56 research outputs found

    Intra-Operative Needle Tracking Using Optical Shape Sensing Technology

    Get PDF
    RÉSUMÉ Contexte : Les métastases hépatiques colorectales sont la principale cause de décès liée au cancer du foie dans le monde. Au cours de la dernière décennie, il a été démontré que l’ablation par radiofréquence (RFA, pour radiofrequency ablation) est une méthode de traitement percutané très efficace contre ce type de métastases. Cela dit, un positionnement précis de l’embout de l’aiguille utilisé en RFA est essentiel afin de se départir adéquatement de la totalité des cellules cancéreuses. Une technologie prometteuse pour obtenir la forme et la position de l’aiguille en temps réel est basée sur l’utilisation de réseaux de Bragg (FBG, pour fiber Bragg grating) à titre de senseur de contrainte. En effet, ce type de senseurs a une vitesse d’acquisition allant jusqu’à 20 kHz, ce qui est suffisamment rapide pour permettre des applications de guidage en temps réel. Méthode : Les travaux présentés au sein de ce mémoire décrivent le développement d’une technologie, compatible aux systèmes d’imageries par résonance magnétique (IRM), permettant d’effectuer le suivi de la forme de l’aiguille utilisée en RFA. Premièrement, trois fibres contenant une série de réseaux de Bragg ont été collées dans une géométrie spécifique et intégrées à l’intérieur d’une aiguille 20G-150 mm. Ensuite, un algorithme de reconstruction de forme tridimensionnelle a été développé, basé sur les mesures de translation spectrales des FBGs acquises en temps réel durant le guidage de l’aiguille. La position du bout de l’aiguille ainsi que la forme tridimensionnelle complète de celle-ci ont été représentées et comparées à la position de la zone ciblée à la suite d’une simple méthode de calibration. Finalement, nous avons validé notre système de navigation en effectuant une série d’expériences in vitro. La précision du système de reconstruction tridimensionnelle de la forme et de l’orientation de l’aiguille a été évaluée en utilisant deux caméras positionnées perpendiculairement de manière à connaitre la position de l’aiguille dans le système d’axes du laboratoire. L’évaluation de la précision au bout de l’aiguille a quant à elle été faite en utilisant des fantômes précisément conçus à cet effet. Finalement, des interventions guidées en IRM ont été testées et comparées au système de navigation électromagnétique NDI Aurora (EMTS, pour Electromagnétic tracking system) par le biais du FRE (fiducial registration error) et du TRE (target registration error). Résultats: Lors de nos premières expériences in vitro, la précision obtenue quant à la position du bout de l’aiguille était de 0,96 mm pour une déflexion allant jusqu’à ±10,68 mm. À titre comparatif, le système d’Aurora a une précision de 0.84 mm dans des circonstances similaires. Les résultats obtenus lors de nos seconds tests ont démontré que l’erreur entre la position réelle du bout de l’aiguille et la position fournie par notre système de reconstruction de forme est de 1,04 mm, alors qu’elle est de 0,82 mm pour le EMTS d’Aurora. Pour ce qui est de notre dispositif, cette erreur est proportionnelle à l’amplitude de déflexion de l’aiguille, contrairement à l’EMTS pour qui l’erreur demeure relativement constante. La dernière expérience a été effectuée à l’aide d’un fantôme en gélatine, pour laquelle nous avons obtenu un TRE de 1,19 mm pour notre système basé sur les FBG et de 1.06 mm pour le système de navigation par senseurs électromagnétiques (EMTS). Les résultats démontrent que l’évaluation du FRE est similaire pour les deux approches. De plus, l’information fournie par les caméras permet d’estimer la précision de notre dispositif en tout point le long de l’aiguille. Conclusion : En analysant et en interprétant les résultats obtenus lors de nos expériences in vitro, nous pouvons conclure que la précision de notre système de navigation basé sur les FBG est bien adaptée pour l’évaluation de la position du bout et la forme de l’aiguille lors d’interventions RFA des tumeurs du foie. La précision de notre système de navigation est fortement comparable avec celle du système basé sur des senseurs électromagnétiques commercialisé par Aurora. L’erreur obtenue par notre système est attribuable à un mauvais alignement des réseaux de Bragg par rapport au plan associé à la région sensorielle et aussi à la différence entre le diamètre des fibres et celui de la paroi interne de l’aiguille.----------ABSTRACT Background: Colorectal liver metastasis is the leading cause of liver cancer death in the world. In the past decade, radiofrequency ablation (RFA) has proven to be an effective percutaneous treatment modality for the treatment of metastatic hepatic cancer. Accurate needle tip placement is essential for RFA of liver tumors. A promising technology to obtain the real-time information of the shape of the needle is by using fiber Bragg grating (FBG) sensors at high frequencies (up to 20 kHz). Methods: In this thesis work, we developed an MR-compatible needle tracking technology designed for RFA procedures in liver cancer. At first, three fibers each containing a series of FBGs were glued together and integrated inside a 20G-150 mm needle. Then a three-dimensional needle shape reconstruction algorithm was developed, based on the FBG measurements collected in real-time during needle guidance. The tip position and shape of the reconstructed 3D needle model were represented with respect to the target defined in the image space by performing a fiducial-based registration. Finally, we validated our FBG-based needle navigation by doing a series of in-vitro experiments. The shape of the 3D reconstructed needle was compared to measurements obtained from camera images. In addition, the needle tip accuracy was assessed on the ground-truth phantoms. Finally, MRI guided intervention was tested and compared to an NDI Aurora EM tracking system (EMTS) in terms of fiducial registration error (FRE) and target registration error (TRE). Results: In our first in-vitro experiment, the tip tracking accuracy of our FBG tracking system was of 0.96 mm for the maximum tip deflection of up to ±10.68 mm, while the tip tracking accuracy of the Aurora system for the similar test was 0.84 mm. Results obtained from the second in-vitro experiment demonstrated tip tracking accuracy of 1.04 mm and 0.82 mm for our FBG tracking system and Aurora EMTS, respectively for the maximum tip deflection of up to ±16.83 mm. The tip tracking error in the developed FBG-based system reduced linearly with decreasing tip deflection, while the error was similar but randomly varying for the EMTS. The last experiment was done with a gel phantom, yielding a TRE of 1.19 mm and 1.06 mm for the FBG and EM tracking, respectively. Results showed that across all experiments, the computed FRE of both tracking systems was similar. Moreover, actual shape information obtained from the camera images ensured the shape accuracy of our FBG-based needle shape model. Conclusion: By analyzing and interpreting the results obtained from the in-vitro experiments, we conclude that the accuracy of our FBG-based tracking system is suitable for needle tip detection in RFA of liver tumors. The accuracy of our tracking system is nearly comparable to that of the Aurora EMTS. The error given by our tracking system is attributed to the misalignment of the FBG sensors in a single axial plane and also to the gap between the needle's inner wall and the fibers inside

    Design of a minimally invasive single port HDR brachytherapy applicator for the treatment of lung cancer

    Get PDF
    Cancer has become the number one cause of death in Canada and lung cancer is its deadliest form. Surgical resection remains as the treatment of choice for most patients; however, in many cases a less aggressive alternative such as brachytherapy may be preferable. Today, HDR brachytherapy is a relatively common procedure but with current techniques and equipment only tumours close to the main bronchi can be reached. This project describes the design, development and validation of a first prototype of an ultrasound-guided needle guidance system that would enable physicians to perform HDR brachytherapy for the treatment of lung cancer in a minimally invasive manner through the intercostal spaces. The development of the mechanical components is thoroughly described followed by the description of the electronic control system that was developed for this novel mechatronic medical tool. Finally through validation experiments, the approach was shown to be an accurate and viable approach for precisely reaching desired targets with a wide yet flexible needle

    Design and Development of a Surgical Robot for Needle-Based Medical Interventions

    Get PDF
    Lung cancer is the leading cause of cancer related deaths. If diagnosed in a timely manner, the treatment of choice is surgical resection of the cancerous lesions followed by radiotherapy. However, surgical resection may be too invasive for some patients due to old age or weakness. An alternative is minimally invasive needle-based interventions for cancer diagnosis and treatment. This project describes the design, analysis, development and experimental evaluation of a modular, compact, patient-mounted robotic manipulator for lung cancer diagnosis and treatment. In this regard, a novel parallel Remote Centre of Motion (RCM) mechanism is proposed for minimally invasive delivery of needle-based interventions. The proposed robot provides four degrees of freedom (DOFs) to orient and move a surgical needle within a spherical coordinate system. There is an analytical solution for the kinematics of the proposed parallel mechanism and the end-effectors motion is well-conditioned within the required workspace. The RCM is located beneath the skin surface to minimize the invasiveness of the surgical procedure while providing the required workspace to target the cancerous lesions. In addition, the proposed robot benefits from a design capable of measuring the interaction forces between the needle and the tissue. The experimental evaluation of the robot has proved its capability to accurately orient and move a surgical needle within the required workspace. Although this robotic system has been designed for the treatment of lung cancer, it is capable of performing other procedures in the thoracic or abdominal cavity such as liver cancer diagnosis and treatment

    Development of a Hybrid Stereotactic Guidance System For Percutaneous Liver Tumour Ablation

    Get PDF
    Stereotactic Image-Guided Surgical Navigation System (IGSNS) supports percutaneous procedures by using medical imaging and tracking information, to assist the surgeons in the preprocedural planning and intraprocedural steps. This thesis describes the development of a stereotactic IGSNS for percutaneous liver tumour ablation, the goal of which is to assist in positioning the tip of the ablation applicator accurately to ensure complete tumour coverage. The main system improvement is the employment of a mini stereotactic patient-attach aiming device that is used as a pointer to ensure needle tip position prior to needle insertion. The thesis chapters describe the development and validation of the components of the stereotactic IGSNS. An anthropomorphic phantom development for validation and training is also presented. We hypothesize that the combination of spatial tracking, real-time ultrasound, mechanical stabilization provided by the mini-stereotactic device and image-to-image registration will improve the targeting accuracy for the focal treatment and reduce the needle repositioning

    InterNAV3D: A Navigation Tool for Robot-Assisted Needle-Based Intervention for the Lung

    Get PDF
    Lung cancer is one of the leading causes of cancer deaths in North America. There are recent advances in cancer treatment techniques that can treat cancerous tumors, but require a real-time imaging modality to provide intraoperative assistive feedback. Ultrasound (US) imaging is one such modality. However, while its application to the lungs has been limited because of the deterioration of US image quality (due to the presence of air in the lungs); recent work has shown that appropriate lung deflation can help to improve the quality sufficiently to enable intraoperative, US-guided robotics-assisted techniques to be used. The work described in this thesis focuses on this approach. The thesis describes a project undertaken at Canadian Surgical Technologies and Advanced Robotics (CSTAR) that utilizes the image processing techniques to further enhance US images and implements an advanced 3D virtual visualization software approach. The application considered is that for minimally invasive lung cancer treatment using procedures such as brachytherapy and microwave ablation while taking advantage of the accuracy and teleoperation capabilities of surgical robots, to gain higher dexterity and precise control over the therapy tools (needles and probes). A number of modules and widgets are developed and explained which improve the visibility of the physical features of interest in the treatment and help the clinician to have more reliable and accurate control of the treatment. Finally the developed tools are validated with extensive experimental evaluations and future developments are suggested to enhance the scope of the applications

    COMPUTED-AIDED AND ROBOT-ASSISTED RADIOFREQUENCY ABLATION OF LARGE LIVER TUMOR

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore