme
used. Section D.5 introduces clustering of visits and other methods to decrease
the solve time of the pricing problem. Real-life and generated test instances are
described in Section D.6. In Section D.7, we present results from test runs on
these instances. Finally, in Section D.8 we conclude on our work and suggest
topics for future research.

D.2 Problem formulation

The set of caretakers is denoted K, and the set of visits at the citizens is denoted
C = {1, . . . , n−1}. For each visit i ∈ C a time window is defined as [αi, βi], where
αi ≥ 0 and βi ≥ 0 specify the earliest respectively latest possible start time of the
visit. For algorithmic reasons, we introduce artificial visits 0k and nk as the start
visit respectively end visit for caretaker k ∈ K, and we define N k = C ∪{0k, nk}
as the set of all potential visits for caretaker k. The duty length for each
caretaker k ∈ K is given by the time window [α0k , β0k] = [αnk , βnk], i.e. caretaker
k ∈ K cannot start his or her duty before time α0k ≥ 0 and must have finished
his or her last visit before time β0k ≥ 0. The travel distance between a pair
of visits (i, j) is given by the parameter skij . The parameter depends on k ∈ K
as the caretakers use different means of transportation. If it is not possible to
travel directly between visits i and j for caretaker k, then skij = ∞. We define

skii = ∞, ∀k ∈ K,∀i ∈ N k. The parameter skij includes the duration (service
time) of visit i. Travelling between any two visits i and j gives rise to the costs
ckij dependent on the caretaker k ∈ K. For any combination of i ∈ C and k ∈ K
the parameter ρki = 1 if k can be assigned to visit i, ρki = 0 otherwise. Also, for
any combination of i ∈ C and k ∈ K the preference parameter δki ∈ R gives the
cost for letting caretaker k handle visit i. A negative cost means that we would
like caretaker k to handle visit i, whereas a positive cost means that we would

D.2 Problem formulation 169

t ime

(a) Synchronisation.

t ime

(b) Overlap.

t ime

(c) Minimum difference.

t ime

(d) Maximum difference.

t ime

(e) Min+max difference.

Figure D.1: Five types of temporal dependencies. Each of the five subfigures
shows the time windows of two visits i (top) and j (bottom) with a temporal
dependency between them. Assuming some start time for visit i, the dotted line
shows the earliest feasible start time for visit j, and the dashed dotted line shows
the latest feasible start time. For synchronisation (a) the two lines coincide, and
are drawn as one full line.

prefer not to let caretaker k handle visit i. The parameter γi is the priority of
visit i ∈ C, the higher, the more important.

As described in Section D.1, visits may be temporally dependent due to different
home care needs. In order to make it easier for the manual planner to assign
substitutes to the uncovered visits, it is required that visits, which have a tem-
poral dependency to an uncovered visit, still respect the temporal dependency.
In other words, a temporal dependency is still respected even if one of the visits
is uncovered. Five types of temporal dependencies are often seen in practice.
The five types can be seen in Figure D.1. These temporal dependencies can be
modelled by introducing generalised precedence constraints of the form

σi + pij ≤ σj ,

170
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

where σi denotes the start time of visit i, and pij ∈ R quantifies the required
gap. The set of pairs of visits (i, j) ∈ C × C for which a generalised precedence
constraint exists is denoted P.

As can be seen, this constraint simply implies that j starts minimum pij time
units after i. An often encountered example of a temporal dependency is that
of synchronisation, see Figure D.1(a), where two visits are required to start at
the same time. The way to handle this is to add both (i, j) and (j, i) to P with
pij = pji = 0. As also described by Dohn et al. (2009d), Table D.1 shows how to
model all the temporal dependencies of Figure D.1 with generalised precedence
constraints. It can be seen that (a), (b) and (e) each requires two generalised
precedence constraints, whereas (c) and (d) only need one each.

Temporal dependency pij pji
(a) Synchronisation 0 0
(b) Overlap −durj −duri
(c) Minimum difference diffmin N/A
(d) Maximum difference N/A −diffmax

(e) Minimum+maximum difference diffmin −diffmax

Table D.1: Values for pij for the five temporal dependencies of Figure D.1. duri
is the service time of visit i, diffmin is the minimum difference required and
diffmax is the maximum difference required.

D.2.1 Integer programme

To model the problem, three sets of decision variables are defined: the binary
routing variables xkij , the scheduling variables tki ∈ Z+ and the binary coverage

variables yi. xkij = 1 if caretaker k ∈ K goes directly from visit i ∈ N k to

j ∈ N k, and xkij = 0 otherwise. The scheduling variable tki is the time the

caretaker k ∈ K starts handling visit i ∈ N k. tki = 0 if caretaker k is not
assigned to visit i. yi = 1 if visit i ∈ C is not covered by any caretaker and
yi = 0 otherwise. The weights w1, w2 and w3 are used to control the objective
function.

HCCSP can now be formulated as the integer programme given below. The for-
mulation is very similar to the formulation in Bredström and Rönnqvist (2007).

D.2 Problem formulation 171

minw1

∑
k∈K

∑
i∈Nk

∑
j∈Nk

ckijx
k
ij + w2

∑
k∈K

∑
i∈C

∑
j∈Nk

δki x
k
ij+ w3

∑
i∈C

γiyi (D.1)

s.t.
∑
k∈K

∑
j∈Nk

xkij + yi = 1 ∀i ∈ C (D.2)

∑
j∈Nk

xkij ≤ ρki ∀k ∈ K, ∀i ∈ C (D.3)

∑
j∈Nk

xk0k,j = 1 ∀k ∈ K (D.4)

∑
i∈Nk

xki,nk = 1 ∀k ∈ K (D.5)

∑
i∈Nk

xkih −
∑

j∈Nk
xkhj = 0 ∀k ∈ K, ∀h ∈ C (D.6)

αi

∑
j∈Nk

xkij ≤ tki ≤ βi
∑

j∈Nk
xkij ∀k ∈ K, ∀i ∈ C ∪ {0k} (D.7)

αnk ≤ t
k
nk ≤ βnk ∀k ∈ K (D.8)

tki + skijx
k
ij ≤ tkj + βi(1− xkij) ∀k ∈ K, ∀i, j ∈ N k (D.9)

αiyi +
∑
k∈K

tki + pij ≤
∑
k∈K

tkj + βjyj ∀(i, j) ∈ P (D.10)

xkij ∈ {0, 1} ∀k ∈ K, ∀i, j ∈ N k (D.11)

tki ∈ Z+ ∀k ∈ K,∀i ∈ N k (D.12)

yi ∈ {0, 1} ∀i ∈ C (D.13)

The objective (D.1) is multi-criteria. Often, minimising uncovered visits (the
third term) is prioritised over maximising caretaker-visit preferences (the sec-
ond term), which again is prioritised over minimising the total travelling
costs (the first term). This can be accomplished by setting w1 = 1, w2 =∑
k∈K

∑
i∈Nk

∑
j∈Nk c

k
ij and w3 = w2|C|maxk∈K,i∈C δ

k
i . Constraints (D.2) en-

sure that each visit is covered exactly once or left uncovered, and caretakers
can only handle allowed visits (D.3). Constraints (D.4)–(D.6) ensure that the
caretakers begin at the start visit, end at the end visit, and that routes are
not segmented. Constraints (D.7) and (D.8) control that time windows are re-
spected. Furthermore, Constraints (D.7) set tki = 0 when k does not visit i.
Travelling distances are respected due to Constraints (D.9). Constraints (D.10)
are the generalised precedence constraints. The y-variable terms ensure that
generalised precedence constraints are respected even when visits are cancelled.
Finally, Constraints (D.11)–(D.13) set the domains of the decision variables.

The HCCSP formulation can be seen as a generalisation of an uncapacitated,

172
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

multiple-depot VRPTW. The aim is to push flow for each caretaker from start
visit to end visit through as many profitable nodes as possible while respecting
time windows and minimising costs. Also, it is only allowed for one caretaker
to go through each node.

The HCCSP generalises the Travelling Salesman Problem (TSP). TSP is well-
known to be NP-hard as its decision problem version is NP-complete, see
Problem ND22 in Garey and Johnson (1979). Therefore, also HCCSP is NP-
hard, and we can therefore not expect to solve the problem efficiently, i.e. in
polynomial time. The NP-hardness of the HCCSP is the reason why we develop
a branch-and-price solution algorithm.

D.3 Decomposition

We will Dantzig-Wolfe decompose the HCCSP described in the previous section
and model it as a set partitioning problem with side constraints. Then we will
solve the model using dynamic column generation in a branch-and-price frame-
work. This approach has presented superior results on VRPTW and the simi-
larities to HCCSP are strong enough to suggest the same approach here. There
is a vast amount of literature on column generation based solution methods for
VRPTW, see e.g. Kallehauge et al. (2005) for a recent literature review and an
introduction to the method. In a branch-and-price framework the problem is
split into two problems, a master problem and a subproblem. The subproblem
generates feasible caretaker schedules, which are then subsequently combined in
a feasible way in the master problem. In the master problem, given a large set
of feasible schedules to choose from, one schedule is chosen for each caretaker.
Given a set of caretakers K, each caretaker must choose a schedule from the
set Rk, which is the set of potential schedules for caretaker k. Together, the
schedules must cover as many visits as possible from the set C.

A feasible schedule r for a caretaker k ∈ K is defined as a route starting at
0k and ending at nk and respecting all constraints in the IP formulation from
Section D.2.1 which do not link multiple routes. The schedule includes the
starting times of the visits. The parameter ckr gives the cost for caretaker k ∈ K
for schedule r ∈ Rk, and ci = w3γi gives the cost for leaving visit i ∈ C
uncovered. The binary parameter akir = 1 if visit i is included in schedule r for
caretaker k and akir = 0 otherwise. Moreover, tkir is the start time of visit i in
schedule r for caretaker k, if i is included in r for k. If i is not included in r for
k, tkir = 0.

D.3 Decomposition 173

D.3.1 Master problem

We introduce the binary decision variable λkr where λkr = 1 if schedule r ∈ Rk
is chosen for caretaker k ∈ K, and λkr = 0 otherwise. Furthermore, we introduce
the binary decision variable Λi where Λi = 1 if visit i ∈ C is uncovered, and
Λi = 0 otherwise. HCCSP can now be solved by finding a minimum cost com-
bination of schedules such that all constraints are fulfilled. The master problem
of the Dantzig-Wolfe decomposition of HCCSP is given by the mathematical
programme shown below.

min
∑
k∈K

∑
r∈Rk

ckrλ
k
r +

∑
i∈C

ciΛi (D.14)

s.t.
∑
k∈K

∑
r∈Rk

akirλ
k
r + Λi = 1 ∀i ∈ C (D.15)

∑
r∈Rk

λk
r = 1 ∀k ∈ K (D.16)

αiΛi +
∑
k∈K

∑
r∈Rk

tkirλ
k
r + pij ≤

∑
k∈K

∑
r∈Rk

tkjrλ
k
r + βjΛj ∀(i, j) ∈ P (D.17)

λk
r ∈ {0, 1} ∀k ∈ K, ∀r ∈ Rk (D.18)

Λi ∈ {0, 1} ∀i ∈ C (D.19)

The total costs of the schedules plus the costs of leaving visits uncovered are
minimised (D.14). The cost of a schedule contains the remaining components
of the original objective and is therefore determined by the travel costs and by
the service level of the visits in the schedule. Constraints (D.15) ensure that
all visits are either included in exactly one schedule or considered uncovered.
One schedule must be assigned to each caretaker (D.16), and the generalised
precedence constraints must be respected (D.17). Again, the Λ-variable terms
in Constraints (D.17) ensure that precedence constraints are respected even
for uncovered visits. Integrality of the decision variables is ensured by Con-
straints (D.18) and (D.19). Any feasible solution to the decomposed problem
is a feasible solution to the original problem, and any optimal solution to the
decomposed problem is an optimal solution to the original problem.

To be able to solve the master problem in an LP-based branch-and-price frame-
work, the integrality constraints on λkr and Λi are relaxed. Also, the precedence
constraints (D.17) are relaxed, as we thereby have no constraints interconnect-
ing the starting times in the schedules of different caretakers. This gives a
simpler pricing problem, which will be explained further in Section D.3.2. The
two relaxed constraints will be handled in the branching.

174
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

As the number of feasible schedules for each caretaker is enormous, the set Rk of
schedules for caretaker k ∈ K is restricted to only contain a small subset R′k of
promising schedules, which will be generated by the column generating pricing
problem. We abbreviate the relaxed and restricted master problem as RMP.
For each primal solution to the RMP, we obtain a dual solution [π, ω], where πi,
i ∈ C, and ωk, k ∈ K, are the dual variables of Constraints (D.15) and (D.16),
respectively. The dual variables are used in the column generation technique
to generate new schedules that lead to an improvement of the solution to the
RMP.

D.3.2 Pricing problem

The pricing problem is used to find the feasible schedule with the most negative
reduced cost (if any exists). As the caretakers have different working hours and
competences, the pricing problem is split into |K| independent pricing problems.
The pricing problem is an Elementary Shortest Path Problem with Time Win-
dows (ESPPTW), which has been proved NP-hard in Dror (1994). The pricing
problem for a caretaker k ∈ K is formulated as an integer programme below.
Any feasible solution to the pricing problem with negative cost represents a
column with negative reduced cost in the RMP.

min
∑
i∈Ñk

∑
j∈Ñk

(
w1c

k
ij + w2δ

k
i − πi

)
xij − ωk (D.20)

s.t.
∑

j∈Ñk

x0k,j = 1 (D.21)

∑
i∈Ñk

xi,nk = 1 (D.22)

∑
i∈Ñk

xih −
∑

j∈Ñk

xhj = 0 ∀h ∈ Ck (D.23)

αi

∑
j∈Ñk

xij ≤ ti ≤ βi
∑

j∈Ñk

xij ∀i ∈ Ck ∪ {0k} (D.24)

αnk ≤ tnk ≤ βnk (D.25)

ti + skijxij ≤ tj + βi(1− xij) ∀i, j ∈ Ñ k (D.26)

xij ∈ {0, 1} ∀i, j ∈ Ñ k (D.27)

ti ∈ Z+ ∀i ∈ Ñ k (D.28)

Here, we have introduced the decision variables xij and ti which are the same
as in (D.1)–(D.13), without the k index. For a given k ∈ K, the subset of

D.4 Branching 175

visits Ck = {i ∈ C : ρki = 1} is the set of visits allowed for k. Moreover,
Ñ k = Ck ∪ {0k, nk}, and we define δk0k = δknk = π0k = πnk = 0.

The relatively simple expression (D.20) for the reduced costs of a column is one of
the reasons why the generalised precedence constraints are relaxed. One could,
as done in van den Akker et al. (2006) and in Dohn et al. (2009d) have kept
the generalised precedence constraints in the RMP. This would have implied a
more complicated pricing problem, as the pricing problem then incorporates a
means of adjusting the starting times in a schedule based on the dual variables.
In van den Akker et al. (2006) they do not solve their pricing problem by an
exact method, but use a heuristic method. Benchmark results from Dohn et al.
(2009d) show that in many cases it is as good to relax the generalised precedence
constraints, as to keep them in the master problem.

We solve the pricing problem with a labelling algorithm built on ideas from
Chabrier (2006) and Feillet et al. (2004).

D.4 Branching

The generalised precedence constraints and the integrality constraints that were
relaxed from the master problem are handled in the branching part of the
branch-and-price algorithm. To handle both types of constraints, we need to
present two branching methods. One to handle the violation of an integral-
ity constraint and another to handle the violation of a precedence constraint.
The branching scheme used to handle precedence constraint violations is a time
window branching scheme. This also enforces integrality to a certain point as
shown in Gélinas et al. (1995). Nonetheless, one cannot solely rely on time win-
dow branching to enforce integrality, so we use an additional branching scheme
to force the solution to integrality. First, we will present a preprocessing tech-
nique.

D.4.1 Preprocessing of time windows

The visits C can be grouped according to how they are connected by gener-
alised precedence constraints. Define the directed temporal dependency graph
G = (V,A) by V = C and A = P. The graph G consists of one or more
sub-graphs, which corresponds to the connected components in the undirected
version of G. An example of such a graph is shown in Figure D.2(a). From the
existing generalised precedence constraints, additional derived generalised prece-

176
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

•

•
•

••

•

•
•

•

•

•

•
• •

??������

""EE
EE

EE
EE

E

**TTTTTTT

��?
??

??
??

??
??

??
?

11ccccccc

RR%%%%%
yysss aaDDD

(a) Example of a temporal dependency
graph.

•

•
•

••

•

•
•

•

•

•

•
• •

??������

""EE
EE

EE
EE

E

**TTTTTTT

��?
??

??
??

??
??

??
?

11ccccccc

RR%%%%%
yysss aaDDD
nn

22

**

(b) The same graph expanded with derived
arcs.

Figure D.2: A temporal dependency graph.

dence constraints can be found. In every subgraph with three or more nodes,
we look for triples i, j, k ∈ C where (i, j), (j, k) ∈ P with i 6= j, j 6= k, k 6= i.
If (i, k) /∈ P, then the pair is added to P with pik = pij + pjk. If (i, k) ∈ P
the offset is updated to pik := max{pik, pij + pjk} in order to get the tightest
constraint. The process is repeated until no further constraints can be derived
or tightened. The example will now look as in Figure D.2(b). This derivation
of generalised precedence constraints will make it possible to reduce more time
windows, as there will be a greater number of precedence constraints on which
to perform the following pair-wise reduction technique.

If two visits i, j ∈ C are connected via a (possibly derived) generalised precedence
constraint (i, j) ∈ P, it might be possible to tighten the time windows of i and j,
such that [α′i, β

′
i] = [αi,min{βi, βj − pij}] and [α′j , β

′
j] = [max{αj , αi + pij}, βj]

are the new time windows as illustrated in Figure D.3.

This preprocessing is repeated until no time windows are tightened. The pre-
processing technique can be used in every node of the branch-and-bound tree.
It should be noted that this time window reduction can only be carried out, be-
cause it is required that also temporal dependencies with cancelled visits must
be respected. If this was not the case, then the cancellation of a visit i with
(i, j) ∈ P would lead to the time window of j being “reset” (assuming it was
previously reduced by preprocessing).

D.4.2 Branching on generalised precedence constraints

A generalised precedence constraint (i, j) ∈ P is violated if there exists positive
variables λk1r1 > 0 and λk2r2 > 0 (the relaxation allows for k1 = k2 and r1 = r2,
but we will prevent that in the subproblem) in the solution to the RMP for

D.4 Branching 177

t ime
p

ij
p

ij

(a) Before preprocessing.

t ime
p

ij
p

ij

(b) After preprocessing.

Figure D.3: Adjustment of time windows in accordance to a generalised prece-
dence constraint. Each of the subfigures shows the time windows of two visits i
(top) and j (bottom).

which

tk1i,r1 + pij � tk2j,r2 .

Therefore, to remedy this, we will alter the time windows in the branches.
In the left branch the time window of visit i is set to [αi, tsplit − 1], where
tsplit is the split time. In the right branch the time window of visit i is set
to [tsplit, βi]. The preprocessing technique described in the previous section is
used again, which will result in the time window of visit j in the right branch
being changed to [tsplit + pij , βj]. All previously generated schedules violat-
ing these new time windows are removed. The split time is selected such that
tk2j,r2 − pij + 1 ≤ tsplit ≤ tk1i,r1 . Hence, the branching scheme divides the solution
space into two sets, where the solution that violates the precedence constraint
for (i, j) becomes infeasible in each of them. Synchronisation constraints are
often seen in home care instances. The branching scheme suggested here com-
bined with preprocessing of time windows is as strong as the scheme tailored
for synchronisation described in Ioachim et al. (1999). This is elaborated in
Dohn et al. (2009d), where it is also described how to pick the best split time
in the given interval. An illustration of the generalised precedence constraint
branching scheme can be found in Figure D.4.

D.4.3 Integer branching

In the following, we will let Ak denote the |C|× |R′k|-matrix where the elements
are given by the parameter akir for a given caretaker k ∈ K, i.e. each column in

Ak represents a schedule r ∈ R′k. Now, consider the structure of the constraint
matrix of the RMP which is shown in Figure D.5. For clarity, we only show
ones of the constraint matrix and introduce m = |K| and n̄ = n− 1.

178
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

t ime

(a) Parent node.

t ime

(b) Left child node.

t ime

(c) Right child node.

Figure D.4: Example of the branching applied when a generalised precedence
constraint is violated. Each of the subfigures shows the time windows of two
visits i (top) and j (bottom), and the start times of the visits in an RMP
solution. The violated constraint for (i, j) has pij = 2. The dotted line shows
the chosen split time, and the distance between the ticks on the time line is two
time units.

λk1
1 · · · λk1

|R′k1 | · · · λkm
1 · · · λkm

|R′km | Λ1 · · · Λn̄

1 1
... Ak1 · · · Akm

. . .

n̄ 1
k1 1 · · · 1
...

. . .

km 1 · · · 1

Figure D.5: Constraint matrix for the RMP.

D.5 Clustering of visits and arc removal 179

We observe that the RMP has strong integer properties due to the generalised
upper bound constraints (D.16) for each caretaker, see e.g. Rezanova and Ryan
(2010) for further details and references. That is, for all caretakers k ∈ K, their
submatrix of the constraint matrix is perfect. Consequently, fractionality in
the LP solutions will never appear within one caretaker’s block of schedules.
Any fractions in the RMP can therefore only occur between blocks of columns,
belonging to different caretakers. Hence, if the LP solution is fractional, it is
because two or more caretakers compete for one or more visits in their schedules.
Let i ∈ C denote a visit for which caretaker k ∈ K is competing with one or
more other caretakers. Since the visit can only be handled by one caretaker,
then in an integer solution either k handles i or k does not handle i.

We will exploit the strong integer properties of the constraint matrix of the RMP
to apply a so-called constraint branching strategy, see Ryan and Foster (1981).
We introduce the sum Ski =

∑
r∈R′k a

k
irλ

k
r . If a fractional solution occurs, the

constraint branching strategy is now to find a visit-caretaker pair (i, k) of a visit
i ∈ C and a caretaker k ∈ K for which 0 < Ski < 1. In the 1-branch visit i
is forced to be handled by k and in the 0-branch prohibit visit i from being
handled by k. Notice that since at least one of the unique λkr is fractional then
at least one sum Ski is also fractional. This can be shown by a contradiction
argument, see Dohn and Kolind (2006).

Whenever the sum Ski is fractional for two or more visit-caretaker pairs (i, k),
we have to select one of these as the candidate for branching in the node. If Ski
is close to 1, forcing Ski = 1 will probably not change the solution drastically,
so only a small increase in the lower bound can be expected in this branch.
On the other hand, as the LP solution suggests that caretaker k should handle
i in an optimal solution, ruling out this option (Ski = 0) is likely to cause a
major increase in the lower bound. If Ski is close to 0, a similar line of reasoning
also shows a skewed branching. In order to keep the branch-and-bound tree
balanced, we select the “most fractional” candidate, i.e. the candidate closest to
one half. More formally, we select (i∗, k∗) = arg min(i,k)∈C×K:0<Ski <1

∣∣Ski − 1
2

∣∣.

D.5 Clustering of visits and arc removal

The HCCSP exhibits a structural feature that can be used to group or clus-
ter visits. HCCSP has, as opposed to VRPTW, a preference parameter for
each caretaker-visit combination. Moreover, test runs have suggested that the
ESPPTW solver is a bottleneck in the branch-and-price algorithm. Therefore,
we have developed schemes that reduce the sizes of the ESPPTW networks,
which will in turn decrease the running time of the algorithm. For some larger

180
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

instances, visit clustering is even needed to find feasible solutions.

When no reduction of the ESPPTW networks is used, every caretaker k ∈ K
can visit every i ∈ C where ρki = 1. However, in a good solution (assuming the
objective function weights are set as suggested in Section D.2.1), a caretaker k
will only handle visits i where δki is favourable. Therefore, we have devised three
ways of clustering visits for a caretaker according to the preference parameter
δki , thereby effectively reducing the network sizes for each caretaker. Again, let
Ck = {i ∈ C : ρki = 1}. All schemes operate with a cluster of visits C̄k ⊆ Ck for
a caretaker. The first scheme only puts visits in the cluster, when it is directly
profitable, i.e. C̄k = {i ∈ Ck : δki < 0}.

In the second scheme preference parameters for caretaker k are ordered non-
decreasingly as δki1 ≤ · · · ≤ δ

k
iξ
≤ · · · ≤ δki|Ck| with ties broken arbitrarily. Define

the set ∆k
ξ = {δki1 , . . . , δ

k
iξ
} given the parameter ξ. The second scheme then

defines the cluster as C̄k = {i ∈ Ck : δki ∈ ∆k
ξ}. The cluster contains the ξ most

profitable visits.

The two first clustering schemes do not guarantee that all visits are in a cluster.
Therefore, all remaining visits i ∈ C\

⋃
k∈K C̄k are added to all clusters.

The third scheme seeks to exploit the integer properties of the problem described
in Section D.4.3. If the caretakers cannot compete for visits, the LP solutions
will be naturally integer, and hence the run times will decrease significantly.
Therefore, we make the visit clusters pairwise disjoint, i.e. ∀k1, k2 ∈ K, k1 6= k2 :
C̄k1 ∩ C̄k2 = ∅. Again, the preference parameters for each caretaker are ordered
non-decreasingly. Hereafter, the scheme iterates over the caretakers in a round-
robin fashion and puts the most profitable visit in the caretaker’s cluster (if it is
not already put in another caretaker’s cluster). Suppose visit j is already in C̄k
for caretaker k, then there are two conditions under which another visit i is not
permitted in the cluster. If i cannot be carried out before j, and also j cannot
be carried out before i, then the visits can never be scheduled in the same route.
This is detected whenever αi + skij > βj ∧ αj + skji > βi. The second condition
is when there is a temporal dependency, which disallows any route with both
visits. This is the case when (i, j), (j, i) ∈ P and −skji < pij ∧ −skij < pji.

The use of clustering will sacrifice optimality, and later we will look into how
big the gap to optimality is, and compare it against the benefit of improved
run time. The closest to this idea we have seen in the VRP literature is the
petal method, see e.g. Foster and Ryan (1976), which clusters the visits based
on geographical position.

D.6 Test instances 181

D.5.1 Expansion of visit clusters

The clustering of visits can lead to visits being uncovered not because it is
optimal, but due to the clustering. Hopefully, these are only a very few visits. In
order to remedy this, the clusters are made dynamic, in the sense that expansion
of the clusters is allowed. For any branch-and-bound node, uncovered visits can
be detected, by looking at the LP optimal solution. If there are uncovered visits,
they are added to all clusters, and the LP problem is solved again. We suggest
two versions of the cluster expansion. Either cluster expansion can happen only
in the root node, or it can happen in any node of the branch-and-bound tree.
Especially the latter adds a twist of unpredictability (though still deterministic)
to the problem, because the problem basically can be changed anywhere in the
branch-and-bound tree. It can happen that the lower bound for a child is lower
than the lower bound for its parent, which is avoided when expansion is only
allowed in the root node.

D.5.2 Removal of idle arcs

We will here present another method to reduce the network sizes. The time
where the caretaker is neither visiting a citizen nor travelling is called idle time.
This is time where the caretaker is basically just waiting for the time window
of the next visit to open. Therefore, another means to reduce the sizes of
the ESPPTW networks, is to remove arcs where the minimum idle time φkij =

αj−(βi+s
k
ij) between two visits is high. Again, proof of optimality is sacrificed,

but in a good solution, we probably would not see the use of many arcs with
large idle time.

D.6 Test instances

We have had access to four authentic test instances from two Danish municipal-
ities. These are named hh, ll1, ll2 and ll3. Based on the authentic instances we
have generated 60 extra instances. These instances are constructed by generat-
ing new sets of generalised precedence constraints for each of the four authentic
instances, while still keeping the original sets of caretakers and visits and origi-
nal travelling times. The new generalised precedence constraint sets are based
on the five types of temporal dependencies from Figure D.1, and we have cre-
ated five sets named td0–4. The generalised precedence constraints in the set
td0 are of the temporal dependency type synchronisation (a). The set td1 is
of the type overlap (b). The set td2 consists of the types minimum difference

182
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

(c) and maximum difference (d). When values are drawn randomly, these cate-
gories collapse to one. The set td3 is of type minimum+maximum difference (e).
Finally, td4 is a random combination of the other four types. Three sets of gen-
eralised precedence constraints were generated for each of these fives sets: Sets
A, B, and C, where the number of generalised precedence constraints approx-
imately is, respectively, 10%, 20%, and 30% of the number of visits. The sets
of generalised precedence constraints were generated as in Dohn et al. (2009d).
Characteristics for these test instances can be seen in Table D.2. The notation
td[0-4] expands to td0, td1, td2, td3, and td4. It is compacted in the table,
because the instances share the same characteristics.

Furthermore, Bredström and Rönnqvist (2007) have very kindly given us access
to their 30 data instances. These data instances are generated based on realistic
settings and only contain synchronisation constraints. All visits have the same
priority, and no visits are excluded for any of the caretakers, i.e. ρki = 1,∀i ∈
C,∀k ∈ K. The preference parameter δki is drawn randomly between −10 and
10. For all of the instances, all caretakers in that instance have the same duty
hours. Characteristics for these test instances can also be seen in Table D.2.
Again, br-[06-08][S,M,L]-td0 means that for each of br-06, br-07, and br-08,
there are three instances: One with small (S) time windows, one with medium
(M) time windows, and one with large (L) time windows.

h
h

ll
1

ll
2

ll
3

h
h
-t

d
[0

-4
]-

A

h
h
-t

d
[0

-4
]-

B

h
h
-t

d
[0

-4
]-

C

ll
1
-t

d
[0

-4
]-

A

ll
1
-t

d
[0

-4
]-

B

ll
1
-t

d
[0

-4
]-

C

ll
2
-t

d
[0

-4
]-

A

ll
2
-t

d
[0

-4
]-

B

ll
2
-t

d
[0

-4
]-

C

ll
3
-t

d
[0

-4
]-

A

ll
3
-t

d
[0

-4
]-

B

ll
3
-t

d
[0

-4
]-

C

b
r-

[0
1
-0

5
][
S
,M

,L
]-

td
0

b
r-

[0
6
-0

8
][
S
,M

,L
]-

td
0

b
r-

[0
9
-1

0
][
S
,M

,L
]-

td
0

|K| 15 8 7 6 15 15 15 8 8 8 7 7 7 6 6 6 4 10 16
|C| 150 107 60 61 150 150 150 107 107 107 60 60 60 61 61 61 20 50 80
|P| 6 0 0 0 16 30 46 10 22 32 6 12 18 6 12 18 4 10 16

Table D.2: Characteristics for the test instances. |K| is number of caretakers,
|C| is number of visits and |P| is number of generalised precedence constraints.

D.7 Computational results

The aim in this section is to compare the different visit clustering techniques
presented in Section D.5. We will also try to measure the effects of removal of
idle time arcs and cluster expansion. Using clustering will sacrifice optimality,

D.7 Computational results 183

and we will here investigate how big the gap to optimality is, and compare it
against the benefit of improved run time.

We measure three quality parameters, which are also the terms of the objective
function: uncovered visits, caretaker-visit preferences, and total travel costs.
The weights of the objective function are set as suggested in Section D.2.1, so a
hierarchical ordering is obtained. We seek to minimise the number of uncovered
visits and maximise the preference level of the solution. The total travel costs are
measured in minutes for all caretakers for the whole daily schedule. We subtract
the durations of the visits in the total travel time, hence giving preference to
longer visits, and thereby maximising the so-called face-to-face time. More
formally, we define the travel cost as ckij = skij − 2 · duri. Hence, if it were only
possible to cover either visit i or the two visits j and h, coverage of visit i is
preferred, whenever γi ≥ γj + γh and duri > durj + durh, assuming the travel
time for both options is the same. Minimising the total travel costs are not as
important as minimising the two other measurements, but low travel costs are
naturally preferred. In order to be able to make comparisons this third measure
is ignored, when we are performing tests on the instances from Bredström and
Rönnqvist (2007).

The algorithm is implemented in the branch-and-cut-and-price framework from
COIN-OR, see Lougee-Heimer (2003), using the COIN-OR open-source LP
solver CLP. All tests are run on 2.2 GHz processors. As an outcome of pre-
liminary tests, we return up to five negative reduced cost columns per caretaker
per iteration. For all of the test runs we have set a time out limit of one hour.
The implementation of the ESPPTW solver ensures that generalised precedence
constraints, that make two visits mutually exclusive, are respected within the
individual routes. This tightens the lower bounds and reduces the number of
branch-and-bound nodes.

We have grouped the instances into 35 test groups based on their size, the type
of temporal dependency included, and the number of temporal dependencies.
The test groups can be seen in Tables D.3-D.4. For each of these groups, 13
different settings for the algorithm are compared. The settings are written as
CS-RA-ER, abbreviating clustering scheme, removal of arcs, and expansion in
root only, respectively. CS = 0 corresponds to no use of visit clustering. CS = 1
gives all-preferred clusters, i.e. clusters for caretaker k where δki < 0 for all
visits i in the cluster, as described in Section D.5. CS = 2 gives fixed-size
clusters of a fixed size ξ. CS = 3 gives pair-wise disjoint clusters. Before the
preference parameters are sorted they are shuffled randomly in order to make
the tie-breaking arbitrary. The setting RA is a binary parameter, which is 1,
if we remove arcs based on idle time, and 0 otherwise. The setting ER is also
a binary parameter, which is 1, if we only allow cluster expansion in the root
node of the branch-and-bound tree, and 0 if cluster expansion is allowed in

184
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies
S
e
t
t
in

g
s

G
r
o
u
p

0
-0

-0
1
-0

-0
1
-0

-1
1
-1

-0
1
-1

-1
2
-0

-0
2
-0

-1
2
-1

-0
2
-1

-1
3
-0

-0
3
-0

-1
3
-1

-0
3
-1

-1
B
R

T
im

e
d
if
fe

r
e
n
c
e

(
%

)
b
r
-[
0
1
-0

5
]

1
0
0

3
9

9
6

4
8

5
2

4
7

5
4

6
0

5
7

6
4

6
5

1
9
2

b
r
-[
0
6
-0

8
]

1
0
0

6
0

5
8

4
8

5
5

1
1

2
0

1
3

5
7

1
1

1
1

1
5
7

b
r
-[
0
9
-1

0
]

1
0
0

8
1

8
1

8
7

8
7

2
1

5
0

1
1

2
7

1
1

1
0

1
4
4

[h
h
,l
l1

]
N
/
A

1
0
0

8
7

7
0

1
0
6

1
0
5

1
0
4

4
8

4
5

8
5

5
4

N
/
A

[h
h
,l
l1

]-
t
d
0
-A

N
/
A

1
0
0

2
4
6

9
9

3
2
2

1
3
9
5

1
3
8
4

1
8
7
2

1
7
7
0

7
7

3
5

6
6

3
6

N
/
A

[h
h
,l
l1

]-
t
d
0
-B

N
/
A

1
0
0

4
4

1
0
2

4
3

5
4
0

1
3
6
2

1
6
0

1
2
3
5

3
0

2
3

3
0

1
8

N
/
A

[h
h
,l
l1

]-
t
d
0
-C

N
/
A

1
0
0

4
5

7
2

8
8

2
6
6

6
4
5

1
6
8

9
7
1

6
3

4
1

5
6

4
2

N
/
A

[h
h
,l
l1

]-
t
d
1
-A

N
/
A

1
0
0

1
0
0

7
4

7
4

1
3
8

1
5
5

1
1
0

2
3
5

4
7

4
5

4
3

3
8

N
/
A

[h
h
,l
l1

]-
t
d
1
-B

N
/
A

1
0
0

7
8

8
9

7
5

1
6
1

1
2
6

1
2
3

1
3
3

4
0

3
4

3
8

3
3

N
/
A

[h
h
,l
l1

]-
t
d
1
-C

N
/
A

1
0
0

8
9

9
7

1
0
9

1
0
1

1
2
3

8
9

1
0
4

5
6

3
7

4
8

2
9

N
/
A

[h
h
,l
l1

]-
t
d
2
-A

N
/
A

1
0
0

9
7

8
9

8
0

2
9

2
9

3
9

3
6

5
5

5
6

N
/
A

[h
h
,l
l1

]-
t
d
2
-B

N
/
A

1
0
0

2
7
8
8

2
1
6

2
5
3

1
2
1

1
2
4

1
0
0

9
1

1
5

1
5

1
5

1
3

N
/
A

[h
h
,l
l1

]-
t
d
2
-C

N
/
A

1
0
0

1
1
5

1
0
7

8
4
8

2
1
1

1
7
3

1
4
0

1
3
3

8
1

5
2

7
5

5
8

N
/
A

[h
h
,l
l1

]-
t
d
3
-A

N
/
A

1
0
0

4
3

9
1

9
0

5
1
0

4
4
0

2
5
8

2
4
7

5
4

6
5

N
/
A

[h
h
,l
l1

]-
t
d
3
-B

N
/
A

1
0
0

5
8

2
0
1

1
7
7

1
5

1
7

1
7

1
6

3
2

2
1

N
/
A

[h
h
,l
l1

]-
t
d
3
-C

N
/
A

1
0
0

1
0
4

1
0
4

1
0
4

1
1

8
8

5
1

1
2

1
N
/
A

[h
h
,l
l1

]-
t
d
4
-A

N
/
A

1
0
0

6
1

5
0

1
7
6

1
0
3

1
0
6

7
1

6
4

1
8

1
1

1
9

1
2

N
/
A

[h
h
,l
l1

]-
t
d
4
-B

N
/
A

1
0
0

2
0
7

6
7

1
1
9

3
5
1

3
5
1

1
0
6

9
0

8
5

1
1

7
N
/
A

[h
h
,l
l1

]-
t
d
4
-C

N
/
A

1
0
0

9
9

1
6

6
0

1
0
2

1
0
2

1
5

2
4

4
3

4
2

N
/
A

[l
l2

,l
l3

]
1
0
0

1
5

1
5

1
7

1
9

8
2
9

6
2
9

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
0
-A

1
0
0

1
4

1
6

3
7

7
1

2
0
1
4

2
0
1
4

1
3
1
0

2
0
1
4

1
1

1
1

N
/
A

[l
l2

,l
l3

]-
t
d
0
-B

1
0
0

4
0

3
8

4
2

4
2

1
1

1
1

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
0
-C

1
0
0

3
1

2
9

3
0

2
9

3
3

3
3

2
1

2
2

N
/
A

[l
l2

,l
l3

]-
t
d
1
-A

1
0
0

9
8

9
8

2
0

2
4

1
9

2
4

1
1

1
6

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
1
-B

1
0
0

6
5

6
3

2
1

3
4

2
0

4
5

5
0

0
0

0
N
/
A

[l
l2

,l
l3

]-
t
d
1
-C

1
0
0

9
4

9
4

9
1

9
1

1
1

1
0

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
2
-A

1
0
0

1
2

1
2

1
1

1
1

1
1
7

1
1
1

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
2
-B

1
0
0

1
2

1
2

8
3

7
7

9
8

9
8

9
8

9
4

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
2
-C

1
0
0

7
8

1
1

1
0

6
6

6
2

7
9

7
6

1
1

1
1

N
/
A

[l
l2

,l
l3

]-
t
d
3
-A

1
0
0

9
7

9
7

8
9

9
7

1
9
7

1
9
6

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
3
-B

1
0
0

2
1

2
2

1
2

1
2

9
4
0

1
9
7
1

4
6
3

1
9
7
0

0
0

1
1

N
/
A

[l
l2

,l
l3

]-
t
d
3
-C

1
0
0

9
7

9
7

9
7

9
7

1
1

0
0

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
4
-A

1
0
0

9
9

9
8

1
0
2

1
0
2

7
9

9
8

4
5

1
1

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
4
-B

1
0
0

9
9

9
9

8
2

7
9

0
0

0
0

0
0

0
0

N
/
A

[l
l2

,l
l3

]-
t
d
4
-C

1
0
0

9
3

9
3

5
0

9
2

0
0

0
0

0
0

0
0

N
/
A

A
v
g
.

(
0
-0

-0
)

1
0
0

5
6

5
9

5
2

5
7

1
7
5

2
3
9

1
1
1

2
3
5

1
1

1
1

N
/
A

A
v
g
.

(
1
-0

-0
)

N
/
A

1
0
0

1
8
0

1
1
5

1
5
7

7
0
4

8
8
4

4
8
0

8
8
4

1
4

1
0

1
3

1
0

N
/
A

T
ab

le
D

.3
:

C
om

p
ar

is
on

of
ti

m
e

d
iff

er
en

ce
fo

r
d

iff
er

en
t

se
tt

in
gs

fo
r

th
e

a
lg

o
ri

th
m

fo
r

th
e

te
st

g
ro

u
p

s.
S

et
ti

n
g
s

a
re

w
ri

tt
en

as
C

S
-R

A
-E

R
.

T
es

t
gr

ou
p

s
b

r-
[x

-x
][

S
,M

,L
]-

td
0

ar
e

sh
or

te
n

ed
to

b
r-

[x
-x

].
T

h
e

av
er

a
g
e

‘A
v
g
.

(0
-0

-0
)’

u
se

s
th

e
se

tt
in

g
s

0-
0-

0
as

re
fe

re
n

ce
se

tt
in

gs
an

d
d

o
es

n
ot

in
cl

u
d

e
th

e
te

st
gr

ou
p

s
[h

h
,l

l1
]

a
n

d
[h

h
,l

l1
]-

td
[0

-4
]-

[A
,B

,C
],

a
s

te
st

ru
n

s
a
re

n
o
t

ca
rr

ie
d

ou
t

in
th

es
e

gr
ou

p
s

w
it

h
th

e
se

tt
in

gs
0-

0-
0.

T
h

e
av

er
ag

e
‘A

v
g
.

(1
-0

-0
)’

u
se

s
th

e
se

tt
in

g
s

1
-0

-0
a
s

re
fe

re
n

ce
se

tt
in

g
s

an
d

in
cl

u
d

es
al

l
te

st
gr

ou
p

s,
b

u
t

n
ot

th
e

se
tt

in
gs

0-
0-

0.

D.7 Computational results 185

S
e
t
t
in

g
s

G
r
o
u
p

0
-0

-0
1
-0

-0
1
-0

-1
1
-1

-0
1
-1

-1
2
-0

-0
2
-0

-1
2
-1

-0
2
-1

-1
3
-0

-0
3
-0

-1
3
-1

-0
3
-1

-1
B
R

O
b
je

c
t
iv

e
g
a
p

(
%

)
b
r
-[
0
1
-0

5
]

0
2
0
4

2
0
3

2
0
5

2
0
5

3
3

5
4

8
0
6

9
3
7

1
0
7
0

1
2
0
1

0
b
r
-[
0
6
-0

8
]

0
0

0
0

0
1
2
1

1
4
7

9
3

1
4
7

5
2
4

7
4
7

5
2
6

7
7
6

0
b
r
-[
0
9
-1

0
]

0
0

0
-1

-1
1
5
5

1
7
9

1
5
8

1
7
9

2
8
9

9
1
4

2
9
2

9
1
4

6
[h

h
,l
l1

]
N
/
A

0
2
6

2
6

2
6

0
0

3
3

7
5

8
3

8
3

9
0

N
/
A

[h
h
,l
l1

]-
t
d
0
-A

N
/
A

0
4

-6
4

-2
0

-1
3

-1
9

-1
1

7
3
2

7
3
2

N
/
A

[h
h
,l
l1

]-
t
d
0
-B

N
/
A

0
1
8

7
1
8

-7
0

-5
2

2
3

4
4

2
3

5
4

N
/
A

[h
h
,l
l1

]-
t
d
0
-C

N
/
A

0
2
1

1
0

2
4

3
7

-1
6

1
5

4
0

3
2

5
3

N
/
A

[h
h
,l
l1

]-
t
d
1
-A

N
/
A

0
0

-2
-2

-2
9

-2
-2

7
0

-4
4

6
1
3

N
/
A

[h
h
,l
l1

]-
t
d
1
-B

N
/
A

0
1
9

0
2
8

-9
2

-9
6

1
5

3
4

1
7

3
6

N
/
A

[h
h
,l
l1

]-
t
d
1
-C

N
/
A

0
2
0

0
2
0

-1
4

1
6

-1
0

1
2

2
0

3
5

2
0

3
5

N
/
A

[h
h
,l
l1

]-
t
d
2
-A

N
/
A

0
2

4
4

1
5

1
5

-8
-8

1
4

1
4

4
6

4
6

N
/
A

[h
h
,l
l1

]-
t
d
2
-B

N
/
A

0
2

6
6

-4
-2

-2
0

3
1

3
3

3
9

3
9

N
/
A

[h
h
,l
l1

]-
t
d
2
-C

N
/
A

0
2

6
6

-6
2

-4
4

1
1

3
6

1
5

4
2

N
/
A

[h
h
,l
l1

]-
t
d
3
-A

N
/
A

0
9

2
9

0
0

-2
-2

5
9

6
1

6
1

6
3

N
/
A

[h
h
,l
l1

]-
t
d
3
-B

N
/
A

0
0

2
2

0
0

2
2

5
8

6
3

6
0

7
2

N
/
A

[h
h
,l
l1

]-
t
d
3
-C

N
/
A

0
1
8

2
2
0

2
5

2
5

1
1

1
6

2
0

2
7

N
/
A

[h
h
,l
l1

]-
t
d
4
-A

N
/
A

0
5

-5
5

1
2

5
-2

5
3
4

4
3

3
4

4
6

N
/
A

[h
h
,l
l1

]-
t
d
4
-B

N
/
A

0
1
3

0
1
1

2
1
1

2
1
1

3
7

5
9

3
9

6
3

N
/
A

[h
h
,l
l1

]-
t
d
4
-C

N
/
A

0
1
6

-2
1
0

2
8

0
2

1
8

5
4

1
8

6
6

N
/
A

[l
l2

,l
l3

]
0

0
0

0
0

4
5
6

5
7
0

4
5
6

5
7
0

1
7
1
0

1
7
1
0

3
9
9
0

3
9
9
0

N
/
A

[l
l2

,l
l3

]-
t
d
0
-A

0
0

0
0

0
1
7
4

1
7
4

0
3
5

6
2
6

6
2
6

7
6
4

7
6
4

N
/
A

[l
l2

,l
l3

]-
t
d
0
-B

0
0

0
0

0
2
4
6

2
4
6

2
4
6

2
4
6

3
6
9

3
9
0

6
3
5

7
1
7

N
/
A

[l
l2

,l
l3

]-
t
d
0
-C

0
0

0
0

0
1
5
3

1
5
3

1
5
3

1
5
3

1
7
0

2
0
4

2
5
5

4
0
8

N
/
A

[l
l2

,l
l3

]-
t
d
1
-A

0
0

0
0

0
4
5
6

5
7
0

4
5
6

5
7
0

1
5
9
7

1
5
9
7

2
0
5
2

2
0
5
2

N
/
A

[l
l2

,l
l3

]-
t
d
1
-B

0
0

0
0

0
3
4
3

5
7
0

1
1
5

5
7
0

1
7
1
1

2
5
0
8

1
5
9
7

3
0
7
8

N
/
A

[l
l2

,l
l3

]-
t
d
1
-C

0
0

0
0

0
2
2
9

5
7
0

5
7
0

7
9
8

1
4
8
3

2
0
5
3

1
7
1
1

2
1
6
7

N
/
A

[l
l2

,l
l3

]-
t
d
2
-A

0
0

0
0

0
4
5
6

5
7
0

0
1
1
4

2
6
2
2

2
6
2
2

5
0
1
5

5
0
1
5

N
/
A

[l
l2

,l
l3

]-
t
d
2
-B

0
0

0
0

0
1
0
3

1
0
3

2
1

2
1

1
8
5

1
8
5

4
5
1

4
5
1

N
/
A

[l
l2

,l
l3

]-
t
d
2
-C

0
0

0
0

0
6
8

6
8

0
0

4
4
2

4
4
2

6
6
4

6
6
4

N
/
A

[l
l2

,l
l3

]-
t
d
3
-A

0
0

0
0

0
0

1
1
4

4
5
6

5
7
0

2
6
2
2

2
6
2
2

3
5
3
4

3
5
3
4

N
/
A

[l
l2

,l
l3

]-
t
d
3
-B

0
0

0
0

0
1

1
1
4

1
1
1
4

2
5
0
8

2
5
0
8

2
9
6
4

2
9
6
4

N
/
A

[l
l2

,l
l3

]-
t
d
3
-C

0
0

0
0

0
1

1
1

1
1
7
1
1

1
7
1
1

2
3
9
5

2
3
9
5

N
/
A

[l
l2

,l
l3

]-
t
d
4
-A

0
0

0
0

0
2
6
6

2
6
6

2
6
6

2
6
6

1
0
1
2

1
0
1
2

2
0
7
7

2
0
7
7

N
/
A

[l
l2

,l
l3

]-
t
d
4
-B

0
0

0
0

0
2
6
6

2
6
6

2
6
6

2
6
6

1
1
1
9

1
1
1
9

1
9
7
0

1
9
7
0

N
/
A

[l
l2

,l
l3

]-
t
d
4
-C

0
0

0
0

0
2
6
6

2
6
6

2
6
6

2
6
6

9
5
9

9
5
9

2
3
4
3

2
3
4
3

N
/
A

A
v
g
.

(
0
-0

-0
)

0
1
1

1
1

1
1

1
1

1
9
8

2
6
1

1
8
6

2
5
7

1
1
8
2

1
3
0
9

1
8
0
6

1
9
7
3

N
/
A

A
v
g
.

(
1
-0

-0
)

N
/
A

0
5

1
5

1
0
0

1
3
7

9
3

1
3
5

6
4
7

7
2
2

9
8
8

1
0
8
6

N
/
A

T
ab

le
D

.4
:

C
om

p
ar

is
on

of
ob

je
ct

iv
e

ga
p

fo
r

d
iff

er
en

t
se

tt
in

gs
fo

r
th

e
a
lg

o
ri

th
m

fo
r

th
e

te
st

g
ro

u
p

s.
S

et
ti

n
g
s

a
re

w
ri

tt
en

a
s

C
S

-R
A

-E
R

.
T

es
t

gr
ou

p
s

b
r-

[x
-x

][
S

,M
,L

]-
td

0
ar

e
sh

or
te

n
ed

to
b
r-

[x
-x

].
T

h
e

av
er

a
g
e

‘A
v
g
.

(0
-0

-0
)’

u
se

s
th

e
se

tt
in

g
s

0
-0

-0
as

re
fe

re
n

ce
se

tt
in

gs
an

d
d

o
es

n
ot

in
cl

u
d

e
th

e
te

st
gr

ou
p
s

[h
h

,l
l1

]
a
n

d
[h

h
,l

l1
]-

td
[0

-4
]-

[A
,B

,C
],

a
s

te
st

ru
n

s
a
re

n
o
t

ca
rr

ie
d

ou
t

in
th

es
e

gr
ou

p
s

w
it

h
th

e
se

tt
in

gs
0-

0-
0.

T
h

e
av

er
ag

e
‘A

v
g
.

(1
-0

-0
)’

u
se

s
th

e
se

tt
in

g
s

1
-0

-0
a
s

re
fe

re
n

ce
se

tt
in

g
s

a
n

d
in

cl
u

d
es

al
l

te
st

gr
ou

p
s,

b
u

t
n
o
t

th
e

se
tt

in
gs

0-
0-

0.

186
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

every node of the branch-and-bound tree. Thus, the settings 0-0-0 (as well as
the redundant settings 0-0-1) give the optimal solution. However, some of the
instances are not possible to solve to optimality within the time limit, they can
only be solved using clustering. For CS = 2, we use a fixed cluster size ξ = 12.
With a fixed cluster size of 12, the pricing problems (at least initially, before
cluster expansion) are solved very fast. When arcs are removed, the largest
allowed minimum idle time φkij is set to 10 minutes, both based on preliminary
tests. The abbreviation BR is used when we show results from Bredström and
Rönnqvist (2007).

In Tables D.3-D.4 the comparison is shown. The numbers are averages over
all instances in the test group. In total, we have 1190 test runs, which gives a
good statistical foundation. Let T and Z denote the run time and the objective
value, respectively, of a given test run, and let Tref and Zref denote the run time
and the objective value of a reference solution, respectively. The time difference
is then calculated as T/Tref in percent, and the objective gap is calculated as
|(Z − Zref)/Zref| in percent. When the objective is better than the reference
objective a minus sign is added. The reference settings are the leftmost, in most
cases it will be the settings 0-0-0, which is a very intuitive reference. All the
instances in the test groups [hh,ll1] and [hh,ll1]-td[0-4]-[A,B,C] have not been
possible to solve to optimality. Any attempt has, when the one hour time out
limit is reached, ended up with around 70% or more of the visits uncovered in
the best solution in the branch-and-bound tree. Therefore, the reference settings
for these test groups will be 1-0-0. When using relative gaps for comparison, one
should be careful, because relative gaps are highly dependent on the objective
measure. In our case we have a very high penalty on uncovered visits, so a
single uncovered visit as opposed to no uncovered visits would lead to a large
gap. Also, for all instances based on ll1, there will be eight visits that are
impossible to cover, as they cannot be completed within the working hours of
any of the caretakers. This fixed cost for all generated routes makes the gaps
smaller.

As mentioned earlier, the dynamic expansion of visit clusters makes the al-
gorithm behave somewhat unpredictable. In the cases where we see the time
difference being close to 100% and the objective gap at the same time being
close to 0%, it is very likely that the clusters are expanded to nearly the entire
set Ck, thereby getting close to CS = 0. On the other hand, when the gap
is small and the time difference significantly below 100%, then a good initial
clustering is used. With regard to the time-quality trade-off, the all-preferred
(CS = 1) and the fixed-size (CS = 2) clustering schemes both have instance
groups where they are performing best. If dynamic cluster expansion was not
used, then it would be expected that the fixed-size clustering scheme would be
the fastest on larger instances (e.g. instances based on hh or ll1), as the cluster
size is kept small. This does not happen, though, due to the clusters being

D.7 Computational results 187

expanded aggressively. The aggressive expansion happens when a lot of visits
are uncovered and therefore added to every caretaker’s cluster. For the hh and
ll1 instance groups, we therefore see that the fixed-size clustering is slower, but
better than the all-preferred clustering. In some test runs with the fixed-size
clustering scheme in the test groups [ll2,ll3]-td0-A and [ll2,ll3]-td3-B, the initial
clustering has lead to very large branch-and-bound trees. This is visible in the
averages. For the pair-wise disjoint clustering scheme the picture is more clear.
As expected it is very fast, but it does not come without a price, as the solution
qualities for this scheme generally are the worst.

Focusing on the impact of removal of idle time arcs (RA), Tables D.3-D.4 do
not disclose much. It it very hard to find a pattern in the impact of this setting.
Removal of idle time arcs may reduce the ESPPTW networks, but the removal
could also lead to more visits being uncovered in the LP solution and therefore
added to all caretaker’s clusters. This would increase the network sizes.

The table shows that when cluster expansion is allowed in every node in the
branch-and-bound tree (ER = 0), the solution quality tends to be just better
than when expansion is only allowed in the root node (ER = 1). This is ex-
pected, but still, if many visits are uncovered in the root LP solution, this could
lead to large clusters, and thereby better solution quality.

Looking at the numbers for the test groups ending with A, B, and C, there
does not seem to be a correlation between the performance of the different
clustering schemes and the number of generalised precedence constraints for an
instance. None of the clustering schemes stand out with a consequently good or
bad performance in either size A, B, or C. Likewise, there does not seem to be
a correlation between the type of temporal dependency and the performance of
the schemes. This is also sensible, as the clustering is preference-based and as
such independent of types and numbers of temporal dependencies.

If we compare our results against the results from Bredström and Rönnqvist
(2007), we are significantly faster in all test groups. We are able to verify
their optimal solution values for the groups br-[01-05][S,M,L]-td0 and br-[06-
08][S,M,L]-td0, and we are able to improve the best known solution values for
the group br-[09-10][S,M,L]-td0 by 6% on average. For some instances we can
prove optimality of the improved solutions. The settings 1-1-0 and 1-1-1 give
better solution quality on average for the group br-[09-10][S,M,L]-td0 than the
setting 0-0-0. This is possible, because we reach the time out limit on some test
runs, and therefore the returned solution is not necessarily optimal, but only
the best solution in the branch-and-bound tree at time out.

Table D.5 shows detailed statistics for individual test runs. The test runs
shown here are chosen, because they are representative for the numbers from

188
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

Tables D.3-D.4. It should be noted, that we have integerised the preference
parameter in the instances from Bredström and Rönnqvist (2007), by scaling it
with a factor of 104. In the process some rounding took place, and furthermore
the results reported in Bredström and Rönnqvist (2007) are rounded. Therefore,
reported numbers for the settings 0-0-0 and BR in Table D.5 will not necessarily
match on all digits. Also, one should keep in mind that our lower bounds are
tighter.

The detailed statistics for the test runs show that there is a clear connection
between the run times and the sizes of the branch-and-bound trees, which is
intuitively very sensible and expected. It should here be noticed that Bredström
and Rönnqvist (2007) use significantly fewer branch-and-bound nodes than our
algorithm. This is most probably due to their branching candidate selection
which seems to perform very well.

Overall it can be said, that, as expected, run times can be decreased by using
visit clustering, but this implies a decreased solution quality. It is difficult
to point out the best settings as well as to quantify the speed gain/quality loss
trade-off. As mentioned earlier, it is seen that the pair-wise disjoint clustering is
by no doubt the fastest, but if quality is also taken into account, the all-preferred
clustering scheme tends to perform best. Settings with CS = 1 have at least
equally good and in most cases much better run times when compared to the
settings 0-0-0 and do only have a significant loss in quality for the test group br-
[01-05][S,M,L]-td0. The loss in quality is due to three out of 15 instances in the
group having a single uncovered visit in the solutions with CS = 1. Focusing on
the all-preferred clustering scheme, it seems to be slightly better for the solution
quality to allow cluster expansion in every node of the branch-and-bound tree.

Lastly, it should be mentioned that we have also compared our solutions of
hh, ll1, ll2, and ll3 with the current practice. Current practice is based partly
on an automated heuristic and partly on manual planning. Unfortunately, it
is not straight forward to make a comparison. It is clearly indicated, though,
that we are able to enhance the service level. There is a significant decrease
in the number of uncovered visits and a truly dramatic decrease in the number
of necessary constraint adjustments. Constraint adjustments are another way
of dealing with an uncovered visit, so that it is possible to fit the visit into
the schedule anyway. Possible options are to: reduce the duration of the visit,
extend the time window of the visit or extend the work shift of one of the
caretakers. This is done a lot in practice, and it makes comparison very difficult.
However, any of these adjustments will naturally decrease the overall quality of
the schedule. In the presented solution method, we have chosen to keep all
the original constraints intact, and let the constraint adjustment be a manual
post-processing task. This decision is supported by the fact that it is hard to
put a quantitative penalty on all possible adjustments before solving.

D.7 Computational results 189

T
e
s
t

c
a
s
e

S
e
t
t
in

g
s

R
o
o
t

L
P

v
a
lu

e

O
b
je

c
t
iv

e
v
a
lu

e

U
n
c
o
v
e
r
e
d

v
is
it
s

B
&

B
n
o
d
e
s

B
&

B
d
e
p
t
h

S
u
b
p
r
o
b
le

m
s

s
o
lv

e
d

G
e
n
e
r
a
t
e
d

c
o
lu

m
n
s

L
P

s
o
lv

e
t
im

e
(
s
)

S
u
b
p
r
o
b
le

m
t
im

e
(
s
)

R
u
n
n
in

g
t
im

e
(
s
)

br-05S-td0 0-0-0 -76277.00 -76277 0 11 4 284 687 0.31 0.17 0.60
br-05S-td0 1-0-0 -71289.00 923612 1 3 1 64 124 0.02 0.02 0.05
br-05S-td0 1-1-0 -71289.00 923612 1 3 1 88 154 0.04 0.02 0.07
br-05S-td0 1-0-1 -71289.00 923612 1 3 1 64 124 0.02 0.03 0.05
br-05S-td0 1-1-1 -71289.00 923612 1 3 1 88 154 0.03 0.02 0.07
br-05S-td0 2-0-0 -76277.00 -76277 0 9 3 200 436 0.12 0.08 0.26
br-05S-td0 2-1-0 -76277.00 -76277 0 9 3 152 366 0.11 0.06 0.22
br-05S-td0 2-0-1 -76277.00 -76277 0 9 3 200 436 0.14 0.06 0.28
br-05S-td0 2-1-1 -76277.00 -76277 0 9 3 152 366 0.12 0.06 0.22
br-05S-td0 3-0-0 933849.00 933849 1 1 0 16 38 0.00 0.00 0.01
br-05S-td0 3-1-0 933849.00 933849 1 1 0 16 34 0.00 0.00 0.01
br-05S-td0 3-0-1 933849.00 933849 1 1 0 16 38 0.00 0.00 0.02
br-05S-td0 3-1-1 933849.00 933849 1 1 0 16 34 0.00 0.01 0.02
br-05S-td0 BR -76290.00 -76290 0 1 - 139 - - - 0.64

br-06M-td0 0-0-0 -380509.00 -379854 0 353 33 8989 8941 54.91 35.10 107.18
br-06M-td0 1-0-0 -380509.00 -379854 0 419 58 10284 8359 34.44 26.10 72.35
br-06M-td0 1-1-0 -379287.00 -378589 0 431 48 10904 8148 32.17 26.71 70.64
br-06M-td0 1-0-1 -380509.00 -379854 0 419 58 10284 8359 34.38 26.32 72.53
br-06M-td0 1-1-1 -379287.00 -378589 0 431 48 10904 8148 32.17 26.49 69.67
br-06M-td0 2-0-0 -376764.00 649853 1 77 38 1910 1399 2.67 4.16 8.22
br-06M-td0 2-1-0 -374594.00 -332648 0 109 54 2520 1701 4.04 5.23 11.37
br-06M-td0 2-0-1 -376764.00 641531 1 91 40 2240 1642 2.83 4.49 8.95
br-06M-td0 2-1-1 -374594.00 653339 1 177 43 4070 2254 5.11 7.72 15.67
br-06M-td0 3-0-0 -362005.00 686191 1 51 25 1060 530 0.22 1.73 2.42
br-06M-td0 3-1-0 -352443.00 -301188 0 33 16 840 464 0.14 1.41 1.87
br-06M-td0 3-0-1 -362005.00 1662244 2 47 13 880 436 0.20 1.31 1.81
br-06M-td0 3-1-1 -352443.00 3680521 4 31 15 520 282 0.08 0.81 1.12
br-06M-td0 BR -386860.00 -379880 0 101 - 1861 - - - 247.88

hh 1-0-0 6851842.00 6851850 5 187 21 16755 12032 27.74 587.64 639.90
hh 1-1-0 6851859.00 6851867 5 141 15 11910 9090 17.65 422.74 458.90
hh 1-0-1 6851842.00 6851850 5 171 19 15915 11629 22.73 517.76 564.61
hh 1-1-1 6851859.00 6851867 5 139 15 11640 8792 19.51 613.39 694.34
hh 2-0-0 6858829.00 6858843 5 167 21 16890 20070 42.30 549.17 617.44
hh 2-1-0 7860857.00 7860868 6 121 21 6630 6896 17.90 235.45 266.05
hh 2-0-1 6858829.00 6858843 5 167 21 16305 19558 43.97 569.96 639.66
hh 2-1-1 7860857.00 7860868 6 115 21 5880 6012 13.21 186.02 209.15
hh 3-0-0 11869075.00 10870068 9 23 11 1650 1594 1.06 45.22 48.64
hh 3-1-0 12871112.00 11872103 10 21 10 1080 1012 0.48 29.91 31.94
hh 3-0-1 11869075.00 13869078 10 21 10 1140 1223 0.60 29.90 32.29
hh 3-1-1 12871112.00 14871115 11 19 9 810 855 0.36 22.95 24.50

ll1-td1-B 1-0-0 36920146.00 37926295 17 21 10 952 1487 2.05 31.07 35.56
ll1-td1-B 1-1-0 36920146.00 37926294 17 17 8 992 1494 2.08 23.22 26.91
ll1-td1-B 1-0-1 36920146.00 44921229 18 25 12 792 1128 1.43 21.31 24.26
ll1-td1-B 1-1-1 36920146.00 48924236 19 27 13 888 1230 1.80 18.80 22.20
ll1-td1-B 2-0-0 33245315.00 35937179 15 65 32 2216 3688 33.05 86.91 128.25
ll1-td1-B 2-1-0 33245315.00 34937306 17 51 25 1856 3524 28.04 60.63 95.23
ll1-td1-B 2-0-1 33245315.00 40932305 17 39 19 1448 2962 21.55 65.10 94.11
ll1-td1-B 2-1-1 33245315.00 41932341 18 73 36 2104 3535 32.74 65.87 106.49
ll1-td1-B 3-0-0 38767254.00 39934260 16 17 8 856 1074 0.88 15.47 17.73
ll1-td1-B 3-1-0 38767255.33 39934260 16 21 10 816 1035 1.02 13.13 15.56
ll1-td1-B 3-0-1 38767254.00 48931257 19 19 9 552 825 0.53 8.86 10.31
ll1-td1-B 3-1-1 38767255.33 48932218 19 25 12 576 721 0.58 8.39 9.96

ll2-td4-C 0-0-0 940394.00 940400 1 341 22 15393 29336 204.53 103.45 333.50
ll2-td4-C 1-0-0 940394.00 940400 1 153 14 6279 8202 29.95 19.74 56.44
ll2-td4-C 1-1-0 940398.75 940400 1 27 7 938 1488 4.19 3.10 8.33
ll2-td4-C 1-0-1 940394.00 940400 1 153 14 6202 8114 29.61 19.24 55.40
ll2-td4-C 1-1-1 940398.75 940400 1 27 7 854 1331 3.88 2.83 7.72
ll2-td4-C 2-0-0 940412.00 4941459 2 3 1 203 582 0.31 0.79 1.26
ll2-td4-C 2-1-0 940415.00 4941423 2 3 1 203 553 0.23 0.70 1.09
ll2-td4-C 2-0-1 940412.00 4941459 2 3 1 203 582 0.31 0.79 1.25
ll2-td4-C 2-1-1 940415.00 4941423 2 3 1 203 553 0.25 0.67 1.09
ll2-td4-C 3-0-0 3949532.00 3949532 4 1 0 84 233 0.03 0.22 0.30
ll2-td4-C 3-1-0 25951558.00 25951558 8 1 0 56 152 0.01 0.14 0.21
ll2-td4-C 3-0-1 3949532.00 3949532 4 1 0 84 233 0.02 0.23 0.31
ll2-td4-C 3-1-1 25951558.00 25951558 8 1 0 56 152 0.02 0.15 0.22

Table D.5: Key statistics for selected test runs. Settings are written as CS-RA-
ER.

190
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

D.8 Conclusion and future work

Initiated by the method’s successful use in the VRPTW context, we have for-
mulated the Home Care Crew Scheduling Problem as a set partitioning problem
with side constraints and developed a branch-and-price solution algorithm. All
temporal dependencies are modelled as generalised precedence constraints, and
these constraints are enforced through the branching. To our knowledge, we are
the first to enforce generalised precedence constraints in the branching for real-
life problems. Based on the preference parameters, we have devised different
visit clustering schemes. The visit clustering schemes for the exact branch-
and-price framework are novel. We have compared the visit clustering schemes
in order to survey how much they decrease run times, and how much they
compromise optimality. The visit clustering schemes have been tested both on
real-life problem instances and on generated test instances inspired by realistic
settings. The tests have shown that by using clusters with only preferred visits,
run times were significantly decreased, while there was only a loss of quality
for few instances. The clustering schemes have allowed us to find solutions to
instances that could not be solved to optimality. Summarised, our main contri-
butions are: Development of visit clustering schemes for the Home Care Crew
Scheduling Problem, and enforcement of generalised precedence constraints in
the branching for real-life problems.

We see a number of directions in which future work on this problem could go.
One direction is improvement of the algorithm presented in this paper. New visit
clustering schemes could be devised accompanied by cluster expansion schemes.
For the clustering scheme with a fixed cluster size, it could be interesting to
look into what determines a good cluster size for a given instance. It might be
possible to express the cluster size as a function of number of visits and number
of caretakers.

Other very interesting and yet unexplored planning problems in home care are
long-term planning and disruption management. In the long-term planning
problem, the goal is to present a plan that spans e.g. half a year. The long-
term problem does not decide how the visits should be assigned to the specific
caretakers, but only how to distribute the visits optimally on the weekdays and
possibly in time windows.

In a disruption management or recovery situation the original plan has become
infeasible due to unforeseen circumstances. Therefore, rescheduling of the care-
takers for the remains of the planning period (most likely the rest of the day)
must take place. The goal of the rescheduling is to provide a new, feasible plan
very fast, i.e. within minutes, with as few alterations to the original plan as
possible. In many cases the disruption will only directly influence a smaller

D.8 Conclusion and future work 191

subset of the caretakers, and an approach could be inspired by what Rezanova
and Ryan (2010) do for train driver rescheduling.

References

Begur, S., D. Miller, and J. Weaver (1997). “An integrated spatial DSS
for scheduling and routing home-health-care nurses”. In: Interfaces 27.4,
pp. 35–48.

Bertels, S. and T. Fahle (2006). “A hybrid setup for a hybrid scenario: com-
bining heuristics for the home health care problem”. Ed. by Louis-Martin
Rousseau Michel Gendreau Gilles Pesant. In: Computers and Operations Re-
search 33.10, pp. 2866–2890.

Bredström, D. and M. Rönnqvist (2007). A branch and price algorithm for the
combined vehicle routing and scheduling problem with synchronization con-
straints. Tech. rep. Department of Finance, Management Science, Norwegian
School of Economics, and Business Administration.

Bredström, D. and M. Rönnqvist (2008). “Combined vehicle routing and
scheduling with temporal precedence and synchronization constraints”. In:
European Journal of Operational Research 191.1, pp. 19–31.

Chabrier, A. (2006). “Vehicle Routing Problem with elementary shortest path
based column generation”. Ed. by Louis-Martin Rousseau Michel Gendreau
Gilles Pesant. In: Computers and Operations Research 33.10, pp. 2972–2990.

Cheng, E. and J. L. Rich (1998). A Home Health Care Routing and Scheduling
Problem. Tech. rep. Department of CAAM, Rice University.

Cordeau, J.-F., G. Desaulniers, J. Desrosiers, M. M. Solomon, and F. Soumis
(2002). “VRP with Time Windows”. In: The Vehicle Routing Problem. Ed.
by Paolo Toth and Daniele Vigo. Society for Industrial and Applied Mathe-
matics. Chap. 7, pp. 176–213.

Dohn, A. and E. Kolind (2006). “A Practical Branch and Price Approach to
the Crew Scheduling Problem with Time Windows”. MA thesis. Informatics
and Mathematical Modelling, Technical University of Denmark.

Dohn, A., E. Kolind, and J. Clausen (2009c). “The manpower allocation prob-
lem with time windows and job-teaming constraints: A branch-and-price
approach”. In: Computers and Operations Research 36.4, pp. 1145–1157.

Dohn, A., M. S. Rasmussen, and J. Larsen (2009d). The Vehicle Routing Prob-
lem with Time Windows and Temporal Dependencies. Tech. rep. Department
of Management Engineering, Technical University of Denmark.

Dror, M. (1994). “Note on the Complexity of the Shortest Path Models for
Column Generation in VRPTW”. In: Operations Research 42.5, pp. 977–978.

Eveborn, P., P. Flisberg, and M. Rönnqvist (2006). “Laps Care—an operational
system for staff planning of home care”. Ed. by J. Krarup L. Sakalauskas.
In: European Journal of Operational Research 171.3, pp. 962–976.

192
The Home Care Crew Scheduling Problem: Preference-Based Visit

Clustering and Temporal Dependencies

Feillet, D., P. Dejax, M. Gendreau, and C. Gueguen (2004). “An exact algorithm
for the elementary shortest path problem with resource constraints: applica-
tion to some vehicle routing problems”. In: Networks 44.3, pp. 216–229.

Foster, B. A. and D. M. Ryan (1976). “An Integer Programming Approach to
the Vehicle Scheduling Problem”. In: Operational Research Quarterly 27.2,
pp. 367–384.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W.H. Freeman and Co.

Gélinas, S., M. Desrochers, J. Desrosiers, and M. Solomon (1995). “A new
branching strategy for time constrained routing problems with application
to backhauling”. In: Annals of Operations Research 61, pp. 91–109.

Ioachim, I., J. Desrosiers, F. Soumis, and N. Bélanger (1999). “Fleet assign-
ment and routing with schedule synchronization constraints”. In: European
Journal of Operational Research 119.1, pp. 75–90.

Kallehauge, B., J. Larsen, O. B. Madsen, and M. Solomon (2005). “The Vehi-
cle Routing Problem with Time Windows”. In: Column Generation. Ed. by
Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. GERAD 25th
anniversary series. New York: Springer. Chap. 3, pp. 67–98.

Lessel, C. R. (2007). “Ruteplanlægning i hjemmeplejen”. MA thesis. Informatics
and Mathematical Modelling, Technical University of Denmark.

Li, Y., A. Lim, and B. Rodrigues (2005). “Manpower allocation with time
windows and job-teaming constraints”. In: Naval Research Logistics 52.4,
pp. 302–311.

Lim, A., B. Rodrigues, and L. Song (2004). “Manpower allocation with time win-
dows”. In: Journal of the Operational Research Society 55.11, pp. 1178–1186.

Lougee-Heimer, R. (2003). “The Common Optimization INterface for Opera-
tions Research: Promoting Open-Source Software in the Operations Research
Community”. In: IBM Journal of Research and Development 47.1, pp. 57–66.

Rezanova, N. J. and D. M. Ryan (2010). “The train driver recovery problem-A
set partitioning based model and solution method”. Ed. by Jesper Larsen
Jens Clausen Allan Larsen. In: Computers and Operations Research 37.5,
pp. 845–856.

Ryan, D. M. and B. Foster (1981). “An integer programming approach to
scheduling”. Ed. by A. Wren. In: Computer Scheduling of Public Transport.
Urban Passenger Vehicle and Crew Scheduling. Proceedings of an Interna-
tional Workshop, pp. 269–280.

Thomsen, K. (2006). “Optimization on Home Care”. MA thesis. Informatics
and Mathematical Modelling, Technical University of Denmark.

van den Akker, J., J. Hoogeveen, and J. van Kempen (2006). “Parallel machine
scheduling through column generation: Minimax objective functions”. In:
Lecture Notes in Computer Science 4168, pp. 648–659.

Appendix E

The Vehicle Routing Problem
with Time Windows and
Temporal Dependencies

Anders Dohn, Matias Sevel Rasmussen, and Jesper Larsen

Conditionally accepted for publication in: Networks (2010).

194
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

The Vehicle Routing Problem with Time
Windows and Temporal Dependencies∗

Anders Dohn1, Matias Sevel Rasmussen1, and Jesper Larsen1

In this paper, we formulate the vehicle routing problem with time
windows and temporal dependencies. The problem is an extension
of the well studied vehicle routing problem with time windows. In
addition to the usual constraints, a scheduled time of one visit may
restrain the scheduling options of other visits. Special cases of tem-
poral dependencies are synchronization and precedence constraints.
Two compact formulations of the problem are introduced and the
Dantzig-Wolfe decompositions of these formulations are presented
to allow for a column-generation-based solution approach. Tempo-
ral dependencies are modeled by generalized precedence constraints.
Four different master problem formulations are proposed and it is
shown that the formulations can be ranked according to the tight-
ness with which they describe the solution space. A tailored time
window branching is used to enforce feasibility on the relaxed master
problems. Finally, a computational study is carried out to quantita-
tively reveal strengths and weaknesses of the proposed formulations.
It is concluded that, depending on the problem at hand, the best
performance is achieved either by relaxing the generalized prece-
dence constraints in the master problem, or by using a time-indexed
model, where generalized precedence constraints are added as cuts
when they become severely violated.

Keywords: vehicle routing with time windows; temporal dependency; general-
ized precedence constraints; time window branching; relaxation; column genera-
tion; branch-and-price; branch-and-cut-and-price; set partitioning; set covering;
integer programming.

∗Conditionally accepted for publication in: Networks (2010).
1Department of Management Engineering, Technical University of Denmark, Produktion-

storvet, 2800 Kongens Lyngby, Denmark.

E.1 Introduction 195

E.1 Introduction

The vehicle routing problem with time windows and temporal dependencies
(VRPTWTD) is an extension of the vehicle routing problem with time windows
(VRPTW). Given is a fixed set of customers with individual demands and with
time windows specifying when each customer accepts service. The objective
is to find routes for a number of vehicles, all starting and ending at a central
depot in such a way that the total cost is minimized. The extension that we
present here is concerned with temporal dependencies between customers. A
temporal dependency which is often encountered in practical instances and that
has received the most attention in the literature, is the rather strict requirement
of synchronization between two visits. Synchronization on visits is also used
to model rendezvous between vehicles. Other, less restrictive, dependencies
are constraints on minimum overlap between visits and limits on minimum or
maximum gaps between visits.

In this paper, a context-free approach to VRPTWTD is presented for the first
time. We apply time window branching combined with time window reductions
to restore feasibility with respect to temporal dependencies. We prove that
the standardized modeling of temporal dependencies as generalized precedence
constraints does not affect the efficiency of the solution method. Along with a
direct formulation and a relaxed formulation, we introduce a time-indexed for-
mulation with an implicit representation of generalized precedence constraints.
We are able to rank the formulations theoretically, according to the tightness
with which they describe the solution space. For computational testing, we
introduce a fourth model, which is a hybrid of the relaxed formulation and
the time-indexed formulation. Finally, we introduce a new set of context-free
benchmark instances which enables a thorough quantitative analysis and which
we hope will facilitate future research in this area. The main contribution of
this paper is the formulation and comparison of models for VRPTWTD along
with a generic and efficient solution approach.

There is a vast amount of literature on VRPTW and its variants. VRPTW
is known to be NP-hard (Savelsbergh, 1985); nevertheless exact solution of the
problem has received a lot of attention. The most successful approach is based on
a Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) of the mathematical
model using column generation in a branch-and-cut-and-price framework. The
method was first proposed by Desrochers et al. (1992). The most promising
recent work is based on solution of the subproblem as an elementary shortest
path problem with time windows and capacity constraints. Feillet et al. (2004)
were the first to apply this idea and were followed by Chabrier (2006), Danna
and Pape (2005), Jepsen et al. (2008), and Desaulniers et al. (2008) among
others. The approach that we present here for VRPTWTD builds on the same

196
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

idea. See Kallehauge et al. (2005) for a recent review of the literature and a
thorough description of the technique.

The motivation behind this work is the many practical applications of
VRPTWTD. With the inclusion of temporal dependencies in the model, we
are able to describe numerous concrete problems. As Kilby et al. (2000) point
out, there is a need for more sophisticated models for the vehicle routing prob-
lem. They mention synchronization and precedence constraints as some of the
relevant extensions.

Ioachim et al. (1999) describe a fleet assignment and routing problem with syn-
chronization constraints. The problem is solved by column generation. A similar
problem with synchronization is described by Bélanger et al. (2006). Rousseau et
al. (2003) present the synchronized vehicle dispatching problem (SVDP), which
is a dynamic vehicle routing problem with synchronization between vehicles.
Constraint programming and local search are applied to arrive at high-quality
feasible solutions. Lim et al. (2004) and Li et al. (2005) study a problem from
the Port of Singapore, where technicians are allocated to service jobs. For each
job, a certain combination of technicians with individual skills is needed. The
technicians must be present at the same time, and hence the schedule for each
technician must respect a number of synchronization constraints with other
schedules. The problem is solved using metaheuristics. Another application
with synchronization between visits is in ground handling at airports. Teams
drive around at the airport and are assigned tasks on the parked aircraft. Dohn
et al. (2009b) describe this setup and present exact solutions to the instances
considered. Oron et al. (2008) consider ground handling with synchronization
constraints as well, and present computational results for a tailored heuristic
applied to data instances from an in-flight caterer in Malaysia. Bredström and
Rönnqvist (2007) present an application of vehicle routing with synchronization
constraints in home health care. A branch-and-price algorithm is applied to a
realistic home care routing problem and yields promising results.

The generalization of synchronization to other temporal dependencies has been
described for a few applications. Lesaint et al. (1998) present a workforce
scheduling software from a practical perspective. In the problem described,
both synchronization and various other sequencing constraints occur. Fügen-
schuh (2006) describes a problem in school bus routing. Busses must wait for
each other at various intermediate stops and hence precedence relations are in-
troduced for such stops. Fügenschuh refers to the problem as the vehicle routing
problem with coupled time windows. Doerner et al. (2008) describe an applica-
tion in blood collection from satellite locations for a central blood bank. Mul-
tiple visits at each location have to be scheduled with a certain slack between
them. They refer to the vehicle problem as having interdependent time win-
dows. Bredström and Rönnqvist (2008) modeled temporal dependencies for a

E.2 Model 197

home care routing problem in a mixed integer programming model (MIP) which
was solved with a standard MIP solver. In Justesen and Rasmussen (2008) and
Dohn et al. (2008c) a similar application is described and solved using branch-
and-price. Bredström and Rönnqvist (2008) have also continued their work in
this direction. An application with general temporal dependencies in machine
scheduling is described by van den Akker et al. (2006). Column generation is used
to solve the problem. The pricing problem is primarily solved heuristically by
local search and occasionally to optimality using a standard solver on an integer
programming formulation of the pricing problem. van den Akker et al. (2000)
and Bigras et al. (2008) describe machine scheduling problems and propose to
apply column generation approaches to time-indexed formulations. Hence, their
models have some similarities to the time-indexed formulation presented in this
paper.

The paper is organized as follows. In Section E.2, we present two valid compact
formulations of VRPTWTD. Possible decompositions of the compact formula-
tions are presented and compared in Section E.3. For the decomposed models, a
tailored branching method is required, which is described in Section E.4. A set
of test instances are introduced in Section E.5 and the test results for these are
found in Section E.6. Finally, we conclude on our findings and discuss possible
areas for future research in Section E.7.

E.2 Model

In the following, we present two valid model formulations for VRPTWTD,
namely a mixed-integer formulation that we refer to as the direct formulation
and a time-indexed formulation. The mixed-integer formulation is an extension
of the model commonly used for VRPTW, whereas a time-indexed model has
not received the same amount of attention.

In the traditional vehicle routing problem with time windows, the objective is
to find the cheapest set of routes to a set, C, of n customers. Given is a fleet of
identical vehicles, V, which are located at a central depot. Typically, the depot
is represented as two locations, namely a start depot, 0, and an end depot, n+1.
Together with all customers, they form the set, N . All vehicles have a capacity
of q. Each customer, i, has a demand, di, and a time window, where it accepts
service [αi, βi]. αi is the first possible service time. The vehicle is allowed to
arrive before this time, but must then wait at the customer for the time window
to open. βi is the latest possible time of initiation at customer i. [α0, β0] denotes
the scheduling horizon of the problem. Vehicles start at the depot at time α0

and must return to the end depot no later than β0. τij gives the travel time

198
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

between any two customers, i and j. This may include service time at customer
i. Traveling between the two customers also incurs a certain cost given by cij .
We assume that q, di, αi, βi, and cij are non-negative integers and that τij are
positive integers, respecting the triangular inequality.

E.2.1 Direct formulation

The mathematical model of VRPTW is presented below. xijk are binary vari-
ables with xijk = 1, if vehicle k drives directly from customer i to customer j,
xijk = 0, otherwise. sik are continuous variables and are defined as the start
time for service at customer i, if the customer is serviced by vehicle k. Other-
wise, sik = 0. Without restricting the model, we can fix s0k = α0,∀k ∈ V and
sn+1,k = β0,∀k ∈ V.

min
∑
i∈N

∑
j∈N

∑
k∈V

cijxijk (E.1)

∑
j∈N :j 6=i

∑
k∈V

xijk = 1 ∀i ∈ C (E.2)

∑
i∈C

di
∑
j∈N

xijk ≤ q ∀k ∈ V (E.3)

∑
j∈N

x0jk = 1 ∀k ∈ V (E.4)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ C,∀k ∈ V (E.5)

∑
i∈N

xi,n+1,k = 1 ∀k ∈ V (E.6)

sik + τij −M(1− xijk) ≤ sjk ∀i, j ∈ N ,∀k ∈ V (E.7)

αi
∑
j∈N

xijk ≤ sik ≤ βi
∑
j∈N

xijk ∀i ∈ C,∀k ∈ V (E.8)

xijk ∈ {0, 1} ∀i, j ∈ N ,∀k ∈ V (E.9)

The objective is to minimize the total cost of all edges traveled (E.1). All
customers must be visited by exactly one vehicle (E.2) and the route for each
vehicle must respect the capacity of that vehicle (E.3). (E.4) and (E.6) ensure
that each route starts and ends at the depot. We also need to ensure that routes
are not segmented, i.e. if a vehicle arrives at a customer, it eventually leaves that
customer again (E.5). If a vehicle is set to travel between two customers, there
has to be enough time between the two visits (E.7). Finally, we need to make

E.2 Model 199

sure that all time windows are respected (E.8). (E.8) also ensure that sik = 0
when vehicle k does not visit customer i. (E.9) are the integrality constraints
on xijk.

In VRPTWTD, we furthermore have a number of temporal dependencies be-
tween customers. We are able to express all of these by generalized precedence
constraints. We introduce the parameter δij which specifies the minimum dif-
ference in time from customer i to customer j. The set ∆ defines all customer
pairs (i, j) for which a temporal dependency exists. The generalized precedence
constraints are formulated as follows, where

∑
k∈V

sik is the start time of service

at customer i. ∑
k∈V

sik + δij ≤
∑
k∈V

sjk ∀(i, j) ∈ ∆ (E.10)

Constraint (E.10) can be used to model all the temporal dependencies that were
observed in the literature review. There may be dependencies between several
customers, e.g. synchronization of three or more customers. Such dependencies
are modeled by applying the corresponding pair wise dependencies. In this
paper, we will focus on five kinds of temporal dependencies that are commonly
found in practice. These are visualized in Figure E.1.

i

j

)a()b()e()c()d(

Figure E.1: Five kinds of temporal dependencies that are often encountered in
practice. Each of the five subfigures shows the time windows of two customers
i and j with a temporal dependency between them. Assuming some start time
for customer i, the dashed line together with the arrows give the corresponding
feasible part of the time window of customer j. (a) synchronization, (b) over-
lap, (c) minimum difference, (d) maximum difference, (e) minimum+maximum
difference.

It is straight forward to model the temporal dependencies of Figure E.1 using
constraints (E.10). The correct values for δij and δji are listed in Table E.1.

200
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

Temporal dependency δij δji
(a) Synchronization 0 0
(b) Overlap −durj −duri
(c) Minimum difference diffmin N/A
(d) Maximum difference N/A −diffmax

(e) Minimum+maximum difference diffmin −diffmax

Table E.1: Parameter values for the five temporal dependencies of Figure E.1.
duri is the service time at customer i. diffmin and diffmax are, respectively, the
minimum and maximum differences required.

E.2.2 Time-indexed formulation

Time-indexed formulations have not received much attention in the column
generation context of VRPTW. A time-indexed formulation is usually disre-
garded because of its vast size. It is, however, popular in the formulation of
machine scheduling problems, as it gives a tight description of precedence con-
straints. Here, we present the time-indexed model of VRPTWTD, as it will
be used to strengthen the bounds in the branch-and-price algorithm. We in-
troduce the index t ∈ T on the x-variable, with T = {α0, . . . , β0}. xijkt is
defined as: xijkt = 1, if vehicle k services customer i at time t and then drives
directly to customer j. xijkt = 0, otherwise. Further, define the auxiliary sets
T τtij = {α0, . . . ,min{β0, t+ τij − 1}} and T δtij = {α0, . . . ,min{β0, t+ δij − 1}}.

E.2 Model 201

min
∑
i∈N

∑
j∈N

∑
k∈V

∑
t∈T

cijxijkt (E.11)

∑
j∈N :j 6=i

∑
k∈V

∑
t∈T

xijkt = 1 ∀i ∈ C (E.12)

∑
i∈C

di
∑
j∈N

∑
t∈T

xijkt ≤ q ∀k ∈ V (E.13)

∑
j∈N

∑
t∈T

x0jkt = 1 ∀k ∈ V (E.14)

∑
i∈N

∑
t∈T

xihkt −
∑
j∈N

∑
t∈T

xhjkt = 0 ∀h ∈ C,∀k ∈ V (E.15)

∑
i∈N

∑
t∈T

xi,n+1,kt = 1 ∀k ∈ V (E.16)∑
k∈V

∑
t′=t,...,β0

xijkt′ +
∑
h∈N

∑
k∈V

∑
t′∈T τtij

xjhkt′ ≤ 1 ∀i, j ∈ N ,∀t ∈ T (E.17)

∑
h∈N

∑
k∈V

∑
t′=t,...,β0

xihkt′ +
∑
h∈N

∑
k∈V

∑
t′∈T δtij

xjhkt′ ≤ 1
∀(i, j) ∈ ∆,
∀t ∈ T (E.18)

xijkt = 0
∀i ∈ C, j ∈ N ,∀k ∈ V,
∀t ∈ {α0, . . . , αi − 1}
∪{βi + 1, . . . , β0}

(E.19)

xijkt ∈ {0, 1}
∀i, j ∈ N ,∀k ∈ V,
∀t ∈ T (E.20)

Constraints (E.11)–(E.16) are similar to Constraints (E.1)–(E.6), where we now
sum over the time index as well. Constraints (E.17) provide the required travel
time between customers. If any vehicle goes directly from customer i to customer
j, and if customer i is scheduled at time t or later, then j cannot be scheduled
at time t+τij−1 or earlier. The strength of this model lies in the formulation of
generalized precedence constraints (E.18). Constraints (E.18) are the equivalent
of Constraints (E.10) of the former model. Similarly to the former constraints,
these constraints state that if customer i is scheduled anywhere from time t
and onward, then customer j is not scheduled before time t+ δij . This is valid
for all t ∈ T . Constraints (E.19) enforce the time windows and (E.20) are the
integrality constraints.

202
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

E.3 Decomposition

As described earlier, Dantzig-Wolfe decomposition has been very successful in
exact optimization of VRPTW. The decomposition splits the problem into a
set-partitioning master problem and a resource constrained shortest path sub-
problem. See e.g. Kallehauge et al. (2005) for a thorough exposition. In the tra-
ditional VRPTW formulation, Constraints (E.2) are the only constraints that
link the vehicles. Without these, we can solve the problem separately for each
vehicle. Hence, the problem is split into a subproblem, where feasible routes are
generated and a master problem, where these routes are combined.

E.3.1 Master problem

We propose four applicable formulations of the master problem and rank them
according to the tightness with which they describe the solution space.

Direct formulation

The introduced generalized precedence constraints apply to routes from separate
vehicles, and hence these will be part of the new master problem. In the full
master problem, we have the set of all feasible routes, R. Each route has a cost
of cr and is defined by the customers visited and the time of each such visit,
described by two parameters, ari and sri . For each route, r, and each customer,
i, if customer i is in the route r, we set ari = 1 and set sri equal to the time of
that visit. If the customer is not in the route, ari = 0 and sri = 0. In column
generation, the variables of the master problem are generated iteratively and
the set of variables available in a specific iteration is denoted R′ . Decision
variables for the master problem are denoted λr, with λr = 1, if route r is used,
and λr = 0, otherwise. The LP-relaxation of the master problem defined by
a subset of the decision variables, R′ , is denoted the restricted master problem
and is formulated below. The master problem is obtained by decomposing the
compact direct formulation (E.1)-(E.10).

E.3 Decomposition 203

min
∑
r∈R′

crλr (E.21)

∑
r∈R′

ariλr = 1 ∀i ∈ C (E.22)

∑
r∈R′

sriλr + δij ≤
∑
r∈R′

srjλr ∀(i, j) ∈ ∆ (E.23)

λr ≥ 0 ∀r ∈ R
′

(E.24)

The corresponding subproblem is that of generating negative reduced cost routes
for the master problem (E.21)–(E.24). In this context, we refer to the model
as the direct formulation. The main disadvantage of the model is that it intro-
duces linear time costs in the subproblem, namely the dual variables of Con-
straints (E.23). Hence, the subproblem is a resource constrained shortest path
problem with linear node costs. Another issue is that sri is a non-binary param-
eter, and the introduction of non-binary parameters in the master problem is
usually a feature that leads to highly fractional solutions.

Time-indexed formulation

In the time-indexed formulation, the master problem contains only binary pa-
rameters. Constraints (E.12) and (E.18) link the vehicles and must therefore
remain in the master problem. The parameters of the time-indexed master
problem are defined as arit = 1 if customer i is scheduled at time t in route r,
and arit = 0 otherwise. The decision variable λr has the same definition as in the
previous model. The relation to the decision variables of model (E.11)-(E.20)
is:

∑
j∈N

∑
k∈V

xijkt =
∑
r∈R′

aritλr,∀i ∈ C,∀t ∈ T . The restricted master problem of

the time-indexed formulation is:

min
∑
r∈R′

crλr (E.25)

∑
r∈R′

∑
t′∈T

ar
it′
λr = 1 ∀i ∈ C (E.26)

∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′∈T δtij

ar
jt′
λr ≤ 1 ∀(i, j) ∈ ∆,∀t ∈ T (E.27)

λr ≥ 0 ∀r ∈ R
′

(E.28)

204
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

The obvious problem with the time-indexed restricted master problem (E.25)–
(E.28) is the number of constraints of type (E.27). The scheduling horizon
is usually large enough to make this model intractable in realistic problems.
The subproblem is a resource constrained shortest path problem with time-
dependent costs. The costs may be different for each time step. This is very
unlikely, however. Most of the constraints of type (E.27) will be non-binding
and this leaves the corresponding dual variables equal to 0. For the same reason,
we may choose to introduce them, only when they become violated.

Relaxed formulation

A third way of approaching the problem is to simply disregard the temporal de-
pendencies in the master problem. The dependencies must then be enforced by
the branching scheme. This approach is used for synchronization by Dohn et al.
(2009b) and Bredström and Rönnqvist (2007) and for generalized precedence
constraints by Justesen and Rasmussen (2008). It leaves the following master
problem, which is identical to the master problem of the VRPTW decomposi-
tion. Here, we refer to it as the relaxed formulation.

min
∑
r∈R′

crλr (E.29)

∑
r∈R′

ariλr = 1 ∀i ∈ C (E.30)

λr ≥ 0 ∀r ∈ R
′

(E.31)

Limited time-indexed formulation

In the time-indexed formulation (E.25)-(E.28), it is possible to include only a
subset of Constraints (E.27) and this idea is implemented in a limited version of
the time-indexed formulation. The formulation can be seen as a hybrid of the
time-indexed formulation and the relaxed formulation. Obviously, all general-
ized precedence constraints must be respected in a feasible solution. Therefore,
if a violation occurs for a generalized precedence constraint, which is not in the
subset of included constraints, the constraint is instead enforced by branching,
like in the relaxed formulation.

In our case, we have chosen to define the subset of generalized precedence con-
straints dynamically. More specifically, we only add cuts if they are maximally
violated, i.e. if the left hand side of constraint (E.27) is equal to 2. When a
cut has been added it stays in the model. Smaller violations are handled by

E.3 Decomposition 205

the branching scheme. How to identify violated constraints is described in more
detail in Section E.3.2.

Strength of the formulations

The relaxed formulation is obviously a relaxation of both the direct formulation,
the full time-indexed formulation, and the limited time-indexed formulation. An
interesting result is that the direct formulation is also a relaxation of the time-
indexed formulation, and we are hence able to rank the models according to
their strength.

Proposition 1 [The time-indexed master problem formulation is a stronger
formulation than the direct master problem formulation.]

Proof. In the following, we assume that we have a solution to (E.25)–(E.28)
and prove that the solution is also feasible for Constraints (E.21)–(E.24). For
all problems with a feasible solution, it holds that α0 + δij − 1 ≤ β0,∀(i, j) ∈ ∆
and hence a special case of (E.27) with t = α0 is:∑
r∈R′

∑
t′=α0,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,α0+δij−1

ar
jt′
λr ≤ 1 ∀(i, j) ∈ ∆ (E.32)

Using (E.26) this entails the rather obvious:∑
r∈R′

∑
t′=α0,...,α0+δij−1

ar
jt′
λr = 0 ∀(i, j) ∈ ∆ (E.33)

⇓∑
r∈R′

∑
t′=α0,...,t

ar
jt′
λr = 0

∀(i, j) ∈ ∆,
t = α0, . . . , α0 + δij − 2

(E.34)

⇓∑
r∈R′

∑
t′∈T

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,t

ar
jt′
λr = 1

∀(i, j) ∈ ∆,
t = α0, . . . , α0 + δij − 2

(E.35)

Summing Constraints (E.26), (E.35), and (E.27) over t, we get the following for
(i, j) ∈ ∆:

206
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

∑
r∈R′

∑
t′∈T

ar
it′
λr = 1

For t = α0, . . . , α0 + δij − 2 :∑
r∈R′

∑
t′∈T

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,t

ar
jt′
λr = 1

For t = α0, . . . , β0 :∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′=α0,...,min{β0,t+δij−1}

ar
jt′
λr ≤ 1

∑
r∈R′

∑
t′∈T

(t
′
− α0 + 1 + δij)a

r
it′
λr +

∑
r∈R′

∑
t′∈T

(β0 + δij − t
′
)ar
jt′
λr

≤ β0 − α0 + δij + 1

Therefore, for any feasible solution of (E.25)–(E.28), we have for (i, j) ∈ ∆:

0 ≤ β0 − α0 + δij + 1−
∑
r∈R′

∑
t′∈T

(t
′
− α0 + 1 + δij)a

r
it′
λr

−
∑
r∈R′

∑
t′∈T

(β0 + δij − t
′
)ar
jt′
λr (E.36)

=β0 − α0 + δij + 1−
∑
r∈R′

∑
t′∈T

t
′
aritλr − (−α0 + 1 + δij)

∑
r∈R′

∑
t′∈T

ar
it′
λr

− (β0 + δij)
∑
r∈R′

∑
t′∈T

ar
jt′
λr +

∑
r∈R′

∑
t′∈T

t
′
ar
jt′
λr (E.37)

=β0 − α0 + δij + 1−
∑
r∈R′

∑
t′∈T

t
′
ar
it′
λr + α0 − 1− δij

− β0 − δij +
∑
r∈R′

∑
t′∈T

t
′
ar
jt′
λr (E.38)

=
∑
r∈R′

∑
t′∈T

t
′
ar
jt′
λr −

∑
r∈R′

∑
t′∈T

t
′
ar
it′
λr − δij (E.39)

=
∑
r∈R′

srjλr −
∑
r∈R′

sriλr − δij (E.40)

The result in (E.38) is based on (E.26). The final result in (E.40) comes from
the following relation between the parameters of the models (E.21)–(E.24) and

E.3 Decomposition 207

(E.25)–(E.28): sri =
∑
t∈T

tarit. The result in (E.40) proves that any feasible

solution of (E.25)–(E.28) also respects (E.23). (E.22) is trivially respected as
ari =

∑
t′∈T

ar
it′

, and hence (E.21)–(E.24) is a relaxation of (E.25)–(E.28).

To illustrate that the two formulations are not equally strong, we consider the
following small example. Take two customers i = 1 and j = 2 with δ12 = 2.
Three simple routes cover these two customers with a1

1 = 1, a2
2 = 1, a3

2 = 1 and
s1

1 = 1, s2
2 = 2, s3

2 = 4 for model (E.21)–(E.24). In model (E.25)–(E.28) this
corresponds to a1

11 = 1, a2
22 = 1, a3

24 = 1. A solution with λ1 = 1, λ2 = 0.5, λ3 =
0.5 is feasible in (E.21)–(E.24) but not in (E.25)–(E.28). This is verified by
inspecting (E.23) for i = 1, j = 2:∑

r∈R′
sr1λr + δ12 ≤

∑
r∈R′

sr2λr ⇒ 1 + 2 ≤ 3

and (E.27) for i = 1, j = 2, t = 1:∑
r∈R′

(ar11λr + ar12λr + ar13λr + ar14λr) +
∑
r∈R′

(ar21λr + ar22λr) = 1 + 0.5 � 1

Using the above result, we can conclude that the full time-indexed formulation
is a stronger formulation than the direct formulation. The direct formulation in
turn is stronger than the relaxed formulation. In the same way, we also know
that the full time-indexed formulation is a stronger formulation than the limited
time-indexed formulation, which is stronger than the relaxed formulation. It
is not possible to rank the direct formulation and the limited time-indexed
formulation.

A nice property of the time-indexed model is that it has only been relaxed with
respect to integrality and this means that if we can restore integrality, we have
a feasible solution. In this paper, we will only consider branching to restore
integrality, and hence the advantage may not seem immediate. For VRPTW, a
significant amount of work has been done on cut generation to remove fractional
solutions. Such cuts could be added to the time-indexed model of VRPTWTD
as well, and this may restore integrality without the need of branching. See e.g.
the work of Kohl et al. (1999), Cook and Rich (2001), Lysgaard et al. (2004),
and Jepsen et al. (2008) for more on the subject.

208
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

E.3.2 Identifying violated cuts

As described earlier, the generalized precedence constraints (E.27) of the time-
indexed master problem (E.25)–(E.28) are only represented implicitly. The con-
straints are added as cuts, as they become violated. The constraint is repeated
below.

∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr +

∑
r∈R′

∑
t′∈T δtij

ar
jt′
λr ≤ 1 ∀(i, j) ∈ ∆,∀t ∈ T (E.27)

In theory, we have to check for violations for all t ∈ T , but actually it is possi-
ble to do with significantly less. As arit is a binary parameter and λr ≥ 0, the
sum

∑
r∈R′

∑
t′=t,...,β0

ar
it′
λr is non-increasing for increasing t. Correspond-

ingly, the sum
∑
r∈R′

∑
t′=α0,...,min{β0,t+δij−1} a

r
jt′
λr is non-decreasing. Con-

straints (E.27) are never violated for t = α0 as such violations are prevented
by preprocessing the time windows, see Section E.4.1. Therefore, for customer
i, we only need to check for violations with any t where ∃r ∈ R′ : aritλr > 0,
i.e. any point in time where customer i is scheduled (possibly with a fractional
value). It is easy to generate a list of all t where ∃r ∈ R′ : aritλr > 0, by running
through the routes of all variables with positive values and registering the time
of service for each customer. By separating cuts as described, we are not adding
all violated cuts, but we are sure to add at least one cut for each customer, if
any cuts are violated for that customer.

E.3.3 Subproblem

The subproblem of the Dantzig-Wolfe decomposition of VRPTW can be solved
as an elementary shortest path problem with time windows and capacity con-
straints (ESPPTWCC). Any feasible solution of the subproblem with negative
cost represents a column with negative reduced cost in the master problem and
may therefore enter the basis. The subproblem consists of Constraints (E.3)–
(E.9). The variables are defined as in the compact formulation, but now for
the single vehicle under consideration, i.e. the index k has been removed. The
objective function of the subproblem becomes:

min
∑
i∈N

∑
j∈N

(cij − πi)xij (E.41)

E.3 Decomposition 209

πi, i ∈ N , are the dual variables of Constraints (E.30) of the VRPTW master
problem. Dror (1994) proves that ESPPTW is NP-hard in the strong sense
and hence no pseudo-polynomial algorithms are likely to exist. The subproblem
is usually solved with a dynamic label setting algorithm. Desrochers et al.
(1992) presented a dynamic algorithm for the non-elementary version of the
subproblem. This algorithm was adjusted to handle the elementary problem
by Feillet et al. (2004) and superior results based on this method have been
presented recently, see e.g. Desaulniers et al. (2008). The idea in the label setting
algorithm is to represent partial paths by labels. Given a label for some partial
path, it is possible to expand the path by creating new labels in nodes that can
possibly extend the current partial path. The length of the path is increased by
one, and the process continues iteratively.

The subproblem of the direct formulation must consider the dual variables of
Constraints (E.22), πi, and additionally the dual variables of Constraints (E.23),
σij , and the objective function becomes:

min
∑
i∈N

∑
j∈N

(cij − πi)xij −
∑

(i,j)∈∆

σijsi +
∑

(j,i)∈∆

σjisi (E.42)

As described previously, the subproblem is now a resource constrained shortest
path problem with linear node costs, which makes it much harder to solve.
Ioachim et al. (1998) describe a dynamic algorithm to solve the acyclic version of
this problem. A similar cyclic problem is solved as a subproblem by Christiansen
and Nygreen (2005).

The subproblem of the time-indexed formulation has the following objective
function which we split in three parts for easy reference:

min
∑
i∈N

∑
j∈N

(cij − πi)
∑
t∈T

xijt (E.43a)

−
∑

(i,j)∈∆

∑
t∈T

∑
t′=α0,...,t

ρijt′xijt (E.43b)

−
∑

(j,i)∈∆

∑
t∈T

∑
t′=max{α0,t−δji+1},...,β0

ρjit′xijt (E.43c)

where πi are the dual variables of Constraints (E.26) and ρijt are the non-
positive dual variables of Constraints (E.27). In the worst case, this objective
function introduces a distinct cost for each time step. In a label setting algorithm

210
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

this means that we have to create a label for each time step and hence the
number of labels explodes immediately. In practice, only a few constraints of
type (E.27) are binding and therefore only few ρijt have non-zero values.

The idea in the basic label setting algorithm is to create and keep only labels
that are not dominated by better labels. With the objective function (E.43), we
have a lot of potential labels. It is, however, only an advantage to postpone a
visit, if it can possibly decrease the objective value. As ρijt ≤ 0 and xijt ∈ {0, 1},
adjusting time for a certain visit can only decrease the objective, if it removes
terms in (E.43b) or (E.43c). (E.43a) is neutral to service time of customers, i.e.
for a given transition (i, j) the contribution to the objective function coefficient
of xijt is the same for all t ∈ T . The smallest contribution from (E.43b) is
obtained by the smallest possible value of t as

∑
t′=α0,...,t

ρijt′ is non-increasing

over t for given i, j. Therefore, for customer i, we need a label for the earliest
possible time t0. Only the value of (E.43c) will decrease as t is increased (for
given i, j) and only when terms with ρjit′ < 0 are excluded. The value of (E.43c)
for t is lower than the corresponding sum for t− 1 when ρji(t−δji) < 0, i.e.:

ρji(t−δji) < 0⇒
∑

t′=max{α0,t−δji},...,β0

ρjit′ <
∑

t′=max{α0,t−δji+1},...,β0

ρjit′

The full objective function possibly decreases for such t and hence we need one
label for each t ∈ {t0 + 1, . . . , βi}, where ∃(j, i) ∈ ∆ : ρji(t−δji) < 0. For all
other potential labels, there will always be a label earlier in time with the same
or less cost.

A small improvement, that we found to have a significant effect, is to include
knowledge of mutually exclusive customers. Some temporal dependencies like
e.g. synchronization and overlap make it impossible to include both customers
in the same route. In these methods, such a restriction is imposed in the mas-
ter problem or in the branching scheme. Hence, routes could be generated that
would never occur in a feasible solution. By excluding the occurrence of mutually
exclusive customers in all routes generated in the subproblem, the LP-bounds
get stronger and as a consequence the algorithm is more efficient. The domi-
nance scheme in the subproblem solver is also modified to utilize this knowledge.
By visiting one of two mutually exclusive customers, the other becomes unreach-
able. Hence by updating the set of unreachable customers appropriately, two
labels which have visited two different mutually exclusive costumers can still be
compared in the dominance check, as their possible extensions are identical.

E.4 Branching 211

E.4 Branching

The master problem models presented in the previous section are relaxations.
Therefore, we may need to apply branch and bound in order to get to a feasible
solution. The λ-variables of the master problems were introduced as binary
variables, but the integer property has been relaxed to allow solution by an LP-
solver. Therefore, integrality needs to be restored by branching. A lot of work
has already been done for VRPTW in this respect. See e.g. Kallehauge et al.
(2005) for a review. In the relaxed formulation, the generalized precedence con-
straints have also been relaxed. Therefore, in this model, we need a branching
method that will also restore feasibility with respect to temporal dependencies.

Gélinas et al. (1995) proposed to branch on time variables in order to arrive
at integer-feasible solutions. This type of branching was also used to enforce
synchronization by Ioachim et al. (1999), Dohn et al. (2009b), and Bredström
and Rönnqvist (2007), and for general temporal dependencies by Justesen and
Rasmussen (2008). Time window branching is not complete with respect to
integer feasibility and hence has to be complemented by another branching
scheme, e.g. traditional flow variable branching.

E.4.1 Time window reduction

Before describing the actual branching scheme, we introduce a simple reduction
technique based on the generalized precedence constraints. For any two cus-
tomers, i and j with (i, j) ∈ ∆, it is possible to reduce the time windows as
follows:

Customer i Customer j
Old time windows [αi, βi] [αj , βj]
New time windows [αi,min{βi, βj − δij}] [max{αj , αi + δij}, βj]

These reductions are illustrated in Figure E.2. The reductions are used to
preprocess the time windows and may also be used anywhere in the branching
tree. This technique is essential when applying time window branching.

212
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

i

j

)b()c()d()a(

Figure E.2: Time window reductions. (a) The original time windows. (b)
Using the generalized precedence constraint, the first part of the time window
of customer j is removed. (c) In a similar way, the last part of the time window
of customer i is removed. (d) The time windows after the reduction.

E.4.2 Time window branching

In a feasible solution of VRPTWTD, all visits are scheduled at exactly one
point in time and all generalized precedence constraints are respected. In the
relaxed formulation, a solution may be integer feasible, but could still violate
precedence constraints. In the direct formulation and the time-indexed formu-
lation, an integer feasible solution will also respect precedence constraints. As
for VRPTW, we may still use time window branching to get integral solutions.
In the following, we use the relaxed formulation as a basis for introducing time
window branching, but it transfers easily to the other models.

Figure E.3 shows a violation of the precedence constraint between customers
j and i, in routes r1 and r2. By branching on the time window of customer
i and using the time window reduction rule of Section E.4.1 for (j, i), r1 and
r2 are prohibited in the left and right branch, respectively. Note that there is
no overlap between the time window of customer i in the left branch and the
corresponding time window in the right branch.

Later, we describe a strategy to wisely select the point in time, ts, where the
time window is split. If si + 1 ≤ ts ≤ sj + δji, the current solution will be
excluded from the solution space by using the reduction rule for (j, i). The
modified time windows of customer i become: [αi, t

s− 1] in the left branch and
[ts, βi] in the right branch.

The tightest formulation is reached if time windows are reduced as much as
possible. Therefore in both branches, we run through all relevant precedence
constraints with the new time window of customer i and reduce time windows
where possible. This may also reduce the time windows of other customers than
i and j, and this process is repeated iteratively, until no further reduction is
possible.

An interesting result is that this branching strategy is as strong as the one for-

E.4 Branching 213

: route in Customer 1rj

: route in Customer 2ri

:branch Left :branch Right

i

j

i

j

i

j

time split

i

j

i

j

reductionwindowtime

Figure E.3: Branching to avoid a violation of a precedence constraint.

merly proposed specifically for synchronization, by e.g. Ioachim et al. (1999).
In the less general context, the time windows of two synchronized customers
are, naturally, always identical. Branching is done on the two time windows
simultaneously, so they always stay identical. Synchronization modeled by two
generalized precedence constraints, also has this property when time window
reductions are applied. Assume that we have a synchronization constraint be-
tween customers i and j, i.e. δij = 0 and δji = 0 and hence αj = αi ∧ βj = βi.
For a given split time ts for customer i, the time windows become:

Customer i Customer j
Old time windows [αi, βi] [αi, βi]
TW (left branch) [αi, t

s − 1] [αi,min{βi, ts − 1− δji}] = [αi, t
s − 1]

TW (right branch) [ts, βi] [max{αi, ts + δij}, βi] = [ts, βi]

This is illustrated in Figure E.4. The time windows of i and j are identical in
each of the branches after applying time window reduction.

Usually, there are several branching candidates to choose from and we need a
strategy to choose one of these. Gélinas et al. (1995) elaborate further on this

214
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

: route in Customer 1rj

: route in Customer 2ri

:branch Left :branch Right

i

j

i

j

time split

reductionwindowtime

i

j

i

j

i

j

i

j

reductionwindowtime

Figure E.4: Branching on a generalized precedence constraint of a synchroniza-
tion constraint.

subject. When using strong branching (see e.g. Achterberg et al., 2005) a few
candidates are chosen for further probing. In any case, we need to specify a
priority ordering of candidates. First, we need to find the potential branching
candidates. In theory, we could branch on any time window and split it at
an arbitrary position. In practice, however, we limit this choice. We do not
want to consider candidates where the branching is without effect in one of the
branches, i.e. where one of the branches does not prohibit any columns of the
current solution. Also, many of the remaining candidates have an identical effect
on the current solution. They may still have a different effect on new columns,
but it is very hard to predict this impact. Figure E.5 (a) depicts some of the
potential branching candidates in the time window of customer i. Customer i
is a part of two routes that have been included in the solution with fractional
values and hence it appears at multiple positions within its own time window. In
this example we assume that the routes r2 and r3 are both in the solution with
a value of 0.5 and r1 and r4 with a value of 1. The effect on the current solution
of each candidate is shown in Table E.2. Candidates 1 and 6 are examples of
ineffective candidates. Candidates 2 and 3 have an identical effect on the current
solution.

In our approach, when choosing between candidates with an identical immediate

E.4 Branching 215

: route in Customer 1rj

: and route in Customer 32 rri

3

: route in Customer 4rk

4 521 6

4′ 5′

:candidates Customer i

)a(

)b(

1′

Figure E.5: Some potential branching candidates in the time window of cus-
tomer i.

Infeasible routes Sum of excluded variables
Left branch Right branch Left branch Right branch Preference

Candidate 1 r1, r2, r3 2 0 0
Candidate 2 r1, r3 r2 1.5 0.5 0.5
Candidate 3 r1, r3 r2 1.5 0.5 0.5
Candidate 4 r1, r3 r2, r4 1.5 1.5 1.5
Candidate 5 r1 r2, r3, r4 1 2 1
Candidate 6 r2, r3, r4 0 2 0

Table E.2: Effect of the branching candidates of Figure E.5.

effect, it is optimal to select the candidate which splits at the latest possible time.
For customer i, that split time coincides with either sri or with srj + δji for a
route r, which is in the current basis of the master problem.

In Figure E.5 (a), we prefer candidate 3 to candidate 2 as there is less chance
that r2 can be adapted to the new time window of the right branch. We prefer
candidate 4 to candidate 3 as it excludes the same or more in both branches.
Figure E.5 (b) shows the three candidates that we would actually consider for
the time window of customer i. The candidates 1′, 4′, and 5′ get the same
values as 1, 4, and 5, respectively, in Table E.2. Remember that these are just
the candidates of customer i. There will be similar candidates for each of the
other customers. We find the candidates for customer i by running through all
routes that are included in the solution with a positive value. If customer i is in
the route, the start time of the customer is a candidate (ts = si). If the route
includes a customer j, where (j, i) ∈ ∆ the route contributes with a candidate
for customer i with split time ts = sj + δji.

216
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

The preference of late split times is due to the following algorithmic considera-
tions: The label setting algorithm, which is used to generate routes, schedules
visits at the earliest possible time in any route. Hence, it is impossible to sched-
ule the visit earlier without rerouting. In the left branch, the service time of a
customer will be forced to decrease by at least one time unit and hence rerouting
is required. In the right branch, the current conflict is resolved, as the start of
the new time window is equal to sri or srj + δji which generated the branching
candidate in the first place.

In this paper, the problems are solved to optimality, which means that every
node in the branch-and-bound tree must be either explored or pruned. Hence,
we aim for a small, but at the same time, balanced tree. To achieve this, we
rank the branching candidates according to the corresponding sums of excluded
variables in the two branches. A candidate gets the value of the minimum of the
two sums, and hence only the worst of the branches counts. A large value of a
candidate is equal to a high preference. Hence, we prefer branching candidates
which exclude as much as possible in the least effective branch. In the example,
candidate 4 is preferred, as it excludes 1.5 routes in each branch, giving it a
preference ranking of 1.5.

If the aim is to get high-quality solutions, but not necessarily optimal solutions,
in a short time, it may be better to choose branching candidates where one of
the branches is more promising than the other. This may then be utilized in
a heuristic search of the branch-and-bound tree. This idea has been used in
several other contexts, see e.g. Ryan (1992).

E.5 Benchmark instances

A set of benchmark instances has been used in the following quantitative analysis
of the problem and in a comparison of the different models. The instances are ex-
tensions of the 56 well known VRPTW-instances of Solomon (1987). Solomon’s
VRPTW-instances have been used extensively in existing literature and new
solution algorithms for VRPTW are often tested on these to indicate algorithm
performance. The data sets are well suited for the tests, as they represent a
wide range of problems with varying structure. The locations of customers are
in some instances uniformly distributed over whole area. In others, customers
are located in clusters. The time windows of customers are also varied to test
both very tight and very loose time window constraints. The data sets consist
of a number of customers with a geographical location, a time window, service
time, and a demand along with the number of available vehicles, their capacity,
and the scheduling horizon. The instances are publicly available. We take the

E.5 Benchmark instances 217

original instances and introduce temporal dependencies of various types to these
instances. We have chosen to look at the instances with 25 and 50 customers,
as these are small enough to allow quick solution of the basic problem. Some
of them still prove hard to solve as temporal dependencies are introduced. A
thorough analysis is carried out on the instances with 25 customers, as most
of these can be solved within one hour. Tests on instances with 50 customers
are also included, to assess how the findings for 25 customers scale to larger
instances.

Five sets of instances were made: one for each of the five temporal dependencies
of Figure E.1, except maximum difference, and one set with a random com-
bination of the other four (Random Combination). The reason for omitting
maximum difference is its similarity to minimum difference. When we generate
instances randomly, the two types are actually identical. For all instances, a
list of temporal dependencies is created for each of the five types. All random
values are drawn from uniform distributions, and the list is generated randomly
in the following way:

1. Determine the type of the next temporal dependency to be added (For
Random Combination this choice is random, and for all other types it is
fixed).

2. Choose, at random, two visits, i and j, which are not already directly or
indirectly interdependent. Visits are indirectly interdependent if there is
a chain of dependencies from one to the other, e.g. if they both have a
dependency on a certain visit, but not directly on each other. We require
independency between the visits to avoid infeasible cycles of dependencies.

3. Check if it is possible to impose a temporal dependency between i and j. If
not possible, go to 2. If it is impossible to add more temporal dependencies
of this type, go to 1. If it is impossible to add more temporal dependencies
altogether, exit.

4. Draw random values for the temporal dependency. diffmin and diffmax are
random numbers drawn from all values that do not make the problem
infeasible and that impose a constraint which is more strict than that
already given by the time windows. For Synchronization and Overlap all
values are fixed.

5. Set values of δij and δji according to Table E.1.

6. Reduce time windows as explained in Section E.4.1. This is necessary to
ensure that all instances are feasible.

7. Go to 1.

218
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

As we do not allow cycles of dependencies, it is not possible to add more than
n − 1 temporal dependencies, where n is the number of customers. In some
cases, the number may be smaller than this. E.g. for the very strict synchro-
nization constraint, it is obviously not possible to impose n−1 synchronizations,
corresponding to a synchronization of all visits, if some of the visits have non-
overlapping time windows. This results in fewer test instances for some instances
sets.

The addition of temporal dependencies to the instance set leads to a very large
number of new test instances. For every one of the original instances we have
five sets of dependencies and for each of these sets we can choose to use from 0
to n − 1 dependencies. Hence for instances with 25 customers, we are able to
run 125 tests for each of the original instances (except for a few cases, where
it was not possible to generate n − 1 dependencies). This totals to 7000 tests
and gives a good statistical foundation for the test results presented in the next
section. The data files containing the parameters for the randomly generated
temporal dependencies are available from the authors on request. We have also
generated similar files for instances of size 50 and 100.

E.6 Test results

The intention of this section is to give a general overview of the complexity of
vehicle routing problems with temporal dependencies. The tests are summarized
in graphs that capture the trends we see in the tests overall.

The algorithms are implemented in the branch-and-cut-and-price framework
of COIN-OR (Lougee-Heimer, 2003; Coin, 2006). The tests have been run on
2.2 GHz AMD processors with 2 GB RAM. Based on preliminary tests, the
algorithm is set to do strong branching with three candidates and add up to
five variables with negative reduced cost per iteration. For as long as possi-
ble, columns are generated by a heuristic version of the label setting algorithm
similar to the one proposed by Chabrier (2006).

The direct formulation is expected to lead to highly fractional solutions, as gen-
eralized precedence constraints can be respected by linearly combining routes,
where a particular customer has varying start times. Furthermore, the sub-
problem is a resource constrained shortest path problem with linear node costs,
which is significantly harder to solve, than the other subproblems presented.
To our knowledge, no exact solution methods for this problem exist in the lit-
erature. The method of Ioachim et al. (1998) could probably be adapted to
the cyclic case, but the efficiency is questionable. Therefore, the computational

E.6 Test results 219

Time-indexed Time-indexed Relaxed
formulation formulation formulation
(all cuts) (limited)

Solved Solved Solved Solved Solved Solved
Instances in the before in the before in the before
in total root timeout root timeout root timeout

Synchronization 1148 483 1027 448 1141 138 1143
Overlap 1324 351 1058 322 1207 127 1240
Minimum difference 1400 741 1350 703 1377 226 1381
Min+max difference 1400 531 1226 465 1361 105 1384
Random mix 1400 506 1271 459 1382 155 1383

Table E.3: Overview of the test results for instances with 25 customers. Time
out is one hour.

experiments of this paper do not include the direct formulation.

To give an idea of the overall performance of the remaining three approaches,
the test results are summarized in Table E.3. As described in Section E.5, five
sets of instances were generated, and the table shows a clear tendency for all five
types. The full time-indexed formulation solves the largest number of instances
in the root node, as expected. The instances solved in the root node by the
relaxed formulation are a subset of those solved in the root node by the limited
time-indexed model which again is a subset of those of the full time-indexed
formulation. The numbers in the table illustrate this relationship. When looking
at the number of instances solved before timeout, the tendency is reversed. The
relaxed formulation is capable of solving the largest number of instances for all
five types. However, the performance of the limited time-indexed model is in
all cases almost as good as that of the relaxed model. Interestingly, the Overlap
instances seem harder to solve than the other types.

Table E.4 summarizes the results for the 50 customer instances. Incrementing
the number of temporal dependencies with one between each test, would result
in 14000 tests, as the temporal dependency generation scheme can generate 49
dependencies for each of the 5 types for all 56 original instances. To limit the
extend of the test, we have chosen to test only for 5, 15, 25, 35, and 45 temporal
dependencies. This limits the maximum number of tests to 1400 in total. As
can be observed from Table E.4, the results are similar to those of Table E.3.
In all cases, a smaller ratio of the instances can be solved within an hour and
a significant drop, in the number of instances solved in the root, is observed,
compared to the instances with 25 customers. Interestingly, the limited time-
indexed model now performs slightly better than the relaxed model.

220
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

Time-indexed Time-indexed Relaxed
formulation formulation formulation
(all cuts) (limited)

Solved Solved Solved Solved Solved Solved
Instances in the before in the before in the before
in total root timeout root timeout root timeout

Synchronization 242 56 158 45 201 5 196
Overlap 276 24 121 23 156 2 150
Minimum difference 280 66 196 58 205 7 202
Min+max difference 280 50 108 44 135 3 134
Random mix 280 33 140 28 189 1 183

Table E.4: Overview of the test results for instances with 50 customers. Time
out is one hour.

In the remainder of this section, we have chosen to focus on two of the 25 cus-
tomer instance sets, namely instances with only synchronization relations and
a set with a random mix of the five temporal dependencies of Table E.1. These
two sets have been chosen as the first represents a large group of practical ap-
plications and the latter does not hold any particular structure. The statements
made in the following are in full accordance with the other instance sets.

The root node lower bound sometimes coincides with the value of the optimal
solution. In such cases, we often find the optimal solution at the root node.
As this results in low computation times, it is interesting to see how often it
happens.

0 5 10 15 20 25
0

10

20

30

40

50

60

Number of temporal dependencies

N
um

be
r

of
 in

st
an

ce
s

so
lv

ed
 in

 r
oo

t

Synchronization

Number of instances
Time−indexed formulation (all cuts)
Time−indexed formulation (limited)
Relaxed formulation

0 5 10 15 20 25
0

10

20

30

40

50

60

Number of temporal dependencies

N
um

be
r

of
 in

st
an

ce
s

so
lv

ed
 in

 r
oo

t

Random mix

Number of instances
Time−indexed formulation (all cuts)
Time−indexed formulation (limited)
Relaxed formulation

Figure E.6: Number of instances solved at the root node of the branch-and-
bound tree.

E.6 Test results 221

In Figure E.6 the total number of instances solved at the root node is given,
summarized over all 56 instances. We clearly observe the strength of the time-
indexed formulation. There is a significant increase in the number of instances
solved at the root node compared to the relaxed formulation. Interestingly,
there is not much difference from the full formulation to the limited version. In
the relaxed formulation, if a problem can be solved at the root node, it means
that all temporal dependencies were respected by chance, and hence they would
not have been very constraining. Figure E.7 gives the number of nodes in the
branch-and-bound tree (the mean over all instances) and the conclusions are the
same as for Figure E.6. As we would expect for the relaxed formulation, we see
that the number of nodes increases with the number of temporal dependencies.
This does not seem to be the case for the time-indexed formulation.

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

Number of temporal dependencies

N
um

be
r

of
 b

ra
nc

h−
an

d−
bo

un
d

no
de

s
(m

ea
n)

Synchronization

Time−indexed formulation (all cuts)
Time−indexed formulation (limited)
Relaxed formulation
No temporal dependencies

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

Number of temporal dependencies

N
um

be
r

of
 b

ra
nc

h−
an

d−
bo

un
d

no
de

s
(m

ea
n)

Random mix

Time−indexed formulation (all cuts)
Time−indexed formulation (limited)
Relaxed formulation
No temporal dependencies

Figure E.7: Number of nodes in the branch-and-bound tree.

Another interesting aspect is the solution time. We examine the solution time
for each of the instances individually and we also consider the general trend.
The variation on solution time is large between the instances. Hence, an average
of these values would emphasize the harder instances. We want all instances
to count equally and therefore, we normalize the values by comparing each
computation time to the solution time for the same problem without temporal
dependencies. The mean over all instances is shown in Figure E.8.

Looking at Figure E.8, it is clear that the time-indexed formulation is worse
than the other two with respect to solution time. Closer inspection shows that
the full time-indexed formulation has a few instances where computation time
is excessive and this has a major impact on the mean value.

In connection with solution time, it is also interesting to make a direct compar-
ison between the approaches for each instance. For each number of temporal
dependencies, we count the number of instances where the limited time-indexed

222
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Number of temporal dependencies

N
or

m
al

iz
ed

 s
ol

ut
io

n
tim

e
(m

ea
n)

Synchronization

Time−indexed formulation (all cuts)
Time−indexed formulation (limited)
Relaxed formulation
No temporal dependencies

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Number of temporal dependencies

N
or

m
al

iz
ed

 s
ol

ut
io

n
tim

e
(m

ea
n)

Random mix

Time−indexed formulation (all cuts)
Time−indexed formulation (limited)
Relaxed formulation
No temporal dependencies

Figure E.8: Normalized solution time (mean).

approach is faster than the relaxed formulation and vice versa. The results are
summarized in Figure E.9. Looking at the instances individually, the limited
time-indexed approach seems a little better.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

Number of temporal dependencies

N
um

be
r

of
 in

st
an

ce
s

so
lv

ed
 fa

st
er

Synchronization

Limited time−indexed formulation faster
Equally fast
Relaxed formulation faster
Timeout for both formulations

0 5 10 15 20 25
0

10

20

30

40

50

60

70

Number of temporal dependencies

N
um

be
r

of
 in

st
an

ce
s

so
lv

ed
 fa

st
er

Random mix

Limited time−indexed formulation faster
Equally fast
Relaxed formulation faster
Timeout for both formulations

Figure E.9: Number of tests where one of the approaches is faster than the
other. The two approaches are considered equally fast if they are within 20% of
each other.

Finally, we look at the distribution of time spent in the algorithm. This is
illustrated in Figure E.10. The solution procedure in each node of the branch-
and-bound tree consists of three parts, namely cut generation, variable (column)
generation, and solution of the LP master problem. The times of Figure E.10
sum the time spent in all nodes of the tree. The branching time reported is the
time used to select branching candidates. As strong branching is applied, this
selection also involves the solution of a limited number of LP problems. There
may be an overhead on time from memory management, primarily. Therefore,
the four components illustrated of the figure do not sum to exactly 100%.

E.6 Test results 223

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Branching
Solving LP−problems
Variable generation
Cut generation

0 5 10 15 20 25
0

50

100
Synchronization

0 5 10 15 20 25
0

50

100

T
im

e
di

st
rib

ut
io

n
(P

er
ce

nt
)

0 5 10 15 20 25
0

50

100

Number of temporal dependencies

0 5 10 15 20 25
0

50

100
Random mix

0 5 10 15 20 25
0

50

100

T
im

e
di

st
rib

ut
io

n
(P

er
ce

nt
)

0 5 10 15 20 25
0

50

100

Number of temporal dependencies

Figure E.10: Distribution of solution time for the time-indexed model (top), the
limited time-indexed model (middle), and the relaxed model (bottom).

From Figure E.10, we observe that for the time-indexed formulation, the portion
of time spent in the LP-solver increases as problems with more temporal depen-
dencies are considered. This is due to the fact that more cuts are added and
hence the size of the LP-model increases. For the relaxed formulation, the ten-
dency is, not surprisingly, that more time is spent branching when the number
of temporal dependencies increases. The share of time spent by the LP-solver
is, in this case, stable.

On the basis of the tests, we are able to conclude that the temporal dependencies
introduce additional complexity to the problem, as expected. The time-indexed
formulation has the worst immediate performance, but may be more useful for
large instances with harder pricing problems. The performance of the limited
time-indexed approach and the relaxed formulation is comparable. A few in-
stances of each type turn out to be very hard to solve, no matter what method
is used. The time-indexed formulation does have a number of nice features that
could be utilized in future development. It has tighter bounds, both theoreti-
cally and in the practical instances that we have examined. The tighter bounds
mean that more instances are solved at the root node of the branch-and-bound
tree, and in these cases this formulation gives better results. Also, for instances
where the solution is not found at the root node, the branch-and-bound tree is
still significantly smaller than the corresponding tree for the relaxed formula-
tion. The number of variables that has to be generated is also generally smaller
for the time-indexed formulation. For most realistic problems, variable gener-
ation is the dominating factor of the overall solution time, and in these cases

224
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

the time-indexed formulation may be the better choice, as the LP solution time
becomes less important.

E.7 Conclusions and future work

The vehicle routing problem with time windows and temporal dependencies has
been introduced. The problem has previously been treated in various practical
contexts in different forms, but this is the first generic analysis presented in the
literature. Four different models were presented and ranked according to their
theoretical strength. The time-indexed model has the tightest formulation and
hence gives the best bounds, but the number of constraints is too large for them
to be included explicitly. Instead, the model was implemented in a branch-and-
cut-and-price framework, where both constraints and variables are generated
dynamically. As this approach is novel, it was described how to efficiently
identify violated cuts and the necessary adjustments in the pricing problem were
introduced. The branching scheme was presented next. The scheme is based on
the traditional time window branching, where the scheme is also used to restore
feasibility with respect to temporal dependencies. The branching scheme is as
strong as and more general than the previously presented branching scheme for
routing with synchronization. Finally, benchmark instances were introduced
and a quantitative analysis was carried out.

The analysis showed that, even though the time-indexed model has some nice
properties, it also retains its major drawback, namely the number of constraints.
As a consequence, a hybrid method was implemented, where only a limited
number of the violated cuts are added. This approach kept most of the nice
features of the time-indexed model, while at the same time lowering the solution
time to the same level as that of the relaxed model.

The model presented in this paper is general and is therefore applicable to
various practical problems. Future work could be on an adaption to real world
problems. Another very interesting direction for future research is to include
additional cuts. Using the time-indexed formulation, we were able to solve many
instances at the root node of the branch-and-bound tree, and this number could
be increased by introducing additional cuts. From e.g. Desaulniers et al. (2008)
it is clear that the number of nodes can be limited severely by including cuts,
especially for large instances. In many cases, the problems are solved in the root
node. The performance of the time-indexed model was clearly better than the
relaxed model for the instances, where the optimal solution was obtained at the
root node.

E.7 Conclusions and future work 225

Acknowledgements

The authors thank the anonymous referees for constructive comments on an
earlier version of this paper. The first author was supported by the EliteForsk-
grant of the Danish Ministry of Science, Technology and Innovation.

References

Achterberg, T., T. Koch, and A. Martin (2005). “Branching Rules Revisited”.
In: Operations Research Letters 33.1, pp. 42–54.

Bélanger, N., G. Desaulniers, F. Soumis, and J. Desrosiers (2006). “Periodic
airline fleet assignment with time windows, spacing constraints, and time
dependent revenues”. In: European Journal of Operational Research 175.3,
pp. 1754–1766.

Bigras, L.-P., M. Gamache, and G. Savard (2008). “Time-Indexed Formula-
tions and the Total Weighted Tardiness Problem.” In: INFORMS Journal
on Computing 20.1, p. 133.

Bredström, D. and M. Rönnqvist (2007). A branch and price algorithm for the
combined vehicle routing and scheduling problem with synchronization con-
straints. Tech. rep. Department of Finance, Management Science, Norwegian
School of Economics, and Business Administration.

Bredström, D. and M. Rönnqvist (2008). “Combined vehicle routing and
scheduling with temporal precedence and synchronization constraints”. In:
European Journal of Operational Research 191.1, pp. 19–31.

Chabrier, A. (2006). “Vehicle Routing Problem with elementary shortest path
based column generation”. Ed. by Louis-Martin Rousseau Michel Gendreau
Gilles Pesant. In: Computers and Operations Research 33.10, pp. 2972–2990.

Christiansen, M. and B. Nygreen (2005). “Robust Inventory Ship Routing by
Column Generation”. In: Desaulniers G., Desrosiers J., Solomon M.M.: Col-
umn Generation, Springer, New York. Chap. 7, pp. 197–224.

Coin (2006). COmputational INfrastructure for Operations Research (COIN-
OR). http://www.coin-or.org/.

Cook, W. and J. L. Rich (2001). A Parallel Cutting-Plane Algorithm for the
Vehicle Routing Problem With Time Windows. Tech. rep. Rice University.

Danna, E. and C. L. Pape (2005). “Branch-and-Price Heuristics: A Case Study
on the Vehicle Routing Problem with Time Windows”. In: Column Gener-
ation. Ed. by Jacques Desrosiers Guy Desaulniers and Marius M. Solomon.
Springer. Chap. 4, pp. 99–129.

Dantzig, G. B. and P. Wolfe (1960). “Decomposition Principle for Linear Pro-
grams”. In: Operations Research 8.1, pp. 101–111.

226
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

Desaulniers, G., F. Lessard, and A. Hadjar (2008). “Tabu Search, Partial Ele-
mentarity, and Generalized k-Path Inequalities for the Vehicle Routing Prob-
lem with Time Windows”. In: Transportation Science 42.3, p. 387.

Desrochers, M., J. Desrosiers, and M. Solomon (1992). “A new optimization
algorithm for the vehicle routing problem with time windows”. In: Operations
Research 40.2, pp. 342–354.

Doerner, K. F., M. Gronalt, R. F. Hartl, G. Kiechle, and M. Reimann (2008).
“Exact and heuristic algorithms for the vehicle routing problem with multiple
interdependent time windows”. In: Computers and Operations Research 35.9,
pp. 3034–3048.

Dohn, A., M. S. Rasmussen, T. Justesen, and J. Larsen (2008c). “The Home
Care Crew Scheduling Problem”. In: ICAOR’08 - Proceedings, 1st Inter-
national Conference on Applied Operational Research. Ed. by K. Sheibani.
Tadbir Institute for Operational Research, pp. 1–8.

Dohn, A., E. Kolind, and J. Clausen (2009b). “The manpower allocation prob-
lem with time windows and job-teaming constraints: A branch-and-price
approach”. In: Computers and Operations Research 36.4, pp. 1145–1157.

Dror, M. (1994). “Note on the Complexity of the Shortest Path Models for
Column Generation in VRPTW”. In: Operations Research 42.5, pp. 977–978.

Feillet, D., P. Dejax, M. Gendreau, and C. Gueguen (2004). “An exact algorithm
for the elementary shortest path problem with resource constraints: applica-
tion to some vehicle routing problems”. In: Networks 44.3, pp. 216–229.

Fügenschuh, A. (2006). “The vehicle routing problem with coupled time
windows”. In: Central European Journal of Operations Research 14.2,
pp. 157–176.

Gélinas, S., M. Desrochers, J. Desrosiers, and M. Solomon (1995). “A new
branching strategy for time constrained routing problems with application
to backhauling”. In: Annals of Operations Research 61, pp. 91–109.

Ioachim, I., S. Gelinas, F. Soumis, and J. Desrosiers (1998). “A dynamic pro-
gramming algorithm for the shortest path problem with time windows and
linear node costs”. In: Networks 31.3, pp. 193–204.

Ioachim, I., J. Desrosiers, F. Soumis, and N. Bélanger (1999). “Fleet assign-
ment and routing with schedule synchronization constraints”. In: European
Journal of Operational Research 119.1, pp. 75–90.

Jepsen, M., B. Petersen, S. Spoorendonk, and D. Pisinger (2008). “Subset-Row
Inequalities Applied to the Vehicle-Routing Problem with Time Windows”.
In: Operations Research 56.2, pp. 497–511.

Justesen, T. and M. S. Rasmussen (2008). “The Home Care Crew Scheduling
Problem”. MA thesis. Department of Informatics and Mathematical Model-
ing, Technical University of Denmark.

Kallehauge, B., J. Larsen, O. B. Madsen, and M. Solomon (2005). “The Vehi-
cle Routing Problem with Time Windows”. In: Column Generation. Ed. by
Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. GERAD 25th
anniversary series. New York: Springer. Chap. 3, pp. 67–98.

E.7 Conclusions and future work 227

Kilby, P., P. Prosser, and P. Shaw (2000). “A Comparison of Traditional and
Constraint-based Heuristic Methods on Vehicle Routing Problems with Side
Constraints”. In: Constraints 5.4, pp. 389–414.

Kohl, N., J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis (1999).
“2-Path Cuts for the Vehicle Routing Problem with Time Windows”. In:
Transportation Science 33.1, pp. 101–116.

Lesaint, D., N. Azarmi, R. Laithwaite, and P. Walker (1998). “Engineering
Dynamic Scheduler for Work Manager”. In: BT Technology Journal 16.3,
pp. 16–29.

Li, Y., A. Lim, and B. Rodrigues (2005). “Manpower allocation with time
windows and job-teaming constraints”. In: Naval Research Logistics 52.4,
pp. 302–311.

Lim, A., B. Rodrigues, and L. Song (2004). “Manpower allocation with time win-
dows”. In: Journal of the Operational Research Society 55.11, pp. 1178–1186.

Lougee-Heimer, R. (2003). “The Common Optimization INterface for Opera-
tions Research: Promoting Open-Source Software in the Operations Research
Community”. In: IBM Journal of Research and Development 47.1, pp. 57–66.

Lysgaard, J., A. N. Letchford, and R. W. Eglese (2004). “A New Branch-and-Cut
Algorithm for the Capacitated Vehicle Routing Problem”. In: Mathematical
Programming 100.2, pp. 423–445.

Oron, D., S.-N. Sze, and A. S.-F. Ng (2008). “A Heuristic Manpower Scheduling
for In-Flight Catering Service”. In: The 13th International Conference of
Hong Kong Society for Transportation Studies.

Rousseau, L.-M., M. Gendreau, and G. Pesant (2003). The Synchronized Vehicle
Dispatching Problem. Tech. rep. CRT-2003-11. Conference paper, Odysseus
2003. Centre de Recherche sur les Transports, Université de Montréal,
Canada.

Ryan, D. M. (1992). “The Solution of Massive Generalized Set Partitioning
Problems in Aircrew Rostering”. In: Journal of the Operational Research
Society 43.5, pp. 459–467.

Savelsbergh, M. (1985). “Local search in routing problems with time windows”.
In: Annals of Operations Research 4.1-4, pp. 285–305.

Solomon, M. M. (1987). “Algorithms for the Vehicle Routing and Scheduling
Problems with Time Window Constraints”. In: Operations Research 35.2,
pp. 254–265.

van den Akker, J. M., C. A. J. Hurkens, and M. W. P. Savelsbergh (2000).
“Time-indexed formulations for machine scheduling problems: column gen-
eration”. In: INFORMS Journal on Computing 12.2, pp. 111–124.

van den Akker, J., J. Hoogeveen, and J. van Kempen (2006). “Parallel machine
scheduling through column generation: Minimax objective functions”. In:
Lecture Notes in Computer Science 4168, pp. 648–659.

228
The Vehicle Routing Problem with Time Windows and Temporal

Dependencies

Appendix F

Optimizing the Slab Yard
Planning and Crane

Scheduling Problem using a
Two-Stage Heuristic

Anders Dohn and Jens Clausen

Published in:
International Journal of Production Research (2010) 48.15, pp. 4585-4608.

230
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

Optimizing the Slab Yard Planning and Crane
Scheduling Problem using a Two-Stage

Heuristic∗

Anders Dohn1 and Jens Clausen1

In this paper, we present the Slab Yard Planning and Crane Schedul-
ing Problem. The problem has its origin in steel production facilities
with a large throughput. A slab yard is used as a buffer for slabs that
are needed in the upcoming production. Slabs are transported by
cranes and the problem considered here is concerned with the gener-
ation of schedules for these cranes. The problem is decomposed and
modeled in two parts, namely a planning problem and a schedul-
ing problem. In the planning problem, a set of crane operations
is created to take the yard from its current state to a desired goal
state. In the scheduling problem, an exact schedule for the cranes is
generated, where each operation is assigned to a crane and is given
a specific time of initiation. For both models, a thorough descrip-
tion of the modeling details is given along with a specification of
objective criteria. Preliminary tests are run on a generic setup with
simulated data. The test results are very promising. The production
delays are reduced significantly in the new solutions compared to the
corresponding delays observed in a simulation of manual planning.

Keywords: large-scale scheduling; stacker crane problem; crane/hoist schedul-
ing; generalized precedence constraints; schedule visualization; simulation.

F.1 Introduction

The Slab Yard Planning and Crane Scheduling Problem is a complex optimiza-
tion problem, combining planning and scheduling in an effort to generate feasible
schedules for a number of interacting cranes. The problem instances originate
from real-world data. Costs and constraints have been defined in cooperation
with the industry. The industrial problem instances are of a large size and

∗Published in: International Journal of Production Research (2010) 48.15, pp. 4585-4608.
1Department of Management Engineering, Technical University of Denmark, Richard Pe-

tersens Plads, 2800 Kongens Lyngby, Denmark.

F.1 Introduction 231

therefore it is important to create a solution method that can make superior
heuristic choices in little time.

The problem here is from a steel hot rolling mill. A large number of slabs arrive
by train at a slab yard, where they are stored until transported to the hot rolling
mill by a roller table. The slabs need to be transported from the train to the
yard and later from the yard to the roller table in the correct order and at
specific points in time. Each slab has distinct properties, so we need to consider
each slab as being unique.

16 rows x 16 columns

Railway track
(Incoming slabs)

Roller Table
(Outgoing slabs)

The two gantry cranes

Crane trolley

Figure F.1: Overview of the slab yard.

Figure F.1 shows an overview of the slab yard. The two gantry cranes are used
to move slabs from one stack to another. As seen in the figure, both the train
and the roller table can be modeled as special sets of temporary stacks. The
generic slab yard under consideration in this paper consists of 16 × 16 stacks
where each stack is a number of slabs on top of each other. Each crane can only
carry one slab at a time and therefore only the top slab of a stack can be moved.
The cranes operate in two directions. Horizontally, they run on a pair of shared
tracks and can therefore never pass each other in this direction. Vertically, they
operate by a trolley attached to the crane, which can move freely from top to
bottom.

232
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

The problem is approached in a two-stage planning/scheduling conception. The
planning problem of the yard is of an abstract nature. Desired locations for
slabs are stated without specifying times of slab movement or crane allocations.
For a pre-specified time horizon, a desired end state is formulated, i.e. the end
positions of the slabs in the yard are determined. We also generate the oper-
ations that need to be carried out in order to arrive at this state. The aim
of the crane scheduling problem is to concretize the decisions of the planning
problem. Operations are allocated to cranes and all operations are sequenced
and positioned in time. The final scheduling solution is directly applicable in
practice.

The Slab Yard Planning and Crane Scheduling Problem is considered in a similar
context by Hansen (2003). The problem is from a shipyard where ships are
constructed by welding together steel plates. The plates are stored in stacks in
a plate storage facility and are moved by two gantry cranes sharing tracks. A
simulator and a control system are developed and implemented in a system to
be used as decision support for the crane operators. Another similar problem
is presented by Gambardella et al. (2001) (based on the work in Zaffalon et al.,
1998) where containers are transported by cranes in a container terminal.

An immediate advantage of the two-stage approach is that the planning problem
and the scheduling problem individually have received considerable attention in
the literature.

The literature relating to The Slab Yard Planning Problem is mainly in other
areas of slab yard planning and in container stacking. Tang et al. (2002) describe
a steel rolling mill where slabs need to be transported from a slab yard according
to a scheduled rolling sequence. The article builds on the initial work by the
same authors (Tang et al., 2001). The layout of the slab yard is different from
ours and the cranes are located so that they never collide. Another difference
is that for each batch, several candidates exist among the slabs, and therefore
the objective is to minimize the cost by choosing the right slabs among the
candidates. Singh et al. (2004) address the same problem and solve it using an
improved Parallel Genetic Algorithm. König et al. (2007) investigate a similar
problem from storage planning of steel slabs in integrated steel production. The
problem formulation in the article is kept at a general level to make the model
versatile. The stacking problem is considered alone, thereby disregarding the
crane schedules. The authors present a greedy construction heuristic and by a
linear programming relaxation of a mixed integer formulation of the problem,
they are able to quantify the quality of their solutions.

A problem in container stacking with many similarities to the slab stacking
problem is described by Dekker et al. (2006). A significant difference is that the
maximum height of container stacks is 3, whereas the corresponding number

F.1 Introduction 233

in slab stacks is usually considerably larger than this. A number of stacking
policies are investigated by means of simulation and in this sense, the work
of Dekker et al. resembles the work by Hansen (2003) in a container stacking
context. Kim and Bae (1998) describe a container stacking problem where a
current yard layout is to be reorganized to a new specific layout. The problem
is to convert the current bay layout to the desired new layout by moving the
fewest possible containers. The problem is decomposed into three sub-problems,
namely a bay-matching, a move-planning, and a task-sequencing stage, where
the latter two are similar to the two stages that we introduce for The Slab Yard
Planning and Crane Scheduling Problem. Kim et al. (2000) consider a similar
container stacking problem. See Steenken et al. (2004) for a recent review of
literature on container stacking.

The Crane Scheduling problem considered here is an example of a Stacker Crane
Problem (Frederickson et al., 1978) with time windows and multiple cranes.
Parallel crane/hoist scheduling has been thoroughly treated in production of
electronics, especially in printed circuit board production. In circuit board pro-
duction, the hoists are used to move products between tanks, where the products
are given various chemical treatments. Leung and Zhang (2003) introduce the
first mixed-integer programming formulation for finding optimal cyclic schedules
for printed circuit board lines with multiple hoists on a shared track, where the
processing sequence may be different from the location sequence of the tanks.
The solution method itself is not transferable, but several of the elements in the
modeling phase are very relevant to the Crane Scheduling problem of the slab
yard. These include the formulation of collision avoidance constraints. Collision
avoidance constraints are also described in a dynamic hoist scheduling problem
by Lamothe et al. (1996) and in a fixed sequence production by Che and Chu
(2004) and Leung et al. (2004).

As it becomes apparent in the following sections, in the present scheduling
problem we are able to abstract from the practical context of the problem and
consider the problem as a parallel scheduling problem with sequence-dependent
setup times. Zhu and Wilhelm (2006) present a recent literature review for this
type of scheduling problem.

This article is arranged as follows. In Section F.2 the problem is described and
the most important properties are extracted. The solution method is divided
into two stages, first solving a planning problem and subsequently a scheduling
problem. The two problems and their models are described in Section F.3 and
Section F.4, respectively. The solution method itself is described in Section F.5
and test results are presented in Section F.6. Finally, conclusions and areas for
future work are outlined in Section F.7.

234
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

F.2 Problem Description

The slab yard is modeled as a large set of slab stacks. As was shown in Fig-
ure F.1, train wagons and the roller table are also modeled as special stacks. The
train is only at the yard for a certain amount of time and hence all slabs must
be moved away from the wagons within a specific time window. In principle,
we have access to the roller table in multiple positions as shown on Figure F.1
(shown as 8 stacks wide). The order of the slabs on the roller table is essential
and to ensure that the sequence of slabs leaving the roller table follows the order
in which they were brought there, we only allow the cranes to bring slabs to
the right-most of the roller table stacks. Further, as there is room for at most
8 slabs on the roller table, we have to wait whenever the roller table is full.
As time goes, the slabs are removed from the roller table in a first-in, first-out
manner. For each slab to be moved from the yard in a near future, we have the
production time, Aim Leave Time (ALT). By looking forward 8 slabs in the
sequence, we know when there will be free room for a new slab on the roller
table, and this gives us the Earliest Leave Time (ELT). Hence, we have a time
window for moving the specific slab to the roller table. Slabs which are not a
part of the immediately following production instead have an Estimated Leave
Time (EST).

Each move consists of lift time, transportation time, and drop time. We assume
that the cranes move at constant velocity. Transportation time is equal to the
maximum of the vertical and the horizontal transportation time, as the cranes
are able to move horizontally at the same time as the crane trolley is moving in
a vertical direction.

F.2.1 Objective

The objective of the schedule is to minimize maximum tardiness (delay). The
reason is as follows. Take all slabs leaving the slab yard within the scheduling
horizon. Whenever a slab is not moved to the roller table before its Aim Leave
Time, it causes a delay in the production. The production is not immediately
able to catch up on this delay and therefore subsequent slabs are needed later
in the production than we initially anticipated. Production is further delayed,
only if subsequent slabs are delayed even more. Hence, the most delayed slab
determines the quality of the solution.

A feasible schedule consists of a sequence of operations with crane allocation
and time specification, i.e.: Crane X picks up slab Y (at its current location) at
time T and moves it to position Z. Naturally, none of the operations are allowed

F.2 Problem Description 235

to conflict with other operations, neither within the schedule of one crane nor
between the two cranes.

F.2.2 A Simple Example

Before describing the details of the decomposition, we introduce an illustrative
example to clarify the concepts and ideas that are introduced in the following
sections.

Example [A Simple Example]

An overview of a small yard is shown in Figure F.2. The example is similar to
the one shown in Figure F.1, only significantly smaller.

Railway track
(Incoming slabs)

Roller Table
(Outgoing slabs)

1 row x 4 columns

Figure F.2: Overview of a very simple slab yard used in the example.

In this example, we have a scheduling horizon of [0, 22]. A side view of the
initial yard state is shown in Figure F.3. Note that the vertical dimension of
Figure F.2 is not visible in the figure. However, in the figure, we are able to
illustrate the exact composition of each stack. The yard consists of a single
arrival stack, Tar1, four stacks in the main yard, T1, ..., T4, and one exit stack,
Texit. In the yard are 14 slabs, S1, ..., S14.

T1 T2 T3 T4

S9 (33)

S8 (33)

S1 [0, 10]

S6 (33)

S2 [11, 12]

S12 (43)

S11 (43)

S10 (43)S5 (25)

S4 (25)

S3 (25)

S7 (33)

TexitTar1

S13 (50)

S14 (50)

Figure F.3: Slab Yard Crane Scheduling Problem: Side-view of the slab yard of
the example. Gray slabs are slabs that must leave the yard during the scheduling
horizon. Leaving slabs (gray): [ELT, ALT]. Non-leaving slabs (white): (EST)

236
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

F.3 The Slab Yard Planning Problem

In the planning stage of the algorithm, we generate a plan that takes us from
the current state of the yard to a final state for the horizon. In the final state,
all slabs with a deadline within the horizon are brought to the roller table. At
the same time, the plan should leave the yard in the best possible condition for
subsequent planning periods.

To arrive at a feasible and superior plan within reasonable computational time,
the idea is to relax a number of the original constraints in the planning stage.
Whatever is relaxed here is fixed in the scheduling stage so that the final solution
is always fully descriptive.

F.3.1 Operations

In the planning stage, we are going to consider a solution as defined by a number
of successive operations. An operation contains the following information:

Slab The slab to be transported.
Destination The stack where the slab is put on top.
Priority How important is it to include this operation in the final

schedule.

A solution to the planning problem consists of a sequence of operations. Many
operations are related directly to slabs which are moved to the roller table. Such
operations are compulsory and hence have a priority of ∞. As is described in
Section F.4.3, some operations are optional, however, and the priorities give an
ordering of their importance.

For a planning solution to be feasible, we require the following:

• All slabs with a deadline within the scheduling horizon are transported to
the exit stack in the correct order.

• All incoming slabs (i.e. slabs in the train wagon stacks) must be moved to
permanent stacks.

• All operations must be valid in the sequence. Only slabs on top of a stack
may be moved and only to stacks where the maximum stack height has
not been reached.

F.3 The Slab Yard Planning Problem 237

The two first criteria are easy to verify, when we know the set of incoming slabs
and the set of outgoing slabs. The third criterion can be verified by updating a
yard state as the sequence of operations is processed.

F.3.2 Assessment Criteria

To assess the quality of a plan, we introduce a number of objectives. The
following properties characterize a good solution. The two first are directly
concerned with the plan, where the two last evaluate the end state of the yard.

• The number of operations is low.

• Operations do not span too far vertically. Even though the operations are
not allocated to cranes yet, we would like a solution to accommodate such
an allocation. Operations are faster and have less risk of conflicting when
they span over as little vertical space as possible.

• Slabs that are to leave the yard soon (but after the current horizon) are
close to the exit stack.

• The number of false positions is low. Slabs in false positions are slabs that
are in the way of other slabs below them. A false position in our context
is a stochastic term, as many slabs only have an estimated leave time. We
introduce probabilities to approximate the number of false positions in the
non-deterministic context. The leave time is represented by a Gaussian
distribution. The probability of one slab leaving before another is found
by inspecting the cumulative distribution of the difference between the two
distributions. The probability of a false position is calculated as the sum
over all slabs in the stack, where correlation between the distributions is
also taken into account. Details are found in (Dohn and Clausen, 2008c).

The criteria stated above are quantified suitably for each individual real-world
application.

Example [continued]

A planning solution for the example is seen in Figure F.4. The solution consists
of a sequence of operations. The end state of the storage is fully determined by
the planning solution and is shown in Figure F.5.

238
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

o1: (S6→T3) o2: (S1 → Texit) o3: (S2 → Texit) o4: (S14 → T2) o5: (S13 → T2)

Figure F.4: A solution to the planning problem of the example.

T1 T2 T3 T4

S9 (33)

S8 (33)

S1 [0, 10]

S6 (33)

S2 [11, 12]

S12 (43)

S11 (43)

S10 (43)S5 (25)

S4 (25)

S3 (25)

S7 (33)

TexitTar1

S13 (50)

S14 (50)

Figure F.5: End state for the solution of Figure F.4.

F.4 The Crane Scheduling Problem

From a solution to the planning problem, the goal is now to generate a complete
and feasible schedule. First, the ordering of operations is relaxed to allow for
parallel execution of operations. Most operations are locally independent of
each other. These independencies are detected and only meaningful precedence
constraints are kept for the scheduler. The crane scheduling problem is similar
to a traditional parallel scheduling problem. We have a number of operations
that we need to allocate to two cranes (machines). Between operations there
are several temporal constraints. The anti-collision constraint is an important
temporal constraint added by the fact that we have two cranes in operation. As
the crane operation times are of a stochastic nature, we also need to introduce
buffers. The buffers ensure that no crane collision occurs, even with disturbances
in operation time. For major disturbances, the scheduling problem and possibly
the whole planning may have to be resolved.

F.4.1 Precedence Relations

To ensure that the end state of the schedule is identical with the end state of
the planning solution, we establish a number of precedence relations. Using the
planning sequence as a starting point, we ensure that, whenever relevant, the
order of the operations in the schedule stays the same as in the plan. There
are four cases where reordering operations may change the state of the storage
and may therefore cause direct or indirect infeasibility of the solution. In these

F.4 The Crane Scheduling Problem 239

four cases we do not allow reordering of the operations. See Figure F.6 for a
graphical illustration of the four cases.

S2S1

1

2

S2

S1

1

2

S1

1 2

S2S1

2

1

Case 1 Case 2 Case 3 Case 4

Figure F.6: Graphical description of the state preserving precedences.

Case 1 Moving slab S2 to a stack from which slab S1 was moved away from earlier.
If the order of these two operations is changed, S2 is going to block S1

and the solution becomes infeasible.

Case 2 Moving slab S1 and then slab S2, where S1 is on top of S2. Again, changing
the order of the two operations leads to infeasibility.

Case 3 Moving the same slab twice. If the order of such two moves is changed,
the final destination of the slab may change. If the slab is moved again at
a later time the final destination, however, remains unchanged.

Case 4 Two slabs S1 and S2 are moved to the same stack. If the order is changed
it may lead to infeasibility later. If the two slabs are not moved later, the
end state is altered, but the solution remains feasible.

Example [continued]

Going back to the example, we are now able to determine the precedence rela-
tions of the plan. Using the four cases depicted in Figure F.6 we arrive at the
precedences of Figure F.7.

240
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

Case 1

Cas
e 4

Case 2

Case 2

Case 4

o1: (S6→T3) o2: (S1 → Texit) o3: (S2 → Texit) o4: (S14 → T2) o5: (S13 → T2)

o1: (S6→T3) o2: (S1 → Texit)

o3: (S2 → Texit)

o4: (S14 → T2) o5: (S13 → T2)

Figure F.7: Precedence relations for the plan of Figure F.4.

F.4.2 Temporal Constraints

The precedence constraints described in the previous section ensure that the end
state of a parallel schedule is the same as the corresponding sequential plan. We
still need to introduce temporal constraints to create a schedule that is feasible
with respect to the individual movement of a crane and to create a schedule
which is collision free.

For two operations i and j, we have four positions that have to be considered
and where temporal constraints may have to be added correspondingly. The
four positions are:

T origi Origin stack of operation i
T desti Destination stack of operation i

T origj Origin stack of operation j

T destj Destination stack of operation j

In the following, we say that i is before j, if i enters and leaves the conflict zone
between the two operations, before j. When two operations are allocated to the
same crane, the crane needs to complete the first operation before initiating the
next. In this case, if i is before j, this means that operation i is completed before
operation j is initiated. However, if the operations are allocated to different
cranes, they may have a small conflict zone. Hence, even if operation i is before
operation j, this does not necessarily mean that it is neither initiated first nor
completed first. It only means that it will be the first of the two moves in any of
their conflict positions. If two operations have no conflict zone, it is irrelevant
whether i is considered to be before j or vice versa.

F.4 The Crane Scheduling Problem 241

In the following, we calculate the required gap between two operations i and
j, when i is before j. The gap is defined as the amount of time required from
initiation of operation i to initiation of operation j. There are three different
types of gaps depending on the crane allocation of operations i and j.

gsij Required gap when i and j are allocated to the same crane (s).
glij Required gap when i is allocated to the left crane (l) and j to the

right crane.
grij Required gap when i is allocated to the right crane (r) and j to

the left crane.

The following generalized precedence constraint is imposed: ti + gij ≤ tj , where
gij represents gsij , g

l
ij or grij according to the situation. To calculate the gaps

between operations, we need to introduce a number of parameters:

pi time required to pick up slab of operation i.
qi time required to drop off slab of operation i.
mTxTy time required to move a laden crane from stack Tx to stack Ty.
eTxTy time required to move an empty crane from stack Tx to stack Ty.
b buffer time required between two cranes.

We assume that mTxTy and eTxTy are linear in the distance traveled. Both
measures are independent of the crane involved. In the following we will use the
assumption that the two cranes move at the same speed. We will also assume
that a crane cannot move faster when laden than when it is empty.

Precedence relations are included in the generalized precedence constraints, so
the values of gsij , g

l
ij and grij hold all the information we need with respect

to precedence constraints. If precedence relations disallow the execution of
operation i before operation j, we set: gsij = glij = grij =∞.

When two operations are allocated to the same crane, we need to make sure
that there is sufficient time to finish the first operation and to move to the start
position of the second operation. Consequently, we get:

gsij = pi +mT origi Tdesti
+ qi + eTdesti T origj

See Figure F.8 for a visualization of this. We use Time-Way diagrams that are
frequently used when depicting solutions of crane/hoist scheduling problems,

242
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

especially in printed circuit board production (see e.g. Liu and Jiang, 2005).
The horizontal and vertical axes in the diagram represent the time and crane
positions, respectively. Solid lines indicate that the crane is processing an oper-
ation, whereas dashed lines indicate that the crane is either waiting or moving
to the start position of the next operation.

ti

ti + pi + mTi
orig Ti

dest + qi + eTi
dest Tj

orig

pi mTi
orig Ti

dest qi

tj

time

eTi
dest Tj

orig

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure F.8: Time-Way diagram visualizing the calculation of gap size between
two operations executed sequentially by the same crane.

When two operations are allocated to two separate cranes, we need to make sure
that the cranes never collide. Further, as we are dealing with a highly stochastic
system, we introduce the concept of a buffer. The buffer denotes the amount of
time we require between two cranes traversing the same position. By introducing
a buffer we establish a certain degree of stability in the schedule. If one of the
cranes is delayed by an amount of time less than the buffer size the schedule is
still guaranteed to be feasible. The buffer size is set so that infeasibility only
occurs in rare cases. In the following, a violation of the prespecified buffer size is
considered to be a collision. In the Time-Way diagrams, the buffer is illustrated
by a shaded area.

In Table F.1 we describe how to calculate glij . For glij , the left crane is allocated
to operation i and the right crane to operation j. In the event of conflict
between the two operations, operation i enters and leaves the conflict zone
before operation j. There are five different cases to be considered. These are
shown in Table F.1 and in Figure F.9 - Figure F.13. (l2) and (l3) may both
apply at the same time and in that case glij is equal to the larger of the two
values. The comparison of two stacks is done with respect to their horizontal

F.4 The Crane Scheduling Problem 243

Precondition Gap

(l1) T orig
j ≤ T dest

i glij = pi + m
T
orig
i Tdesti

+ qi + e
Tdesti T

orig
j

+ b

(l2) T dest
j ≤ T dest

i < T orig
j glij ≥ pi + m

T
orig
i Tdesti

+ qi + b− (pj + m
T
orig
j Tdesti

)

(l3) T dest
i < T orig

j ≤ T orig
i glij ≥ pi + m

T
orig
i T

orig
j

+ b

(l4)
T dest
i < T dest

j

≤ T orig
i < T orig

j

glij = pi + m
T
orig
i Tdestj

+ b− (pj + m
T
orig
j Tdestj

)

(l5) Otherwise glij = −∞

Table F.1: Calculation of the required gap between two operations. Operation
i is allocated to the left crane and operation j to the right crane. In conflict, i
is moved before j.

position, e.g. T origi < T origj means the origin stack of operation i is to the left
of origin stack of operation j.

ti

ti + pi + mTi
orig Ti

dest + qi + eTi
dest Tj

orig + b

tj

time

pi qi b

eTi
dest Tj

orig

Tdest
j

Tdest
i

Torig
j

Torig
i

mTi
orig Ti

dest

horizontal stack position

Figure F.9: Time-Way diagram visualizing the calculation of gap size between
two operations in case (l1), where T origj ≤ T desti . The no-collision requirement
in this case becomes: ti + pi +mT origi Tdesti

+ qi + eTdesti T origj
+ b ≤ tj .

It is clear from each of the five figures (Figure F.9 - Figure F.13) why a violation
of the constraint introduces a collision. These five cases are sufficient for avoiding
all possible collisions. The proof is found in the technical report (Dohn and
Clausen, 2008c).

244
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

ti

ti + pi + mTi
orig Ti

dest+ qi + b

pi

tj + pj + mTj
orig Ti

dest

time

mTi
orig Ti

dest qi b

tj

pj mTj
orig Ti

dest

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure F.10: Time-Way diagram visualizing the calculation of gap size between
two operations in case (l2), where T destj ≤ T desti < T origj . The no-collision
requirement in this case becomes: ti + pi + mT origi Tdesti

+ qi + b ≤ tj + pj +
mT origj Tdesti

.

ti
ti + pi + mTi

orig Tj
orig + b

pi

mTi
orig Tj

orig

b

tj

time

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure F.11: Time-Way diagram visualizing the calculation of gap size between
two operations in case (l3), where T desti < T origj ≤ T origi . The no-collision
requirement in this case becomes: ti + pi +mT origi T origj

+ b ≤ tj .

F.4 The Crane Scheduling Problem 245

ti

ti + pi + mTi
orig Tj

dest + b

pi mTi
orig Tj

dest b

tj + pj + mTj
orig Tj

dest

time

pj

tj

Tdest
j

Tdest
i

Torig
j

Torig
i

mTj
orig Tj

dest

horizontal stack position

Figure F.12: Time-Way diagram visualizing the calculation of gap size between
two operations in case (l4), where T desti < T destj ≤ T origi < T origj . The no-
collision requirement in this case becomes: ti + pi +mT origi T origj

+ b ≤ tj + pj +
mT origj Tdestj

.

ti

time

tj

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure F.13: Time-Way diagram visualizing the calculation of gap size between
two operations in case (l5), where there are no direct temporal relations between
operation i and operation j.

246
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

Precondition Gap

(r1) T orig
j ≥ T dest

i grij = pi + m
T
orig
i Tdesti

+ qi + e
Tdesti T

orig
j

+ b

(r2) T dest
j ≥ T dest

i > T orig
j grij ≥ pi + m

T
orig
i Tdesti

+ qi + b− (pj + m
T
orig
j Tdesti

)

(r3) T dest
i > T orig

j ≥ T orig
i grij ≥ pi + m

T
orig
i T

orig
j

+ b

(r4)
T dest
i > T dest

j

≥ T orig
i > T orig

j

grij = pi + m
T
orig
i Tdestj

+ b− (pj + m
T
orig
j Tdestj

)

(r5) Otherwise grij = −∞

Table F.2: Calculation of the required gap between two operations. Operation
i is allocated to the right crane and operation j to the left crane. In conflict, i
is moved before j.

In Table F.2, we show how to calculate grij . The calculations are analogous to

the ones of glij . Operation i is now allocated to the right crane and j to the left
crane. Again, in case of any conflict between the two operations, operation i is
before operation j. All coordinates are mirrored, which does not affect any of
the movement times and hence the calculations are very similar.

Figure F.14 illustrates how (r1) is closely related to (l1). The only difference is
the precondition, which is mirrored.

ti

ti + pi + mTi
orig Ti

dest + qi + eTi
dest Tj

orig + b

tj

time

pi mTi
orig Ti

dest qi b

eTdest
i Torig

j

Tdest
j

Tdest
i

Torig
j

Torig
i

horizontal stack position

Figure F.14: The situation of Figure F.9 mirrored vertically. Operation i is now
allocated to the right crane.

F.4 The Crane Scheduling Problem 247

gsij a1 a2 a3 a4 a5

a1 − 4 4 6 6
a2 ∞ − 6 10 10
a3 ∞ ∞ − 8 8
a4 ∞ ∞ 6 − 6
a5 ∞ ∞ 6 ∞ −

glij a1 a2 a3 a4 a5

a1 − 5 −∞ 7 7
a2 ∞ − 7 11 11
a3 ∞ ∞ − 9 9
a4 ∞ ∞ −∞ − 7
a5 ∞ ∞ −∞ ∞ −

grij a1 a2 a3 a4 a5

a1 − 2 5 −1 −1
a2 ∞ − 4 −1 −1
a3 ∞ ∞ − −∞ −∞
a4 ∞ ∞ 7 − 2
a5 ∞ ∞ 7 ∞ −

Table F.3: Coefficients of generalized precedence constraints for the example.

Example [continued]

With these definitions, we can illustrate how to calculate the coefficients for
the generalized precedence constraints of Example 1. We have the three sets of
coefficients: gsij, g

l
ij, and grij represented by the three matrices of Table F.3.

First, we use the precedence constraints of Figure F.7 to fill in the ∞-values.
This includes the entailed precedence constraints (e.g. a1 → a2 ∧ a2 → a3 ⇒
a1 → a3). In this example, we have for all operations: pi = 1, qi = 1, and b = 1.
mTxTy and eTxTy are equal and are set to the horizontal distance between the two
stacks, cf. Figure F.3 (e.g. mT1Texit = 4). Three examples of the calculations
for the matrices are shown below (gra1a2 is calculated from (r2)+(r3) and gra1a4
is calculated from (r4)).

gsa2a3 = pa2 +mT ba2
T ea2

+ qa2 + eT ea2T
b
a3

= 1 + 3 + 1 + 1 = 6

gra1a2 = max{pa1 +mT ba1
T ea1

+ qa1 + b− (pa2 +mT ba2
T ea1

), pa1 +mT ba1
T ba2

+ b}

= max{1 + 1 + 1 + 1− (1 + 1), 1 + 0 + 1} = 2

gra1a4 = pa1 +mT ba1
T ea4

+ b− (pa4 +mT ba4
T ea4

) = 1 + 0 + 1− (1 + 2) = −1

248
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

F.4.3 Operation Priority

So far we have assumed that all operations had to be included in the final
schedule. However we may deviate slightly from this strategy. We introduce the
concept of optional operations. We may add a number of optional operations
to the end of the plan. The purpose of adding these operations is to enhance
the final state of the slab yard, so that the risk of delays in future scheduling is
reduced.

Example [continued]

In the example, we could e.g. add to the solution of Figure F.4 the operation
(S7 → T4) as an optional operation. This would give a final yard state with
fewer false positions.

To quantify the importance of the individual optional operations we use the
operation priority. A high priority means that we prefer the inclusion of this
operation to other optional operations with lower priority. In this work, the
priority is calculated as follows. We consider the two possible end states that
will be entailed by respectively including or excluding the operation from the
plan. For both states it is possible to calculate the number of false positions
in the yard. As described in Section F.3.2, the number of false positions, in
our case, is a stochastic measure. The difference between the two sums, i.e. the
possible gain in number of false positions, is used as the operation priority. We
would never include an operation which increases the number of false positions.

F.4.4 Objective Function

As was described in Section F.2.1, the objective function is to minimize the
maximum tardiness of the schedule. At the same time, a good schedule includes
many optional operations. The sum of the priorities of the optional operations
included is used to evaluate this criterion. The individual priorities of operations
are determined by the planning module, as described in the previous section.
The objective function is two-layered so that minimization of maximum tardi-
ness is always prioritized over the second objective. However, we still require
all operations with priority ∞ (compulsory operations) to be in the schedule.

F.4 The Crane Scheduling Problem 249

F.4.5 Generic Formulation of the Crane Scheduling Prob-
lem

We are now able to abstract fully from the real-world context and introduce an
explicit formulation of the Crane Scheduling Problem as a parallel scheduling
problem with generalized precedence constraints, non-zero release times, and
sequence-dependent setup time. Using the three-field notation of Graham et al.
(1979) extended by Brucker et al. (1999) and Allahverdi et al. (2008) we denote
the problem R2|temp, rj , sijm|Tmax.

Sets:

O The set of operations.
C = {Cl, Cr} The two cranes, left crane and right crane respectively.

Decision variables:

xi ∈ B i ∈ O 1 if operation i is included in the schedule, 0 other-
wise.

ti ∈ Z i ∈ O Start time of operation i.
ci ∈ C i ∈ O The crane allocation of operation i.
yij ∈ B i ∈ O, j ∈ O 1 if the operation i is considered to be before oper-

ation j, 0 otherwise.
τi ∈ Z i ∈ O Tardiness of operation i.

Parameters:

gsij ∈ Z i ∈ O, j ∈ O The required gap between operations i and j when
allocated to the same crane and i is before j.

glij ∈ Z i ∈ O, j ∈ O The required gap between operations i and j when
allocated respectively to the left crane and the right
crane and i is first in a conflict.

grij ∈ Z i ∈ O, j ∈ O The required gap between operations i and j when
allocated respectively to the right crane and the left
crane and i is first in a conflict.

ri i ∈ O Release time of operation i.
di i ∈ O Due date of operation i.
pi i ∈ O Priority (weight) of operation i.
tmaxi i ∈ O Deadline of operation i.

250
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

The Constraint Programming Model:

min max τa and secondly max
∑
i∈A

pixi (F.1)

τi = max{0, ti − di} ∀i ∈ O (F.2)

xi = 1 ∧ xj = 1⇒ yij = 1 ∨ yji = 1 ∀i ∈ O,∀j ∈ O, i 6= j (F.3)

ti ≥ ri ∀i ∈ O (F.4)

ti ≤ tmaxi ∀i ∈ O (F.5)

yij = 1 ∧ ci = Cl ∧ cj = Cl ⇒ ti + gsij ≤ tj ∀i ∈ O,∀j ∈ O (F.6)

yij = 1 ∧ ci = Cr ∧ cj = Cr ⇒ ti + gsij ≤ tj ∀i ∈ O,∀j ∈ O (F.7)

yij = 1 ∧ ci = Cl ∧ cj = Cr ⇒ ti + glij ≤ tj ∀i ∈ O,∀j ∈ O (F.8)

yij = 1 ∧ ci = Cr ∧ cj = Cl ⇒ ti + grij ≤ tj ∀i ∈ O,∀j ∈ O (F.9)

pi =∞⇒ xi = 1 ∀i ∈ O (F.10)

xi ∈ B, ti ∈ Z, ci ∈ C, yij ∈ B, τi ∈ Z ∀i ∈ O,∀j ∈ O (F.11)

The model (F.1)-(F.11) captures all the problem properties that have been de-
scribed in this section. (F.1) is the objective function, which has two criteria.
(F.2) sets the tardiness of each operation. (F.3) ensures that if both operations
are included in the schedule, then their internal precedence constraints must be
respected either in one direction or the other. Operations cannot be started
before their release date (F.4) and must be scheduled within the horizon (F.5).
(F.6)-(F.9) connect the decision on crane allocation with the correct precedence
constraints. Finally, (F.10) makes sure that all compulsory operations are in-
cluded in the schedule, and (F.11) gives the domains of the decision variables.

The parameter pi is calculated by the planning module, as explained previously.
ri and di are calculated as ri = ELTi − duri and di = ALTi − duri, where duri
is the duration of an operation, i.e. duri = pi + mT origi Tdesti

+ qi. g
s
ij , g

l
ij , and

grij are calculated as described in Section F.4.2.

Example [continued]

We consider the example again. We have the 5 operations of Figure F.4 which
make up the set of operations O = {o1, o2, o3, o4, o5}. We have the precedence
coefficients from Table F.3. The duration of each operation and subsequently
the release date and due date of each operation is calculated in the table. In this

F.4 The Crane Scheduling Problem 251

example, the scheduling horizon is 22:

Operation (i) duri ri di tmaxi pi
o1 3 0 19 19 ∞
o2 5 0 5 17 ∞
o3 3 8 9 19 ∞
o4 4 0 18 18 ∞
o5 4 0 18 18 ∞

An optimal solution is (Solution 1):

Operation (i) xi ti ci yio1 yio2 yio3 yio4 yio5 τi
o1 1 0 Cr − 1 1 1 1 0
o2 1 2 Cl 0 − 1 1 1 0
o3 1 9 Cr 0 0 − 1 1 0
o4 1 12 Cl 0 0 0 − 1 0
o5 1 18 Cl 0 0 0 0 − 0

Another solution is (Solution 2):

Operation (i) xi ti ci yio1 yio2 yio3 yio4 yio5 τi
o1 1 0 Cr − 1 1 1 1 0
o2 1 4 Cr 0 − 1 1 1 0
o3 1 10 Cr 0 0 − 1 1 1
o4 1 3 Cl 0 0 0 − 1 0
o5 1 9 Cl 0 0 0 0 − 0

Solution 1 of the example is visualized in a Gantt chart in Figure F.15 (top). The
Gantt chart does not depict the value of neither yij-variables nor τi-variables.

Solution 2 is illustrated in Figure F.15 (bottom). The solution is more compact
and may actually look more attractive. However, the due date of o3 is violated
and therefore this solution is worse than Solution 1.

The nature of the problem makes the transitive closure valid for all choices of
ordering of conflicting operations, i.e. if operation i is before j (with respect
to conflicts) and j is before k then we may assume that i is before k (yij =
1 ∧ yjk = 1 ⇒ yik = 1). We also find this property in lists and therefore we
can use a list to represent all sequencing decisions. If, further, we state the
crane allocation of each operation, ci, and if we assume that all operations are
scheduled at the earliest possible time according to the given sequence and the
crane allocations, then the list representation is sufficient to explicitly represent

252
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

10

Right Crane

Left Crane

o1: (S6→T3)

o2: (S1 → Texit)

o3: (S2 → Texit)

o4: (S14 → T2) o5: (S13 → T2)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10

Right Crane

Left Crane

o1: (S6→T3) o2: (S1 → Texit) o3: (S2 → Texit)

o4: (S14 → T2) o5: (S13 → T2)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure F.15: Gantt charts of Solution 1 (top) and Solution 2 (bottom).

the solution. The earliest possible times are found in polynomial time by running
through the list. For every operation i the generalized precedence constraints to
all preceding operations are checked and the most limiting of those determine
the starting time of operation i. We adapt the graphical representation from the
planning solutions but add information on the crane allocation. We still lack
information on ti and τi and therefore the objective function of the solution is
not immediately available, but it can be calculated by running through the list.
The two solutions from before are represented as seen on Figure F.16.

o1: (S6→T3) R o2: (S1 → Texit) L o3: (S2 → Texit) R o4: (S14 → T2) L o5: (S13 → T2) L

o1: (S6→T3) R o2: (S1 → Texit) R o3: (S2 → Texit) R o4: (S14 → T2) L o5: (S13 → T2) L

Figure F.16: List representations of Solution 1 (top) and Solution 2 (bottom).

The advantage of this representation is clear from Figure F.16. The only dif-
ference between the two solutions is the change in crane allocation of operation
o2. All other variable changes (that were observed on Figure F.15) can be in-
terpreted as consequences of this variable change. Another nice feature of the
list representation is that any permutation that respects all precedence relations
is also feasible with respect to (F.2)-(F.4) + (F.6)-(F.11). Only the scheduling
horizon is possibly violated.

F.5 Solution Method 253

Another way of visualizing a scheduling solution graphically is by using Time-
Way diagrams as introduced in Section F.4.2. Solution 1 and Solution 2 are
depicted in Figure F.17.

-2

-1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
-2

-1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure F.17: Time-Way diagrams of Solution 1 (left) and Solution 2 (right).

F.5 Solution Method

A solution method has been implemented based on the presented model. In the
following, we present two greedy methods, one for the planning problem and
one for the scheduling problem. The two methods are straight-forward in their
implementation and more sophisticated methods will probably enhance perfor-
mance. However, the simple methods are still able to generate good results, and
so we will use them to assess the value of the model.

F.5.1 Planning

The planning method will provide a plan as described in Section F.3. When
the final schedule is created in the second stage of the method, all precedence
constraints are respected, so the sequence of operations that we specify in the
planning solution fully determines the state of the yard. As a consequence, we
are able to update the yard state as the operations are added to the plan. For
any partial plan, we have a current yard state. When we refer to the location
of slabs, it is with respect to the current state of the yard.

254
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

The implemented method is divided into three steps:

• Generation of operations for slabs that must leave the yard during the
scheduling horizon (exit slabs).

• Generation of operations for incoming slabs (arrival slabs).

• Generation of optional operations.

In this solution method, we treat the three steps separately, one by one, in a
state space exploration.

First, we generate a list of operations for the slabs that must leave the yard
during the scheduling horizon. We already have their Aim Leave Time and hence
we have a predetermined ordering of these operations. The slabs may not be
on top of their stacks, so we may also need to generate reshuffle operations and
move the slabs on top to other stacks. For reshuffle operations we must specify
a destination stack. The destination stack is chosen from a number of criteria.
First, we disallow movement to stacks still containing exit-slabs. Moving a slab
to such a stack will trigger another reshuffle operation later, where the same slab
has to be reshuffled again. This should be avoided if possible. Further, when
choosing a destination stack, we look for stacks within a short horizontal range.
This limits the duration of the operation and at the same time decreases the
risk of crane collision involving this operation. We also look for stacks, where
the slab has a small chance of being in a new false position (and hence in need
of another reshuffle in a future plan).

When all exit operations have been generated, we proceed with the arrival op-
erations. For each slab on the railway wagons, we generate an operation that
will bring the slab to the yard. When choosing a destination for these slabs
it is particularly important to keep the sum of false position probabilities low.
All arrival operations are sequenced after the exit operations. This does not
necessarily mean that they are also scheduled later than all arrival operations.
The reason for sequencing the operations in this way in the planning solution
is that all stacks involved in both exit and arrival operations will have the exit
operation executed first, which is obviously a desirable feature. To introduce
flexibility in the scheduler, we try to select destination stacks that do not have
any outgoing exit operations. The order of arrival operations is partially pre-
determined. We have to move the slabs from top to bottom from the stacks on
the railway wagons. However, we have a choice between the arrival stacks.

Finally, we generate a number of operations that are not mandatory for the
feasibility of schedules, but that will increase the quality of the solution by

F.6 Test results 255

reducing the total false position probability and may also move slabs with an
upcoming due date closer to the exit stack. The optional operations are always
added at the end of the plan to ensure that the remaining plan is feasible, even
if some of the optional operations are not included in the schedule.

F.5.2 Scheduling

Given a planning solution, we need to schedule the operations on the two cranes.
The generic formulation of the problem is given in Section F.4.5. In the following
we describe a greedy heuristic on which the current implementation is based.

The heuristic is very simple. We process the operations in the order given in
the planning solution. For each operation, the earliest possible time of initiation
is calculated for both cranes. The operation is allocated to the crane that is
able to initiate first. As we have release times for operations, there may still be
some waiting time from the preceding operation to the current one. Therefore,
we check if we are able to squeeze in any of the unscheduled operations. The
operations with high priority are preferred to the others. When squeezing in
operations like this, we need to make sure that all precedence constraints are
respected.

The heuristic is greedy and may therefore make decisions, which are not advan-
tageous in the end. This issue could be addressed by the implementation of a
local search procedure to enhance the results of a greedy construction heuristic.
As a starting point, a steepest descent algorithm would probably increase qual-
ity significantly. Adding metaheuristic features to such a search will enhance
the solution even further. Preliminary test results from a metaheuristic show
promising results.

F.6 Test results

To evaluate the quality of the solutions, we generate a reference solution that
represents the solution obtainable by manual planning for each instance. We
try to imitate the behavior of the cranes when they are under the control of the
individual crane operator. The operators work on an ad-hoc basis. We expect
them to deal with exit slabs as we approach their deadlines and reshuffles are
carried out when needed. More specifically, we equip the crane operators with
a two hour foresight. Slabs that are to leave within this period will not be
blocked by new slabs. If a crane has free time in between moves, it will use

256
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

Two-Stage Manual
Slabs Avg Avg Avg Max Avg Avg Avg Max
per moves move deadline deadline moves move deadline deadline
day p. slab dur. violation violation p. slab dur. violation violation

400 2.37 43.91 0.01 1.66 2.61 46.55 0.24 11.78
450 2.39 43.76 0.02 1.35 2.60 46.28 0.09 8.52
500 2.37 43.84 0.02 1.86 2.61 46.68 5.53 61.13
550 2.38 43.80 0.02 1.86 2.59 46.50 2.94 74.64
600 2.41 43.84 1.08 10.54 2.61 46.62 26.69 234.82
650 2.39 43.91 0.40 7.28 2.58 46.63 27.30 253.55
700 2.38 43.91 0.38 7.51 2.59 46.60 139.64 543.17
750 2.38 43.90 0.72 16.50 2.68 46.61 878.07 1883.29
800 2.39 44.00 2.59 44.61 2.90 46.80 3092.32 4840.96
850 2.40 43.92 1.68 43.33 3.14 46.75 5202.69 7874.27
900 2.41 43.88 13.72 135.50 3.30 46.45 7930.29 13108.21
950 2.39 43.95 47.02 270.68 3.34 46.04 9204.57 15641.77

1000 2.44 43.93 118.06 490.39 3.43 45.72 10704.42 18626.53

Table F.4: Comparison of test results from the Two-Stage method and sim-
ulation of manual planning. Each value is an average over 10 identical runs.
Deadline violations and durations are measured in seconds.

the time to move slabs from the train wagons to the yard. In the schedules
described earlier, we needed a buffer between cranes to make the schedules
more robust. To the advantage of this simulation, the buffer is disregarded in
this part, as we are not really creating a schedule. Rather, we are simulating
manual planning/scheduling, and hence the operations are to be interpreted as
happening in real time and not as a pre-made schedule to be followed. Again, a
more detailed description is found in the technical report (Dohn and Clausen,
2008c).

By comparing the solutions of the method presented in this paper to the so-
lutions of such a simulation, we are able to assess the value of the proposed
method. In the following we run a number of simulations. The average yard
throughput is fixed in each of the test instances. The throughput is increased
in the hard test instances to check the effect on the quality of the schedules.
The simulations are kept as close as possible to the real world conditions. The
details of the data simulation and the settings for simulation of manual planning
are in the technical report (Dohn and Clausen, 2008c).

For the simulations, we assume that the requested throughput of the yard for
each day is randomly drawn from a Gaussian distribution. In the same way,
we assume that the production time and through time (i.e. storage time in the
yard) for each slab are also drawn from Gaussian distributions.

F.7 Conclusions 257

From Table F.4 it is clear that the proposed method provides significantly better
results than the simulation of manual planning. In the table we have shown four
performance measures. For each method, the first column gives the average
number of times a slab is moved before it leaves the yard. As slabs in our
setup are never transferred directly from train wagons to the exit belt, the
minimum number of moves of each slab is 2. This measure illustrates how well
the moves are planned, i.e. a low number indicates that the slabs are seldom in
the way of others. From the tests, we see a significant difference between the two
methods, especially for the harder problems, where the Two-Stage algorithm on
average uses approximately one move less per slab. Also the duration of each
move is of interest and is shown in the second column. The difference between
the two methods is not remarkable, even though the Two-Stage algorithm is a
few seconds faster in all cases. The duration seems stable over the set of test
instances.

The two last columns report on deadline violations. The rightmost of the
columns gives the maximum deadline violation, which is, as stated earlier, the
main objective considered in this work. The first of the two columns reports
on the average violations. This is interesting if we assume that the following
production is able to catch up on the delays we may have caused. A low average
deadline violation is equivalent to a low sum of violations, which is another ob-
jective often used for scheduling problems in the literature. For both objectives,
we see that the Two-Stage algorithm clearly outperforms the other. The man-
ual planning has severe problems in the hard instances, where the results of the
Two-Stage method are still satisfactory. The figures for manual simulation may
seem very large, but it is noted that the numbers can only be used for compari-
son with other similar tests. As soon as a method is unable to keep up with the
rate at which slabs enter the yard, it will lead to larger and larger violations as
we let the simulation run. In each run of these tests, the two methods naturally
span over the same production plan.

Both methods are able to produce results in less than a second. Such compu-
tation times are insignificant in these settings and are therefore not compared
here.

Figure F.18 illustrates a schedule created by the Two-Stage algorithm.

F.7 Conclusions

The Slab Yard Planning and Crane Scheduling Problem has been modeled in
a novel way that facilitates a beneficial, and at the same time transparent op-

258
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0 2000

4000

6000

8000

10000

12000

Figure F.18: Schedule created by the Two-Stage algorithm. The two curves de-
scribe the horizontal positions of the two cranes over time. Each curve contains
a number of pick-ups (×) and drop-offs (◦).

timization. The model is generic enough to capture several variations of the
problem. The solution methods adapt to variations of the problem, correspond-
ingly.

From the test results it is clear that the model facilitates an algorithm that is
capable of providing solutions superior to those achievable by manual planning.
The tests are, however, preliminary and based on simulations which rely on a
number of assumptions.

We have introduced a model that, by splitting The Slab Yard Planning and
Crane Scheduling Problem into two stages, facilitates a solution procedure that
is clear in the formulation of objectives and is able to generate superior schedules
by addressing the problem at two different abstraction levels.

Future work should be aimed at real-world applications. So far, the experi-
mental conclusions are based on simulations and artificially generated data. In
a practical application it is possible to tailor the algorithms to fit the exact
properties of that particular problem. In this paper, we have made sure not

F.7 Conclusions 259

to take advantage of structures in the problem data, as such structures may
not transfer to variations of the problem. Therefore, in a practical application,
it may be possible to utilize problem-specific knowledge in the creation of the
planning and the scheduling method, and get even better results. On the other
hand, practical problems may also introduce new challenges. Either way, the
model presented in this paper will be a valuable starting point for exhaustive
purpose-built practical models.

References

Allahverdi, A., C. Ng, T. Cheng, and M. Kovalyov (2008). “A survey of schedul-
ing problems with setup times or costs”. In: European Journal of Operational
Research 187.3, pp. 985–1032.

Brucker, P., A. Drexl, R. Mohring, K. Neumann, and E. Pesch (1999).
“Resource-constrained project scheduling: Notation, classification, models,
and methods”. In: European Journal of Operational Research 112.1, pp. 3–41.

Che, A. and C. Chu (2004). “Single-track multi-hoist scheduling problem: a
collision-free resolution based on a branch-and-bound approach”. In: Inter-
national Journal of Production Research 42.12, pp. 2435–2456.

Dekker, R., P. Voogd, and E. Asperen (2006). “Advanced methods for container
stacking”. In: OR Spectrum - Quantitative Approaches in Management 28.4,
p. 563.

Dohn, A. and J. Clausen (2008c). Optimizing the Slab Yard Planning and Crane
Scheduling Problem Using a Two-Stage Approach (Technical Report). Tech.
rep. Technical University of Denmark.

Frederickson, G., M. Hecht, and C. Kim (1978). “Approximation algorithms for
some routing problems”. In: SIAM Journal on Computing 7.2, pp. 178–93.

Gambardella, L., M. Mastrolilli, A. Rizzoli, and M. Zaffalon (2001). “An opti-
mization methodology for intermodal terminal management”. In: Journal of
Intelligent Manufacturing 12.5-6, p. 521.

Graham, R., E. Lawler, J. Lenstra, and A. Rinnooy Kan (1979). “Optimization
and approximation in deterministic sequencing and scheduling: a survey”.
In: Discrete Optimisation 5, pp. 287–326.

Hansen, J. (2003). “Industrialised application of combinatorial optimization”.
PhD thesis. Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby:
Informatics and Mathematical Modelling, Technical University of Denmark,
DTU.

Kim, K. and J. Bae (1998). “Re-marshaling export containers in port con-
tainer terminals”. Ed. by M. Sadek Eid, Hamid Parsaie, Mahmoud Younis,
and Soha Eid Moussa. In: Computers and Industrial Engineering 35.3-4,
pp. 655–658.

260
Optimizing the Slab Yard Planning and Crane Scheduling Problem using a

Two-Stage Heuristic

Kim, K., Y. Park, and K.-R. Ryu (2000). “Deriving decision rules to locate
export containers in container yards”. In: European Journal of Operational
Research 124.1, pp. 89–101.

König, F., M. Lübbecke, R. Möhring, G. Schäfer, and I. Spenke (2007). “Solu-
tions to real-world instances of PSPACE-complete stacking”. Ed. by L. Arge,
M. Hoffmann, M. Hoffmann, E. Welzl, and E. Welzl. In: Algorithms - ESA
2007. Proceedings 15th European Symposium. (Lecture Notes in Computer
Science vol. 4698), pp. 729–40.

Lamothe, J., C. Thierry, and J. Delmas (1996). “A multihoist model for the
real time hoist scheduling problem”. In: Symposium on Discrete Events and
Manufacturing Systems. CESA’96 IMACS Multiconference. Computational
Engineering in Systems Applications, pp. 461–6.

Leung, J. and G. Zhang (2003). “Optimal cyclic scheduling for printed cir-
cuit board production lines with multiple hoists and general process-
ing sequence”. In: IEEE Transactions on Robotics and Automation 19.3,
pp. 480–484.

Leung, J., G. Zhang, X. Yang, R. Mak, and K. Lam (2004). “Optimal Cyclic
Multi-Hoist Scheduling: A Mixed Integer Programming Approach”. In: Op-
erations Research 52.6, pp. 965–976.

Liu, J. and Y. Jiang (2005). “An efficient optimal solution to the two-hoist no-
wait cyclic scheduling problem”. In: Operations Research 53.2, pp. 313–27.

Singh, K., Srinivas, and M. Tiwari (2004). “Modelling the slab stack shuffling
problem in developing steel rolling schedules and its solution using improved
Parallel Genetic Algorithms”. In: International Journal of Production Eco-
nomics 91.2, pp. 135–147.

Steenken, D., S. Voß, and R. Stahlbock (2004). “Container terminal operation
and operations research - a classification and literature review”. In: OR Spec-
trum 26.1, pp. 3–49.

Tang, L., J. Liu, A. Rong, and Z. Yang (2001). “An Effective Heuristic Algorithm
to Minimise Stack Shuffles in Selecting Steel Slabs from the Slab Yard for
Heating and Rolling”. In: Journal of the Operational Research Society 52.10,
pp. 1091–1097.

Tang, L., J. Liu, A. Rong, and Z. Yang (2002). “Modelling and a genetic algo-
rithm solution for the slab stack shuffling problem when implementing steel
rolling schedules”. In: International Journal of Production Research 40.7,
pp. 1583–95.

Zaffalon, M., A. Rizzoli, L. Gambardella, and M. Mastroiilli (1998). “Resource
allocation and scheduling of operations in an intermodal terminal”. In: Sim-
ulation Technology: Science and Art. 10th European Simulation Symposium
1998. ESS’98, pp. 520–7.

Zhu, X. and W. Wilhelm (2006). “Scheduling and lot sizing with sequence-
dependent setup: a literature review”. In: IIE Transactions 38.11,
pp. 987–1007.

ISBN 978-87-90855-84-0

DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

DK-2800 Kongens Lyngby

Denmark

Tel. +45 45 25 48 00

Fax +45 45 93 34 35

www.man.dtu.dk

In a modern society, manpower is both a scarce and an expensive resource. Skilled personnel is usually in
high demand and accounts for a significant part of total expenses in many companies. In order to minimize
costs and overstaffing, to maximize the utilization of available staff, and to ensure a high level of satisfac-
tion among the employees, sophisticated scheduling methods are required. This thesis has its background in
operations research, which among other things, is concerned with the development of advanced scheduling
methods and with a structured approach to optimization of complex planning problems.
The thesis contains six individual scientific papers along with a summary of the most important contribu-
tions and conclusions. A number of industrial applications in rostering and task scheduling are presented with
emphasis on generalized rostering and task scheduling with temporal dependencies between tasks. The
applications exist within various contexts in health care, the aviation industry, transportation, and production.
Important contributions include the development of a versatile approach to generalized rostering, building on
an idea of compile-time customization. Several extensions of regular rostering problems are presented. For
task scheduling, a general modeling of temporal dependencies is introduced and included in a well estab-
lished solution methodology, termed column generation. Column generation is an iterative exact solution
method based on the theory of linear programming. The approach is applied to several practical problems
with promising results. Lastly, a novel approach to crane scheduling with superior results is presented.

	Anders Dohn - PhD Thesis.pdf
	Resumé (Danish Summary)
	Summary
	Preface
	Scientific papers composed
	Acknowledgements
	I Background and synopsis
	1 Introduction
	1.1 Important terms
	1.2 Thesis structure

	2 Modeling
	2.1 Rostering
	2.2 Task scheduling
	2.3 Interconnectivity
	2.4 Related problems

	3 Applications
	3.1 Rostering
	3.2 Task scheduling
	3.3 Comparison

	4 Solution Methods
	4.1 Greedy heuristics
	4.2 Column generation

	5 Papers of Part II
	5.1 Paper A: A Nested Column Generation Based Approach to the Generalized Rostering Problem using Compile-time Customization
	5.2 Paper B: An Integrated Approach to the Ground Crew Rostering Problem with Work Patterns
	5.3 Paper C: The Manpower Allocation Problem with Time Windows and Job-Teaming Constraints: A Branch-and-Price Approach
	5.4 Paper D: The Home Care Crew Scheduling Problem: Preference-Based Visit Clustering and Temporal Dependencies
	5.5 Paper E: The Vehicle Routing Problem with Time Windows and Temporal Dependencies
	5.6 Paper F: Optimizing the Slab Yard Planning and Crane Scheduling Problem using a Two-Stage Heuristic

	6 Conclusions
	6.1 Main contributions
	6.2 Future work

	II Scientific Papers
	A A Nested Column Generation Based Approach to the Generalized Rostering Problem using Compile-time Customization
	A.1 Introduction
	A.2 Model
	A.3 Solution method
	A.4 Implementation
	A.5 Example
	A.6 Computational results
	A.7 Conclusions

	B An Integrated Approach to the Ground Crew Rostering Problem with Work Patterns
	B.1 Introduction
	B.2 Literature review
	B.3 The Ground Crew Rostering Problem with Work Patterns
	B.4 Column Generation
	B.5 Enforcing Integrality of the Solution
	B.6 Rostering Directly on the Forecast Workload
	B.7 Robustness
	B.8 Experimental results
	B.9 Conclusion

	C The Manpower Allocation Problem with Time Windows and Job-Teaming Constraints: A Branch-and-Price Approach
	C.1 Introduction and Problem Description
	C.2 Problem Definitions and Formulation
	C.3 Decomposition
	C.4 Branching
	C.5 Computational Results
	C.6 Conclusion and future work

	D The Home Care Crew Scheduling Problem: Preference-Based Visit Clustering and Temporal Dependencies
	D.1 Introduction
	D.2 Problem formulation
	D.3 Decomposition
	D.4 Branching
	D.5 Clustering of visits and arc removal
	D.6 Test instances
	D.7 Computational results
	D.8 Conclusion and future work

	E The Vehicle Routing Problem with Time Windows and Temporal Dependencies
	E.1 Introduction
	E.2 Model
	E.3 Decomposition
	E.4 Branching
	E.5 Benchmark instances
	E.6 Test results
	E.7 Conclusions and future work

	F Optimizing the Slab Yard Planning and Crane Scheduling Problem using a Two-Stage Heuristic
	F.1 Introduction
	F.2 Problem Description
	F.3 The Slab Yard Planning Problem
	F.4 The Crane Scheduling Problem
	F.5 Solution Method
	F.6 Test results
	F.7 Conclusions

