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Summary 

The dispatching problem in container terminals has received considerable attention from 

researchers. However, few works have taken into account the coordination among various 

types of terminal equipment, including Quay Cranes (QC), Prime Movers (PM) and Yard 

Cranes (YC). To bridge the gap, we address the integrated vehicle dispatching problem in 

this thesis and design effective models and algorithms to solve the problem. 

Firstly, we address an integrated dispatching problem which considers both waiting time 

at quay side and yard side in a container terminal. In previous works [Kim and Bae (2004), 

Cheng (2005)], the waiting time at yard side is ignored for simplicity. We argue that this 

variable plays a significant role in the dispatching problem. To solve the new problem, we 

build a mixed integer programming (MIP) model. Since existing solvers cannot solve the 

MIP model in reasonable time, we develop two heuristic algorithms. The first is the 

variable neighborhood search (VNS) algorithm, which is based on the random exchange 

of neighborhood, but may terminate with only limited improvement. The second method 

is based on the combination of genetic algorithm (GA) and the minimum cost flow (MCF) 

network model. We prove that there exists a set of job ready times in the MCF model 

which produce the optimal vehicle job sequence. Unlike improving the vehicle job 

sequence directly in most GA algorithms, we use the job ready times as the chromosome 

and then use the MCF model to decode the job sequence. This converts the complex MIP 

model into a simple linear programming (LP) formulation. The experimental results 

indicate the superiority of the GA-MCF algorithm over the neighborhood search algorithm. 
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Secondly, we extend the integrated dispatching problem by considering the locations to 

store the discharging containers. Previous studies simply assume that the yard locations 

for discharging jobs are given. However, in actual terminal operations, the port operators 

can also determine the yard location of discharging containers. Thus, we extend the 

previous problem by considering the storage locations for discharging containers. This has 

enlarged the solution space for the problem. In order to effectively find a good solution, 

we use a tree structure to represent the search space and propose three heuristic methods to 

solve the problem. The three methods are Nested Partition based method (NP), Buffered 

Semi Greedy method (BSG), and Buffered Probabilistic Greedy method (BPG). Extensive 

experiments are conducted and the results show that these heuristic methods can find 

promising solutions in seconds. 

Thirdly, we develop an efficient simulation platform to compare and evaluate different 

dispatching rules to facilitate real time dispatching. In real time dispatching, it is difficult 

for a port operator to choose a proper rule because the system is highly dynamic and 

stochastic. The rules might perform differently under different scenarios. In this thesis, we 

present this simulation platform to evaluate the effectiveness of different rules under 

different scenarios. This platform not only can work with simple rules, but can also 

evaluate complex heuristic models which most of the current commercial simulation 

software would not be able to do so. It can communicate effectively with different solvers 

which are needed to solve these complicated optimization models. 
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1 Introduction and Overview 

1.1 Introduction 

Maritime transport remains the strong backbone supporting globalization as 80 percent of 

international trade by volume is transported via sea. With world trade booming, 

competition between major seaports is becoming intense. Hence it is important for port 

operators to develop different decision tools and optimization algorithms so as to improve 

its performance and increase its competitiveness.  

 

To increase productivity of the terminal, it is necessary to coordinate different terminal 

equipment to ensure a seamless flow of containers within the terminal. A schematic 

diagram of the typical processes in a container terminal is shown in Figure 1.1 (Vis et al. 

2003). Container activities can be categorized into three types: import, export, and 

transshipment activities. For export activities, the containers are brought in by shippers 

and will be stored at their designated locations in the storage yard. When it is time to load 

the containers, they are retrieved from the stored locations by yard cranes (YC) and 

transported by man-driven vehicles (Prime Movers, PM) to the quay side. The quay cranes 

(QC) then remove the containers from the vehicles and load them onto the vessels. The 

processes for import activities are performed similarly except that they are done in the 

reverse order. For transshipment activities, the processes are slightly different. The 

containers will be stored in the storage yard after they are unloaded from the vessel, and 

will be finally loaded onto other vessels.  
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Figure 1.1 A flow diagram demonstrating the interaction between terminal processes 

 

Yard 

Crane

Quay 

Crane

Prime

Mover

Container Blocks

Container Vessels

Internal trucks transport containers between the yard side 

and quay side

Quay Crane

Yard Crane

 

Figure 1.2 Working flow of container dispatching problem 

 

Figure1.2 shows working flow of container dispatching problem. When a vessel arrives at 

the berth, QCs discharge the import and transshipment containers from the ship onto PMs 

to transport them to storage locations at the yard side. At the yard side, YCs unload these 

containers from the PMs to the designated storage locations. A similar process can be 

found for loading the export and transshipment containers from the yard side to the ship. 
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The transportation between the quay side and the yard side plays a crucial role in 

determining the productivity of the terminal, because it might delay the QC or YC 

operations if PMs do not arrive in time or may cause traffic congestion if they arrive too 

early. In practice, since the coordination between the various types of equipment at the 

operational level is complex due to the traffic congestion, traffic delay, equipment 

breakdown and other dynamic uncertainties in the port, optimizing this dispatching 

problem becomes very challenging. Therefore, a decision supporting system is needed to 

provide fast and intelligent solutions to guide the port operators in dispatching and routing 

vehicles. This study aims to address dispatching related problems as follows by 

developing algorithms to improve the port operation performance.  

1.1.1 Integrated Vehicle Dispatching Problem 

In the past, most of previous studies on terminal vehicle dispatching problem do not 

consider the delay at the yard side and they usually assume that YC is always available 

when needed. This assumption works only when the yard is not congested, or there are 

enough YCs. However, this might not be the case especially when there is high traffic 

volume. Furthermore, most of these works confine their works to gate ports where the jobs 

are usually either import or export jobs. In this thesis, we consider the delay at the yard 

side, and also include both the loading and discharging jobs simultaneously. Moreover, 

the PMs are pooled among all the QCs rather than dedicated to a certain QC. This thesis 

seeks to provide an efficient way of dispatching vehicles to minimize the makespan time 

at the quay side for a given number of container jobs by considering all equipment. 



Chapter 1. Introduction and Overview 

4 

 

We build a Mixed Integer Programming (MIP) model to solve this integrated dispatching 

problem. However, the existing optimization solver cannot solve this MIP model when the 

problem size increases dramatically. Thus we develop two heuristic methods to solve the 

problem, that can improve the initial solution obtained from the Minimum Cost Flow 

(MCF) model which ignores the yard side waiting time. The first method is a 

neighborhood search method named Variable Neighborhood Search (VNS) method. The 

second method is based on Genetic Algorithm (GA). Before implementing GA, we prove 

that there exists a property in the Minimum Cost Flow (MCF) model that we can obtain 

the optimal job sequence when setting the proper ready times in MCF. Thus we 

implement GA by using this special property. Unlike the common Genetic Algorithm (GA) 

which usually represents the chromosome using job sequence, we use the ready time for 

jobs as the representation of the chromosome, and the MCF model is then used to decode 

the chromosome to determine the job sequence for prime movers. The experiment results 

indicate the superiority of the GA-MCF based algorithm over the neighborhood search 

algorithm. 

1.1.2 Container Dispatching and Location Problem 

Previous dispatching studies only focus on optimizing job sequence on each vehicle while 

assuming that yard location for the discharging container is known. However, it might be 

sub-optimal if we focus merely on planning vehicle dispatching without considering the 

yard locations for the inbound container. The storage location for the inbound job is also 

an important decision variable which may affect the performance of the whole system. 

Unlike previous works which only consider how to dispatch vehicles to improve QC 
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productivity, we investigate in this thesis the whole dispatching process in both QC and 

YC performances so as to improve the  productivity rate of the whole terminal.   

To investigate this integrated problem, we present three heuristic methods: Nested 

Partition (NP) based method, Buffered Semi Greedy method (BSG), and Buffered 

Probabilistic Greedy method (BPG). They all use tree structure to find the job sequence as 

well as the storage locations for the inbound containers. However, the NP method spends 

too much time on sampling and selection since it needs to calculate the completed solution 

in each stage. On the contrary, BSG and BPG methods save computing budget since they 

only calculate the current partial solution in each stage, and BPG can capture current 

information to determine the next searching direction in a probabilistic manner. We also 

propose a new measure to evaluate the performance of these heuristic algorithms, which 

considers the tradeoff between the elapsed time in exploring the solution space and the 

quality of the result. Extensive experiments are conducted and results show that these 

proposed heuristic methods can find a promising solution in reasonable time.  

1.1.3 The Integrated Simulation Platform for Real Time Dispatching 

For real time dispatching, we need to make decisions based on the most updated 

information, which usually cannot be considered directly during the planning phase. In 

practice, port planners usually use simple greedy rules to do real time dispatching under 

certain scenarios. Simulation is widely used here to evaluate the effectiveness of these 

simple rules. On the other hand, some researchers propose more complicated rules which 

can capture  more information by using look ahead planning. It is not easy to know the 

effectiveness of these proposed rules, since coding these complicated rules into current 
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commercial simulation software is difficult and time consuming. In addition, it is not easy 

to choose a proper rule between a simple rule and a complex one under different scenarios. 

Therefore, we develop a useful simulation platform to aid terminal operators in 

implementing and evaluating different rules efficiently. This platform is powerful not only 

in working with simple rules, but also in evaluating complex heuristic models.  

By using this simulation platform, it becomes quite flexible in testing different rules under 

different simulation scenarios. Besides, the simulation and the external optimization 

model can communicate with each other to share current state information. With this 

simulation platform, we can evaluate the performance of different simple or even 

complicated models in real time environment.  

1.2 Contribution of the Thesis 

In summary, this thesis addresses the integrated dispatching problem which takes into 

account the coordination among all equipment for a container terminal. The contributions 

of this thesis are listed as follows: 

 Different from traditional container dispatching problem, we present a new 

problem which seeks to solve a vehicle dispatching problem for both the 

discharging and loading containers by taking into account waiting times at the 

quay side and the yard side in a container terminal. However, most of the existing 

works either ignore yard side waiting time or only focus on a single type of 

container. The complexity of this integrated problem makes it challenging to solve 
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under any commercial optimization software but we manage to propose efficient 

algorithms to provide good solutions. 

 In terms of methodology, this thesis aims to define a problem structure where a 

more effective searching algorithm can be developed. In the first dispatching 

problem, we use a good neighborhood structure to explore the solution space. 

Instead of solving the complex MIP model directly, we propose solving a simple 

MCF model. We prove that there exists a set of MCF parameters which can result 

in the optimal vehicle job sequences.  To find this set of MCF parameters, we 

propose using GA. Unlike the typical GA which usually represents the 

chromosome using the job sequence, we use the job ready time in MCF as the 

representation of the chromosome, and the MCF model is then used to decode the 

chromosome to determine the job sequence. Due to the fact that the job ready time 

is continuous in nature and has good neighborhood structure, GA is able to give us 

good results. 

 In the dispatching and location problem, we present the tree representation for 

solution structure and propose three efficient algorithms. In each algorithm, we 

learn the information obtained from every exploration stage to determine the next 

searching direction. These efficient tree based searching approaches can obtain 

better solutions in a very fast speed. Moreover, we propose a comparison 

mechanism which considers the ratio of solution quality and CPU time. 

 We develop a simulation platform which can be used to evaluate and compare 

different dispatching methods from simple rules to complicated models for real 
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time dispatching. Unlike other simulation software, this platform not only works 

with simple rules, but also can help in evaluating complex heuristic algorithms.  

1.3 Organization of the Thesis 

This thesis consists of six chapters. The rest of this thesis is organized as follows: 

Chapter 2 reviews related literature on port operations including capacity planning, berth 

allocation, quay crane assignment, ship stowage, yard configuration, yard allocation, yard 

crane deployment, prime mover deployment, and integrated terminal study, etc.  

In Chapter 3, the formulated mixed integer linear programming model for the vehicle 

dispatching problem is presented, in which waiting time at both quay side and yard side in 

a container terminal is considered. Two heuristics to solve this model as well as 

experimental results are presented. 

Chapter 4 describes the relaxed yard location for discharged container model and the 

proposed heuristics for solving the model. Numerical experiments on the relaxed yard 

location problem are conducted and computational results are presented in this chapter. 

In Chapter 5, the real time concept for vehicle dispatching is studied by simulation 

platform. Two serials of experiments to evaluate this framework for real time dispatching 

are conducted. One is to analyze the performance of simple dispatching rules and 

strategies embodied directly in the simulation platform; the other is to demonstrate the 

performance of complicated dispatching optimization models via this framework.  
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Finally, in Chapter 6, we consolidate the findings from previous chapters and discuss 

some issues for future research. 
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2 Literature Review 

There are voluminous research works in the area of container terminal operations. Hence, 

it is useful to provide a short classification review to introduce the related topics that 

people have done. In this chapter, we summarize and categorize the operations in 

container terminals. Our main focus is on the transportation optimization which is most 

related with our work. Literature reviews on port operations can also be found in Vis and 

de Koster (2003), Steenken et al. (2004) and Robert Stahlbock & Stefan (2008). 

2.1 Ship Planning Process 

When a ship arrives at the terminal, it has to find a place to moor. The berth (place for ship 

to moor) together with several quay cranes will be assigned to the ship. Ship planning 

consists of three partial processes: the berth allocation planning, the stowage planning and 

the quay crane scheduling. 

2.1.1 Berth Allocation Problem 

Imai et al. (1997) study the problem of optimally allocating berths to ships while 

minimizing the sum of ship turnaround times and minimizing dissatisfaction of the ship 

owners in terms of the berthing order.  The problem is then reduced to a single objective 

problem which becomes similar to the classical assignment problem. Imai et al. (2001) 

propose a heuristic procedure based on Lagrangian relaxation to solve the dynamic berth 

allocation problem. Numerical experiments show that the proposed algorithm is adaptable 

for real world applications. Nishimura et al. (2001) propose a genetic algorithm based 
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heuristic to investigate the berth allocation problem in the public berth system. Guan et al. 

(2002) consider the berth allocation problem as a scheduling problem and conduct the 

worst case analysis. Imai et al. (2003) propose a genetic algorithm based heuristic to solve 

the berth allocation problem with service priority. Kim and Moon (2003) present a mixed 

integer programming model and use simulated annealing algorithm to determine the 

berthing times and positions of vessels. Park and Kim (2003) investigate the berth 

allocation problem together with the quay crane scheduling problem. A two-phase 

solution procedure is suggested to solve the formulated model. Guan and Cheung (2004) 

investigate the berth allocation problem by using the tree search procedure. The objective 

of this study is to minimize the total weighted flow time. Cordeau et al. (2005) propose a 

tabu search algorithm for solving the berth allocation problem and quay crane allocation 

problem sequentially. Moorthy and Teo (2006) model the berth allocation problem as a 

rectangle packing problem on a cylinder and use a sequence pair based simulated 

annealing algorithm to solve the problem. In Cordeau et al. (2007), the berth allocation 

problem is formulated as a generalized quadratic assignment problem with the objective of 

minimizing the sum of assignment and traffic costs. In Bae et al. (2007), a dynamic berth 

scheduling method is proposed with the objective of minimizing the travel costs of 

vehicles during the ship operation, the tardiness costs, the earliness costs as well as the 

costs for a vessel’s waiting time.  

 

For additional references dealing with the berth allocation problem, one can refer to Park 

and Kim (2002), Imai et al (2006a, 2007b). 
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2.1.2 Stowage Planning Problem 

Avriel and Penn (1993) study the ship stowage problem to minimize the shifting of 

containers on board without considering the stability constraints. Avriel et al. (2000) 

investigate the same problem based on the model in (Avriel and Penn 1993, 1999). They 

find a relationship between the ship stowage problem and the coloring of circle graphs 

problem. Consequently, they improve Unger’s upper bound on the coloring number of 

circle graphs to solve the ship stowage problem. Wilson and Roach (1999) propose a tabu-

search based heuristic algorithm to solve the ship stowage problem. Wilson and Roach 

(2000) propose a methodology for the automatic generation of computerized solutions to 

the ship stowage problem. The methodology progressively refines the placement of 

containers within the cargo-space of a container ship and can generate good, if not optimal, 

solutions for the problem within a reasonable time. Dubrovsky et al. (2002) use a genetic 

algorithm based heuristic to solve the ship stowage problem. An efficient encoding of 

solutions is proposed to reduce the search space. Extensive simulation runs show the 

efficiency of the encoding of solutions. The encoding can also be incorporated with the 

ship stability constraints. Kang and Kim (2002) investigate the ship stowage problem to 

minimize the shifting time, reduce quay crane movements, and maintain the stability of 

the ship. A solution procedure divides the problem into two sub-problems, each of which 

is solved iteratively using information from the other. Ambrosino et al. (2006) investigate 

the stowage planning problem by presenting a three stage algorithm with the objective of 

minimizinig the total loading time. Imai et al. (2006b) study container stowage and 

loading plans of a ship by proposing a multi objective model to consider the minimum 

number of container re-handles in yard as well as ship stability. Additional references 
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dealing with the ship stowage problem are, e.g., Steenken et al. (2001), Wilson et al. 

(2001), Roach and Wilson (2002), Giemsch and Jellinghaus (2003), and Álvarez (2006, 

2007). 

2.1.3 Quay Crane Scheduling Problem 

Crane scheduling is referred to the allocation of quay cranes to ships and the ships’ 

sections. Daganzo (1989) uses a simple static case and dynamic case with berth length 

limitations to study the quay crane scheduling problem. The objective of the study is to 

minimize the turnaround time of all the ships. Two methods are proposed: one is exact 

method and the other is approximation one for implementation purpose. In Peterkofsky 

and Daganzo (1990), the quay crane scheduling problem is considered as an “open shop” 

problem with parallel identical machines. And a branch and bound method is proposed to 

with the objective of minimizing the ship delay costs. Kim and Park (2004) propose a 

branch and bound algorithm and a greedy randomized adaptive search procedure (GRASP) 

based heuristic to solve the quay crane scheduling problem with the objective of 

minimizing the weighted sum of the makespan time at quay side. Canonaco et al. (2007) 

present a queuing network model to solve this problem with the objective of minimizing 

the vessel’s turnaround time. Liang and Mi(2007) propose a multi-objective model for the 

quay crane scheduling problem. The proposed model seeks to minimize the service and 

delay time of the vessel, as well as the standard deviation of the quay cranes’ working 

time. Linn et al. (2007) study this problem by proposing a machine learning algorithm 

based on artificial neural network paradigm. Additional references dealing with the quay 

crane scheduling are, e.g., Zaffalon et al. (1998) and Murty et al (2006). Quay crane with 
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twin lift mode is also considered in the quay crane scheduling problem in Johansen (2006) 

and Shanghai Zhenhua Port Machinery (2007). Some studies considering dual cycling of 

cranes in quay crane scheduling problem are, Goodchild (2005, 2006) and Goodchild and 

Daganzo (2004, 2005, 2006, 2007). 

2.2 Container Yard Storage Problem 

A container’s position in the storage area is defined by the block, the bay, the row and the 

tier. In yard planning systems, stack areas and storage capacities are allocated to a ship’s 

arrival in advance according to the number of import and export containers expected. The 

efficiency of stacking depends greatly on the strategies of allocating storage space to 

arriving containers.  In the early stage of yard storage planning study, lots of works are 

focused on eliminating the unproductive reshuffles. Simulation is a useful tool in early 

studies, such as Chung et al. (1988) and Sculli and Hui (1988). Kim (1997) proposes a 

methodology to estimate the expected number of reshuffles to pick up an arbitrary 

container and the total number of reshuffles to pick up all the containers in a block for a 

given initial stacking configuration. He finds that the height and width of the container 

block are the key factors. Gambardella et al. (1998) propose an integer linear 

programming model for the storage allocation problem and use simulation to validate the 

robustness of the model. Kim and Bae (1998) discuss how to reshuffle export containers 

in container terminals. Kim and Kim (1999a) study the import container allocation 

problem where the arrival rate of import containers is constant, cyclic, and dynamic. Kim 

et al. (2000) propose a methodology to determine the storage location of an arriving 

export container by considering its weight. Preston and Kozan (2001) develop a genetic 
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algorithm based heuristic for container allocation problem with the objective of 

minimizing the turnaround time of container vessels. In Kim and Park (2003) the storage 

space allocation problem for export containers is studied. A mixed integer linear 

programming model is formulated for the transfer system. Zhang et al. (2003) study the 

storage space allocation problem in the storage yard by a two stage rolling-horizon 

approach. At the first stage, the total number of containers to be stored in each container 

block in each shift is determined to balance the workload among blocks. Based on the 

result of the first stage problem, the number of containers associated with each vessel is 

determined to minimize the total traveling distance at the second stage. Murty et al. (2005) 

develop an online dispatching procedure for assigning containers to storage locations. To 

reduce traffic congestion of prime movers, a fill ratio equalization approach is used to 

allocate containers to the storage locations. Dekker et al. (2006) study the storage 

allocation problem via simulation for an automated container terminal. Several variants of 

consignment strategy, in which the same group of containers are stored together, are 

discussed. Lee et al. (2006) study the storage allocation problem in transshipment hubs. 

The consignment strategy, in which containers to the same destination vessel are stored in 

the same sub-blocks, is used to reduce the number of reshuffles. A high-low workload 

balancing protocol is used to reduce traffic congestion of prime movers. Hirashima et al. 

(2006) propose a Q-learning algorithm to solve export container allocation problem with 

the objective of minimizing vessel’s turnaround time. Kang et al. (2006a, b) propose a 

Simulated Annealing (SA) based heuristic to study this problem for export containers. The 

results show that using machine learning algorithm can lead to better solutions. Kozan and 

Preston (2006) present an iterative search algorithm for the integrated container-transfer 

and container-allocation model to determine the optimal storage strategy and 
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corresponding handling schedule. Kim and Kim (2007) investigate the yard storage 

problem by proposing a cost model to encourage short time storage time in the yard. 

 

For additional reference, one can refer to Castilho and Daganzo (1993), Taleb-Ibrahimi et 

al. (1993), Holguín-Versa and Jara-Díaz (1996), Chen (1999, 2000), Kozan and Preston 

(1999), Lim and Xu (2006) and Kim et al. (2007).  

2.3 Vehicle Planning Problem 

For port container terminals, one of the decisions is the determination of the necessary 

number of transport vehicles. Steenken (1992) develops a linear assignment model to 

determine the number of straddle carriers in a container terminal. Vis et al. (2001) develop 

a minimum flow algorithm to determine the necessary number of automated guided 

vehicles required in a semi-automated container terminal. Koo et al. (2004) investigate the 

fleet size problem to determine the necessary number of vehicles required to handle the 

containers.  In this thesis, we focus on the vehicle dispatching problem. Hence in the 

following section, we mainly discuss vehicle transportation optimization.  

2.3.1 Vehicle Dispatching Problem 

A decision at the operational level is to determine which vehicle transports which 

container. For conventional trucks and trailer systems, the vehicle dispatching problem is 

widely studied. Bish et al. (2001) focus on the NP hard problem of dispatching vehicles 

and assigning a yard location to each discharging container in order to minimize the 

makespan. A heuristic algorithm is proposed to solve the formulated assignment model. 
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The effectiveness of the heuristic algorithm is analyzed from both the worst-case and 

computational points of view. Narasimhan and Palekar (2002) study the vehicle routing 

problem to minimize the time taken to load the containers from the storage yard onto the 

vessel. An integer programming model is formulated and a branch-and-bound based 

enumerative method is developed to solve the model. Computational experiments are 

conducted to evaluate the heuristic algorithm. Bish (2003) proposes a heuristic method to 

solve the problem of dispatching vehicles to containers, determining storage location for 

each discharging container while scheduling loading and discharging operations on quay 

cranes. In Bish et al. (2005), an extension of the problem in Bish (2003) is studied. They 

develop easily implementable heuristic algorithms for this problem and identify the 

absolute and asymptotic worst-case performance ratios of the proposed heuristics. 

Numerical experiments show that these heuristics can generate near-optimal or optimal 

solutions for simple or general setting scenarios. Li and Vairaktarakis (2004) investigate 

the problem of optimizing the time for loading and unloading containers to and from a 

ship in a container terminal. An optimal algorithm and some efficient heuristics are 

developed to solve the problem. The effectiveness of the heuristics is studied both 

analytically and computationally. Ng and Mak (2004) develop an algorithm to sequence 

trucks to enter the working lane for export containers. The objective of this study is to 

reduce congestion of the working lanes. The dynamic trailer routing problem is discussed 

in Nishimura et al. (2005). In this study the yard trailers are assigned to specific quay 

cranes and the capacity of the vehicles can be one (single trailer) or two (multi-trailer). 

Zhang et al. (2005) present three MIP models for vehicle dispatching problem in a 

container terminal in which the starting times of jobs as well as the work sequence of 

vehicles need to be determined. The models only consider the unloading phase of a vessel 
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in one berth and vehicles are assumed to be dedicated to a certain quay crane. Ng et al. 

(2007) study the problem of scheduling a fleet of trucks to perform a set of transportation 

jobs in a container terminal using a genetic algorithm. They focus on the scheduling the 

job order of trucks to minimize makespan. In Chen et al. (2007), the dispatching problem 

is formulated as a hybrid flow shop scheduling problem with precedence and blocking 

constraints. A tabu search based algorithm is developed to solve this problem. The results 

show that a good initial solution is important.  

2.3.2 SC and ALV Dispatching Problem 

Straddle carriers are alternative vehicles for the transport, retrieval and storage of 

containers. Thus the routing of straddle carriers has received much attention from the 

researchers. In Steenken (1992) the routing problem of straddle carriers is studied. The 

problem is formulated as a linear assignment problem with the objective of minimizing 

the empty-travel distance by combining loading and unloading jobs. As a result, a saving 

of 13% in the empty travel distance is obtained. In Steenken et al. (1993), a network 

problem with minimum cost is formulated to determine the route of straddle carriers. A 

saving of 20-35% is obtained in the empty travel distance. Kim and Kim (1999c) study the 

single straddle carrier routing problem to load export containers onto a containership. An 

integer programming model is developed with the objective of minimizing the total 

traveling time of the straddle carrier. An efficient algorithm for the integer programming 

model is proposed. Kim and Kim (1999b) study the straddle carrier routing problem 

during the loading operation of export containers. The objective is to minimize the total 

traveling distance of all the straddle carriers in the storage yard. A beam search algorithm 
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is developed to solve the straddle carrier routing problem. Numerical experiments are 

carried out to evaluate the proposed algorithm. Böse et al. (2000) study the straddle carrier 

routing problem between the vessel and the storage yard. The objective for the study is to 

minimize the vessel turnaround time and to maximize the productivity of the yard cranes. 

They investigate different dispatching strategies for straddle carriers. An evolutionary 

algorithm is proposed to improve the solution quality. 

Automated Lifting Vehicle (ALV) has the capability to lift a container from the ground. 

Nguyen and Kim (2007) discuss the dispatching of ALVs. They propose a heuristic 

algorithm based on the multiple traveling salesman problem. One important assumption in 

their work is that the waiting time at yard cranes is negligible since automated yard crane 

is not a bottleneck.  

2.3.3 AGV Dispatching Problem 

Recently, more container terminals utilize automated transporters, like AGVs. Therefore 

the research on the dispatching of AGVs becomes important. Evers and Koppers (1996) 

develop a formal tool to control the large number of AGVs. Simulation models are built to 

evaluate the various dispatching rules. In Chen (1998) an effective dispatching rule is 

developed for assigning AGVs to containers. A greedy algorithm is proposed to solve the 

problem. Simulation shows the solution obtained from the proposed algorithm is near 

optimal. In Duinkerken et al. (1999), a control system called TRACES (Traffic Control 

Engineering System) is presented to coordinate the traffic flow of AGVs. A prototype is 

built as a pilot-study for the TRACES system based on an existing automated container 

terminal. Kim and Bae (1999) formulate a mixed integer linear programming model for 
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dispatching AGVs with the objective of minimizing the delays of the containerships and 

the traveling time of the AGVs. Gademann and van de Velde (2000) determine the home 

positions for AGVs in a loop layout. A home position is the location where AGVs will 

park if they are idle. The home position should be selected so as to minimize the total 

response time for the AGVs. Reveliotis (2000) models a conflict-free AGV system, in 

which a new conflict resolution strategy is proposed. The strategy employs zone control to 

determine vehicle routes incrementally. In Bish et al. (2001) an extension of the problem 

in Chen (1998) is studied. They consider the problem of dispatching AGVs to containers 

and the container storage problem at the same time. A heuristic method is proposed to 

solve the problem with the objective of minimizing the unloading time of the containers. 

In Van der Meer (2000), the control of AGVs is studied in the automated container 

terminals. Chan (2001) develops a network flow model to dispatch AGVs to containers. 

Several heuristic algorithms are proposed and tested in the case of single load for each 

AGV. Computational results show that the proposed dispatching strategy outperforms the 

current dispatching strategy. Lim et al. (2003) suggest using an auction algorithm for the 

AGV dispatching problem. Different from traditional dispatching rules, the proposed 

dispatching rule looks into the future for an efficient assignment of delivery tasks to 

vehicles and also multiple tasks are matched with multiple vehicles. Moorthy et al. (2003) 

propose an efficient AGV deadlock prediction and avoidance algorithm for a large-scale 

container terminal. An AutoMod simulation model is developed to evaluate the algorithm. 

Simulation results show that potential deadlock situations can be detected and avoided by 

the algorithm proposed. In Grunow et al. (2004), a multi-load AGV dispatching problem 

is studied. A flexible priority rule based approach is developed for an online logistics 

control system. A mixed integer linear programming (MILP) model is formulated to 
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evaluate the online policy. The performance of the priority rule and the MILP model are 

analyzed for several scenarios. Lehmann et al. (2006) investigate the deadlock handling of 

AGVs for an automated terminal. Two methods to detect the deadlock are discussed. One 

is based on the matrix representation of the terminal system. The other directly traces the 

requests for each individual resource. Briskon and Hartmann (2006) and Briskorn et al. 

(2006) investigate the problem to assign transportation jobs to AGVs within a terminal 

control system in real time. They present an inventory-based formulation for the 

assignment problem to avoid the estimation of driving times, completion times, and due 

times. Duinkerken et al. (2006) conduct simulation to compare different trajectory 

planning of AGVs. The experiments show that the AGV’s free ranging capacity results in 

better solution in a dynamic approach. Grunow et al. (2006) present a simulation study of 

AGV dispatching strategies in an automated container terminal. The dual load mode is 

used in the study. The performance of the proposed dispatching strategies is evaluated 

using a scalable simulation model. Simulation results show that the proposed off-line 

heuristic strategy outperforms the existing on-line strategies. 

Additional references dealing with the AGV dispatching problem are, e.g., Zaffalon et al. 

(1998), van der Meer (2000), Leong (2001), Schneidereit (2003), Liu et al. (2004), 

Nishimura et al. (2005),Vis et al. (2006) and Lau er al. (2007). 

2.4 Integrated Study for Terminal Planning 

In previous sections, most of the works aim to solve isolated terminal operation problems. 

However it is necessary to study the container terminal as a whole system by integration 
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of various operations connected to each other. In this section, we review studies regarding 

integrative views on container operation optimization. These studies can be divided into 

simulation approach and analytical approach. 

2.4.1 Simulation Approach 

Most of the researchers use simulation as the methodology to study a whole terminal. 

Gibson et al. (1992) develop a comprehensive simulation model based on a traditional 

queuing model that can track individual vehicles and provide system wide performance 

measures. Koh et al. (1996) use a simulation model to preview the integrated plan of a 

container port operation. Simulation results give port operators an opportunity to see the 

performance of the proposed plan and make changes to them before committing them to 

operations. Charnes et al. (1996) consider the priority of containers via simulation. The 

current trend of service differentiation is also presented. The conceptual and 

computational characteristics of the simulation system are described together with the 

calibration process. Konings (1996) proposes the concept of “integrated center for the 

transshipment, storage, collection, and distribution of goods”. The integrated center is 

characterized by the spatial and functional integration of container handling and storage. 

Kozan (1997b) conducts a comparison between the analytical and simulation planning 

models for a whole container terminal. Gambardella et al. (1998) analyze the resource 

allocation problem via a simulation model. Bruzzone et.al (1999) show the benefit and 

effectiveness of the simulation approach for managing complex container ports. Yun and 

Choi(1999) analyze the performance of a container terminal system in Pusan by an object-

oriented simulation model. Duinkerken et al. (2000, 2001) develop an integrated 
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simulation model which is generic and configurable. Different stacking policies are 

implemented and tested in the model. Duinkerken et al. (2002) study the same problem as 

Duinkerken et al. (2001) in which the quay transport system using AGVs is used to 

deduce the logistic principles for the design of a terminal layout and operational control. 

Two new designs called “circulation layout” and “crossover layout” are tested by 

simulation experiments. They conclude that the “crossover layout” is better and requires 

less AGVs. Kia et al. (2002) conduct a comparison between two different operational 

systems (current and proposed) statistically via a simulation model and propose an 

operational method to reduce port terminal congestion and increase the capacity of 

terminal. Nam et.al. (2002) determine the optimal number of berths and quay crane 

assignment in Pusan. Shabayek and Yeung (2002) analyze the performance of the 

operations in a terminal in Hong Kong via simulation. Liu et al. (2002) design, analyze 

and evaluate four different automated container terminal concepts including automated 

guided vehicles, linear motor conveyance system, overhead grid rail system, and 

automated storage and retrieval system. Nevins et al. (1998a, 1998b) develop a seaport 

simulation model that computes throughput capability and determines resource utilization 

at a high level of detail. The simulation allows for multiple cargo types as well as multiple 

ship types. Rebollo et al. (2000) present a multi-agent system to simulate the port 

container terminal management, and found solutions for the automatic container allocation 

problem. Demirci (2003) uses simulation to find that the most critical bottleneck points 

are created by loading/unloading vehicles and an investment strategy is applied to the 

model for load balancing of the port. Lee et al. (2003) develop a simulation model for port 

operations to model a supply-chain network in quantity approach and to evaluate its 

supply-chain performance based on proposed strategies. Sgouridis et al. (2003) focus on 
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the simulation of incoming containers transported on trucks. Liu et al. (2004) use 

simulation models to analyze the performance of terminal automation and layout. 

Hartmann (2004) introduces an approach to generate scenarios of a container terminal, 

which can be used as input of simulation models and optimization problems. Yang et al. 

(2004) use simulation to analyze the effect of increasing the number of Automated Lifting 

Vehicles on the productivity of the terminal. Duinkerken et al. (2006) develop a 

simulation model combined with a rule-based control system to compare and evaluate 

different container transportation means. Bielli et al. (2006) elaborate an object oriented 

design of a simulator for container terminals. Every equipment, queue, area is 

implemented as an object and communications among objects are implemented as 

messages. Ottjes et al. (2006) introduce a generic simulation model structure for the 

design and evaluation of multi-terminal systems. Henesey et al. (2002, 2003a, 2003b, 

2009) and Henesey (2006) employed a multi-agent based simulation approach for the 

evaluation of container terminal management operations. The approach aims to at 

planning and coordinating the processes within the terminal by mapping the terminal's 

objects and resources. Franz et al. (2007) presented a market-based approach for 

integrated container terminal management including specific market-mechanisms as well 

as a prototypical multi-agent based simulator. Lee et al. (2007, 2008) develop simulation 

models to investigate the impact of different vehicles and different yard layouts on port 

operations. They further build a program named Automated Layout Generation to 

generate different simulation models. Ha et al. (2007) provide a 3D real-time-visualization 

simulation model which depicts terminal equipment behaviors in details. This model is 

useful for assessment of the performance of prospective new equipment. Petering (2007) 

develope a comprehensive simulation model to address issues in terminal design, storage 



Chapter 2. Literature Review 

25 

 

and retrieval location and yard crane control. Hadjiconstantinou and Ma (2009) develop a 

decision support system to optimize yard operations by considering all container flows 

through the yard and used a simulation model for validation. However none of these 

studies can provide flexible simulation platform for evaluating different planning methods. 

The objective of this thesis is to study the terminal traffic coordination with different level 

of sophistication. 

2.4.2 Analytical Approach 

There are also other methodologies to study the container terminal as a whole system. 

Bish et al. (2001) focus on the NP hard problem of dispatching vehicles and assigning a 

yard location to each discharging container in order to minimize the makespan. Bish (2003) 

proposes a heuristic method to solve the problem of dispatching vehicles to containers, 

determining storage location for each discharging container while scheduling loading and 

discharging operations on quay cranes. However, one important assumption in their 

studies is that they did not consider yard side waiting time. Meersmans and Wagelmans 

(2001a, 2001b) investigate the integrated scheduling of various types of handling 

equipment in automated container terminals by using a branch and bound algorithm. The 

overall objective is to minimize the makespan of the scheduling. Hartmann (2004) 

proposes a general model for various scheduling problems (including straddle carriers, 

AGVs, stacking cranes, and workers that handle reefer containers) that occur in container 

terminal logistics. The model can be applied to solve several different real world problems 

for container terminals. The general model is solved by priority rule based heuristics. 

Kozan and Preston (2006) present an iterative search algorithm that integrates a container 
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handling schedule with storage strategy in a cyclic mode to determine the optimal storage 

strategy and container handling schedule. However this study is mainly focused on gate 

port main. Lee at el. (2009) propose a constructive approach to integrate yard truck 

scheduling and the storage allocation with the objective of minimizing the weighted sum 

of the total delay of requests and the total travel time. However they assume that the truck 

number is very limited and each truck serves exactly one route. Due to the limitations, this 

approach may not suit real time planning. 

For additional references dealing with the management of a whole container terminal, one 

can refer to Leeper (1988), Hayuth (1994), Mosca et al. (1994), Ramani (1996), Hulten 

(1997), Merkuryev et al. (1998), Thiers and Janssens (1998), Rizzoli et al. (1999), Veeke 

and Ottjes (1999), Saanen (2000), Carrascosa et al. (2001), Kim et al. (2002), Meersmans 

(2002), Veeke and Ottjes (2002), Mattfeld (2003), and Yun and Choi (2003). 

From the literature it can be seen that various problems associated with terminal 

operations have been addressed. Only few studies aim to increase terminal productivity 

from an integrative view. These studies do not sufficiently address the particular needs of 

transshipment hubs, but are more on general terminals which emphasize merely on import 

or export activities. For transshipment hubs, loading and unloading activities need to be 

considered at the same time, which makes the terminal planning more complex. In this 

thesis, we study the vehicle dispatching problem by considering loading and unloading 

containers at the same time.  
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Also, many of the works on vehicle dispatching problem do not consider the delay at the 

yard side with the exception of Chen et al. (2007), and they usually assume that YC is 

always available when needed. This assumption is fine when the yard is not congested, or 

there are many YCs. However, this might not be the case especially when there is high 

traffic volume. In our problem, we consider the delay at the yard side, and also include 

both the loading and discharging jobs simultaneously which are commonly found in the 

transshipment port. In addition, the PMs are pooled among all the QCs rather than 

dedicated to a certain QC. We seek to provide an efficient way of dispatching vehicles to 

minimize the makespan time at the quay side for a given number of container jobs by 

considering all equipment. 

 

Furthermore, the dispatching and location problem is studied for inbound containers, and a 

simulation study is conducted on the real time dispatching concept. The details for the 

integrated dispatching problems and the simulation study on the real time dispatching are 

discussed in the following chapters. 
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3 Integrated Vehicle Dispatching Problem for 

Transshipment Hubs 

In this chapter, we address the dispatching problem for vehicles (or prime movers) in a 

transshipment hub by considering the quay crane and yard crane capacity. The objective 

of this problem is to minimize the makespan time at the quay side. This issue is 

particularly important for a port which uses information technology in making real time 

decisions because the port can exploit information technology to make full use of the data 

in making good decisions. A mixed integer programming (MIP) model is developed to 

formulate the problem. As the existing solver cannot solve the MIP model in reasonable 

time, we develop two heuristics to tackle the problem. The first method is based on the 

neighborhood search, while the second method is based on genetic algorithm (GA) and 

minimum cost flow (MCF) network model. 

3.1 Model Development 

In this section, we assume that several vessels are being loaded and unloaded 

simultaneously at a given time interval. The yard location for each container is 

predetermined, and for the PMs, the main operational decisions are to determine the 

sequence of jobs for the PMs to perform. In practice, most terminal operators simply 

dedicate a certain number of vehicles to serve a quay crane using a greedy heuristic, such 

as the nearest task first. While this greedy approach is easy to implement, it might provide 
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an inferior solution. Therefore, it is important to develop a model which considers all the 

equipment together. In this section, we develop a MIP model for this vehicle dispatching 

problem. 

3.1.1 Modeling Assumptions 

The following assumptions are made: 

 Job sequence and job types for each QC are given; Tasks must be carried out by 

QCs in the exact order which appears in the QC sequence list; 

 Yard location of each job is known; 

 Traveling times between any two processing locations are also known; 

 PMs are shared among all QCs; 

 Number of container jobs, number of PMs, number of QCs and YCs are all known; 

 PMs can only take one container at a time; 

 YC traveling time will be considered in the handling time; 

 Traffic congestion of the PMs at the road is not considered. 

3.1.2 Notations 

The model parameters are as follows:  

K: the set of QCs;  

M: the set of PMs;  

R: the set of YCs; 
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Nk: the number of jobs in the working list of QC k. 

L: the set of loading jobs; 

D: the set of discharging jobs;  

H: the set of all the jobs, H= DL ; 

N: total number of container jobs including loading and unloading. N=
K

k

k

N =|LD|. 

(i, ): container job index. The job (i, ) refers to the ith job in the sequence list of QC . 

(S,D): Dummy starting job; 

(E,D): Dummy ending job; 

J: the job set which contains all the jobs including dummy starting jobs and dummy 

ending job, J= HDEDS )},(),,{( ; 

JS: the job set which contains all the jobs including dummy starting job, 

JS = HDS )},{( ; 

JE: the job set which contains all the jobs including dummy ending job, 

JE = HDE )},{( ; 

Jr: those jobs using yard crane r. 

C: a huge constant number. 

1( , )ih  : the QC handling time of job (i, ). (Loading or Discharging) 

2( , )ih  : the YC handling time of job (i, ). (Loading or Discharging); 

1( , )it  : loaded traveling time of job (i, ) from its origin to its predetermined destination. 

2( , )( , )i jt   : Empty traveling time from destination of job (i, ) to the origin of next job 

(j,  ). 
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The decision variables are as follows: 

 

( , )( , )

m

i jX   =1: PM m moves to the origin of next job (j, ) after just finishing job (i, ); 

           Otherwise 0 

( , )( , )

r

i jZ    =1: the job (j,  ) is processed by the same YC r immediately after job (i, );  

           Otherwise 0 

1( , )iT  : The starting time for processing container job (i, ) by QC . 

2( , )iT  : The starting time for processing container job (i, ) by corresponding YC. 

 

As all tasks can either be a discharging or a loading job, we need to analyze the flow time 

of these two tasks so that they can be formulated in the model. 

 

 Activity flow time for discharging jobs (Figure 3.1) 

The following activity flow time describes the time period that one PM needs to finish a 

discharging job (i, ). The darker area means the possible waiting times for each PM at 

both the quay side and the yard side. 

1( , )ih 
1( , )it 

2( , )ih 
2( , )( , )i jt  

Arrival 

at QC

Arrival 

at YC

Possible delay

1(i,α)T 2(i,α)T

 

Figure 3.1 Activity flow time for discharging job 
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For discharging jobs, 1( , )iT  is the starting time that QC releases its i
th

 container job to a 

PM; 1( , )ih  is the handling time for a QC to discharge the container (i, ) to the PM; 1( , )it  is 

the PM traveling time to move the container (i, ) from the QC to the designated storage 

location; 2( , )iT  is the starting time that the YC picks up the container (i, ) from the PM; 

2( , )ih  is the handling time for YC to discharge the container (i, ) from the PM to the 

storage location; and 
2( , )( , )i jt   is the PM empty traveling time from this YC to the origin of 

next job (j,) .  

 

 Activity flow time for loading jobs (Figure 3.2) 

1( , )ih 
1( , )it 

2( , )ih 

2( , )( , )i jt  

Arrival 

at QC

Arrival 

at YC

Possible delay

1(i,α)T
2(i,α)T

 

Figure 3.2 Activity flow time for loading job 

 

The following activity flow time describes the time period that one PM needs to finish a 

loading job (i, ). For the loading job, 1( , )iT   
and 1( , )ih   refer to the starting time and 

handling time of QC respectively, and 2( , )iT   
and 2( , )ih   refer to the starting time and 

handling time of YC respectively. A PM retrieves a job (i, ) from its storage location at 
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the yard side at time 2( , )iT   and travels to its destination, which is the QC . It then goes to 

next job (j,) after QC picks up the container (i, ). 1( , )it   is the PM traveling time from 

YC to QC for job (i, ) and 
2( , )( , )i jt   is to the PM empty traveling time from QC  to the 

origin of next job (j,).  

3.1.3 Model Formulation 

Objective:  

 Min: 1( , ) 1( , )( )N NMax T h
             (3.1) 

 

Constraint 

 Resource constraints 

( , )( , )

( , ) 1

1, ( , )
S

M

m

i j

i J m

X j H 



 

                                       (3.2) 

( , )( , )

( , ) 1

1, ( , )
E

M

m

i j

j J m

X i H 



 

                                 (3.3) 

( , )( , ) ( , )( , )

( , ) ( , )

, ( , ) ,
S E

m m

i l l j

i J j J

X X l H m M   
 


 

                   (3.4) 

( , )( , )

( , )

m

S D j

j H

X 
 

 =1,  mM.                                          (3.5) 

( , )( , )

( , )

m

i E D

i H

X 
 

 =1,  mM.                                           (3.6) 

( , )( , )

( , ) ( , )

1, ( , ) ,
r

r

i j r

i J S D

Z j J r R 



 

                                           (3.7) 

( , )( , )

( , ) ( , )

1, ( , ) ,
r

r

i j r

j J E D

Z i J r R 



 

                                       (3.8)  

( , )( , )

( , ) r

r

S D j

j J

Z 
 

 =1,  rR.                                             (3.9) 
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( , )( , )

( , ) r

r

i E D

i J

Z 
 

 =1,  rR.                                                   (3.10) 

 

 Time constraints for a given job 

1( , ) 1( , ) 1( , ) 2( , ) , ( , )i i i iT h t T i D         .                                               (3.11) 

2( , ) 2( , ) 1( , ) 1( , ) , ( , )i i i iT h t T i L                                                          (3.12) 

 

 Sequence dependent times for different resources 

 

QC: Two jobs served by the same QC must be set apart at least a certain handling time. 

1( 1, ) 1( , ) 1( , ), ( 1, ),( , )i i iT T h i i H          , i = 1, 2,…, 1N  , K.             (3.13) 

 

PM: Two jobs served by the same PM must be set apart at least a certain time. 

1( , ) 2( , ) 2( , ) 2( , )( , ) ( , )( , )( ) ( 1), ( , ), ( , ) ,  m

j i i i j i jT T h t C X i j D m M               
      

(3.14) 

2( , ) 1( , ) 1( , ) 2( , )( , ) ( , )( , )( ) ( 1), ( , ), ( , ) ,  m

j i i i j i jT T h t C X i j L m M                      (3.15) 

1( , ) 1( , ) 1( , ) 2( , )( , ) ( , )( , )( ) ( 1), ( , ) ,  ( , ) ,  m

j i i i j i jT T h t C X i L j D m M                    (3.16) 

2( , ) 2( , ) 2( , ) 2( , )( , ) ( , )( , )( ) ( 1), ( , ) ,  ( , ) ,  m

j i i i j i jT T h t C X i D j L m M                
  
(3.17) 

 

YC: Two jobs served by the same YC must be set apart at least a certain handling time. 

2( , ) 2( , ) 2( , ) ( , )( , )( 1), ( , ), ( , ) ,r

j i i i jT T h C Z i j H r R                                      (3.18) 

 

 ( , )( , )

m

i jX   =0 OR 1;  (i, ), (j,  ) J, mM.                               (3.19) 

 ( , )( , )

r

i jZ   =0 OR 1;  (i, ), (j,  ) J, rR.                                (3.20) 

 1( , )iT  , 2( , )iT  ≥0,  (i, )H, i = 1, 2,…, N ,K.                                  (3.21) 

 

In the objective function (3.1), the makespan of finishing a given set of jobs at the quay 

side based on the current equipment configuration is minimized.  
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Constraints (3.2) to (3.10) are resource constraints. Among these constraints, (3.2) to (3.6) 

are for quay side, while the rest are for yard side. (3.2) and (3.3) imply that every 

container job in H has one predecessor and one successor and served by exactly one PM. 

Constraint (3.4) ensures the continuity of each PM route. Constraints (3.5) and (3.6) are 

for dummy starting node and dummy ending node on PM sequence. The resource 

constraints for yard crane (3.7) to (3.10) are almost the same as those for quay side. 

 

Constraints (3.11) to (3.12) are for time constraints which force the starting time at the QC 

and YC for every job must be set apart at least by the traveling time between QC and YC 

and the handling time.  

 

Constraints (3.13) to (3.18) are for the sequence dependent time constraints for different 

resources which are similar with the parallel machine scheduling problem with precedence 

constraints and multiple traveling salesmen problem with precedence constraints. They 

imply that two jobs served by the same QC/PM/YC must be set apart at least a certain 

processing time. Constraint (3.13) means two jobs served consecutively by the same QC 

must be set apart at least the handling time of QC. Similarly, constraint (3.18) means two 

jobs served consecutively by the same YC have to be set apart at least the handling time of 

YC. Constraints (3.14-3.17) refer to the sequence dependent time constraints for the PM 

depending on the types of the job pairs such as discharge-discharge, load-load, load-

discharge and discharge-load. Constraints (3.19), (3.20) and (3.21) are non-negative and 

integer restrictions. 
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3.2 Proposed Heuristic Methods  

The dispatching model presented in Section 3.1 will determine both the optimal PM and 

YC work sequences. We run a numerical experiment consisting of 2 QCs, 3YCs and 

2PMs to test the efficiency of this model. The model is solved with CPLEX 11.0 and 

implemented by C++ programming performed on a 2.4 GHz PC with 2 GB RAM. We 

find that the computation time for solving this MIP model becomes very large when the 

number of jobs increases from 6 to 16(shown in Figure 3.3).   

 

 

 

 

 

 

 

 

 

Figure 3.3 CPU time for solving MIP model 

 

In view of the long solving time even for this small size problem, it is not practical to 

apply this MIP model directly for a real-scale terminal operation. Hence we propose a 

solution framework as shown in Figure 3.4 to address this issue. The main idea of this 

framework is to search for PM sequences, and given these PM sequences, the evaluation 
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model will determine the YC sequences. Eventually, we hope this framework will be able 

to find good PM sequences. 

 

Pool of PM Solutions

Evaluation Model

Searching Method

Initial PM Solution

 

Figure 3.4 A framework of proposed heuristics 

 

We now discuss the concepts of this framework. In this framework, we first generate an 

initial PM sequence. This sequence can either be randomly generated or based on some 

heuristic methods such as the minimum cost flow (MCF) network model. Based on this 

sequence, we create a new set of sequences. The performances of these sequences will be 

computed based on an evaluation model by considering different YC sequencing rules. To 

improve the quality of the solutions, search methods will be employed to generate a new 

pool of sequences. This process repeats until some stopping criteria are met.  

 

For the evaluation module, we need to compute the makespan of the quay side activities 

for the given PM sequence by considering the delay at the quay side as well as the yard 

side. We propose two methods. The first one is based on the reduced MIP model and the 

second one is a simulation approach based on First Come First Serve (FCFS) YC 

sequencing rule. The reduced MIP model is essentially the same model that we have 
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presented in Section 3.1, except that the PM job sequence is given. This means that all the 

values of 
( , )( , )

m

i jX    are fixed and the reduced MIP model for the small size problem can be 

solved effectively since the size of the MIP model is reduced significantly. However, we 

expect the computational performance to deteriorate when the number of jobs becomes 

large because it is still a MIP model. For the FCFS-based simulation model, we assume 

that the YC will serve the jobs by using the FCFS rule according to the PM arrival time at 

the YC. Since the PM sequence is given and by applying the FCFS rule, we can determine 

the time the PM completes its activity at the yard side and quay side using discrete event 

scheduling approach. As we do not need to solve any optimization models, the 

computation time is very fast compared with the reduced MIP model. In the numerical 

experiment, we will show that the performance for the simulation approach is quite close 

to the reduced MIP model, and so we will adopt the simulation approach for large size 

problems due to its computation efficiency. 

  

For the searching method, we adopt two different methods to generate new PM job 

sequences: one is the Variable Neighborhood Search (VNS) method; and the other is the 

GA-MCF approach. In the following subsections, we will discuss the MCF, VNS and GA-

MCF methods in more detail. 

3.2.1 Minimum Cost Flow (MCF) Model 

The goal of this minimum cost flow (MCF) model is to find a schedule that will minimize 

the impact of delays and maximize the utilization of the vehicles (Cheng 2005). However 

in our work, we intend to use the MCF as a mean to generate good PM sequences. For a 
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more detailed review of the minimum cost flow network models, one can refer to Vis et al. 

(2001) and Vis et al. (2005), Potvin et al. (1992) and (1993).  

 

In the MCF model that we use in our work, we assume the ready times for the jobs are 

given and they are independent of the PM sequence. Moreover, it also assumes that the 

YC is always available which is to say that the waiting time is not considered at yard side. 

The model then seeks to determine the PM sequence which has the least deviations from 

the ready times of the tasks.  

 

Note that these ready times used in our MCF model are not the actual ready times in the 

operations, because we do not consider the delay, the interaction between equipment and 

the job sequences. In other words, these ready times can be viewed as the artificial ready 

times, and we fix these times to help us to find the PM sequence. 

 

For the subsequent discussion, we will use indices i and j to denote the container jobs, and 

S and E to denote the dummy starting and ending jobs respectively. Our model can also be 

viewed as a directed graph G (J, A) where J denotes the set of nodes and A denotes the set 

of arcs. All container jobs in the set H (contains both discharging and loading jobs) and 

the dummy starting and ending jobs are represented as nodes in G. If two jobs are served 

by the same vehicle, there is a directed arc connecting them. We need to determine m 

routes from node S to node E when there are m vehicles deployed to serve jobs in the set 

H. The cost of the arc is represented by the deviation of the ready times and our objective 

is to minimize the overall network cost.  
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Let Xij be the decision variable and it is assigned 1 when job j is performed immediately 

after job i by the same vehicle and Cij be the cost parameter representing the deviation of 

the ready time for job j after the vehicle completes job i and begins to process job j.   

 

The model can be formulated as follows.  

 

MCF Model 

Minimize      
ij ij

i J j J

C X
 


      

  (3.22) 

 

Subject to: 

Si

i H

X


  = m           (3.23) 

ij

i H

X


  =1, for j H                                                (3.24) 

ji

i H

X


  =1, for j H         (3.25) 

iE

i H

X


  = m          (3.26) 

[0,1]ijX  , for i,j J                               (3.27) 

  

Equation (3.22) states the objective which minimizes the total cost of the flow. Constraints 

(3.23), (3.24), (3.25) and (3.26) are the flow conservation equations for the m vehicles. 

Constraints (3.27) limit the flow to not more than 1. 
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This problem can be solved efficiently and it can guarantee the solution obtained to be 

binary. In the following, we will discuss on how to compute Cij. 

 

The arcs from the dummy starting node S to all container job nodes, and from all container 

job nodes to the dummy ending node E are assigned with zero cost, i.e., CSi=0 and CiE=0 

for all i.  

 

To compute the cost of arcs between two container job nodes, we need to know the ready 

times of these two jobs at their respective QCs, as well as the traveling time and the 

handling times.  

 

Let ti be the ready time for the QC to pick up (for discharging) or drop off (for loading) 

containers for job i. Let tij denotes the time interval between the time when the PM starts 

to do the job at QC for job i and the time that it is ready to perform job j at the QC 

location for job j. Hence, ti + tij is the time that the PM arrives at the QC which is assigned 

to process job j, and Cij, which measures the deviation of the ready time for job j after 

serving job i is given as follows. 

   if 0

( )           otherwise

i ij j i ij j

ij

j i ij

t t t t t t
C

t t t

    
 

 

 

where  >0 and it is a constant. 

 

Noted that  is a parameter that gives the relative weight between being early and being 

late. Being late would cause the QC to wait, while being early, will not only cause the PM 
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to wait, but also may result in infeasibility due to the fact that the QC sequence is violated. 

We have tuned the parameter  during the numerical runs. 

  

The computation of tij depends on the types of the job pair (i,j) such as load-load, load-

discharge, discharge-load and discharge-discharge (see Figure 3.5). For example, a 

discharge-load pair involves the handling time at the QC for job i (h1i), the traveling time 

from the QC to YC for job i (t1i), the handling time at the YC for job i (h2i), the traveling 

time between the destination location (YC) of job i to the origin location (YC) of job j (t2ij), 

the handling times at the YC for job j (h2j), and the travelling time from YC to QC for job 

j (t1j).  

 

Hence for iD, and jL  

1 1 2 2 2 1ij i i i ij j jt h t h t h t       

 

Similarly, we can define tij for other cases 

1 1 2 2ij i i i ijt h t h t      for iD, and jD  

1 2 2 1ij i ij j jt h t h t       for iL, and jL 

1 2ij i ijt h t      for iL, and jD 
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Figure 3.5 Four cases of tij composition (1) 
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Figure 3.6 Four cases of tij composition (2) 
 

The merit of this model is that it can solve the vehicles deployment problem efficiently 

when the ready times ti for all the jobs, and the times between jobs tij are given. However 

the drawback is that it assumes YC is always available, which is to say that the waiting 

time is not considered at yard side, and moreover by fixing the ready time, we indirectly 
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assume that the PM can always start the job at the QC at the given ready time, and the 

actual waiting times for the QC and PM are ignored.  

 

Choosing the “right” ready times is important because some ready times may give 

infeasible PM sequences while some ready times may give good or even optimal PM 

sequences. In theorem 1, we show that there exists a set of ready times which will give the 

optimal PM sequence.   

 

Let * be the optimal PM sequences that minimize the makespan at the quay side, and 

MCF(t) be the optimal PM sequences obtained by solving the MCF model given the ready 

times t., where t is a vector of the ready times for all jobs.    

 

Theorem 1 

There exists an optimal vector of ready times t* for all jobs such that *= MCF(t*). 

 

Proof: Given an optimal PM sequence in *, we first fix the ready time for the first job to 

be zero. We then sequentially set the ready times for all the subsequent jobs by using the 

following formula. The ready time for job j, * *

j i ijt t t   when there is a PM serving job j 

following job i at the optimal PM sequence and the ready time for job i is *

it . Setting the 

ready times in this way will result in Cij =0 for all the job pairs following the optimal 

sequence, *. Hence the optimal PM sequences, *, will give a zero objective function 

value for the MCF model when the ready times are set at t*. 
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Theorem 1 shows us that we will not lose the optimality when we search on the design 

space of the ready times. The MCF model is used in two different ways in our proposed 

heuristic. Firstly, it is used to generate the initial PM sequence given initial ready times for 

all the jobs. Secondly, it is used as a decoder for the GA approach when the chromosome 

is represented by ready times.  

3.2.2 VNS Based Heuristics 

Variable neighborhood search (VNS) is a heuristic used for solving combinatorial and 

global optimization problems (Mladenovic & Hansen, 1997). It is a simple and effective 

search procedure that proceeds to a systematic change of neighborhood. The basic 

procedure is shown in Garcia (2002). Firstly, an initial solution is found. Then there is a 

two-nested loop in which the core one alters and explores via two main functions so-called 

‘shake’ and ‘local search’. The outer loop works as a refresher reiterating the inner loop, 

while the inner loop carries out the major local search. The procedure tries to find an 

improved solution within this neighborhood and iterates as long as it keeps improving the 

solutions until the stopping criterion has been met, while the shake function diversifies the 

solution.  

 

In this heuristic, the VNS is used to update our initial solution obtained from the MCF 

method. The updating procedure is repeated until the stopping criterion has been met. The 

pseudo code for our VNS is given in Figure 3.6 to illustrate the VNS solution scheme for 

our integrated dispatching problem. 
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The initial solution, X, is obtained by solving the MCF model and we set P =0. The 

procedure generates a random solution from a neighborhood of X of size P by shaking, 

finds a new solution from this random solution by some local search techniques. In order 

to intensify the search at the neighborhood of this random solution, the local search is 

repeated k times. The new solution is adopted if it is better than the current solution, and 

the size of neighborhood, P, is reset to 0. If the current solution is not improved in any of 

these k attempts, the neighborhood size P is increased by 1. The algorithm stops when P 

exceeds the maximum limitation, P_limit.  

 

The local optimization is based on exchanging segments between two PM job sequences 

(shown in Figure 3.7). The procedure of our VNS based heuristics is discussed below.  

 

Procedure VNS 

First obtain the initial solution X 

      For P=0, P < P_limit do  

Repeat 

             X’ = Shake (P, X); 

             X’’ = Local Optimisation ( X’) 

             If X’’ is better than X with respect to f(X) then 

               X= X’’, P=0; 

               else P = P+1; 

               end; 

             Restart the loop;       

       end; 

       Return X; 

end; 

 
  

Figure 3.7 VNS solution scheme 
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Figure 3.8 The local search in VNS method procedure 

 

Procedure VNS 

1) Initialization: Find the initial solution X and set P=0. 

2) Shake procedure: Randomly choose a solution X’ from the neighborhood of X of size 

P.  

3) Local search: Randomly select two PM sequences from the solution X’. 

a) a segment of random cardinality in consecutive order in the first sequence is 

chosen randomly; 
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The segment length can be 1, 2, or 3 randomly in consecutive order. The reason 

behind this is that we do not want to destroy the original sequence and so we keep the 

cardinality of the segment to be not more than 3.  

b) a segment of random cardinality in consecutive order in the second sequence 

is chosen randomly; 

c) exchange these two selected segments. (As shown in Figure 3.8).  

The segment removed from one PM sequence is always inserted in the position within 

the other PM sequence from where the other segment is removed.  

 

Two random selected routes 

before segment exchange

Two random selected routes 

after segment exchange

 

Figure 3.9 Two segments exchange scheme 

 

 

d) Feasibility checking: Check whether the new sequences are feasible based on the 

given QC sequences. 
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After exchanging, we should check the feasibility of both of the two PM sequences. 

Take two jobs i and j for example; Assume jobs i and j are specified in the same QC 

work list and this QC must process job i first before it can process job j as predefined 

in the work sequence, therefore job j cannot appear in front of job i on either of the 

two PM sequences after exchanging. Otherwise this exchange is infeasible.  

If the two new PM sequences are feasible, we can go to the evaluation function in Step 

4; Otherwise, return to step b to select another segment in each PM sequence for at 

most k times. To avoid unnecessary search, if a feasible solution cannot be found in k 

times, go to step 2 to shake and select another pair of PM sequences. 

4) Evaluation: Evaluate this new solution X’’ in the reduced MIP model or FCFS based 

simulation function to obtain objective value f(X’’). If it is better, accept the new 

solution X’’ and set P=0, and X= X’’; otherwise, keep the current solution X. Return 

to Step 3 and search for k times. After the k times of local search, let P=P+1, and 

return to Step 2 to select another solution X’ until the P_limit criterion has been met.  

3.2.3 GA-MCF Approach  

GA is a well-known meta-heuristic approach inspired by the natural evolution of the 

living organisms. GA works on a population of the solutions simultaneously. It combines 

the concept of survival of the fittest with structured but randomized information exchange 

to form robust exploration and exploitation of the solution space. The reason why we 

choose GA here is that: firstly GA is a well-known meta-heuristic with its efficiency being 

verified for many problems; Secondly, compared with the VNS heuristic, we need a 

population-based approach such as GA for better exploration of the solution space. The 
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procedure of the proposed GA is shown in Figure 3.9. Compared with other traditional 

GA implementations, we use the ready times to represent the chromosome, and then solve 

the MCF model to obtain the PM sequences.  

Initial 

population 

PM solutions 

via 

MCF

Calculate the 

fitness in 

evaluation function

Genetic operators

populations

Terminate?

Stop

New generation

n

y

 

Figure 3.10 The procedure of proposed GA 

 

1) Chromosome representation 

We use the ready time to represent the chromosome. The benefit of using this 

representation compared to using jobs sequence representation is that the neighborhood 

structure can be preserved more easily when going through the crossover operations. 

Moreover, the QC sequences can be easily observed. In addition, we have shown in 

Theorem 1 that by carefully selecting the ready times, we can obtain the optimal PM 

sequence. 
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Instead of representing the ready times directly, we represent them using the difference 

between the ready times for jobs for a given QC sequence. Let t i be the ready time for job 

i at a QC, and ti+1 be the ready time for the next immediate job at that QC. Then ti+1 =ti+i 

and the chromosome is represented in terms of i. By representing the chromosome in this 

way, we can ensure that the ready times for the jobs observe the QC sequence. The GA 

will search on the i, and we can easily compute back the ready times given i.   

 

2) Parents selection 

The parent selection strategy describes that how to choose the chromosomes in the current 

population that will create offspring for the next generation. Generally, it is better that the 

best solutions in the current generation have more chance to be selected as parents for 

creating offspring. Hence we propose the use of binary tournament selection. The binary 

tournament selection will randomly choose two individuals and selects the winner as one 

parent. For crossover operation, this will be repeated again to select another parent. In 

order to ensure that the best individual always survives to the next generation, the elitism 

strategy is used where the best solution is always kept in the population. 

 

3)  Crossover 

We propose the use of the arithmetic crossover operator to explore the solution space. The 

new offspring is produced as a linear combination between the parents.  

Offspring=λ*Parent1 + (1-λ)*Parent2 

where λ is a random number between 0.5 and 1.  

 



Chapter 3 Integrated Vehicle Dispatching Problem for Transshipment Hubs 

53 

 

4) Mutation 

The main task of the mutation operator is to maintain the diversity of the population in the 

successive generations and to exploit the solution space. For each individual, we first 

select a random value between 0 and 1 and compare this with the mutation probability Pm. 

Since mutation occurs very infrequently, this is usually set very low (typically Pm = 

0.001). If the value is less than Pm (which is very rare) we perform a mutation operation 

on the individual. The mutation step is carried out by swapping the value for two 

randomly chosen genes.   

 

5) Offspring selection 

We use a semi-greedy strategy to accept the offspring generated by the genetic operators. 

In this strategy, an offspring is accepted for the new generation if its fitness is less than the 

average fitness of its parent(s).  

 

6) Stopping criterion 

In order to decrease the computation time, we use two criteria as stopping rules: (1) 

reaching the maximum number of generations or (2) the standard deviation of the fitness 

value of chromosomes in the current generation (Tavakkoli-Moghaddam & Safaei, 2006) 

is below some small value.  

3.3  Experiments 

We have conducted experiments to assess the solution quality and efficiency of the 

proposed algorithms. All experiments were performed on a 2.4 GHz PC with 2 GB RAM. 
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Our heuristics are implemented using C++ and for solving the MIP formulations, the LP 

solver CPLEX 11.0 by ILOG is used. Each example is solved by VNS and GA 10 times 

and the means of makespan values (objective value) are reported. Two series of 

experiments are conducted to evaluate the performance of the proposed heuristics. The 

first one is a small sized problem. The purpose of the experiments is to compare the 

difference between the two evaluation functions: the reduced MIP and FCFS based 

simulation. We find that there is no notable difference between these two evaluation 

functions. Hence, for a large size problem, we will only use FCFS based simulation to 

evaluate the performances. In practice, FCFS rule is easier to implement in a container 

terminal. 

 

In the large size problems, we will compare the performances between the VNS and GA-

MCF methods. Two different settings will be used. One has few QCs, YCs and PMs but 

adopts a longer look ahead strategy (we call it depth-based experiment), while the other 

one has many QCs, YCs and PMs but adopts a shorter look ahead strategy (we call it 

breadth-based experiment). The layout parameters and handling time are generated based 

on a realistic transshipment terminal. The actual quay crane rate is set to 30 boxes per hour 

and the yard crane rate is set to a uniform distribution of (2, 3) minutes. The 

predetermined yard location for each container job is randomly assigned.   

3.3.1  Small Size Problem 

Table 3.1 shows the numerical results of using the reduced MIP model as well as the 

FCFS simulation model. We can observe that there is not much difference between these 
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two evaluation methods. However, the reduced MIP model requires more computational 

time to run. 

Table 3.1 Small size comparison results 

 

Case 

No 
Jobs QC/YC/PM 

VNS+Reduced 

MIP Obj.(min) 

Reduced MIP 

CPU(sec) 

VNS+Simulation 

Obj.(min) 

Simu. 

CPU(sec) 

1 11 (2/3/2) 34.79 8.2 34.98 1.66 

2 11 (2/3/3) 30.2 5.6 30.2 1.72 

3 12 (2/3/2) 40.35 4.66 40.3 1.73 

4 13 (2/3/2) 41.2 3.9 40.8 1.78 

5 14 (2/3/3) 43.2 2.9 44.1 1.69 

6 15 (2/3/2) 48.9 4.53 49.2 2.06 

7 16 (2/3/2) 52.62 6.68 52.3 1.9 

8 18 (2/3/3) 39.41 18.02 40.01 1.96 

9 20 (2/5/3) 43.4 14.3 43.4 2.06 

10 25 (2/5/2) 82.6 17.9 81.4 2.01 

11 25 (2/5/3) 60.8 27.8 61.8 2.11 

12 28 (2/5/3) 63.3 25 63.41 2.21 

 

3.3.2  Large Size Problem 

For the large size problem, we only use the FCFS simulation method to evaluate the 

performance for the solutions obtained by the MCF (initial solutions), VNS and GA-MCF 

methods.   

 

In the depth-based experiments, we focus on the 2 QCs scheduling environment in which 

the number of containers varies from 50 to 200, and the number of PMs is from 4 to 8. 

The experimental results are summarized in Table 3.2, which includes the quay side 

makespan time solution obtained from the MCF, VNS and GA-MCF methods. 
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Table 3.2 Depth-based experiments results 

Case Jobs QC YC PM 

 

Initial Solutions 

(MCF) 

VNS GA-MCF 

No     Makespan(min) Makespan (min) Makespan (min) 

1 50 2 2 4 208.39 199.34 171.74 

2 50 2 2 6 187.72 180.79 156.34 

3 50 2 2 8 175.79 158.68 139.37 

4 50 2 3 4 204.58 200.12 192.49 

6 50 2 3 8 164.00 160.24 147.15 

7 50 2 4 4 203.72 188.26 173.65 

9 50 2 4 8 180.44 158.50 147.36 

10 100 2 2 4 459.73 459.73 430.78 

11 100 2 2 6 438.63 428.64 394.21 

12 100 2 2 8 420.01 408.16 370.80 

13 100 2 3 6 415.01 411.37 396.04 

14 100 2 4 8 379.26 379.26 342.17 

15 200 2 2 4 948.37 948.37 895.64 

16 200 2 2 6 929.90 929.90 863.34 

17 200 2 2 8 906.29 906.29 838.64 

 

Table 3.2 shows that both GA and VNS improve the initial solutions obtained by MCF for 

the depth-based experiment setting. However, we also observe that when the problem size 

becomes larger, the improvement of VNS over initial solution becomes negligible, and in 

some cases, it is not able to improve the initial solution. Table 3.2 also shows that GA 

consistently outperforms VNS, and the saving can be as high as 10%.  
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Table 3.3 Breadth-based experiments results 

 

Jobs QC YC PM 

 

Initial Solutions  

(MCF) 

VNS GA-MCF 

    Makespan (min) Makespan (min) Makespan (min) 

   15 45.17 44.67 42.31 

50 10 8 20 53.72 46.34 39.61 

   30 46.09 39.61 39.61 

   15 54.72 54.25 53.04 

60 10 8 20 53.25 50.52 48.61 

   30 48.95 48.61 48.61 

   15 71.72 63.40 59.61 

70 10 8 20 67.34 59.77 57.61 

   30 66.42 57.61 57.61 

   15 82.46 73.93 64.88 

80 10 8 20 79.37 76.47 61.81 

   30 76.89 73.89 60.61 

   15 88.25 82.52 78.25 

90 10 8 20 87.37 84.01 72.61 

   30 83.69 78.12 71.31 

   15 98.44 94.05 86.38 

100 10 8 20 97.72 92.58 84.61 

   30 94.09 90.28 81.49 

 

Table 3.3 shows the results for the breadth-based experiments. In this series of 

experiments, we compare the performance obtained from MCF, VNS and GA in a more 

realistic environment. From the results, we observe that the trend is similar to the depth-

based experiment setting. When increasing the PM numbers, the makespan reduces as 

expected. Figure 3.10 shows the convergence of the GA for a case of 70 jobs, 10 QCs, 8 

YCs and 20 PMs. It shows that GA converges very fast and is able to improve the initial 

solution. The numerical running times for all the cases can be completed within minutes.  
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Figure 3.11 Convergence of GA during 20 successive generations for (70 jobs/10 

QCs/8 YCs / 20 PMs). 

 

3.4 Summary 

In this chapter, we discuss how to assign the container jobs to PMs by considering the 

capacity of the YC, QC and PM. Two methods are proposed to tackle the problem and 

they are VNS and GA-MCF methods. We have shown that by using ready times as the 

chromosome representation, we are able to keep the neighborhood structure and hence 

good solutions can be found by GA. Moreover, we have shown that by choosing 

appropriate ready times, we can get the optimal PM sequence. In the numerical runs, we 

show the superiority of the GA-MCF method over the VNS. In the next chapter, we 

discuss how to incorporate the storage yard allocation strategy into the decision making so 

that the overall port performance can be further improved. 
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4 Container Dispatching and Location Problem 

In this chapter, we address the real-time container dispatching and location allocation 

problem in a container terminal, whose objective is to minimize the makespan time at the 

quay side. Different from the traditional container dispatching problem, this study aims to 

solve the vehicle dispatching problem as well as the inbound container allocation problem 

simultaneously. To tackle this problem, we develop an integrated mathematical model 

which considers the interaction between all equipment, including YC, QC and vehicles. 

Due to the exponentially growing search space, it is difficult for existing methods to find a 

solution in real time, which is important in practical complex working environment. To 

solve the problem, we propose three heuristic methods which are based on tree search 

structure; there are: Nested Partition method (NP), Buffered Semi Greedy method (BSG), 

and Buffered Probabilistic Greedy method (BPG). We also propose a new comparison 

method to evaluate the performance of these heuristic algorithms, which considers the 

tradeoff between the elapsed time in exploring the solution space and the quality of the 

result finally obtained. Extensive experiments are conducted and results show that the 

proposed heuristic methods can find a promising solution in seconds.  

4.1 Model Development 

In this chapter, we consider the container dispatching and location problem in both QC 

and YC sides. The waiting time or delay at both cranes is taken into account in the whole 

dispatching process. We aim at determining the optimal truck dispatching sequence and 
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the optimal yard storage location for each discharging container to maximize the 

productivity in terminals. Before we present the formal problem formulation, we address 

our model assumptions, notations and constraints first. 

4.1.1 Model Assumptions 

In our model, we make the following assumptions: 

 Job sequence and job types for each QC are given; Tasks must be carried out by 

QCs in the exact order which appears in the QC sequence list; 

 Yard location of each job is assumed to be chosen from several candidate locations; 

 Traveling times between any two processing locations are also known; 

 PMs are shared among all QCs; 

 Number of container jobs, number of PMs, number of QCs and YCs are all known; 

 PMs can only take one container at a time; 

 YC traveling time will be considered in the handling time; 

 Traffic congestion of the PMs at the road is not considered. 

4.1.2 Model Formulation 

The objective of our model is to minimize the elapsed time to finish all the jobs assigned 

to the vehicles, which can be formally represented as follows: 

 

Objective:  

 

Min: 1( , ) 1( , )( )N NMax T h
                  (4.1) 
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We aim at finding an optimal job sequence assignment as well as YC location allocation 

for each discharging job to minimize the objective value under the following constraints: 

 

 Resource constraints 
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 Time constraints for a given job 

1( , ) 1( , ) 1( , ) ( , ) 2( , ) , ( , ) ,r

i i i i r iT h t W T i D r R           .                                                    (4.11) 

2( , ) 2( , ) 1( , ) 1( , ) , ( , )i i i iT h t T i L                                                                                   (4.12) 

 

 Sequence dependent times for different resources 

 

QC: Two jobs served by the same QC must be set apart at least a certain handling time. 

1( 1, ) 1( , ) 1( , ), ( 1, ),( , )i i iT T h i i H          , i = 1, 2,…, 1N  , K.               (4.13) 
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PM: Two jobs served by the same PM must be set apart at least a certain time. 

1( , ) 2( , ) 2( , ) 2( , )( , ) ( , ) ( , )( , )( ) ( 1), ( , ), ( , ) ,   r m
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(4.14)
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YC: Two jobs served by the same YC must be set apart at least a certain handling time. 

2( , ) 2( , ) 2( , ) ( , )( , )( 1), ( , ), ( , ) ,r
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 Yard Location for Discharging jobs constraints 
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Constraints (4.2) to (4.10) are resource constraints. Among these constraints, (4.2) to (4.6) 

are for quay side, while the rest are for yard side. (4.2) and (4.3) imply that every 

container job in H has one predecessor and one successor and served by exactly one PM. 

Constraint (4.4) ensures the continuity of each PM route. Constraints (4.5) and (4.6) are 
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for dummy starting node and dummy ending node on PM sequence. The resource 

constraints for yard crane (4.7) to (4.10) are almost the same as those for quay side. 

 

Constraints (4.11) to (4.12) are for time constraints which force the starting time at the QC 

and YC for every job must be set apart at least by the traveling time between QC and YC 

and the handling time.  

 

Constraints (4.13) to (4.18) are for the sequence dependent time constraints for different 

resources which are similar with the parallel machine scheduling problem with precedence 

constraints and multiple traveling salesmen problem with precedence constraints. They 

imply that two jobs served by the same QC/PM/YC must be set apart at least a certain 

processing time. Constraint (4.13) means two jobs served consecutively by the same QC 

must be set apart at least the handling time of QC. Similarly, constraint (4.18) means two 

jobs served consecutively by the same YC have to be set apart at least the handling time of 

YC. Constraints (4.14) to (4.17) refer to the sequence dependent time constraints for the 

PM depending on the types of the job pairs such as discharge-discharge, load-load, load-

discharge and discharge-load. Constraints (4.19) and (4.20) are yard location constraints 

for each discharging job. Constraints (4.21) to (4.24) are non-negative and integer 

restrictions.  

4.2 Solution Scheme 

Since the variables grow dramatically with the number of jobs, YC destinations and 

vehicles, it is rather difficult and time-consuming to solve the mathematical model with 
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commercial software like CPLEX due to the complexity of the problem. Therefore we use 

another way to represent the problem which is based on sequence assignment. In our 

problem, each job represents the allocation of a container to a vehicle, either from QC to 

YC or in the reverse direction. The YC location in the imported container is unknown 

beforehand and needs to be determined. Thus, a scheduling algorithm needs to determine 

the allocating vehicle and YC location for each imported container, as well as job 

sequences in each vehicle. The goal is to finish all the jobs as soon as possible, i.e., 

minimize the elapsed time when the last job is finished. Due to the nature of the problem, 

we find that tree structure is one of the good ways to represent the problem. Formally, we 

define the problem as follows: 

Definition 1: Real-Time Container Dispatching and Location Problem 

Given K QCs and R YCs in a terminal, if there are N jobs to be assigned to M vehicles, 

our goal is to determine the YC destination(if any) and allocating vehicle for each job, and 

the job sequence in each vehicle, so that the finish time of the last job is minimized.  

Figure 4.1 shows a simple example to assign 8 jobs in two QCs to 2 vehicles with 2 YC 

destinations. Initially, we have sets of jobs in different QCs to get assigned. Each QC is 

associated with 4 jobs in increasing order of job sequence number. Since it is required that 

these jobs must be assigned in increasing order of job sequence in the QC, we use a stack 

to store these jobs on each QC and only the top element is accessible. A scheduling 

algorithm starts by picking jobs on the top of the QC stacks and assigning them to M1 or 

M2 with YC location in YC1 or YC2. For example, if J11 is picked and assigned to M1 with 
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destination at YC2, it will be removed from the stack and the scheduler repeats the 

procedure under the same assignment criteria until finally all the stacks are empty and the 

8 jobs are assigned. 

 

 

Figure 4.1 A simple example of job assignment 

 

 

 

Figure 4.2 Tree representation of search space 

 

We can model the whole scheduling algorithm using a tree structure as shown in Figure 

4.2. Initially, no jobs are assigned yet and the tree contains only a root node. Then, in the 

first step, we have 8 choices of job assignment because we can select either J11 from QC1 

or J21 from QC2, assign it to M1 or M2 with destination YC1 or YC2. It results in 8 

subspaces and for each subspace, we can repeat the selection procedure to further partition 
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the subspace until all the jobs have been assigned. Eventually, we can obtain a tree with 

height N, which is the number of jobs N. Each node in the tree represents a job assignment 

in the scheduling algorithm. Each path from the root to leaf node represents a solution and 

all the leaf nodes constitute the complete solution space. Thus, we have the following 

definitions: 

 

Definition 2: Partial Solution 

An internal node in the tree structure represents a partial solution, in which not all the 

jobs have been assigned. 

Definition 3: Complete Solution 

A leaf node in the tree structure represents a complete solution, in which all the jobs have 

been scheduled to the vehicles and the YC destination in each job is also determined.  

Definition 4: Solution Space  

All the complete solutions constitute the solution space. 

In this part, we prove that the solution space grows exponentially with the number of jobs. 

More specifically, we have: 
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If there are K quay cranes, R yard cranes and N jobs to be assigned to M vehicles, the 

solution space has a loose lower bound O(
N(M R)

M!


). 

Proof. Given N jobs to be scheduled into a job sequence, we need to determine for each 

job which YC destination it will be dispatched to and which vehicle will execute the 

dispatching operation. Thus, each job will have M*R choices. Since we have N jobs in a 

sequence, there will be (M*R)
N
 instances of job schedules. Among all these schedules, 

there exist duplicates because we treat all the vehicles equally. For example, assigning a 

sequence of jobs S1 to vehicle M1 and S2 to vehicle M2 is identical to assigning S1 to 

vehicle M2 and S2 to vehicle M1. Since there are at most M！ duplicates for each schedule, 

the solution space is at least O(
N(M R)

M!


) when we have not taken into account the detailed 

job sequence on the vehicle. If that is considered, the solution space is much larger than 

this lower bound.  

 

The actual solution space is much larger than this loose bound as the job sequences on the 

vehicles can generate enormous number of cases. A small increase in the number of jobs, 

YCs and vehicles will cause the solution space to grow exponentially. Thus, an effective 

operation supporting platform is needed to facilitate real time decision makings of this 

container dispatching and location problem. 

4.3 Proposed Heuristic Methods 

Since it is very complex to explore all the tree nodes, based on the tree representation of 

solution space, we propose three heuristic algorithms: Nested Partition method (NP), 
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Buffered Semi Greedy method (BSG), and Buffered Probabilistic Greedy method (BPG). 

The big similarity of these three algorithms is that they all use the tree structure to 

represent the solution. The difference among them is how to explore the tree structure. 

The NP method partitions each node into feasible child nodes (subspaces) by determining 

a job assignment. For each child node, the NP method further explores the remaining jobs 

by random sampling until it obtains a complete solution. Backtracking is allowed when no 

feasible candidate exists in the subspaces. The iteration continues until all the jobs have 

been assigned. Although the NP method is effective in finding a feasible solution, it does 

not have an upper bound on the performance time. The random sampling and frequent 

backtracking take too much time when the problem size is large. Thus, we propose two 

greedy algorithms with a fixed-size buffer, named BSG and BPG respectively. The BSG 

greedily selects top k partial solutions at each stage, and the next iteration only will 

expand from these partial solutions. This algorithm works extremely fast when k is small 

but is likely to miss the global optima. The BPG method improves it by selecting the 

subspaces in a probabilistic manner. The local top-k optima will be selected with a high 

probability and the other promising subspaces can also be captured with certain 

probability. 

4.3.1 Nested Partition Method (NP) 

Before we present our method based on Nested Partition to solve the container dispatching 

and location problem, we first provide the necessary preliminary knowledge of Nested 

Partition. 
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4.3.1.1 Introduction of Nested Partition (NP) 

The Nested Partition method is first proposed by Shi (1997, 2000) for solving global 

optimization problems. The idea behind this method is to concentrate the computational 

effort on the most promising solution space that is most likely to contain global optimum. 

In this method, the solution space is partitioned recursively into subspaces; and random 

sampling is used to access the potential of each subspace; then the computational effort is 

focused on the selected most promising subspace. Unlike Semi Greedy method which 

makes a decision based on local knowledge, the NP method selects a local optima based 

on global knowledge. In other words, it will foresee the future decisions by random 

sampling. Thus, it has a higher probability to find a global optimum than Semi Greedy 

methods. 

 

We consider the following optimization problem: 

* arg min ( )
x

x f x


  

where the solution space  is finite and :f   is the performance function to be 

optimized. In each iteration of the algorithm, we assume that we have a region or sub 

region of   which is considered to be most promising. Then we partition this most 

promising region into K sub regions and aggregate the entire surrounding region into one. 

Next, we calculate the promising index for these K+1 regions by using some random 

sampling scheme. The most promising region is then selected based on the index values 

among these K+1 regions. If the surrounding region is selected, the algorithm backtracks 

to a super region that contains the old most promising region. The algorithm is then 

partitioned and sampled in the new most promising region in a similar way. 
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Procedure NP 

1) Partition 

Partition search region ( )n into ( )nK sub regions: 1( )n ,…,
( )

( )
nK n


 , and aggregate 

the surrounding region \ ( )n  into one region
( ) 1( )
nK n

  .  

2) Random Sampling 

Randomly sample jM points from each of the regions ( )j n , j=1, 2,…, ( )nK +1. 

1jx , 2jx ,…, jjM
x , j=1, 2,…, ( )nK +1; 

and calculate the corresponding performance values, 

1( )jf x , 2( )jf x ,…, ( )jjM
f x , j=1, 2,…, ( )nK +1. 

3) Calculating the Promising Index 

For each region ( )j n , j=1, 2,…, ( )nK +1, calculate the promising index ( )jI   

{1,2,..., }
( ) min ( )

j

ji

j
i M

I f x



  , j=1, 2,…, ( )nK +1. 

4) Backtracking 

Determine the most promising region
nj
 where 

( ) 1{1,2,..., }
arg min ( )

n
n j

j M
j I

 

 


   

If two or more regions are equally promising, break ties arbitrarily. If the promising 

region refers to a region that is a sub region of ( )n , then let this be the most 

promising region in the next iteration; otherwise, if the promising region refers to a 

surrounding region, backtrack to the super region of the current most promising region. 
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4.3.1.2 Apply NP to Our Model 

1) Partitioning 

The partition must be done in the same manner until the final region which contains only 

one solution. A better partitioning scheme will lead to an optimal solution in a fast way, 

while a worse partitioning scheme may backtrack frequently. The NP method tends to 

perform much better if good solutions are clustered together under the partitioning scheme. 

To impose such a structure, we introduce the following problem based partitioning 

scheme: at each stage, we pick a job from the top of the QC stacks and determine its YC 

location (if necessary) and the vehicle to be assigned to; the next partition is to augment 

the solution by adding possible combination of job, truck, and YC location. Figure 4.3 

shows an example of assigning 4 jobs from 2 QCs to 2 YCs and 2 PMs. In each iteration 

of the job assignment, there are 8 choices for each job assignment because we can assign 

any job on the top of the QC’s job stack to any vehicle with any YC destination. 

 

J1M1R1J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1

J1M1R1J1M1R1 J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1

J1M1R1J1M1R1 J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1

Solution Space

backtracking

 

 

 Figure 4.3 An example for Partitioning (2 QCs, 2 PMs, 4 Jobs) 
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2) Random Sampling 

Sampling decides the efficiency of the NP method. As shown in the example of Figure 4.3, 

in the first iteration, sampling in each region entails finding the remaining job assignments 

based on the first job assigned, which means finding a completed solution. The method 

used for random sampling in each region in each stage is not fixed; we can have various 

random sampling ways. For example, we can use pure random sampling in each region in 

the above example. However this rough random sampling will result in backtracking 

through the NP procedure. In this study, we use greedy weighted sampling schemes based 

on the abovementioned tree based partitioning techniques. Our random sampling 

incorporates the objective function, that is to say, the better the performance of the 

assignment, the higher the chance for it to be selected.  

 

For example, we sample the region of the shaded node in Figure 4.3. In the first stage, we 

select the next assignment based on the performance value of the remaining job 

assignments. The best objective value has the highest probability to be selected. This 

procedure mimics the greedy search until all the jobs have been assigned and a complete 

solution has been obtained, and it still has feasible probability to select any job assignment 

(the procedures are shown below). This greedy weighted sampling has two main 

advantages: firstly, it can guarantee the feasibility of the solution; secondly, it incorporates 

a greedy conception which makes the searching process efficiently.  
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Weighted Sampling 

------------------------------------------------------------------------------------------------------------ 

Assume a region defined by the first k jobs assigned and a predetermined parameter:  

Constant (0,1)p  

For i=k+1: n DO 

     generate a random number u uniformly distributed on (0,1) 

     if u ≤ p, 

          let the next assignment be the lowest cost added 

     else 

          let the next assignment be a random selection according to a uniform                      

distribution 

     end 

end 

------------------------------------------------------------------------------------------------------------ 

 

The constant parameter p can be any number between 0 and 1; when p equals to 1, it is a 

pure greedy assignment and when p equals to 0, it is a pure uniform assignment. We will 

test different p values in the experiments. 

  

3) Calculating the Promising Index 

After using the above random sampling scheme, we need to calculate the promising index 

for each region in order to pick up the most promising region in the next iteration. For 

each region ( )j n , j=1, 2,…, ( )nK +1, calculate the promising index ( )jI   

{1,2,..., }
( ) min ( )

j

ji

j
i M

I f x



  , j=1, 2,…, ( )nK +1. 

 

Here we use the minimum objective value (makespan time) to become the promising 

index of each region. To get the each objective value, we use simulation to evaluate the 

performance of such a solution. 
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4) Backtracking 

The NP method enables a feasible move from one region to another region or even entire 

region as long as the promising index indicates that the backtracking is the appropriate 

move. In our problem, if the index corresponds to the surrounding region, the algorithm 

backtracks to the super region of the current most promising region. Although the NP 

method does not require an initial solution, it takes a global view in each stage, and it is 

flexible to move from one cluster to another cluster based on the index. 

4.3.2 Buffered Semi Greedy Method (BSG) 

The NP method combines global and local search naturally and demonstrates effective 

performance in many cases. However, such a heuristic method does not guarantee a lower 

bound of the solution space. Considerable search regions need to be explored if the 

backtracking strategy is not well designed. Moreover, to estimate the performance value 

of a search region, random sampling is adopted to generate a complete solution, which is 

costly when the number of jobs is large.  

We propose a Buffered Semi Greedy (BSG) method which guarantees a maximum search 

cost and is suitable for the real-time environment. The intuition behind the BSG method is 

that it extends the nearest-neighbor heuristic to k-nearest-neighbors heuristic. Thus, 

instead of keeping a record of local optima, we maintain a fixed-size buffer to store k 

items of local optima in each level of the search space. These k search regions are 

considered to be more likely to contain the global optima. The search procedure of the 

BSG Algorithm is shown as follows. 
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BSG – Buffered Semi Greedy Search Algorithm 

1) while jobs exist in QC job stacks do 

2)     for each job Ji assigned to vehicle Mj with destination YCr  do 

3)         calculate the estimate finish time f of current partial solution 

4)         if f is smaller than max(f) in the buffer, then 

5)             insert current partial solution to buffer 

6)         fi 

7)     done 

8) done 

9) return min(f) in the buffer 

 

Figure 4.4 shows an example of the BSG search algorithm to dispatch jobs with working 

environment in Figure 4.1. We have two QCs, two YCs and two vehicles for job 

allocation. Initially, we start from the whole space and maintain a buffer with size two to 

store partial solutions. In the first level, we select two most promising search regions from 

the eight branches. Note that we determine the performance value based on local 

knowledge. In other words, we calculate the estimated finish time for the partial solution 

found so far in each region. The one with the minimum estimated finish time is considered 

as the most promising. Then, in each iteration downward the tree, 16 search regions will 

be generated from the two super-regions in the buffer and 2 regions with best performance 

value are selected and stored in the buffer. The process continues until all the jobs have 

been assigned. 

 

Such a Semi Greedy search algorithm can work very fast and is guaranteed to finish the 

job dispatching within a bounded time. If there are K QCs, R YCs and M vehicles, to make 

a schedule of N jobs, at most k*K*R*M*N will be explored for a buffer with size k. 

Therefore, the search space is actually linear with respect to the number of QCs, YCs, jobs 

and vehicles. Besides its efficiency when applied in real-time environment, we observe 
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that if the job length, i.e., elapsed time to finish a job, is uniformly distributed, BSG can 

achieve the optimal solution. However, if the jobs are varied in their length, BSG is only 

able to find local optima and cannot perform well in such a scenario.  

 

J1M1R1J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1

J1M1R1J1M1R1 J1M1R1 J1M1R1J1M1R1 J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1

J1M1R1J1M1R1 J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1 J1M1R1 J1M1R1J1M1R1 J1M1R1J1M1R1

Solution Space

 

 

Figure 4.4 Example for BSG method (2 QCs, 2 PMs, 4 Jobs, 2 YC Locations)  

 

4.3.3 Buffered Probabilistic Greedy Method (BPG) 

The main disadvantage of BSP is that it only reserves top-k local optima and the 

constructive mechanism may miss the potential solutions. Since our model is a 

combinatorial optimization problem, it is likely to have the same performance value in the 

early stage of search space exploration. In other words, the buffered solutions are not 

distinguishable enough. Some of the partial solutions will lead to the same complete 

solution and the potential good solutions for global optima are missed. To capture the 

global optima with a higher probability, one alternative is to adopt the scheme proposed 

by Bresina (1996), in which candidates are assigned probabilities of being selected that are 
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determined by their performance values. In this section, we propose a probabilistic 

selection scheme which is able to capture potential good solutions outside the top-k local 

optima.  

 

In this scheme, candidate elements are assigned probabilities of being selected based on 

their current greedy objective values in every stage until the buffer size is reached. The 

greedy objective value f here refers to makespan time of this assignment. The bias 

parameter ib is introduced here to assign to the i-th ranked element: 

i

best
i

f
b

f
 , 

where bestf  is the best objective function value found in current stage, and if is the value 

of the i-th ranked element in this stage. The probability that the i-th ranked candidate 

element is selected is  

1

( ) i

C

jj

b
p i

b





, 

where set C is the set of all candidate elements in this stage. It contains all the possible 

assignments extended from previous buffer. Thus, |C|=k*K*M*R. Note that the lower the 

value of if , the larger the value of ib , and consequently, the higher the value of 

( )p i making the i-th ranked element more likely to be selected. Similarly to the BSG 

method, the buffer size k here is fixed, and the selection is ended when the buffer is full. 

The pseudo code of the algorithm is shown as follows. 
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BPG – Buffered Probabilistic Greedy Search Algorithm 

1) while jobs exist in QC job stacks do 

2)     for each job Ji assigned to vehicle Mj with destination YCr  do 

3)         calculate the estimated finish time f of current partial solution 

4)         if i bestf f , then best if f        

5)         fi 

6)     done   

7)     for each 
if  do 

8)         calculate 
i

best
i

f
b

f
  

9)         ( ) isum b b   

10)     done 

11)     for each ib do 

12)        calculate ( )
( )

ib
p i

sum b
  

13)     done 

14)     while buffer is not full do 

15)       pick a random value ρ in [0,1] 

16)       find i such that 
1

0 0

( ) ( )
i i

j j

p i p i


 

    

17)       if search region i is not in the buffer, then 

18)           insert it to buffer 

19)       fi 

20)     done 

21)  done 

22)  return min(f) in the buffer 

4.4 Experiments 

To assess the solution quality and efficiency of the proposed algorithms, we conduct 

extensive experiments with different parameter settings. The layout parameters and 

handling time are generated based on a realistic transshipment terminal. As in practice, 

three potential candidate yard locations are given to a set of discharging jobs. These 
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candidate locations are dominated by YC current positions; they can be different yard 

blocks or different slots in the same block. The YC traveling time along the yard block is 

considered in the YC handling time of each job. Both the processing times in quay crane 

and yard crane are set to follow a normal distribution with a variance of 0.2; namely 

normal distribution (2, 0.2) and (3, 0.2).  

 

In the experiments, we test the robustness of each algorithm by evaluating their 

performance in terms of different crucial parameters. We also compare these three 

methods based on a time-quality measure, which is defined as: 

quality

time
  , 

where quality is defined as the ratio of the performance value of the current solution to 

that of the global optimal solution: 

opt

f
quality

f
  

Since the three algorithms get the same optf  with identical parameter setup of jobs, 

vehicles, QCs and YCs, we can set the optimal solution as any small positive constant 

value; and the quality factor is normalized for comparison purpose. The intuition behind 

the measure is that there exists tradeoff in the running time and quality of the solution 

finally obtained. If an algorithm takes more running time, then more partial solutions will 

be explored and better results will be achieved. Thus, we can consider an algorithm to be 

superior to another one if it is able to achieve a better result with less running time. All the 

experiments are conducted on a server with Quad-Core AMD Opteron(tm) Processor 8356, 
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128GB memory, running Centos 5.4. Since NP and BPG methods involve randomization, 

we repeat their experiments 10 times and retrieve the mean objective value as the result.   

4.4.1 Performance of NP method 

In the NP method, the random sampling probability p is important in the quality of the 

results. We first conduct a series of robustness analysis to explore the proper value of 

constant p. Since the best objective function value has higher probability to be selected, 

we only test the value from 0.7 to 1. We design the scenario with 2 QCs, 4 PMs, 3 YC 

Locations, and the number of jobs varied from 50 to 100. All the experiments are finished 

within 10 seconds. 

Table 4.1 shows the numerical results of the NP method using different values of the 

sampling parameter p. We can observe that the NP method can generate better results with 

higher sampling probability p. A more visual comparison is shown in Figure 4.5, from 

which we can see the influence of different p values on the objective. It is obvious in most 

cases that when p is close to 1, the NP results dominate those with smaller p values in all 

scenarios, which is consistent with Shi (2000)’s findings. In their paper, the performance 

increases as p grows. The best result occurs when p is set to 0.99 (p=1 is not tested here).  
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Table 4.1 NP Results with Different parameter p values for 50-100 Jobs (2 QCs, 4 

PMs, 3 YC Locations) 

 

p\Jobs 50 60 70 80 90 100 

0.7 134.494 171.749 195.697 232.471 262.368 292.559 

0.72 136.85 166.639 195.968 222.589 258.487 288.401 

0.74 137.011 165.235 190.606 225.769 259.726 288.626 

0.76 137.537 167.275 195.147 222.031 258.681 280.561 

0.78 131.505 168.542 189.956 219.664 255.181 272.219 

0.8 131.536 160.129 187.273 222.094 255.965 279.671 

0.82 128.769 160.078 185.379 214.462 245.964 273.635 

0.84 128.623 157.954 189.551 214.083 255.85 277.779 

0.86 125.017 157.417 177.656 214.186 243.176 265.375 

0.88 122.769 155.483 184.212 203.974 242.256 262.671 

0.9 123.309 147.47 173.401 198.186 244.885 257.191 

0.92 117 147.625 169.993 202.056 235.5 260.45 

0.94 118.968 144.026 163.521 195.677 227.636 250.379 

0.96 113.768 138.58 162.152 188.857 219.511 241.103 

0.98 109.252 130.52 151.971 176.808 208.109 226.88 

1 107.305 126.264 145.505 171.689 193.838 211.514 

 

 

Figure 4.5 Parameter p’s influence in NP with 50-100 Jobs  (2 QCs, 4 PMs, 3 YC 

Locations) 
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Next we design a series of scenarios with 2 QCs, 3 YC Locations, and different PMs to 

test the trend of vehicle effect. We set the random sampling parameter p to be 0.98. The 

results of scenarios with different PM numbers and job numbers are plotted in Figure 4.6. 

We can observe that the larger the PM number is, the better the result is. As the number of 

vehicle increases from 4 to 8, the objective values decrease in all scenarios accordingly. 

However swe also can perceive that when the PM number increases above 5, the trend of 

objective value becomes quite stable. 

 

 

Figure 4.6 PM effect in NP with 50-100 Jobs (2 QCs, 4 PMs, 3 YC Locations with 

sampling probability p=98%) 

 

4.4.2  BSG method results 

We test the effect of buffer size in the BSG method. For a given scenario, we changed the 

buffer size from 1 to 100. A typical trend of this change is shown in Figure 4.7. We can 

observe that when buffer size is small, the increase of buffer size takes effect and the 
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objective value decreases dramatically and quickly reaches a local optimum. Later, the 

increase of buffer size does not help much. The reason is that buffer size grows linearly 

while search space grows exponentially and results in a large number of redundant partial 

solutions to be captured in the buffer. Hence, it is unwise to blindly increase the buffer 

size since larger buffer size takes longer computation time. Inspired by this fact, we focus 

on a buffer size of 40-60 to improve the solution in BSG. Another interesting phenomenon 

in this graph is that there is an embossment in the curve (when buffer size is 7) in Figure 

4.7. In other words, larger buffer size cannot guarantee better solution. It can be explained 

that when buffer size is larger, much more search regions are generated in each iteration. 

A better solution may be abandoned when buffer size is large due to the masses of 

competitors, while this solution is preserved when buffer size is small. 

 

 

Figure 4.7 Robustness of buffer size (100 Jobs, 2 QCs, 3 YCs, 8 PMs) 
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4.4.3 Comparison between NP, BSG and BPG 

In this set of experiments, we focus on buffer size 50 to assess the performance of the 

BPG method. We conduct the same experiment designs of 2 QCs, 3 YC locations with the 

number of jobs varying from 50 to 100, and the number of PMs varying from 4 to 8 to 

compare with the NP method and the BSG method. We compare with the best solutions of 

the NP method which set random sampling probability to 0.98. The comparison 

experiments’ results are shown in Table 4.2. 

 

Table 4.2 Comparison experiments results 

  50 60 70 80 90 100 

4 Trucks             

BPG 106.267 119.883 139.94 166.269 186.062 203.618 

NP 107.305 126.264 145.505 171.689 193.838 211.514 

BSG 110.004 130.214 151.516 179.262 201.157 217.028 

5 Trucks             

BPG 102.947 119.049 135.142 161.001 182.969 199.085 

NP 102.091 123.115 133.328 165.63 185.348 203.073 

BSG 109.35 127.35 135.556 174.675 196.17 214.027 

6 Trucks             

BPG 102.909 119.073 133.948 163.303 178.397 202.696 

NP 102.055 120.488 131.835 162.373 178.398 201.065 

BSG 109.35 127.35 135.107 170.686 194.208 218.647 

7 Trucks             

BPG 102.744 119.731 135.004 157.529 181.767 200.834 

NP 102.082 120.488 133.821 158.055 178.398 201.065 

BSG 109.35 127.35 135.107 170.086 194.208 218.647 

8 Trucks             

BPG 102.762 119.092 135.604 157.21 180.87 200.845 

NP 102.082 120.488 133.821 158.055 178.398 201.065 

BSG 109.35 127.35 135.107 170.086 194.208 218.647 

 

Table 4.2 shows more directly that in most cases our method BPG gets best performance. 

Besides, we also observe that BPG gets close values to NP in the remaining cases. Note 
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that the NP results here are the best it can obtain with the perfect random sampling 

probability 0.98, and it would be much worse when this parameter value changes. 

 

In meta heuristics, sophisticated methods improve the solutions while increasing the 

computation time as the emphasis is on performing a deep exploration of the most 

promising regions of the solution space. On the other hand, some simple methods can find 

a good but not best solution in a very fast speed such as our BSG method here. To capture 

this tradeoff between gain and cost, we propose a new assessment mechanism which takes 

the computation time factors into consideration. As shown in Figure 4.8 and Figure 4.9, 

the horizontal axis stands for computation time, and the vertical axis stands for solution 

quality which is the ratio of “Optimal” solution to experiment results. The pseudo 

“Optimal” can be any real number near but less than all the experiment results, which is 

used as a normalization factor. We plot two graphs to illustrate this quality vs. CPU time 

comparison. An algorithm is considered superior than another one if it is able to achieve a 

better result with less running time. In other words, it should be plotted at the left-top 

corner of the figure.  

 

As shown in Figure 4.8 and Figure 4.9, the square shape represents the solution obtained 

from NP method, the diamond shape represents the solution of BSG, and the triangle 

shape represents that of BPG method. We plot every dot for each method by using 

different parameters (sampling probability in NP, and Buffer size in BSG & BPG) which 

result in different computation times. For these two graphs, we can observe that NP 

method relies on high sampling probability parameter value and runs longest time to find a 

solution; while the BSG method can generate a good solution in very limited time. In the 
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view of getting a better solution in the limited time, our BPG method performs best over 

the other two (BPG is always in the top left corner), especially in the large case when job 

numbers and resource numbers increase. 

 

Figure 4.8 Best Case Comparison results (100 Jobs, 8 PMs, 2 QCs, 3 YCs) 

 

 

 

Figure 4.9 Worst Case Comparison results (50 Jobs, 4 PMs, 2 QCs, 3 YCs) 
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4.5 Summary  

In this chapter, we discuss on how to assign the container jobs to PMs as well as 

assignment of discharging jobs to potential yard locations. Three methods are proposed to 

tackle this integrated problem and they are NP, BSG and BPG methods. We have shown 

that the NP method can solve this problem efficiently by using proper parameters; 

moreover BSG can generate a feasible solution very quickly which can used in real time 

dispatching, while the improved BPG method dominates the other two in getting a good 

quality solution in a limited time. The contributions to this problem are: 

1. Three strategies are developed to improve the terminal productivity by integrating 

dispatching and location problem. Unlike other methods, these strategies can 

explore deeply in the promising region.  

2. An efficient BPG approach is proposed to solve this integrated problem. Unlike 

other two phase cyclic methods, BPG builds solutions gradually and adapts the 

history information in each stage.  

3. A novel assessment scheme is proposed which evaluates the performance in a 

different angle, taking CPU time and solution quality into consideration. 
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5 The Integrated Simulation Platform for Real Time 

Dispatching  

In real time dispatching, port operators usually use simple rules as they need to make 

decisions in a short period of time. Some researchers develop more complicated rules by 

capturing more information. However, in practice it is not easy to know the effectiveness 

of different rules under different scenarios, since the system can be highly dynamic and 

stochastic. This chapter aims to present a simulation framework which is able to evaluate 

the performance of different dispatching rules. This framework consists of two main 

modules: dispatching module and simulation module. One of the most significant 

contributions of this framework is that the two modules can communicate with each other 

effectively regardless of using simple rules or complex heuristics. The dispatching module 

can be any external sophisticated heuristic model or simple rule; the simulation module 

here is developed based on a platform named MicroPort. In this chapter, we conduct two 

series of experiments to evaluate different real time dispatching methods. One of them is 

to analyze the performance of simple rules and some look ahead strategies; the other is to 

evaluate the performance of a dispatching heuristic based on the solving of the 

complicated optimization models. 

5.1 Introduction 

For real time dispatching, we need to make decisions based on the most updated 

information, and this usually cannot be considered directly during the planning phase. In 
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practice, port planners usually use simple greedy rules to do real time dispatching. On the 

other hand, some researchers propose more complicated rules which can capture more 

information based on the look ahead planning. In order to evaluate the effectiveness of 

these rules, we need to use simulation. However, it might not be easy for us to code the 

rules especially those complicated rules into current commercial simulation software 

because these complicated rules might involve solving an optimization model.  

 

In this chapter, we introduce a simulation platform named Microport for evaluating the 

real time dispatching rules for a container terminal. From the perspective of software, the 

Microport uses separated layers to provide many useful functions which allow flexible 

communication between different modules; from the perspective of simulation, this 

software can simulate interactions among all equipment in a container terminal by the 

proposed multi-agent modeling method. The Microport combined with our dispatching 

model can provide an efficient simulation platform for evaluating real time dispatching 

rules. This platform has two advantages. Firstly, it enables dialogue between simulation 

models and dispatching models, in which we can try different heuristics which range from 

simple heuristics to complicated heuristics and evaluate them easily; Secondly, it is 

possible to generate different terminal layouts to test different algorithms in different 

scales by just easily changing the terminal layout parameters. 

5.2 Real time Simulation Platform 

The essence of real-time lies in the fact that decisions are made as and when they are 

required. For the real time dispatching problem, researchers have developed various rules 
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ranging from simple greedy heuristics to complicated mathematical models. However, it is 

quite challenging to evaluate the rules, especially the complex algorithms via current 

commercial simulation software due to the inefficient communication between different 

modules and software. This study is motivated by an actual port’s real time dispatching 

problem, and our aim is to facilitate the simulation process and help evaluate different 

rules for real time dispatching. In this chapter, we present a real time simulation platform 

and discuss its special features. 

5.2.1 General Framework 

The general framework of the platform can be illustrated in Figure 5.1. The framework 

comprises of two main modules: a dispatching module and a simulation module. The 

dispatching module can be an optimization model which is able to determine the optimal 

assignment for yard cranes and vehicles given the working list of quay cranes. The 

simulation module is developed to address two main issues in this dispatching problem. 

Firstly, the updated states generated by the simulation module will be passed to the 

dispatching module to determine the real time dispatching decisions; secondly, it is 

flexible to test and evaluate different dispatching models in different layouts and different 

scenarios. This platform can implement simple rules as what other simulation software 

can do. Moreover, the most important feature of this platform is that we can easily 

implement and evaluate different complicated heuristics algorithms using this platform. 

These two modules work together. Once the dispatching model gives a solution (in our 

problem, it is the job sequence on the vehicle) based on the given information, the 

simulation module simulates the first job in the solution; after that, the dispatching model 
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will revise the solution based on the new realized information. These procedures repeat 

until all the jobs are finished or until the simulation termination conditions are met. 

 

Dispatching 
module

Simulation 
Module

END&OUTPUT

Finished?

Y

N

 
Figure 5.1 The flowchart of the platform 

 

5.2.2 Simulation Platform Features 

We use multi-agent systems to model the container terminal operations in which each 

equipment and decision making is represented by a specific agent. The proposed multi-

agent system has a main thread and many agent coroutines. The main thread can switch 

the system between serial mode and concurrent mode. In the serial mode, the system halts 

all agents and executes a sequence of procedures for central controlling. These procedures 

make overall decisions based on current system status. When the system goes into 

concurrent mode, distributed agent coroutines will be activated and they interact with each 

other in the context of overall decisions made in previous serial mode. For instance, there 

are dozens of yard trucks traveling in the yard and interacting with other equipment. The 

job sequence in each yard truck is scheduled by the yard truck scheduler in the control 

center of the terminal. To model this subsystem in MicroPort, every yard truck can be 

represented as an agent coroutine and the yard truck scheduler can be treated as a central 
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controlling procedure. The yard truck scheduler will be regularly triggered or triggered by 

events to pause all of the agent coroutines to make plans for yard trucks. Then the 

simulation will be resumed and all of the agent coroutines are activated simultaneously to 

continue the yard truck behaviors. 

 

Initialization

Instant Agent Events

Deterministic  Events

Finalization Simulation Results

Long time 

planning

Short time 

planning

Real Time 

Planning

 

Figure 5.2 Simulation and Terminal Decision Planning 

 

The special software provides a flexible simulation modeling environment. In MicroPort, 

equipment are modeled as agents and interactions between them are modeled as 

concurrent agents’ events. Decision processes are modeled as serial procedures shown in 

Figure 5.2. The simulation starts at repeatedly vessel arriving. This event will trigger a 

series of decision processes. These processes make all of the long-term, short-term and 

real-time decisions followed by the terminal equipment. Terminal equipment use the 

schedules set by decisions as prior rules and interact with each other to deliver containers. 

They will trigger back to decision processes when they reach certain states. The long time 

planning for our problem refers to berth allocation, quay crane assignment; quay crane 

scheduling; the short time and real time dispatching here consist of yard crane dispatch 
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and yard truck dispatch. These planning algorithms are stored externally and loaded 

dynamically during runtime. APIs provided in the extension layer facilitate loading 

activities.  

 

1) Communication Capability 

When it is triggered from other decision making procedures, the short-term deterministic 

yard truck dispatch module will be executed. Because of the ever changing environment 

of the yard, this module only considers limited future tasks in the quay crane task lists and 

is always incorporating the short-term deterministic yard crane dispatch procedure to 

make more global optimized decisions. When the yard truck dispatch procedure is 

triggered from waiting or moving yard trucks, the real-time decisions making unit should 

respond immediately. These real-time decisions are based on short-term planning results 

and can have many detailed instructions including destination and routing information. 

This procedure is not only suited for yard trucks but also can be adapted for other traveler 

equipment in the yard. Different user specified algorithms can be plugged in without 

considering the synchronization. 

 

2) Collision Avoidance 

Because quay cranes and yard cranes are designated to a single lane along their moving 

path, they cannot perform cross gantry travel. Hence the minimum spacing between quay 

cranes and yard cranes is mainly controlled by the decision processes. The minimum 

spacing for quay cranes and yard cranes can be set before simulation. In simulation when 

two quay cranes or yard cranes go too close, the corresponding decision process will be 

triggered to rearrange the two equipment schedules and current moving destinations. The 
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interference between two yard trucks can cause collisions. In simulation the autonomous 

agents are responsible for avoiding collisions. If yard trucks are controlled by computer 

like AGVs in some terminals, the interference should also be carefully modeled in the 

yard truck dispatch procedure.  

 

3) Deadlock Avoidance 

In software layers, MicroPort has already eliminated deadlocks among agents by using 

collaborative coroutines. But in logic aspect, deadlocks can also happen when several 

equipment are in a waiting cycle. Quay cranes' schedules are almost fixed once they have 

been decided. Thus it becomes more important to control yard trucks and yard cranes in 

order to avoid deadlocks. In real-time decision making units, MicroPort only considers 

those surely appearing equipment, which ensures that the waiting equipment is not waiting 

for other equipment that potentially never shows up.  

5.3 Dispatching Module 

In this section, we focus on the real time and short time planning which consists of yard 

crane and yard truck dispatching. We introduce two series of dispatching rules: simple 

rules and complex heuristic models. The former series is embodied directly in MicroPort 

and the latter one is individual optimization models coded in C++ and calling MicroPort to 

simulate the real situations. 
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5.3.1 Simple Rules 

These are generally basic rules used for the immediate dispatching of a job to a single-load 

truck based on current local information such as current vehicle position, whether the 

resources are busy or idle at the current time, etc. In these basic strategies, simple 

decisions are made when events occur based on current available information. In this 

section, we analyze two categories of simple rules: one is typical greedy rules and the 

second one is simple predictive look ahead rules. 

5.3.1.1 Greedy Rules 

5.3.1.1.1 Task-Initiated Strategies 

Task initiated strategies, also known as transportation-order-driven strategies (Günther et 

al. (2006)), refer to the assignment of jobs to vehicles that is task-driven. Here we 

introduce 2 task-initiated strategies: nearest vehicle (NV) and least utilized vehicle (LUV) 

strategies.  

 Nearest idle vehicle (NV) - When a particular quay crane has successfully 

transferred a job to a vehicle, the next job will be assigned to the nearest idle 

vehicle at that point in time. However, as pointed out by Günther et al (2006), this 

rule may discriminate against vehicles that are far away from active quay cranes 

and result in the disproportionate use of vehicles. To counter this, we introduce the 

Least Utilized Vehicle (LUV) strategy. 

 Least Utilized Vehicle (LUV) – The utilization of a vehicle is defined by the time 

in which the vehicle is in operation / the total port operation time period. In this 

case, the quay crane will assign a job to a vehicle that is the most under-utilized. 
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However, the downside is that a particular vehicle may be located at some distance 

away and will end up arriving late. 

5.3.1.1.2 Vehicle-Initiated Strategies 

Unlike task-initiated strategies, vehicle initiated rules are called when a vehicle ends its 

current job and looks for a job instead of going straight to idleness. In other words, the 

events which call for these decision rules are vehicle-driven. Generally, vehicle-initiated 

strategies keep the vehicles on the move instead of going straight to idleness. Here we 

introduce two vehicle-driven rules: 

 Nearest Quay Crane – In this decision rule, the vehicle selects the next job on the 

quay crane that is closest to it. This is to minimize the travelling time to a quay 

crane so as to collect the respective job in time. However, this strategy may create 

a highly non-uniform vehicle-to-QC allocation and result in extremely high 

waiting time when all the vehicles select disproportionately to jobs of a particular 

QC while neglecting the more critical ones. This is a possible worst case scenario 

that can potentially increase the quay crane waiting time significantly and 

ultimately affect the vessel turnover rates. Hence, we propose a second strategy to 

handle this issue; the Most Critical Quay Crane Strategy (MC).  

 Most Critical Quay Crane (MC) – Each quay crane has 2 lists comprising of 

assigned jobs and unassigned jobs. The criticality of a quay crane can be reflected 

by the number of assigned jobs, because it signifies the number of vehicles that are 

waiting or travelling to that quay crane. The low number of the assigned jobs 

indicates that the quay crane is likely to experience a no-show from any vehicles 

when the job is ready for collection. 
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5.3.1.1.3 Crane-Initiated Strategy 

This strategy involves that of a crane-initiated one, which fixes vehicles to cranes. The 

nature of this strategy is First-Come-First-Serve (FCFS), where vehicles, upon ending 

their jobs, proceed back to their assigned crane to collect the next task. One inherent risk 

of fixing vehicles to a quay crane is the possible scenario that these vehicles may be 

assigned jobs that are far away, resulting in significant crane waiting time, while vehicles 

to a neighbor quay crane remain idle in their wait to for their respective task collections. 

 

5.3.1.2 Predictive Rules 

Real-time decisions should incorporate uncertainties which are tough to foresee at the start 

of the planning. Hence, we introduce the predictive look-ahead strategy that updates and 

overwrites previous vehicle assignments as new information is being incorporated. Look-

ahead dispatching takes into account of limited information at a particular point in time to 

produce a temporary predictive schedule for vehicles. These can be seen as a series of 

static problems at several points in time. When an event occurs, new information will be 

incorporated into the previous static problem, forming an updated one which is to be 

solved again. These look ahead rules consist of initial solution and local search. The initial 

solution is a feasible starting point for the relevant heuristic. Local search involves 

consideration of the current solution’s neighbors, which are solutions in close proximity of 

the current solution. In the next section, several heuristics will be employed to contrast 

and compare the different approaches towards forming the initial solution as well as 

conducting the local search. These include Hill Climber, Simulated Annealing and 

GRASP.  
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5.3.1.2.1 Hill Climber  

Hill climber, as the name suggests, works with the principle that the climber takes the next 

step that progresses him higher up till he reaches the peak. This algorithm starts with a 

random initial solution and searches the neighborhood for the next better solution. 

However, the hill climber strictly selects only the first and better neighbor to progress 

onwards. The ‘better’ neighbor is defined by a close solution with respect to the current 

one that produces a better result, which in this case, refers to lower costs related to crane 

and vehicle waiting times. Simple as it is, the hill climber serves to provide a quick and 

simple solution. However, the problem is that randomizing the initial solution will create 

poor solutions because the solution span as mentioned earlier is so large. Furthermore, 

strictly selecting the first and better neighbor to progress on may subject the heuristic to 

the risk of getting stuck at a local optimum quickly.  

 

In our problem, the first step here is to create an initial solution based on randomization, 

which is to assign vehicles to assignments in the Op_list where tasks are listed based on 

their due times. Given the instance of a look-ahead of 2 jobs scenario with all 10 quay 

cranes operating, the size of Op_list would be 20. The local search will comprise of 2 

aspects: swapping of vehicle assignments in the list as well as consideration of vehicles 

which are not assigned to any tasks in the current solution. 

5.3.1.2.2 Simulated Annealing 

Another way of avoiding local optimal solutions is to adopt another heuristic by the name 

of simulated annealing. The essence of this heuristic lies in its local search which attempts 

to avoid getting stuck at local optimum early in the run by providing a certain acceptance 
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probability to a neighbor that performs poorly compared to the current solution. This 

probability is incorporated from the theory of thermodynamics: p(δ, ti) = exp(−δ / ti), 

where δ is the difference between the value of the lower neighbor and the current solution. 

ti refers to time. The probability typically decreases with respect to time and the size of the 

shortfall δ. Similar to the Hill Climber Algorithm, the initial solution will be based on a 

random assignment of vehicles to the tasks in the Operation_list (Op_list). However, the 

only difference here will be the inclusion of the acceptance probability should the heuristic 

encounter a neighbor which does not perform as well. 

5.3.1.2.3 GRASP 

The greedy randomized adaptive search procedure (also known as GRASP) is first 

introduced in Feo and Resende (1989). GRASP is a more advanced heuristic to solve 

combinatorial optimization problems. Greedy Algorithm is used here to create an initial 

solution which will minimize the waiting time of quay cranes. Randomization here 

introduces the idea of a Restricted Candidate List (RCL) whereby each member of the 

RCL is within a stipulated allowance β%, where 0 < β < 100, in terms of performance. In 

the case of a strict greedy rule, β = 0. Within this RCL, the selected candidate will be 

randomized with the probability of 1/s, where s is the size of the RCL and is dynamic. 

Under the adaptive condition, the selection criterion for the greedy solution ‘adapts’ to the 

respective scenario and is therefore dynamic. Finally, the search element involves local 

search within the neighborhood to find a better solution. Procedures incorporate the 

sequences that involve the creation of the initial greedy solution right to the local search, 

till a good solution has been found. 
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The Greedy, Random and Adaptive functions work together to construct an initial solution 

for the assignment problem. In forming the initial solution, the key step lies in the setup of 

the Adaptive function for the selection of the candidates from the RCL. The RCL 

candidates will comprise of certain selected vehicles which result in one of the lowest QC 

waiting time for a particular task in the Operation_list where tasks are listed based on their 

due times. Then the list of vehicles is sorted according to the lowest crane waiting time. 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.3 Construction of an initial solution using GRASP 

 

In this scenario (see Figure 5.3), we firstly estimate the resulting crane waiting time 

should the respective vehicle be assigned to Job 2 for all the vehicles in the vehicle list. A 

negative crane waiting time denotes the vehicle arriving before the job is due, which 

means positive vehicle waiting time. Depending on the specified parameter for the 

selection of the RCL candidates, if in this case the allowance from the best performing 

candidate is 5, then vehicles within the range of [-5,0] in terms of crane waiting time will 
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be entered into the RCL. In this case, this will include V2, V4, V1 and V3. As for the final 

selection to the assignment of Job 2, since we are indifferent towards negative values, we 

can just safely select randomly from any of the four vehicles and assign to J2. Next, we 

proceed on to Job 1 which is the next earliest job due and the process is once again 

repeated. 

 

However, the selection criterion does not remain the same for all scenarios. Hence, it is 

essential to identify the various scenarios in which the selection criterion will change. 

1) Scenario 1: As presented earlier, if the entire RCL consists of vehicles that result in 

zero crane waiting time, randomly select any of them.  

2) Scenario 2: If the RCL consists of some vehicles (more than 1) that result in some 

degree of waiting time as well as vehicles with no waiting time, select randomly from 

the vehicles that only result in no crane waiting time. 

3) Scenario 3: If only 1 candidate results in no crane waiting time, then strictly select it.  

4) Scenario 4: If the RCL comprises of vehicles that result in some degree of crane 

waiting time, select randomly.  

 

The idea here is clear and consistent in all 4 scenarios. The priority is given towards the 

assignment of vehicles with the ultimate primary aim of minimizing crane waiting time. 

The next step is to conduct a local search. There are 2 aims of the local search. The first is 

again to check if the overall QC waiting time could be further reduced. The second aim is 

to reduce the vehicle waiting time without increasing the QC waiting time. Hence, 

neighbor acceptance is only allowed under two conditions; when both crane and vehicle 

waiting times are reduced, or when vehicle waiting time is improved without affecting that 
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of the quay cranes. There are basically 2 types of searches; the first being similar to that of 

the Hill Climber while the other being similar to that of Simulated Annealing. 

5.3.2 Complicated Models(GA-MCF Model) 

Other than the above simple dispatching rules, we also provide more complex 

optimization heuristics with individual packages. This complicated optimization model 

can have a dialogue with the simulation platform. In other words, this optimization model 

will try to solve the integrated dispatching problem and the simulation platform provides 

the real dynamic environment and evaluates the optimization heuristic. In the software 

aspect, they are two packaging systems which communicated with each other dynamically. 

In this thesis, we will choose one novel and sophisticated optimization model in Lee.et.al 

(2010). The method is based on genetic algorithm (GA) and minimum cost flow (MCF) 

network model (see Chapter 3.2.3). However, we made some changes to the GA-MCF 

model here to facilitate communication between the optimization model and the 

simulation module by considering the beginning yard truck location. 

 

The goal of this minimum cost flow (MCF) model is to find a schedule that will minimize 

the impact of delays and maximize the utilization of the vehicles (Cheng 2005). However 

in our work, we intend to use MCF as a means to generate good PM (truck) sequence. Our 

model can also be viewed as a directed graph G (V, A) where V denotes the set of nodes 

and A denotes the set of arcs. All container jobs in set H(contains both discharging and 

loading jobs) and the dummy ending job E, as well as each PM truck are represented as 

nodes in G. If two jobs are served by the same vehicle, there is a directed arc connecting 
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them. We need to determine m routes from PM nodes to node E when there are m vehicles 

deployed to serve jobs. The cost of the arc is represented by the deviation of the ready 

times and our objective is to minimize the overall network cost.  

 

Let Xij represent the flow on arc (i, j) and Cij be the cost parameter, the can be formulated 

as follows. 

 

The model can be formulated as follows.  

 

MCF Model 
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Equation (5.1) states the objective which minimizes the total cost of the flow. Constraints 

(5.2), (5.3), (5.4) and (5.5) are the flow conservation equations for the m vehicles. 

Constraints (5.6) limit the flow to not more than 1. 
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Let ti be the ready time for the QC to pick up (for discharging) or drop off (for loading) 

containers for job i. Let tij denotes the time interval between the time when the PM starts 

to do the job at QC for job i and the time that it is ready to perform job j at the QC 

location for job j.  

 

Hence, ti + tij is the time that the PM arrives at the QC which is assigned to process job j, 

and Cij which measures the deviation of the ready time for job j after serving job i is given 

as follows. 
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where  >0 and it is a constant. 

 

Note that  is a parameter that gives the relative weight between being early and being late. 

Being late would cause the QC to wait while being early, will not only cause the PM to 

wait, but also may result in infeasibility due to the fact that the QC sequence is violated. 

We have tuned the parameter  during the numerical runs. 

 

Similarly, let tm be the ready time for PM m. Let tmi denotes the time interval between the 

time for PM m being ready to start and the time that it is ready to perform job i at the QC 

location. We have the cost between PM node m and job node i, which is to capture the 

state of the PM at the time of deployment.  

   if 0

( )           otherwise

m mi i m mi i

mi

i m mi

t t t t t t
C

t t t

    
 

 
 



Chapter 5. The Integrated Simulation Platform for Real Time Dispatching 

105 

 

The arcs from all container job nodes to the dummy ending node E are assigned with zero 

cost, i.e., CiE=0 for all i.  

 

Choosing the “right” ready times is important because some ready times may give 

infeasible PM sequences while some ready times may give good or even optimal PM 

sequences. We prove that there exists a set of ready times which will give the optimal PM 

sequence. Hence the MCF model is used in two different ways in our proposed heuristic. 

Firstly, it is used to generate the initial PM sequence given initial ready times for all the 

jobs. Secondly, it is used as a decoder for the GA approach when the chromosome is 

represented by ready times. The procedure of the proposed GA is shown in Figure 3.9. 

Compared with the model in chapter 3, we add initial vehicle time to capture the real 

vehicle location information.  

 

To implement this complex heuristic algorithm, we build a connection between this 

optimization model and the simulation module. It begins from the optimization model to 

generate a solution, and then the simulation starts to simulate the first job. After that the 

optimization model is used to generate a new solution for the remaining jobs based on 

current information and then the simulation starts again. These procedures repeat until all 

the jobs have been simulated. This simulation platform enables to evaluate complex 

algorithms to be evaluated, which is the most significant difference from other simulation 

software. Through this platform, the optimization and simulation can communicate and 

share current information to help real time dispatching. 
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5.4 Case Study for Simple Rules 

Simulation will be adopted to compare the performances of the various dispatching 

strategies. This simulation study will be conducted based on a base model ran by our 

simulation software MicroPort. The nature of this model is that of a discrete-event driven 

one, whereby the state of the system changes when an event occurs at an instant in time.  

 

Below are some of the model assumptions: 

1) The layout of the terminal comprises of 45 storage blocks, with 10 QCs and 45 

YCs, 1 YC for each block (shown in Figure 5.4). 

2) The total number of vehicles in the base case is 30 and it will be varied between 30, 

35, 40 and 45 to see the impact on the port performance. Each vehicle will only be 

able to carry a single load. 

3) Berths are randomly assigned to incoming vessels with an inter-arrival time 

uniformly distributed at 25 hours.  

4) Terminal operations only focus on discharging operations; containers are offloaded 

from vessels and stored at the yards, no containers are loaded on the vessel. 

5) Quay Crane and Yard Crane processing times are deterministic at 1/30 hours, 

while vehicle speed is deterministic at 12 km / hour. 

6) Vehicle routing will be taken care of by the simulation software which includes 

traffic conditions. This means that the vehicle path to a particular destination will 

be the shortest (optimal) one.   

7) All Equipment are assumed to have infinite life-span with no disruptions to the 

operations with regards to accidents or breakdowns. 
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For a given set of parameters, each simulation run was conducted for approximately 700 

hours, based on considerations for the warm-up periods as well as the general stability of 

the simulation model.  

 
 

Figure 5.4 Screenshot of the case study simulation 

 

5.4.1  Performances of greedy dispatching strategies 

We compare and analyze the performance measures for each of the dispatching strategies. 

Four performance measures will be used here: QC lifts per hour, QC efficiency ( total 

non-waiting operation time for QC / total operation time), average vehicle waiting 

proportion ( time spent waiting at QC / total simulation time ) and average vehicle 

utilization ( time period in which vehicle is in operation (including waiting time) / total 

simulation time). As mentioned, QC lifts per hour is the primary gauge for the vessel 

turnover time. However, a more accurate measure would be the QC efficiency because it 

accurately measures the amount of time the QC is effectively in operation. 
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Table 5.1 Results of greedy dispatching strategies 

 

 Algorithm 

Average 

Quay 

Crane 

Lifts per 

hour 

Average Quay 

Crane 

efficiency 

(non-waiting 

proportion) 

Vehicle 

waiting 

proportion 

(at QC side  

only) 

Average 

Vehicle 

Utilization 

 

Task  

Initiated 

 

Base Case 

random 
19.91 0.75 0.0545 0.519 

Nearest 

Vehicle (NV) 
20.20 0.78 0.0522 0.624 

Least 

Utilized 

Vehicle 

(LUV) 

19.00 0.73 0.029 0.592 

 

Vehicle 

Initiated 

 

Base Case 

Random 
20.84 0.76 0.284 0.997 

Most Critical 

QC 
25.30 0.86 0.169 0.997 

Nearest QC 17.32 0.69 0.787 0.997 

Crane 

Initiated 

(FCFS) 

Crane 

Initiated 

(FCFS) 

22.02 0.77 0.322 0.888 

 

 

We measure the individual performance of each of the dispatching strategies under task-

initiated, vehicle-initiated and crane-initiated ones. For a given set of parameters 

mentioned above, each simulation run was conducted for approximately 700 hours. From 

Table 5.1, we can see that the best performing strategy is the Most Critical QC strategy, 

relative to the base case. It dominates because of its ability to identify which quay crane is 

in need of vehicle allocation. The Nearest QC algorithm on the other hand, performed 

relatively poorly. The crane-initiated algorithm, where vehicles are assigned to a quay 

crane on a first come first served (FCFS) basis, in general performed much better than the 

majority in the terms of quay crane productivity.  
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For the vehicle–initiated strategies, the large deviation from the base case in quay crane 

efficiency results clearly reflects their huge impact on the performance of the port. 

Intuitively, it can be expected because the vehicle-initiated strategies are likely to be 

exposed to more detrimental scenarios than the task-initiated algorithms. For instance, in 

adopting the nearest QC strategy, there is a likelihood that vehicles ignore cranes that are 

in urgent need of vehicles, due to their greedy nature for proximity to the cranes. In other 

words, the vehicle may end up selecting quay cranes based on proximity of distance, 

resulting in a negative impact on the port.  

 

Task-initiated algorithms logically results in considerably lower vehicle waiting 

proportion as compared to vehicle-initiated ones because the task that is assigned to the 

next vehicle is just after the one that is currently being processed. The nearest QC 

algorithm is of concern in this case because it has a predominantly-high vehicle waiting 

proportion time of nearly 0.8. One explanation for this is that vehicles might have selected 

jobs from a quay crane which was already experiencing a long queue of vehicles.  

However, despite the significant waiting times, vehicle utilization is maximized under 

vehicle-initiated algorithms; which is logical due to the fact that vehicles are the ones that 

drive the events that call for the dispatching algorithms. 

5.4.2 Performances of look-ahead heuristics 

We design this group of experiments to evaluate the performance of different look-ahead 

dispatching strategies, such as GRASP, hill climber, highest hill climber and simulated 

annealing. The experimental environment is the same as before. The simulation results are 

compared with the base random case as shown in Table 5.2. 



Chapter 5. The Integrated Simulation Platform for Real Time Dispatching 

110 

 

Table 5.2 Results of look-ahead dispatching strategies 

 

Off-line 

Algorithm 

Average 

Quay 

Crane Lifts 

per hour 

Average Quay 

Crane efficiency 

(non-waiting 

proportion) 

Vehicle 

waiting 

proportion 

(at QC side  

only) 

Average Vehicle 

Utilization 

Base Case  22.26 0.77 0.324 0.946 

GRASP 26.26 0.87 0.195 0.995 

Hill Climber 15.48 0.53 0.344 0.966 

Highest Hill 

Climber 
19.93 0.71 0.291 0.995 

Simulated 

Annealing 
20.98 0.75 0.332 0.992 

 

 

Figure 5.5 Comparison of algorithms for look-ahead strategy 

 
 

It is shown in Figure 5.5 that GRASP has outperformed all other algorithms in quay crane 

efficiency. In general, the random-based algorithms such as hill climber take 

approximately 2 to 3 times longer to run as compared to GRASP. With just a simple 

implementation, GRASP has demonstrated itself to be an effective algorithm in 

maximizing quay crane efficiency. Both the hill climber and Simulated Annealing 

algorithms performed worse than the base case, which basically assigns the first job to the 
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first vehicle in a First-in-First-Out (FIFO) fashion. This clearly discourages randomization 

in an extremely large solution set. 

5.4.3 Comparison with greedy and look ahead strategies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

We compare the best strategy of each category in terms of Quay Crane Efficiency 

Performance (Figure 5.6) and Vehicle waiting Proportion (Figure 5.7) to see how they 

Figure 5.6 Comparison of the best greedy versus look-ahead strategies 

GRASP (QC Efficiency) 

Figure 5.7 Comparison of the best greedy versus look-ahead strategies 

GRASP (Vehicle waiting proportion) 
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perform among each other. Overall, GRASP performs the best in terms of maximizing 

quay crane efficiency. At the same time, it maintains a reasonably low proportion of 

vehicle waiting time. Another strategy which has performed reasonably well is the Most 

Critical QC strategy, which is the best performing vehicle-initiated strategy. What both 

strategies have in common is that they both address the underlying problem directly. The 

most Critical QC strategy checks for the QC which is in need of vehicles and assigns 

vehicles to them. As for GRASP, intuitively this has a lot to do with the structure and 

nature of the algorithm as well as the assignment problem itself. As the results have shown, 

greedy algorithms are not sufficient enough in producing a good solution. 

5.5 Numerical Experiments for Complicated Models 

One of the most advantages for our simulation platform is that it enables dialogue with 

external optimization models. It can communicate flexibly with complicated optimization 

dispatching models, which is significantly different from other simulation software. In this 

section, we conduct experiments of complicated GA-MCF heuristics in our simulation 

platform to test the real time effectiveness.  

 

In our MCF model, we have PM nodes in the graph to capture the state of the PM at the 

time of deployment. Thus we can conduct 1 job look ahead simulation to capture the real 

time information. Once the optimization model gets the solution, the simulation just runs 

the first job, then we re-run the optimization model to get the next assignment and let the 

simulation run this solution based on the real situations. It is an iterative communication 
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between the simulation module and the dispatching module, which tries to mimic the real 

environment.  

 

 
 

Figure 5.8 A screenshot of an application of Microport 

 

To test the practicability of our simulation platform, a transshipment container terminal 

has been modeled. The geographical layout of this terminal is shown in Figure 5.8. We 

test 10 QCs, 8 YCs situations in order to compare results with different simulation 

methods. Other parameters are chosen based on major settings of a transshipment 

container terminal in Singapore. Resource statuses can be immediately presented during 

the simulation execution (Figure 5.8). This information is used to trace the activities of 
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quay cranes, yard cranes and yard trucks, and calibrate the simulation model. Table 5.3 

shows summarized results from a complete simulation. 

 

Table 5.3 Results of real time complicated dispatching strategies 

Jobs QC YC PM Real time (min) Real time (min) Simple rule (min) 

        (look ahead:2 jobs) ( look ahead:1 job) (real time)  

      15 51.30  53.31  61.55  

50 10 8 20 50.41  53.24  61.55  

      30 50.53  53.88  61.55  

      15 57.73  60.04  67.51  

60 10 8 20 55.79  65.25  68.32  

      30 55.65  60.97  68.28  

      15 61.59  64.80  74.27  

70 10 8 20 59.96  65.21  74.31  

      30 59.40  66.44  74.27  

      15 67.84  73.21  83.54  

80 10 8 20 66.83  72.52  84.14  

      30 66.63  72.30  83.51  

      15 78.56  82.02  91.47  

90 10 8 20 76.35  81.05  91.55  

      30 75.35  80.71  91.47  

    15 87.69  90.32  100.24  

100 10 8 20 85.20  89.05  101.01  

      30 82.53  88.81  99.82  

 

In this set of experiments, we compare 1 job look ahead and 2 jobs look ahead, as well as 

simple greedy rule simulation embodied in Microport respectively. We test different 

scenarios with job number ranging from 50-100, and PM number ranging from 15-30. 

From the results shown in Table 5.3, we can observe that in each instance, the makespan 

time obtained from 2 jobs look ahead method is always the minimal value, which is to 

state that uncertainties in real practice will undermine the per-deterministic model 

performance. The results of look 1 job ahead experiments are close to those of look 2 jobs 
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ahead method, while being better than simple greedy rule simulation results. From this 

table, we can observe that it is very important to absorb the real time information when 

making online scheduling. Sophisticated heuristic algorithms can improve the seaport 

terminal performances in the perfect experimental environment; however in real practice, 

these models cannot reach its optimal level due to real constraints. Thus we present this 

real time simulation platform to solve the online scheduling more efficiently. With this 

simulation platform, we can do better terminal planning in real time environment. 

5.6 Summary 

In real operations, terminal operators need an advanced IT platform to aid real time 

decision making. These techniques could provide real time status of vessels and containers, 

handle exceptions and modify plans rapidly, and improve overall planning efficiency and 

coordinate all terminal equipment. Terminals would benefit from these IT infrastructures 

by being efficient, flexible, cost-effective and scalable. In this chapter, different real time 

dispatching rules are evaluated using the proposed simulation platform. This platform is 

built to facilitate real time decision making with less human efforts. It has three main 

merits: firstly, it can flexibly communicate with external optimization models, which 

enables testing of different complicated heuristics; secondly, it can generate different 

layouts easily for testing various simulation scenarios; thirdly, it can aid real time 

dispatching because of its fast speed. This is critical to the running of any container 

terminal. 
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In this chapter, we test different real time dispatching rules in the proposed platform. 

Firstly, we test some simple rules which are embodied directly into Microport. Some 

simple greedy dispatching strategies have performed reasonably well (Most Critical QC 

strategy). We have shown that simple look-ahead dispatching strategy with the use of 

GRASP has outperformed all other strategies in terms of quay crane efficiency and yet 

maintaining a low level of vehicle waiting time proportion and high vehicle utilization. On 

the other hand, we test the performance of a complicated dispatching model (GA-MCF 

model) in our simulation platform to capture more information. The results illustrate the 

importance of capturing real time information in terminal scheduling.   
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6 Conclusion and Future Research 

6.1 Conclusion 

To improve the performance of container terminals, various methods have been proposed 

to increase the productivity of all kinds of equipment used in container terminals. 

However, most of existing literatures focus on optimizing one or two equipment in the 

container terminal rather than optimizing all equipment (YC, QC and PM) as a whole 

system. Therefore, the optimal management plan for all equipment used in the container 

terminal is needed to improve the performance of the container terminal. This is crucial 

to guarantee that the terminal system can react in the most cost-effective way to meet the 

continuous growth of container traffic. The objective of this thesis is to study the 

optimization of the integrated dispatching problem, especially for transshipment hubs, 

considering coordination of different equipment. In this thesis, we discuss the vehicle 

dispatching problem in an integrative view, to answer the question of how to assign the 

container delivery jobs to PMs as a way of synchronizing operations of various types of 

handling equipment in a container terminal.  

 

Firstly, we address the integrated dispatching problem for transshipment hubs. In our 

problem, we consider the delay at the yard side, and also include both the loading and 

discharging jobs simultaneously, which are commonly found in the transshipment port. 

Moreover the PMs are pooled among all the QCs rather than dedicated to a certain QC. 

We seek to provide an efficient way of dispatching vehicles to minimize the makespan 
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time at the quay side for a given number of container jobs by considering all equipment. 

The reason we use this objective is that we want to speed up the vessel turnaround time. 

Other objectives like QC waiting time, vessel turnaround time can also be considered in 

our model. 

 

We develop a mixed integer programming (MIP) model for this problem. Numerical 

experiments show that the existing solver cannot be used to solve this MIP directly. 

Hence we propose two heuristics to tackle this problem. The first approach is a 

neighborhood search based method. For the second method, we combine the genetic 

algorithm (GA) with the minimum cost flow (MCF) network model. In the GA approach, 

instead of representing the chromosome using PM job sequence directly, we represent it 

in terms of the ready times of the jobs, and then MCF is used to decode the chromosome 

to compute the PM job sequence. This approach is innovative and can exploit good 

properties found in both GA and MCF. Given the ready times, the MCF aims at finding 

the PM sequence that minimizes the objective for the MCF model. It is shown that there 

exists optimal ready times for jobs which MCF can decode the chromosome into the 

optimal PM job sequence. The GA has a good property in searching the design space 

both locally and globally if the chromosome representation has good neighborhood 

structure. In this case, we feel that representing the chromosome using ready times might 

be better than using job sequence because the neighborhood structure for ready times can 

be preserved when the crossover operation is performed. We have shown that by using 

ready times as the chromosome representation, we are able to keep the neighborhood 

structure and hence good solutions can be found by GA. Moreover, we have shown that 
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by choosing appropriate ready times, we can get the optimal PM sequence. In the 

numerical runs, we show the superiority of the GA-MCF method over the VNS. 

 

Secondly, we discuss how to assign the container jobs to PMs as well as the assignment 

of discharging jobs to yard locations. From a systematic angle, we argue that the 

discharged container yard location is also an important decision variable which may 

affect the performance of the whole system. Thus we consider the whole dispatching 

process to get a seamless workflow and minimize the waiting time in both QC and YC in 

the transshipment context.  Three methods are proposed to tackle this integrated problem 

and they are NP, BSG and BPG methods. We have shown that the NP method can solve 

this problem efficiently by using proper parameters; moreover, BSG can generate a 

feasible solution very quickly which can used in real time dispatching, while the 

improved BPG method dominates the other two methods in getting a good quality 

solution in a limited time.  

 

Finally, an integrative simulation platform is presented for the real time dispatching 

problem. This platform is built to facilitate real time decision makings with less human 

efforts. It has three main merits: firstly, it can flexibly communicate with external 

optimization models, which enables testing of different complicated heuristics; secondly, 

it can generate different layouts easily for testing various simulation scenarios; thirdly, it 

can aid real time dispatching because of its fast speed. This is critical to the operation of 

any container terminal. In this platform, we can test different real time dispatching rules, 

not only for various simple rules but also for some complicated models. The results 
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illustrate the importance of capturing real time information in terminal scheduling. This 

integrative simulation platform can be used directly by the port operator for the 

evaluation purpose.  

6.2 Future Research Topics 

There are several topics related to the scope of this thesis where future research can be 

conducted.  

Firstly, for the dispatching model, we do not consider the uncertainty in the input data. 

However, in practice there may be some randomness involved, especially in travel times 

of yard trucks and the yard crane and quay crane processing times of jobs. Uncertainty in 

the input data will definitely make the problem much more complex, and hence efficient 

methods to solve such stochastic models are potential areas of future research.  

Secondly, this study is focused on single load vehicle dispatching. Further studies could 

be done to see whether the same set of algorithms would just be as applicable in the case 

where dual-loading is allowed. In the case of dual-loading, each vehicle will inherently 

have more states and that will further increase the complexity of the problem, especially 

in a look-ahead approach. 
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