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Summary

Liver tumor is one of the most common intra-abdominal malignancies. The tra-

ditional way for liver tumor treatment is liver resection, which means removal of

a portion of the liver tissue that encapsulate the tumor. However, many patients

are not physically fit for liver resection for various reasons such as unfavorable tu-

mor anatomic location, inadequate liver reserve, or severe co-morbid conditions.

For these patients, Radio-frequency ablation (RFA) serves as a very good alterna-

tive.

RFA is the most widely used minimally invasive method for non-resectable liver

tumor patients. It destroys tumor by the heat generated from high frequency

alternating current (in the range of 350-500 kHz). One limitation of RFA is that

it can only treat a small volume of tumor each time due to the limited working

range of most current RFA needles. For large liver tumors which can grow up

to 10cm, multiple ablations are required to completely destroy the whole tumor

volume. However, it is a difficult task for clinician to perform multiple RFAs

percutaneously due to the poor quality of the feedback image during the procedure.

In addition, accurate and consistent insertion of multiple RFAs is also hard for

the clinician. A solution to these problems is using computer-aided and robot-

assisted RFA needle insertion system. In my study, several key issues, including

RFA simulation and planning, design and control a robot for RFA needle insertion,

and compensation of registration error, are researched.

RFA simulation and planning is necessary in preoperative stage. However, it is

challenging to accurately simulate the shape and size of RFA lesion due to the in-

trinsic variations of the thermal-electrical properties of soft tissue. Current RFA

simulation and planning methods ignore the variations of the tissue properties.

Current RFA simulation and planning methods ignore the variations of the tis-
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sue properties. Therefore, a probabilistic bio-heating finite element (FE) model

is proposed and developed to predict the RFA lesion. Confidence levels of shape

and size of lesion are generated by the FE model incorporated with mean-value

first-order second-moment (MVFOSM) method. Based on the probabilistic FE

method, a workflow of RFA planning is introduced to enable clinicians to preop-

eratively view the predicted RFA lesion in three-dimension (3D) within a hepatic

environment.

The robot plays an important role in RFA needle insertion. To minimize the

invasiveness, the RFA needle is expected to go through a single insertion port

for multiple RFAs. This can be achieved by a specific manipulation of the nee-

dle named Remote Center of Motion (RCM). Previous RCM mechanism cannot

achieve single insertion port (SIP) in RFA needle insertion due to their mechanical

constraints. In this study, a novel RCM robot for RFA needle insertion is devel-

oped and a new analytical method, which overcomes the limitations of previous

analysis, is proposed to model the kinematics of this robot. Combined position

and velocity control is applied to control the robot.

Surgical registration refers to the process that determines the relationship among

surgical images, patient and surgical tools. For robotic surgery, registration be-

tween patient and robot refers to the process to determine the position and ori-

entation of patient coordinate system relative to the robot coordinate system. It

can synthesize the preoperative planning data and the real surgical environment.

The accuracy of the RFA needle insertion largely depends on the accuracy of reg-

istration. Most current registration methods focus on image registration. There

is a lack of effective and efficient registration method between patient and robot.

In this study, a novel marker-based registration method was proposed to transform

the computed tomography (CT) image data to the robot coordinate system. This

method establishes the transformation between the patient coordinate system and

vii



robot coordinate system by finding the feature points of the patient marker using

the robot. This method works well in our system but has limitations for other

robot systems. Therefore, a generic vision-based registration was also proposed.

The experiment results showed that both registration methods can achieve the

required accuracy in RFA for liver tumor based on the clinician’s claim.
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Chapter 1

Introduction

1.1 Background and Motivation

Liver cancer is the fifth most common malignancy in men and the eighth in

women worldwide [1]. Hepatic resection, which removes a portion of liver tissue

encapsulating the tumor, offers the greatest potential for eliminating the tumor

cells. However, hepatic resection creates large incision on both organ and patient,

thus causing massive blood loss, post-operative complications and long-time recov-

ery. Many patients are not physically fit for hepatic resection for various reasons

such as unfavorable tumor anatomic location, inadequate liver reserve, or severe

comorbid conditions [2]. For these patients, minimally invasive thermal therapies

can be good alternatives for liver tumor treatment. Thermal therapy refers to

the application of thermal energy to living tissues for increasing (or decreasing in

the case of cryoablation) their temperatures to achieve the therapeutic aim. It

is widely used in tumor treatment. There are many types of thermal energy in-

cluding Radiofrequency(RF) ablation (RFA), Ultrasound ablation, Laser ablation,

Cryoablation and Microwave ablation.

Among the various thermal therapies, RFA is the most widely used minimally
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Chapter1 Introduction

invasive method for non-resectable liver tumor patients. It destroys tumor by

the heat generated from high frequency alternating current (in the range of 350

– 500 kHz). The heat generated in the tissue could cause coagulation necrosis

of the tumor so that tumor cells are eliminated. RFA can be performed in open

surgery, laparoscopically or percutaneously. To minimize the invasiveness of RFA

procedure, percutaneous RFA is usually performed. Percutaneous RFA means

inserting the RFA needle through the skin directly. It is usually performed under

ultrasound guidance (as shown in Figure 1.1). Using ultrasound guidance, the

clinician inserts a RFA needle through the skin and directly into the tumor. The

generator is then activated and tumor cells around the RFA needle can be killed

by the RFA heat.

Figure 1.1: Illustration of percutaneous RFA procedure.
(https://gi.jhsps.org/GDL Disease.aspx?CurrentUDV=31&GDL Cat ID=AF793A59-B736-

42CB-9E1F-E79D2B9FC358&GDL Disease ID=A349F0EC-5C87-4A52-9F2E-
69AFDB80C3D1)

Therapeutic effect of percutaneous RFA therapy is challenged by the following

problems. Firstly, it is difficult to provide a clear guidance for the clinician during

multiple RFAs. RFA can only treat a small volume of tumor each time due to the

limited spreading range of most current RFA needles [3]. Multiple ablations are

2



Chapter1 Introduction

thus required for large liver tumors which can grow up to 10cm or more in length.

Since human tissue contains water, RFA could cause numerous micro-bubbles

of gas in the heated tissue[4, 5]. These micro-bubbles will blur the images and

make insertion of RFA needle to target points a very difficult task for the clinician.

Secondly, it is very hard for the clinician to insert the RFA needle to the target

points as planned accurately. The insertion of RFA needle largely depends on

the experience of the clinician. They can only rely on their experience to decide

where to insert the needle and how deep to go. Thus to achieve high accuracy and

consistency for percutaneous RFA needle insertion is challenging. Considering

the problems in current percutaneous RFA therapy, a computer-aided and robot-

assisted RFA needle insertion system for percutaneous RFA of large liver tumor

is investigated.

1.2 Overview of Computer-aided and Robot-assisted

RFA Needle Insertion System

A computer-aided and robot-assisted RFA needle insertion system should in-

clude the following components: RFA simulation, preoperative modeling and

planning, registration, and robot execution (as shown in Figure 1.2). Firstly,

a reliable RFA simulation should be conducted to give the clinician a guidance of

the size and shape of RFA lesion. Based on the RFA simulation results and the

medical images of the patient, the patient specific model is constructed and RFA

planning is built. The next step is surgical registration. Since the preoperative

planning data is based on the patient coordinate system, it can not be used di-

rectly by the RFA needle insertion robot. Registration is a process that builds a

map between these two coordinate system. The last step of the computer-aided

and robot-assisted RFA needle insertion is robot execution. In this process, the

3



Chapter1 Introduction

robot read the preoperative planning data and execute the task accordingly. A

user-friendly interface should also be provided to allow the clinician to control the

execution process.

Figure 1.2: Components of a computer-aided and robot-assisted RFA needle insertion
system.

With the help of the computer-aided and robot-assisted RFA needle insertion

system, the effect of micro-bubbles on misguidance of needle placement could

be counteracted and the insertion accuracy and consistency can be increased.

Some key issues about the computer-aided and robot-assisted RFA needle insertion

system need to be further researched.

Firstly, reliable RFA simulation for preoperative RFA planning is challenging.

The clinician does not know how much lesion volume is created by the RFA

procedure. RFA simulation significantly depends on thermal-electrical proper-

ties of liver tissue such as thermal conductivity, tissue density, specific heat, blood

perfusion rate and electrical conductivity. However, thermal-electrical properties

of soft tissue are often subjected to inherent variations due to anatomic micro-

structural differences and individual patient differences [6–11]. Hence, it is im-

portant to consider the variation of the thermal-electrical properties in RFA sim-
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ulation. In this case, a reliable RFA simulation and planning method is required

to guarantee the accuracy and safety of percutaneous RFA therapy.

Secondly, an effective RFA needle insertion robot for large liver tumor treatment

is still not available. To minimize the trauma imposed on patient body, the RFA

needle is expected to go through a Single Insertion Port (SIP) for multiple needle

insertions (as shown in Figure 1.3). This can be achieved using a specific manip-

ulation of the needle named Remote Center of Motion (RCM) [12–14]. RCM has

been defined as the center of rotation fixed at a point (usually the insertion point

in minimally invasive surgery(MIS)) where no mechanical component exists [15].

Ideally, the remote center of the RCM mechanism is coincident with the insertion

port so that the RFA needle always pass through the insertion port no matter how

we rotate the needle. Commercially available robot systems, such as da Vinci and

ZEUS, are commonly used in robotic surgeries. Both systems consist of a console

for the surgeon and several robotic arms. The da Vinci system has four robotic

arms and ZEUS system has three arms. However, these systems are expensive

and some robotic arms are not required and hence, redundant in the application

of RFA. There are robots developed specially for RFA [16, 17], but these robots

are bulky and cannot achieve SIP in RFA of large liver tumor treatment due to

their mechanical constraints. Therefore, an effective RFA needle insertion robot

that can achieve SIP for large liver tumor treatment has to be developed.

Thirdly, accurate registration among surgical robot, patient and computed im-

age is a challenging task. Most existing registration methods and algorithms focus

on image registration (i.e. registration between two sets of computer image or be-

tween computer image and real environment). However, registration in robotic

surgery is not only limited to image registration, but also includes registration

among surgical robot, patient and computer image. Therefore, an accurate regis-

tration method for robotic surgery, especially between surgical robot and patient
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Figure 1.3: Multiple RFA needle insertions through a single insertion port.

is required.

1.3 Objective and Scope

The objective of this study is to research and develop a computer-aided and

robot-assisted RFA needle insertion system to improve the treatment outcome of

percutaneous RFA. To be specific, the following goals will be achieved in my study:

• A generalized probabilistic bio-heating finite element (FE) model which takes

into consideration the intrinsic variations of human tissue properties will be

developed to determine the probabilistic distribution of the shape and size

of RFA lesion. Based on the probabilistic simulation, an ablation planning

strategy for manual or robot-assisted operation will be proposed.

• A surgical robot which can manipulate multiple RFA needle insertions through

SIP will be designed and advanced control strategy will be developed for the

RFA needle insertion robot.

• An effective registration method for our RFA needle insertion system will be

proposed.

6



Chapter1 Introduction

This study focuses on the percutaneous RFA of large liver tumor. Our research

is restricted to the preoperative simulation and planning, and the intra-operative

execution. The postoperative examination and analysis is beyond the scope of

this study.

1.4 Thesis Contribution

The major contribution of this thesis can be summarized as follows:

• A computer-aided and robot-assisted RFA needle insertion system is de-

signed and developed. Experiment of the prototype system on porcine model

demonstrates its effectiveness for large liver tumor ablation.

• A probabilistic RFA simulation method is proposed. The method has im-

proved the reliability of RFA simulation. Our probabilistic simulation method

contributes to a better understanding of the intrinsic variations of biological

tissue properties and may provide reference for other biological tissue related

simulation.

• A spherical mechanism is proposed and investigated for robotic RFA nee-

dle insertion. By realizing RCM of the RFA needle, single port access can

be achieved using this mechanism. A novel analytical method is used to

accurately model the spherical mechanism.

• An effective marker-based registration method is proposed to register the

pre-operative CT images with the robot coordinate system. A generic vision-

based registration and calibration method is also proposed. Both registra-

tion methods are equally effective.
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1.5 Thesis Organization

The theme of this thesis is developing a computer-aided and robot-assisted RFA

needle insertion system for large liver tumor. Three key issues, i.e. preoperative

simulation and planning, RFA needle insertion robot, and registration, will be cov-

ered in the remainder of this thesis. This thesis is organized into seven chapters.

Chapter 2 gives a detailed literature review of the three main topics related

to computer-aided and robot-assisted RFA, i.e. researches on pre-operative RFA

simulation and planning, intra-operative robotic RFA execution, and registration

in surgery.

Chapter 3 describes a probabilistic bio-heating finite element (FE) model for

prediction of the RFA lesion. This model takes into account the probabilistic

nature of five thermal-electrical liver properties: thermal conductivity, liver tissue

density, specific heat, blood perfusion rate and electrical conductivity. Based on

the probabilistic FE method, a workflow of RFA planning is introduced to enable

clinicians to pre-operatively view the predicted RFA lesion in three-dimension

(3D) within a hepatic environment.

Chapter 4 presents a RCM robot mechanism which is able to conduct multiple

RFA needle insertions covering the entire tumor volume through a Single Insertion

Port (SIP). A spherical mechanism comprising two semi-circular arches were used

to realize the RCM. Two motorized linear slides were incorporated into the system

to achieve SIP. A novel analytical method for modeling this RCM mechanism was

proposed. This method can overcome the limitation of previous method in exist-

ing literature. Integrative speed and position control strategy was implemented

to allow the robot to move smoothly and precisely. Experiments were conducted

to test the accuracy and feasibility of the RFA needle insertion robot.

Chapter 5 presents a manual registration method to transform the CT image
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data to the robot coordinate system. This method works well in our system but

has limitations for other robot systems. A vision-based registration, which can be

used in general robot systems, was also proposed. The experiment results showed

that both registration methods can achieve the required accuracy in RFA for liver

tumor based on the clinician’s claim.

Chapter 6 describes the ex-vivo and in-vivo experiments for the RFA needle

insertion robot system. Preoperative RFA planning, registration, and robot ex-

ecution were connected to test the whole system. The results demonstrate that

our robot system is capable of accurately executing multiple RFAs of large liver

tumor through SIP.

Chapter 7 concludes the dissertation and discusses possible improvements and

directions for future work.
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Chapter 2

Literature Review

This chapter reviews literature on computer-aided and robot-assisted RFA. Ba-

sics of RFA are introduced in the first section. The second section reviews re-

searches related to preoperative RFA simulation and planning. Existing works

on RFA simulation and planning and probabilistic Finite Element method are

covered in this section. The third section introduces existing works on intraop-

erative RFA execution robot. Robotic surgery are introduced and remote center

of motion (RCM) mechanism are reviewed in this section. Works on the surgi-

cal registration are introduced in the forth section. Research gap is identified by

reviewing the literatures.

2.1 Basics of RFA

RFA is a minimally invasive procedure which applies high frequency alternating

current (in the range of 350–500 kHz) to destroy tumor cells. By applying a

voltage on the RFA electrode, an electric field is generated in the tissue. The

electric field can induce electric force on the charged ions within the electrolytic

medium of the tissue. This force causes friction between ions and the surrounding
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fluid medium, generating heating effect thus leading to coagulative necrosis in the

tissue.

Figure 2.1: RFA devices: (a) RFA generator; (b) mono-polar RFA probe; (c) Bipolar RFA
probe. ((http://www.angiodynamics.com/products/generator and hardware))

In general, an RFA system consists of an RFA generator and RFA probes (as

shown in Figure 2.1). The RFA generator is used to provide high frequency RF

power and RFA probes are needle electrodes which are inserted into the tissue dur-

ing RFA. There are mainly two types of RFA probe: mono-polar RFA probe and

bipolar RFA probe. Mono-polar probe is always used together with an grounding

pad which is placed on the patient skin. The current enters human body from

the electrode tip and flows through the body then exits from the grounding pad.

The current density is highest around the electrodes and decreases as the current

flows out the body. Therefore, the Joule-heating effect mainly occurs around the

electrodes. Monopolar probes are always small and slim, hence suitable for per-

cutaneous or laparoscopic RFA treatment. Bipolar probe has both positive and

negative electrodes for current flow. It can be used individually and does not

require a grounding pad. Since the electrical field caused by the bipolar probe is

between the positive and negative electrodes, the current density is higher than
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that of mono-polar probe and thus the heating is more efficient. Bipolar RF probe

is commonly used in open surgery.

RFA is commonly used for tumor treatment as a form of direct treatment. Tu-

mor cells are directly killed by the heat created during RFA procedure. However,

some studies indicate that RFA can also be used to assist liver resection. Liver re-

section, which removes a portion of liver tissue encapsulating the tumor, is the gold

standard for liver tumor treatment. A crucial goal in liver resection procedure is

to minimize the blood loss for best treatment survivability. Jiao et al reported

a surgical procedure which uses RFA in liver resection to reduce the blood loss

[18]. This surgical procedure started by performing RFA on the preplanned line

of resection to generate a coagulated zone, then followed by a manual resection

using the surgical scalpel.

RFA is efficient for small tumor treatment. It can also be used in the treatment

for large tumors (up to 10cm or more in length). Full coverage of large tumor

could be achieved by overlapping RFA lesion zone in tissue [17], and many methods

have been developed to increase the RFA lesion. Livraghi et al reported that

saline injection can help increasing the RFA lesion zone by increasing the electrical

conductivity [19]. Goldberg et al found that cooled-tip electrodes can help to

reduce charring and thus enlarge the lesion [20]. McGahan et al developed a

bipolar array to increase the RFA lesion [21].

2.2 RFA Simulation and Planning

In clinical RFA, one challenging problem is to determinate the complete tem-

perature field and lesion size throughout both tumor and normal tissue. Since

RFA devices can only sample the temperature at limited locations during the pro-

cess, the temperature remains unknown in most part of the tissue. Similarly, it
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is necessary to predict the temperature field and lesion size in pre-operative RFA

planning so that the treatment can be optimized. Computer simulation provides

us a way to predict the temperature field and make a proper ablation plan. Re-

searches about RFA simulation and planning will be reviewed in this section.

2.2.1 Existing works on RFA simulation and planning

Figure 2.2: Two commonly used geometries for tissue modeling in 3D RFA simulation. (a)
The cube model in Chang’s simulation [22]. (b) The cylinder model in Tungjitkusolmun’s

simulation [23].

RFA in human tissue is a very complex process and it is impossible to repro-

duce this process accurately in computer simulation. All RFA simulations start

with the simplification of the real physical situation. Firstly, the geometry of

the simulation model is always simplified. Cube and cylinder are two commonly

used geometry to model the tissue in 3D finite element analysis of RFA (see Fig-

ure 2.2). Chang used a 12.0 cm × 12.0 cm × 12.0 cm cubic region to simulate

the surrounding tissue in a finite element analysis of hepatic RFA [22]. Jain and

Wolf also used a cube to model the tissue in his finite element model of RFA [24].

Tungjitkusolmun et al used a cylinder to model the hepatic tissue in a 3D finite

element simulation of RFA [23]. Similar cylinder model can be found in [25, 26].
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In some studies, symmetric planes or axes were used to simplify the 3D model into

a two dimensional model when the model is symmetric [27–36]. Some studies even

simplified this physical problem into a single dimension [37, 38]. Secondly, it is

common to consider only the most significant tissue and ignore the microscopic

structures such as nerves, glands etc. Only the thermal and electrical properties

for the whole tissue are available in the literature.

RFA simulation involves the electrical-thermal heating phenomenon. The spa-

tial temperature distribution in the tissue can be obtained by solving a Bio-heat

equation proposed by Pennes [39].

ρc
∂T

∂t
= ∇ · k∇T + q −Qp +Qm, (2.1)

where ρ is the density (Kg/m3), T is the temperature (K), c is the specific heat

(J/Kg·K), k is the thermal conductivity (W/m·K), q is the heat source (W/m3),

Qp is the perfusion heat loss (W/m3), and Qm is the metabolic heat generation

(W/m3). T , q, Qp, and Qm are all scalar fields on three-dimensional Euclidean

space. A scalar field associates a scalar value to every point in a space. ∇T

means the gradient of T , it can be represented as:

∇T = grad T =
∂T

∂x
î+

∂T

∂y
ĵ +

∂T

∂z
k̂, (2.2)

where î, ĵ, k̂ are the unit vectors in the Cartesian coordinates. The gradient of

T is a vector field. Let ~T = Txî + Ty ĵ + Tzk̂ denote the gradient of T . The

divergence of the vector field ~T is a scalar function that can be represented as:

∇ · ~T = div ~T =
∂Tx
∂x

+
∂Ty
∂y

+
∂Tz
∂z

. (2.3)

Thus, ∇ · k∇T in Equation 2.1 results in a scalar field on three-dimensional
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Euclidean space. The metabolic heat generation Qm can be ignored since it

has been shown to be insignificant for ablation in [40–42]. The perfusion heat

loss Qp plays an important role in RFA of high perfusion tissues, such as liver

[22, 23, 25, 34, 38, 43–45]. But it can be ignored in RFA of non-vascular tissues,

such as cornea [46–48]. Qp can be calculated by:

Qp = ρblcblωbl(T − Tbl), (2.4)

where ρbl is the blood density (Kg/m3), cbl is the blood specific heat (J/Kg·K),

ωbl is the blood perfusion rate (s−1) and Tbl is the blood temperature (K).

As indicated in [49, 50], the tissues can be considered purely resistive at the

frequency of RFA (300 kHz-1 MHz). Then the electric field in tissue can be cal-

culated using a quasi-static approach. The heat source q caused by Joule heating

effect can be calculated by

q = J ◦ E, (2.5)

where J is the current density (A/m2), and E is the electric field intensity (V/m), J

and E have the same dimensions and ◦ means Hadamard product of two matrices.

It produces another matrix where each element ij is the product of elements ij of

the original two matrices. These two scalar fields should meet the requirements

of the Laplace’s equation:

∇ · σ∇V = 0 (2.6)

where V is the voltage (V ) and σ is the electrical conductivity (S/m), V is a scalar

field and ∇ · σ∇V is also results in a scalar field.

FE simulation for liver tumor RFA has been reported in literatures. Ahmed

[51] investigated the combined effects of varying perfusion, electrical and thermal

conductivity on RFA heating using an established computer simulation model
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of RFA. Varying electrical and thermal conductivities were assigned to tissue,

fats and saline injection to represent their different thermal-electrical properties.

Haemmerich et al [45] studied the differences between monopolar and bipolar

RFA devices using a FE model. Their results showed that the bipolar RFA de-

vice could create larger lesions. Compared to monopolar RFA heating, bipolar

RFA heating is more robust and less dependent on inhomogeneity of liver tis-

sue thermal-electrical properties. Chang and Nguyen [25] used a two-dimensional

(2D) FE model to simulate RFA process in soft tissue. The model was integrated

with a self-updating structure which updates thermal conductivity and blood per-

fusion during simulation. Haemmerich et al [44] conducted a FE study of RFA

induced coagulation zones close to blood vessels. They concluded that the re-

currence rates of tumor cell close to blood vessels could be reduced by bipolar

RFA through increasing current density and heat deposition in the perivascular

spaces. Tungjitkusolmun et al [52] investigated effects of changing myocardial

properties in cardiac RFA using FE modeling. Their results showed that changes

of myocardial properties affect the results of the FE analysis of power-controlled

RFA more than those of temperature-controlled RFA. Kröger et al [53] presented

a novel method to predict the vascular cooling effect in RFA simulation. A look

up table was used to store the results of vascular cooling effect which depends on

radius of blood vessel and distance of RFA applicator from the vessel.

In order to completely destroy large tumors, Chen et al [54] adopted mathe-

matical protocol to optimize the process of RFA planning. Different overlapping

modes were introduced for different sizes of tumors. The objective of this method

was to achieve safety margin of 5 mm with adequate overlapping. One-ablation,

six-ablation and 14-ablation models were proposed in Dodd et al [55] for large

tumor RFA planning. Ablation spheres were optimally overlapped in order to

achieve maximum coverage volume with a 10 mm tumor free-margin. Nicolau et
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al [56] proposed an augmented reality-based planning method for liver ablation.

Their system was evaluated in both phantom and clinical studies. The maximum

errors for phantom and clinical studies are below 2 mm and 5 mm respectively.

The results are favorable since radiologists claim that an accuracy better than

5mm can avoid destroying too much healthy cells. Khajanchee et al [57] explored

the relationship between tumor size and smallest number of ablations for complete

tumor destruction. Assuming that the tumor and ablation lesions have a perfect

spherical shape, they computed the required number of ablations for different

tumor sizes and concluded that the minimum number of ablations for complete

tumor destruction increases significantly as the tumor size increases. Baegert et al

[58] presented a trajectory planning for hepatic RFA. Some practical constraints

were brought into this study. Their method could achieve a satisfactory result

regarding different constraints. Yang et al [17] presented a robotic navigation

system for large liver tumor ablation. Overlapping ablation technique was used

for needle path planning. The ablation lesion was treated as a perfect sphere with

constant size. The navigation system was tested through an animal experiment.

Their results showed good ablation accuracy with an average 1.5 mm deviation

between ablated zone and tumor. Altrogge and Preusser [59] presented an opti-

mization method for probe placement during RFA which considers the uncertainty

of biophysical tissue properties. Their results showed significant sensitivity of the

temperature with respect to variations in tissue properties.

2.2.2 Probabilistic Finite Element method

When the input parameters to a finite element (FE) analysis have some varia-

tions, probabilistic analysis should be integrated to the FE model to obtain the

variations and confident levels of the results. Probabilistic finite element method

broadly refers to the method that can integrates conduct probabilistic analysis in
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a FE study.

Probabilistic uncertainty analysis was mainly used to solve structural engineer-

ing problems [60, 61] while it recently draws interests in the field of biomedi-

cal applications. Hu [62] studied the behavior of human placenta tissue using

stochastic FE analysis. Visco-hyperelastic material parameters with statistical

nature were utilized. They showed agreement between simulated results and ac-

tual data. Delalleau [63] applied stochastic method to determine elastic property

of skin which was modeled by a classic single layer hyperelastic model and a

double layer Neo-Hookean potential model. They concluded that the stochastic

method had potential in solving optimization problems. In the study conducted

by Santos [64], they proposed a probabilistic FE method to model the variations

of tissue thermal-electrical properties. The probabilistic model was based on a

simple two-dimensional monopolar electrode model. Their results showed that

blood perfusion rate and thermal conductivity account for more than 95% of the

variability in coagulation zone volume. Huang and Chui [65] described a prelim-

inary RFA planning system using stochastic FE method by which the inherent

variations of physical properties of the liver tissue was discussed.

Since the thermal-electrical properties of soft tissue are subjected to inherent

variations due to anatomic microstructural differences and patient individual dif-

ferences [6–11], it is important to consider the variations of the thermal-electrical

properties in RFA simulation. The variations of the thermal-electrical proper-

ties need to be modeled and a probabilistic FE method needs to be developed to

predict the variations of RFA results.
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2.3 Robot-assisted RFA Needle insertion

2.3.1 Robot in surgery

Surgical robot is defined as ’a powered computer controlled manipulator with

artificial sensing that can be reprogrammed to move and position tools to carry

out a range of surgical tasks’ in Davies’ study [66]. The use of robots in surgery

could facilitate complex surgical procedures, provide good accuracy and precision,

and make some difficult or unfeasible surgeries possible [67]. Robot can help the

surgeon in many ways. One way is to hold surgical tools at appropriate positions

so that the surgeon can operate the tools much easier [68, 69]. The robot can

also be used to position the surgical tools at a target through a predefined path

accurately [16, 17]. Another commonly used application is the master-slave robot

system. The master (surgeon) can control the slave (robot manipulator) from

a console. The master-slave robot system can provide enhanced dexterity and

precision. It also make remote surgery possible. Two examples of this are the ’da

Vinci’ surgical system (Intuitive Surgical Inc.)[70] and the ’Zeus’ surgical system

(Computer Motion Inc.)[71].

Nowadays, a lot of robotic surgical systems have been researched. Schurr et el

[72] introduced a master-slave manipulator system (ARTEMIS) for laparoscopic

surgery. The system has two robotic arms which are controlled from a console.

The experiments demonstrated that their robotic manipulators are feasible for

endoscopic surgery. Dario et al [73] presented a miniature robot which is capable

of performing colonoscopy. They demonstrated that their system has many new

applications in endoluminal diagnosis, therapy, and surgery with computer assis-

tance. Hu et al [74] integrated haptic feedback in a robot-assisted gastrointestinal

surgery. They developed a novel setup which can display the tactile feedback on

the haptic interface device. Experiments were done to show the feasibility of their
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approach. Similar researches about haptic feedback in robot assisted surgery were

reported in [75–77].

There are two commercially available systems need to be mentioned: the daVinci

system (Intuitive Surgical Inc.)[70], the Zeus system (Computer Motion Inc.)[71].

Both systems are used clinically for minimally invasive surgery. The da Vinci

System consists of a console for the surgeon, and a patient-side cart with four

interactive robotic arms (see Figure 2.3). The arms can be used for holding the

surgical tools, and can also act as scissors, scalpels and so on. Over the past

decade, more than 1.5 million surgeries have been performed using the da Vinci

surgical systems. A significant advantage to using the da Vinci system is that the

surgeon is able to control the surgery from a seated position separated from the

patient. This method of performing surgery distanced from the patient is known

as remote surgery and can theoretically be performed from any distance. The

Figure 2.3: Da Vinci robotic surgical system.
(http://intuitivesurgical.com/company/media/images/davinci s images.html)

Zeus system was designed for minimally invasive microsurgeries. It consists of a

surgeon control console and three robotic arms (see Figure 2.4). Two of its robotic

arms mimic the hand movements of surgeon. The surgeon’s hand movements are

scaled down to allow precise and small cuts. The Zues system can also be used
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for remote surgery. Since 2003, Zeus was no longer commercially available with

the merger of Computer Motion and Intuitive Surgical.

Figure 2.4: Zeus robotic surgical system.
(http://allaboutroboticsurgery.com/zeusrobot.html)

2.3.2 Remote Center of Motion Mechanism

Percutaneous RFA needle insertion is considered as an effective minimally in-

vasive procedure for liver tumor treatment. Robotic RFA needle insertions with

a systematical needle insertion plan could increase insertion accuracy and con-

sistency [17]. To minimize the trauma imposed on the patient body, the RFA

needle is expected to go through a Single Insertion Port(SIP) for multiple nee-

dle insertions. This can be achieved using a specific manipulation of the needle

named Remote Center of Motion (RCM) [12–14]. RCM has been defined as the

center of rotation fixed at a point (usually the insertion point in minimally invasive

surgery(MIS)) where no mechanical component exists [15].

The RCM can be realized in two ways: software control and mechanical design.

The software control method realizes RCM by controlling multiple joints work in

coordination. A small number of surgical robots realize RCM in this way. The
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DLR MIRO reported by Hagn [78] realized RCM by configuring null-space of re-

dundant kinematics and applying position and force control accordingly. Yang

et al [79] demonstrated a model-based design analysis for programmable RCM in

MIS. They claimed that their approach can be applied to the analysis of general

manipulator. The other way to realize RCM is using specific mechanical designs

such as spherical joint, spherical links, concentric multi-link spherical joint [80].

The two popular commercial robot systems for MIS, da Vinci [81] and ZEUS [82],

realize RCM in this way. The da Vinci surgical system uses parallel mechanism

to realize RCM while ZEUS uses a serial chain. Mitchell et al [83] proposed a

”C-arm” RCM mechanism for MIS. They conducted complete kinematic analysis

and calculated the optimal link lengths of the manipulator. Similar work could

be found in [84] [85] [86] [87]. Kuo et al [88] reported a fully-decoupled parallel

manipulator to achieve RCM. By analyzing the singularity and reachable collision-

free workspace, they validated the feasibility of this manipulator. Pan et al [89]

proposed a novel triangle mechanism which can provide RCM with the optimiza-

tion link angle calculated. Wu et al [90] used a cable-driven spherical mechanism

with a RCM 15 mm above the skin to do robotic positioner for Cryoablation.

They claimed that the average targeting error is 2.0 mm, which is validated in

needle-placement experiments. Kang et al [91–94] described a RCM mechanism

with two semi-circular arches for robot assisted suturing in minimally invasive

surgery. Similar mechanism has been exploited for different applications. Yang

et al [95] used similar mechanism in a robot manipulator for laparoscopic surgical

training. Walsh et al [96, 97] applied this mechanism in a needle guidance and

insertion system. Yoon et al [98] applied this mechanism in an automatic lighting

system.

Some RFA needle insertion robots has been developed in previous studies.

Patriciu et al [16] used a bridge like structure comprising XYZ cartesian stage
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and a PAKY-RCM robotic module to execute RFA needle insertions (see Figure

2.5). The PAKY-RCM module was used to achieve the single insertion port and

the XYZ cartesian stage was used to adjust the initial robot position to make

sure the needle is at the skin entry site. Yang et al [17] used a robot sys-

Figure 2.5: The RFA needle insertion robot in patriciu’s study [16].

tem comprising a main manipulator and a sub-manipulator (see Figure 2.6). The

sub-manipulator consists of four translational stage and a wrist interface with two

orthogonal revolution joints. RCM of the RFA needle is achieved by software

control method.

From the literature, we observe that existing RFA needle insertion robots did

not possess effective mechanical design (such as spherical joint, spherical links) to

achieve RCM. A typical system is bulky with complex control algorithms. Cur-

rent RCM mechanisms that can be used for RFA needle insertion cannot achieve

SIP for very large tumor due to their mechanical constraints. Therefore, a RFA

needle insertion robot using modified RCM mechanism has to be designed and

developed.
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Figure 2.6: The RFA needle insertion robot in Yang’s study [17].

2.4 Registration in Surgery

Medical images, such as CT image and magnetic resonance (MR) image, are

increasingly used for planning and guiding the treatment. Registration of the

pre-operative data and intra-operative data is a key issue in image guided surgery.

Image registration is a process that is used to match two or more images of the

same scene at different times, by different sensors or from different views [99].

Many effective methods have been proposed for image registration. According

to Maintz and Viergever’s study [100], medical image registration methods can

be divided into two main categories: extrinsic registration methods and intrin-

sic registration methods. Extrinsic registration methods are based on artificial

objects attached to the patient. The attached objects should be well visible in

the medical image. Stereotactic frames [101–104] are commonly used for local-

ization and guidance in surgery. Screw-mounted markers[105–108] and skin-glued

makers are also [109–111] widely used for registration. The patient is assumed
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to be rigid in extrinsic registration methods. These methods are not suitable for

non-rigid transformations. Intrinsic registration methods are based on patient

image only. Image features and properties are used to map the pre-operative

image and intra-operative image. Landmarks-based registration methods [112–

114], segmentation-based registration methods [115–117] and voxel property-based

registration methods are three commonly used methods for intrinsic registra-

tion. Landmark-based registration methods are based on a set of distinct points.

Segmentation-based registration methods are based on the segmented structures.

Prior data is required in both methods. Voxel property-based registration meth-

ods use the image density directly. Many algorithms have been proposed in the

literature, including cross-correlation [118–120], Fourier transformation [121, 122],

and histogram clustering [123, 124].

Most registrations in the literature are image registration. However, registra-

tion in image guided robotic surgery is not limited to the image registration, but

also includes registration among surgical tools, patient body and computer image.

Some works on image guided robotic surgery are reported in the literature.

Patriciu et al [125] presented a CT image guided robot system for Kidney and

Spine Percutaneous Procedures. A simple method for robot registration in CT

imaging systems was presented. The registration method involved the laser sys-

tem on the CT scanner (see figure 2.7). The needle had to be placed in the

scanning range of the CT scanner. The application of this registration method

is limited since it can only be conducted in the CT room. Similar work can be

found in another study [16] of the same author.

Taylor et al [126] presented a CT image guided robot system for orthopedic

surgery. The author claimed that the registration between CT planning data

and reality was accomplished by using landmark pins. The author also indicates

that the registration can be achieved by real-time tracking of makers placed on
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Figure 2.7: Laser registration method for robot registration [125].

the patient. However, The detailed registration method was not presented in this

paper. Anthony et al [127] also reported a robot assisted orthopedic surgery under

CT image guidance. To track the bone structures and tools, tracking devices were

attached to the targeted bone and tools. This method causes large invasiveness

to the patient and requires a lot of sensors.

Yang et al [17] developed a robotic system for RFA of liver tumor under the

guidance of pre-operative CT images. To register the pre-operative data with

reality, they used a noninvasive approach based on fiducial skin marker. A rigid

transformation approach was implemented using an optical triangulation system.

They tested the system on a static abdominal phantom and demonstrated the

feasibility of the system. Since the optical triangulation system will introduce

registration error, an error compensation method is therefore required to guarantee

the accuracy of registration.

The existing registration methods in image guided robotic surgery still have a lot

of limitations. Effective registration methods, especially the registration between

patient and robot, in image guided robotic surgery need to be further researched.
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2.5 Summary

In this chapter, we review three key issues on computer-aided and robot-assisted

RFA. In RFA simulation and planning, the thermal-electrical properties of soft

tissue are subjected to inherent variations due to anatomic microstructural differ-

ences and patient individual differences. Hence, it is important to consider the

variations of the thermal-electrical properties in RFA simulation. Probabilistic

FE simulation and planning for RFA needs to be further researched.

Since we focus on RFA of large liver tumor, multiple RFAs are required to

entirely cover the tumor. To achieve a single insertion port during multiple RFAs,

a robot which can realize RCM should also be developed.

Registration of the pre-operative data and intra-operative data is a key issue

in image guided surgery. However, most registrations in the literature focus on

image registration. In robotic surgery, registration between patient and robot is

very important to guarantee the accuracy of robot execution. There is a lack

of efficient and generic registration method between patient and robot. Effective

registration methods, especially the registration between patient and robot, in

image guided robotic surgery need to be further researched.
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RFA Simulation and Planning

A challenging problem of radiofrequency ablation(RFA) in liver surgery is to

accurately estimate the shape and size of RFA lesion whose formation depends on

intrinsic variations of the thermal-electrical properties of soft tissue. Large tumor,

which can be as long as 10 cm or more, has further complicated the problem. In

this chapter, a probabilistic bio-heating finite element (FE) model is proposed and

developed to predict the RFA lesion. Uncertainties of RFA lesion are caused by

the probabilistic nature of five thermal-electrical liver properties: thermal con-

ductivity, liver tissue density, specific heat, blood perfusion rate and electrical

conductivity. Confidence levels of shape and size of lesion are generated by the

FE model incorporated with mean-value first-order second-moment (MVFOSM)

method. Based on the probabilistic FE method, a workflow of RFA planning is

introduced to enable clinicians to preoperatively view the predicted RFA lesion

in three-dimension (3D) within a hepatic environment. Accurate planning of the

RFA needle placements can then be achieved based on the interactive simulation

and confidence level selection.
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3.1 Overview of the Probabilistic RFA Simula-

tion and Planning Method

In general, RFA is considered as a safe, well-tolerated and effective treatment

only for small liver tumors which are less than 6.0 cm in diameter[128]. Reliable

RFA simulation and planning are important for large liver tumor treatment. The

objective of RFA simulation and planning is to assist clinicians to verify that the

lesions produced by multiple RFAs can fully cover a large tumor with minimal

damages to the surrounding healthy tissues. We proposed a probabilistic RFA

simulation and planning method to predict the RFA lesions for treatment plan-

ning. This probabilistic method may improve the safety and effectiveness of RFA

treatment for large tumor.

In our RFA planning procedure, the clinician should specify the positions of RFA

needle. The probabilistic bio-heat FE simulation is then applied to predict the

RFA lesions according to the specified RFA needle positions. Different shapes and

sizes of RFA lesions, along with their probabilities, can be displayed. The results

can provide clinicians an overview of ablation effect for potential risk evaluation,

and help them to decide which specific RFA plan to adopt for the patient.

Figure 3.1 shows the workflow of probabilistic bio-heat FE simulation-based

RFA planning. Geometric information including critical anatomic structures for

FE model construction is acquired from preoperative medical images. After the

position and geometric profile of tumor are identified from the medical images, the

safety margin of tumor will be specified. A local coordination system is estab-

lished at the center of the targeted tumor. This coordination system defines the

RFA planning space. Tissue thermal-electrical properties, initial and boundary

conditions, such as temperatures of the liver, are assigned to construct the bio-heat

FE model. Multiple RFA needle placements are set within the bio-heat FE model.
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Figure 3.1: Probabilistic bio-heat FE simulation based RFA planning.

The probabilistic distribution of temperature can then be calculated using the MV-

FOSM method. The probabilistic simulation allows clinicians to choose different

confidence levels and generates the corresponding 3D views of the RFA lesions.

Clinicians will choose a specific confidence level according to patient-specific con-

dition and their own experiences. They can try different needle placements until

a satisfactory result has been achieved. The following sections will explain how

the probabilistic FE RFA model is built, demonstrate the computational results

and experimental results, and present the multiple RFA planning results.
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3.2 Probabilistic Bio-heat Model for RFA

According to Arkin’s investigation on heat transfer modeling of blood perfused

tissue, Pennes’ model was demonstrated to be the best approach to simulate RFA

[129]. In this study, we simulated RFA of liver tissue using Pennes’ bio-heat

equation which can be written as

ρc
∂T

∂t
= ∇ · k∇T + J · E − ρblcblωbl(T − Tbl), (3.1)

where ρ is the density, T is the temperature, k is the thermal conductivity, J is

the current density, E is the electric field, ρbl is the blood density, cbl is the blood

specific heat, ωbl is the blood perfusion rate and Tbl is the blood temperature.

Since the objective of our simulation is to predict the lesion after RFA, Arrhenius

equation is used to model the thermal damage of the tissue [25]. The tissue injury

degree Ω can be calculated by

Ω = ln(
c(0)

c(t)
) = A

∫ t

0

e−∆E/[RT ]dt, (3.2)

where c(t) is the concentration of living cells, c(0) is the initial concentration

of living cells, R is the universal gas constant (8.314J · mol−1 · K−1), A is a

’frequency’ factor for the kinetic expression, and ∆E is the activation energy

for the irreversible damage reaction. For liver tissue, A = 7.39 × 1039s−1 and

∆E = 2.577 × 105J ·mol−1 [25]. In this study, the cell is considered dead when

Ω > 1 and it is reported that tissue coagulation first occurs when Ω = 1 [130]. The

blood perfusion rate is modeled as a function of tissue injury degree Ω according

to the study by Schutt et al.[131]. The blood perfusion can be modelled as

DS = 1− e−Ω, (3.3)
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and

ω(t) = ω0(1−DS), (3.4)

where DS is degree of vascular stasis, ω(t) represents the time dependent perfu-

sion, and ω0 is the base line perfusion.

Probabilistic uncertainty analysis is used to quantify the effect of input random

variables on system outputs [132]. Consider the performance function

y = g(x), (3.5)

where x is a random vector X = [x1, x2...xn] representing uncertain parameters.

As x is randomly distributed, y is also randomly distributed. The cumulative

distribution function (CDF) of y can be calculated by a multi-dimensional integral

F (y) = P (Y ≤ y) =

∫
(g(x)≤y)

fX(x), (3.6)

where fX(x) is the joint probability density function of random vector X.

In probabilistic uncertainty analysis, it is difficult to obtain an analytical so-

lution to the integration in Equation 3.6 due to both its nonlinear integration

boundary and high dimensionality. Various probabilistic analysis techniques have

been proposed to obtain the solution to such problem in the last decades. These

techniques can be categorized into three classes: (1) sampling based methods, (2)

moment matching methods, and (3) most probable point (MPP) based methods

[132]. The moment matching methods [60, 61] which only consider the first few

moments of the variables distribution are often employed to simplify the prob-

lem. One commonly used method is the MVFOSM method, which uses a first

order Taylor expansion at the mean values of the input variables and the first

and second moments of the input variables [133]. MVFOSM method is a prob-
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abilistic method to determine the stochastic moments of a function with random

input variables. Assuming variables in x follow normal distribution, temperature

in Equation (3.5) can be calculated by

y ∼= g(µx) +
n∑
i=1

∂g(µx)

∂xi
(xi − µxi), (3.7)

where µx is the mean vector of x. y, estimated to be a linear combination of

variables in x, is normally distributed. The mean and standard deviation of y

can be calculated by

µy ∼= g(µx) (3.8)

and

σy ∼=

√√√√ n∑
i=1

(
∂g(µx)

∂xi
σxi)

2, (3.9)

where σxi is the standard deviation of the ith element of X.

Liver tissue RFA simulation can also be considered as a probabilistic analysis

problem, by which the distribution of tissue temperature T and tissue injury degree

Ω can be approximated by the probabilistic approach. In this study, we adopted

the MVFOSM method for RFA simulation. Based on Equation 3.1 and Equation

3.2, tissue temperature T and tissue injury degree Ω can be rewritten as

T = gFE(U), (3.10)

and

Ω = fFE(U), (3.11)

where U = [ρ, k, c, ωbl, γ] is the vector of liver tissue thermal-electrical properties.

Assuming variables in U follow normal distribution, the tissue temperature T

and tissue injury degree Ω will also be normally distributed. Applying the MV-
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FOSM method as shown in Equation 3.8 and Equation 3.9, mean and standard

deviation of T and Ω can be approximated by

µT ∼= gFE(µU), (3.12)

σT ∼=

√√√√ n∑
i=1

(
∂gFE(µU)

∂Ui
σUi

)2, (3.13)

µΩ
∼= fFE(µU), (3.14)

σΩ
∼=

√√√√ n∑
i=1

(
∂fFE(µU)

∂Ui
σUi

)2, (3.15)

whereµT , σT , µΩ, σΩ are the mean and standard deviation of T , mean and standard

deviation of Ω respectively. µU = [µρ, µk, µc, µω, µγ] is the mean value of U , n is

the length of U and
∂gFE(µU)

∂Ui
is the partial derivative of gFE at the mean vector

µU with respect to the ith element of U , σUi
is the standard deviation of ith

parameter of vector U ,
∂fFE(µU)

∂Ui
is the partial derivative of fFE at the mean

vector µU with respect to the ith element of U .

3.3 FE RFA Simulation

The probabilistic bio-heat model described above was used to implement the

FE simulation of RFA. The spatial distribution of temperature T and tissue in-

jury degree Ω can be obtained from the probabilistic FE simulation. COMSOL

Multiphysics software (COMSOL, Burlington, MA, USA) was used to conduct the

simulation on a PC with Intel Core i5 CPU and 8GB memory. The effectiveness

of using the MVFOSM method for FE RFA simulation was validated by Monte

Carlo simulations. Experimental RFA lesions were also compared with the com-

putational RFA lesions to prove that the experimental lesions follow the predicted
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probability distribution.

3.3.1 FE Model Construction

In the simulation study, COMSOL Multiphysics software was used to implement

our probabilistic FE RFA model. Equation 3.1 and Equation 3.2 were used as the

governing equations for the FE model. The FE model was then implemented by

the following steps. Firstly, the geometry of the FE model was built by construct-

ing the 3D model of the RFA probe and the liver. Since human liver is a very

complex and heterogeneous organ, it is very difficult to reproduce the exact liver

structure accurately in computer simulation. RFA simulations in the literature

typically start with a simplification of the real physical situation. Cube [22, 24]

and cylinder [23, 25, 26] are two commonly used geometry to model biological

tissue in 3D FE analysis of RFA. Since our RFA experiment was conducted on

pig liver to validate our simulation, we made our tissue size similar to that of the

real pig liver size. The maximum thickness of pig liver is about 60mm and both

the length and width are about 160mm. Therefore, a cube of 160× 160× 60 mm

(Figure3.2(b)) was used to represent the target liver tissue and a model of RITA

Starburst RFA probe (Figure3.2(a)) was modeled as the RFA needle. The ther-

(a) (b)

Figure 3.2: Geometry of the FE model. (a)RITA starburst RFA probe. (b)3D model of
the RFA probe and the liver.

mal and electrical properties of liver tissue were then assigned to the liver model.
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Previous studies [6–8, 10, 11, 134] have indicated that the thermal and electrical

properties of liver tissue are random values that can follow certain probability

distribution. Since normal distribution model can fit the data in previous liter-

atures well, we assumed that the thermal and electrical properties of liver tissue

are normally distributed. The mean value and standard deviation (STD) of each

property were calculated based on the data in literatures (as shown in Table 3.1).

The initial and boundary temperatures were set to be 37 ◦C in the simulation

Table 3.1: Liver tissue thermal and electrical properties [6–8, 10, 11, 134].

Properties Temperature Dependency Parameters

ρ(Kg ·m−3) ρ = ρ0
ρ0 (mean:1064

STD:16)
[7]

k(W ·m−1 ·K−1) k = k0 + 0.00116T
k0(mean:0.4692

STD:0.13)
[10, 134]

c(J ·Kg−1 ·K−1)
c = c0, if T < 63.5

c = c0 + 28.9(T − 63.5),if T ≥ 63.5
c0(mean:3399.9

STD:522.34)
[8]

ω(s−1)
ω = ω0(1−DS)

(as in Equation 3.4)
ω0(mean:0.007
STD:0.0027)

[6]

γ(S ·m−1)
γ = γ0 + 0.00889(T − 35), if T < 80
γ = γ0 + 0.4− 0.01(T − 80), if T ≥ 80

γ0(mean:0.4
STD:0.03)

[11]

model. Next step is meshing the model. A convergence analysis was conducted

to obtain the optimum mesh for the model. We defined the optimum mesh by

decreasing the mesh element size until differences between maximum temperatures

at 300s in consecutive simulations were less than 0.5%. In our simulation, we con-

trolled the maximum element size for each mesh setting. The maximum element

size was varied from 15mm to 1mm, and we observed that when the maximum

element size is smaller than 12mm, differences between maximum temperatures at

300s in consecutive simulations were less than 0.5%. Therefore, 12mm was used in

the maximum element size setting. The FE model was built with 221525 domain

elements, 12608 boundary elements, and 3084 edge elements. To make the sim-

ulation realistic and to be validated by experiment, temperature-control protocol

was applied in the simulation as in the real RFA system. In the radiofrequency
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generator we used for experimentation(RITA 1500X), a target temperature should

be set before RFA procedure, and the device can measure the temperature of the

RFA needle tips. RFA voltage of the radiofrequency generator is controlled by

proportional-integral (PI) strategy so that the tissue temperature would increase

first and then keep stable at the target temperature. The RFA voltage in our

simulation was controlled by

V = KP ∗ (Tset − Ttip) +KI ∗
∫

(Tset − Ttip)dt, (3.16)

where V is the applied RFA voltage, Tset is the predefined RFA target temperature,

which is 105◦C in this study, Ttip is the average temperature of the RFA needle tips,

KP and KI are the proportional coefficient and integral coefficient respectively.

KP and KI were adjusted so that the temperature rising time in the simulation

is the same as the rising time in the experiment. The values for KP and KI

are 0.5 and 0.02 respectively. The RFA power was applied for 300 seconds in all

simulations.

3.3.2 Simulation Results

The spatial distribution of temperature T and tissue injury degree Ω can be

obtained from the FE model. Both T and Ω follow normal distribution. In this

study, RFA lesion was defined as region where Ω > 1. Figure 3.3(a) shows the

shape of a 3D RFA lesion and the highlighted plane that we analyzed. The tem-

perature distribution on the analyzed plane is shown in Figure 3.3(b), and Figure

3.3(c) shows the shape of the RFA lesion on the analyzed plane.

As described in Section 3.2, the RFA lesions we obtained should be normally
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(a) (b) (c)

Figure 3.3: Simulation results. (a)Shape of 3D RFA lesion and the plane we examined.
(b)Temperature distribution on the examined plane. (c)Tissue injury degree in log scale, the

red line represents the damage contour where Ω = 1 (i.e. log(Ω) = 0).

distributed. The confidence level of a RFA lesion was defined as

p = 1− p(Ω≤1), (3.17)

where p(Ω≤1) represents probability of existing living tumor cells within the above

defined RFA lesion (RFA lesion was defined as region where Ω > 1).

Figure 3.4 shows the lesion sizes of different confidence levels. The possibility

of living cells within the negative 3 sigma lesion damage contour is 0.13%, which

means the probability of completely destroying the whole tumor within the neg-

ative 3 sigma lesion damage contour is 99.87%. The probabilities of completely

destroying the tumor within the mean and positive 3 sigma lesion damage contours

are 50% and 0.13% respectively.

To identify which parameter has the greatest impact on RFA simulation, nu-

merical values of ∂T�∂Ui
were calculated. The partial derivatives values at any

interested point in the FE model can be obtained. A point 15mm away from the

bottom tip of the RFA probe in the above mentioned plane was selected to illus-

trate the result. The partial derivatives of the selected point at different times

were shown in Table 3.2. We can observe that the values of ∂T�∂ωbl
are the

largest, which indicates that blood perfusion rate is the most dominant parameter
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Figure 3.4: lesion sizes with confidence level of 99.87% (-3sigma), 50% (mean) and 0.13%
(+3sigma).

determining the temperature during the RFA heating.

Table 3.2: Numerical values of ∂T�∂Ui at different times.

Time(s) ∂T�∂c ∂T�∂γ ∂T�∂k ∂T�∂ρ ∂T�∂ωbl
100 -8.6329e-04 6.7234 1.1728 -0.0027 -177.2743
200 -9.1350e-04 10.7023 1.6738 -0.0029 -531.5399
300 -6.2980e-04 13.0513 2.1997 -0.0020 -749.8232

3.3.3 Monte Carlo Validation of the MVFOSM method

Monte Carlo method is commonly used for computer simulation in physical and

mathematical systems when it is infeasible to compute an exact solution with a

deterministic approach [135][136][137]. Monte Carlo method relies on repeated

random sampling. A large number of simulations are required to obtain results

with high confidence. Despite its computationally expensiveness, it is an effective

approach to verify newly proposed probabilistic analysis methods.

In order to validate the RFA simulation results calculated by MVFOSM method,

RFA FE analysis were performed for 1000 times. For every simulation, properties

of liver tissue were randomly generated according to their normal distributions

shown in Table 3.1. Temperature distributions calculated in Section 3.3.2 are

compared with Monte Carlo simulation results. Figure 3.5 shows CDFs of the
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Figure 3.5: CDFs of temperature at two different points; the right two curves are
temperature CDFs of the point 5mm away from the bottom tip of the RFA probe, the left two
curves are temperature CDFs of the point 15mm away from the bottom tip of the RFA probe.

temperature of two points located 5mm and 15mm away from the RFA probe

center. CDFs calculated by the MVFOSM method correspond well with those

of the Monte Carlo simulation results. Small discrepancies can result from the

use of first order Taylor linearization to approximate the nonlinear process of FE

analysis.

3.3.4 Comparison between simulated RFA lesion and ex-

perimental RFA lesion

To demonstrate that the computational RFA lesions are reliable, experiments

were conducted to compare the simulation results with experimental results. Fig-

ure 3.6 shows the setup for the RFA experiment. A RITA 1500X radiofrequency

generator and a RITA Starburst RFA probe were used to conduct experiments

on a recently harvested pig liver. In this experiment, the target temperature was

set to be 105◦C as in the simulation and the RFA power was delivered for 300s

in each experiment. 20 ablations were conducted and the lesions were split from
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Figure 3.6: RFA device for experiment.

(a) (b)

Figure 3.7: Comparison between simulated RFA lesion and experimental RFA lesion.
(a)Computational lesion. (b)Experimental lesion.

the middle to reveal their shapes. Figure 3.7 shows a computational RFA lesion

and an experimental RFA lesion. We can see that the shapes of these two lesions

are similar. The central white zone excluding the pink zone in Figure 3.7(b)

was defined as the thermal lesion. To evaluate the experimental lesions, GetData

Graph Digitizer (an open source digitizing software) was used to grab the lesion

contour data from experimental pictures. We drew the lesion contours manually

in the software and exported the data to Matlab for further evaluation of the

experimental lesions. To compare the experimental and computational lesions

quantitatively, the area, depth and maximal width of experimental and compu-

tational lesions are measured. The mean value and standard deviation of each
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property (area, depth and maximal width) are calculated. Standard deviation is

defined as the square root of the average of the squared deviations of the values

from their average value. The mean and standard deviations of each property are

shown in Table 3.3. The mean area of the 20 experimental lesions is 816.7mm2

and this is close to the computational mean area, which is 822.4mm2. The stan-

dard deviations of the experimental area and computational area are 115.8mm2

and 87.1mm2 respectively. CDFs of the computational area and experimental

area correspond well as shown in Figure 3.8. From Table 3.3, we can observe

that the mean values of area, depth and maximal width of experimental lesions

are a little smaller than those of computational lesions while the standard devi-

ations of experimental lesions are bigger than computational lesions. The small

discrepancies between computational and experimental lesions may result from

the small differences between human liver and pig liver. The error in measuring

the experimental lesions may also lead to the discrepancies between computational

and experimental lesions.

Table 3.3: Comparison between experimental and computational lesions

Categories Experimental results Computational Results

Area (mm2)
mean:816.7
STD:115.8

mean:822.4
STD:87.1

Depth (mm)
mean:37.1
STD:2.8

mean:41.2
STD:2.1

Maximal width (mm)
mean:26.6
STD:3.8

mean:29.5
STD:2.7

Although there are only 20 sets of experimental data to validate the probabilistic

method, we have observed that the experimental lesions can be approximated by

normal distribution in Figure 3.8. This is consistent with our prediction. Since

probability distribution presents in real RFA lesions, it is not feasible to use sim-

ulations that give constant outputs for RFA planning. By using our simulation

model, different sizes of RFA lesions along with their probabilities can be obtained.
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Figure 3.8: Cumulative Distribution Functions (CDFs) of the simulated RFA lesion area
and the experimental RFA lesion area. The cumulative distribution function of a random

variable X, evaluated at x, is the probability that X will take a value less than or equal to x.

This can improve the reliability of RFA planning. Since our probabilistic RFA

simulation is able to produce the probability distribution of RFA lesions as that

of real experiment, it is therefore useful and effective.

3.4 Probabilistic RFA Planning Results

For large tumor treatment, multiple sequential RFAs are required to fully cover

the tumor and thus a planning strategy is needed. In our RFA planning for large

tumor, we do not provide a mathematical model to generate RFA needle place-

ments to cover a large tumor. Instead, we let the clinician to define the needle

placements and showed the computational lesions of multiple RFAs. The clinician

can try different needle placements until a satisfactory result has been achieved.

Based on our experience, this strategy is more robust for RFA treatment planning.

Since the burned tissue has an effect on subsequent ablation, the properties of the

burned tissue should be modeled in the simulation of multiple sequential RFAs.

The blood perfusion in the burned tissue was updated during the simulation be-

43



Chapter 3 RFA Simulation and Planning

cause it has the greatest impact on RFA simulation result (as shown in Table 3.2).

For multiple sequential RFAs simulation, we assumed that the blood perfusion

of the burned tissue is zero because blood perfusion ceases after coagulation oc-

curs. For other properties of the burned tissue, we assumed that they remain the

same as that of the normal tissue since there are very few literatures studying the

properties of burned tissue.

(a) (b)

Figure 3.9: Lesions of three sequential RFAs.The numbers indicate the ablation sequence.
The shapes in maroon, green and cyan represent lesions with confidence level of 99.87%
(-3sigma), 50% (mean) and 0.13% (+3sigma) respectively.(a) Lesion volumes of three

sequential RFAs. (b) Lesion shapes of every ablation.

Considering that the properties change in burned tissue, the shape of each RFA

lesion should be different. Figure 3.9 shows the computational lesions of three

sequential RFAs. Lesions in 3D with different probabilities can be obtained from

our probabilistic simulation method. The numbers in Figure 3.9(a) illustrate the

sequence of needle placement. The shape of each RFA lesion is shown in Figure

3.9(b). We can clearly observe that each lesion shape is different and the lesion

shapes bulge towards the burned region. The reason is that blood perfusion can

take away the heat during RFA heating, whereas blood perfusion has ceased in

burned tissue. Therefore, more heat flows from the currently ablating tissue to

the already burned tissue.

Figure 3.10 shows the lesions of three sequential RFAs in human liver near a big
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blood vessel. The results can be displayed in 3D within a hepatic environment to

clinicians as shown in Figure 3.10(a). The heat sink effect of the big blood vessel

was considered in the simulation. We assumed that the surface temperature of the

blood vessel is always 37 ◦C. It can be observed that there are hollows on the lesion

shapes near the blood vessel as shown in Figure 3.10(b). Using our probabilistic

simulation method, the RFA lesions in different sizes with different confidence

levels can also be displayed to clinicians as shown in Figure 3.10(c). Based on

our simulation, clinicians can try different RFA needle placements for multiple

RFAs. By choosing different confidence levels, clinicians are able to identify the

probability of fully covering the tumor by RFA lesions.

(a) (b) (c)

Figure 3.10: Lesions of three sequential RFAs in human liver near a big blood vessel. (a)
3D RFA lesion volumes inside the liver. (b) Effect of blood vessel on RFA lesions. (c) RFA

lesions in different sizes with different confidence levels.

3.5 Summary

This chapter describes a generalized probabilistic bio-heating FE model for RFA

simulation. It can be useful to assist clinicians to make a reliable RFA plan by

providing them 3D views of predicted RFA lesions with different confidence lev-

els. This simulation method incorporates probabilistic uncertainty analysis and

bio-heating FE model which integrates inherent thermal-electrical variations of

target tissue. In this FE model, we focused only on electrical and thermal prop-
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erties of the liver and mechanical properties are not considered. The probabilistic

bio-heating FE model-based planning method enables the clinician to specify a

confidence level for practical patient-specific cases. To our best knowledge, this

is the first study on a preoperative RFA estimation with probabilistic bio-heating

FE modeling method.

The RFA simulation and planning presented in this chapter are both based

on the probabilistic method. Unlike typical materials, the structure of biologi-

cal tissue is much more complicated and the anatomic micro-structure differences

always exist among different individuals and different parts of the same individ-

ual. Therefore, it is not feasible to model the thermal-electrical properties of

biological tissue as a constant or a temperature dependent function. It is more

reasonable to model them using normal distribution, as shown in many literatures

[6–8, 10, 11, 134]. We have proved that the RFA temperature fields and RFA

lesions follow normal distribution. The advantage of providing clinicians results

with probabilistic distribution is that it allows the clinicians to know how much

confidence they have to fully cover the tumor.

In our RFA planning for large tumor, we did not set the RFA needle placements

automatically by computer. Instead, we let the clinician to define the needle

placements and showed the computational lesions of multiple RFAs with differ-

ent confidence levels. The clinician can try different needle placements until a

satisfactory result has been achieved. Based on our experience, this strategy is

more robust for RFA treatment planning. One innovation in our planning is that

we take into consideration the change of tissue properties after each ablation. In

this study, only the blood perfusion in the burned tissue was updated since it has

the greatest impact on RFA simulation result and there are very few literatures

studying other properties of the burned tissue. The results of sequential ablations

shows that the shapes and sizes of sequential lesions are different.
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A limitation of our RFA simulation and planning system is that the properties

of liver tumor were regarded as the same as those of healthy liver tissue. Liver

tumors is caused by the uncontrolled growth of cells in the liver. The thermal-

electrical properties of liver tumor is likely to be different from that of healthy liver

tissue. For example, the cells in the tumor are denser and there are more blood

vessels around the tumor to provide nutrition to the tumor. We have been col-

laborating with clinicians in our local hospital. We will try to acquire real tumor

tissue and measure its material properties in the future. We did not come across

similar studies in the literature. Another limitation is that our RFA planning is

a computationally intensive process. It takes about one and half hour to run the

simulation on a PC with Intel Core i5 CPU and 8GB memory. Hence, the RFA

planning may not be suitable for certain clinical situation. For example, it will

result in longer operation duration if the clinician intend to investigate new needle

placements during the operation. Currently, our planning can only help the clin-

ician in the preoperative stage. Nonetheless, our idea of applying probabilistic

method and considering change of properties during multiple sequential ablations

is useful for RFA simulation and planning.
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RFA Needle Insertion Robot

Multiple needle insertions and ablations are required in percutaneous Radiofre-

quency Ablation (RFA) for large liver tumor treatment. Current RFA procedure

for large liver tumor treatment is challenged by inaccurate needle placement, in-

consistent execution of needle insertion, and large invasiveness created by multi-

ple needle insertions. In this chapter, we developed a Remote Center of Motion

(RCM) robot mechanism for multiple RFA needle insertions covering the entire

tumor volume through a Single Insertion Port (SIP). A spherical mechanism com-

prising two semi-circular arches were used to realize the RCM. Two motorized

linear slides were incorporated into the system to achieve SIP. A novel analytical

method for modeling this RCM mechanism was proposed. This method can over-

come the limitation of previous method in literature. Simulation was conducted

with real patient data including liver and tumor model to show the correctness of

our analytical method and to validate feasibility of the mechanism. Integrative

speed and position control strategy was implemented to allow the robot to move

smoothly and precisely. Experiments were conducted to test the accuracy and

feasibility of the RFA needle insertion robot. The results demonstrate that our

robot system is capable of accurately executing multiple RFAs of large liver tumor
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through SIP.

4.1 Needle Insertion Robot Design

In order to enable the multiple RFA needle insertions to pass through SIP in

large tumor treatment, a RCM mechanism for RFA needle insertion is designed.

The movement of RFA needle insertion can be divided into two parts (Figure

4.1). Firstly, to adjust the needle to the desired direction so that it can reach

the target point through the insertion port. Secondly, to lead the needle in the

adjusted direction to the target point. The proposed RCM mechanism is accord-

ingly divided into two parts: a rotational subassembly which is able to adjust

the direction of the needle and a translational subassembly that can realize the

translational motion of the RFA needle.

Figure 4.1: Overview of the RCM mechanism for robotic RFA needle insertion.

In the rotational subassembly (Figure 4.2), two semi-circular arches are cross-

wise constructed to guide the RFA needle direction. The two arches are mounted

in a perpendicular configuration. Each semi-circular arch has a slot, in which a

pipe slider is placed inside. The pipe slider is restricted to slide within the two
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arches at the same time. The two semi-circular arches are driven by two direcct

current (DC) motors respectively. The translational subassembly (Figure 4.3) re-

alizes the translational motion of the RFA needle through a ball screw system.

The needle is attached to a holding mechanism via a needle clamp. This holding

mechanism is attached to the ball screw nut which provide translational motion

when the ball screw shaft is driven by the DC motor.

Figure 4.2: Rotational subassembly of the RCM mechanism.

Figure 4.3: Translational subassembly of the RCM mechanism.

A problem of many RCM mechanisms is that the remote center of the surgical

tool could not coincident with the insertion port. As illustrated in Figure 4.4, a

gap between remote center of the surgical tool and insertion port on patient skin

always exist because of the supporting parts in the RCM mechanism. One way to
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resolve this problem is to improve the mechanical design to make the gap as small

as possible so that the size of the hole opened on human is acceptable. However,

in previous designs [88, 92–97], the gap cannot be ignored even when the design

was optimized and the mechanism was adjusted to appropriate position. In our

design, we can minimize the gap between remote center of the RFA needle and

insertion port on patient skin to about 30mm. The RFA needle can move within

30◦ from the centerline (as shown in Figure 4.4) in the proposed RCM mechanism.

In this case, the radius r of the hole created on human can be calculated by:

r = 30× tan(30◦) = 10
√

3mm ≈ 17.3mm, (4.1)

which is quite a large incision and not suitable for percutaneous procedure. This

implies that the multiple RFA needle insertions could not go through a SIP.

Figure 4.4: Gap between remote center of the surgical tool and insertion port on patient
skin.

To overcome this problem caused by the gap between remote center of the needle

and insertion port on patient skin, additional two degree of freedom for our RCM

mechanism are added. Figure 4.5 shows an overview of our robotic system for

RFA needle insertion. Two motorized linear slides are added to our robot system

so that the RCM mechanism can move on a horizontal plane. For each RFA needle

insertion, the RCM mechanism is moved to a position where the remote center of
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RFA needle, insertion port on the patient and target point in the liver is on the

same line (this line will be called ”insertion line” for short). After the RCM is

moved to the proper position, the RFA needle is adjusted to the direction of the

insertion line by the rotational mechanism. Finally, The translational mechanism

drives the RFA needle to the target point.

Figure 4.5: Overview of the robot system for RFA needle insertion.

To demonstrate that our design is suitable for RFA of large liver tumor in real

surgical environment. The workspace of the RCM mechanism under different

working conditions was investigated. Figure 4.6 shows the workspace of the pro-

posed RCM mechanism. The shape of this workspace is a spherical sector which

consists of a cone and a sphere cap. The volume covered by the workspace can

be calculated by:

V =
2πr3

3
(1− cos(θ)), (4.2)

where r is the radius of the sphere, θ is half the cone angle which is the angle
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between the rim of the cap and the direction to the middle of the cap as seen from

the sphere center. For this spherical sector, r equals 180 mm and θ equals 30◦.

Figure 4.6: Workspace of the RCM mechanism.

As mentioned before, two motorized linear slides is added in our design because

of the gap between remote center of the surgical tool and insertion port on patient

skin. The distance of travel of the two motorized linear slides is 200 mm. There-

fore, the range of motion of the RCM point is a square, the side length of which

is 200 mm. The reachable workspace of the robot system can be obtained by

moving the apex of the spherical sector (the workspace of the RCM mechanism)

along the square. Figure 4.7 shows the reachable workspace of the robot system.

However, the RFA needle is required to go through one selected insertion port on

patient skin during percutaneous RFA of liver tumor. Considering this constrain,

an effective workspace of the robot system in percutaneous RFA through SIP was

simulated (Figure 4.8). In practice, the insertion port should be chosen where

the effective workspace can cover the whole tumor.

53



Chapter 4 RFA Needle Insertion Robot

Figure 4.7: Reachable workspace of the robot system consisting of two translational robot
arms and the RCM mechanism.

Figure 4.8: Effective workspace of the robot system in percutaneous RFA.

4.2 Kinematic Analysis and Simulation

In this section, we describe the kinematic analysis of the proposed RCM mecha-

nism using a novel method. The new method is able to overcome the limitations

of traditional kinematics analyzing method in previous studies [92, 93, 95] on sim-

ilar mechanism. Instead of considering the motion of this RCM mechanism as a

54



Chapter 4 RFA Needle Insertion Robot

result of two consecutive rotation about the X and Y axis of a fixed frame respec-

tively, we showed that the motion of this RCM mechanism is actually determined

by the intersection line of two planes attached to the two semi-circular arches.

Jocobian analysis showed that singularity only occurs at this RCM point of this

mechanism.

Figure 4.9: Schematic representation of RCM mechanism kinematics. qi, (i = 1, 2, 3, 4)
represents the joint variable of each joint. O and E represent the base frame and tool frame

respectively.

Figure 4.9 shows the schematic representation of RCM mechanism kinematics.

The proposed RCM mechanism for RFA needle insertion has three independent

joints: two revolution joints and one prismatic joint. In some studies([92, 93,

95]), the rotational motion of this kind of RCM mechanism is regarded as the result

of two consecutive motion: roll (rotation about a fixed axis X) and pitch (rotation
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about a fixed axis Y)(Figure 4.10). The rotation matrix O
O′R is calculated by:

O
O′R = RY (β)RX(γ)

=


cβ 0 sβ

0 1 0

−sβ 0 cβ




1 0 0

0 cγ −sγ

0 sγ cγ



=


cβ sβsγ sβcγ

0 cγ −sγ

−sβ cβsγ cβcγ

 , (4.3)

where γ and β represent the roll and pitch angle respectively.

Figure 4.10: Kinematic analysis in previous paper. O and O′ denote the fixed and moving
frame respectively. γ and β are the roll and pitch angle respectively.

The problem of the previous kinematic analysis would be noticed by considering

the following two cases: A. Do the roll motion first and then do the pitch motion;

B. Do the pitch motion first and then do the roll motion. Assume the pitch angles

in the two cases are the same and so are the roll angles. From Equation 4.3, the

rotation matrix will be different in cases A and B. However, it is obvious that the

orientation of the RFA needle is the same when we change the rotation order in
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our RCM mechanism. The motion of this RCM mechanism is not simply pitch

and roll motion because the pipe slider inside the two arches is a moving part.

In our analysis, we will show that the motion of this RCM mechanism is actually

determined by the intersection line of two planes attached to the two semi-circular

arches.

Suppose the joint vector q = [q1, q2, q3] denotes the rotation angle about base

frame X axis, rotation angle about base frame Y axis and translation along tool

frame Z axis respectively. Axis Zx is obtained by rotating Z axis about X by

q1, and axis Zy is obtained by rotating Z axis about Y by q2. As illustrated in

Figure 4.11, the forward kinematics of the RCM mechanism is derived by finding

the intersection line of two planes XOZx and Y OZy. This intersection line is

coincident with the Z axis of the tool frame.

Figure 4.11: Illustration of the forward kinematics.

Suppose ~x, ~y, ~zx, ~zy are the unit vector along OX, OY , OZx, OZy respectively.

nx and ny are the normal vector to the plane XOZx and Y OZy respectively. ~tz

represents a vector along the intersection line of plane XOZx and plane Y OZy.
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~tz could be obtained by

~tz = nx × ny

= (zx × ~x)× (zy × ~y)

=




0

−s1

c1

×


1

0

0


×



s2

0

c2

×


0

1

0




=


c1s2

−s1c2

c1c2

 , (4.4)

where si and ci denote sine and cosine function of joint variable qi. The vector ~tz

represents the direction of the Z axis of tool frame. The position of the needle

tip with respect to the base frame can be obtained by

OPE =


px

py

pz

 =
q3
~tz∥∥~tz∥∥ =

q3

α


c1s2

−s1c2

c1c2

 , (4.5)

where α = (c2
1s

2
2 + s2

1c
2
2 + c2

1c
2
2)

1
2 = (1− s2

1s
2
2)

1
2 .

Let the X axis of tool frame lie in plane XOZx. Therefore, a vector ~ty along

the tool frame Y axis can be obtained by
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~ty = ~tz × ~x

=


c1s2

−s1c2

c1c2

×


1

0

0



=


0

c1c2

s1c2

 . (4.6)

Assume ~tx is a vector along the tool frame X axis, ~tx can then be calculated

from ~ty and ~tz

~tx = ~ty × ~tz

=


0

c1c2

s1c2

×

c1s2

−s1c2

c1c2



=


c2

2

s1s2c1c2

−c2
1s2c2

 . (4.7)

The homogeneous transformation matrix from base frame O to tool frame E
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can be constructed by

O
ET =


~tx∥∥~tx∥∥ ~ty∥∥~ty∥∥ ~tz∥∥~tz∥∥ OPE

0 0 0 1



=



c2
2

β
0

c1s2

α

q3c1s2

α
s1s2c1c2

β
c1
−s1c2

α

−q3s1c2

α
−c2

1s2c2

β
s1

c1c2

α

q3c1c2

α

0 0 0 1


, (4.8)

where β = (c4
2 + s2

1s
2
2c

2
1c

2
2 + c4

1s
2
2c

2
2)

1
2 .

The inverse kinematics can then be derived from Equation 4.5 as below


q1

q2

q3

 =


−arctan(py/pz)

arctan(px/pz)√
p2
x + p2

y + p2
z

 , (4.9)

where q1, q2 ∈ (−π/2, π/2).

The Jocobian matrices of this mechanism can be calculated by

J =


∂(px)

∂q1

∂(px)

∂q2

∂(px)

∂q3
∂(py)

∂q1

∂(py)

∂q2

∂(py)

∂q3
∂(pz)

∂q1

∂(pz)

∂q2

∂(pz)

∂q3



=


−α2q3s1s2+q3s1c21s

3
2

α3

α2q3c1c2+q3s21c1s
2
2c2

α3
c1s2
α

−α2q3c1c2−q3s21c1s22c2
α3

α2q3s1s2−q3s31c22s2
α3

−s1c2
α

−α2q3s1c2+q3s1c21s
2
2c2

α3

−α2q3c1s2+q3s21c1s2c2
α3

c1c2
α

 . (4.10)

The determinant of the Jacobian matrices is
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det(J) = q2
3c1c2(c2

1 + c2s
2
1 +

s2
1s

2
2

α3
). (4.11)

Since q1, q2 ∈ [−π/6,−π/6], every term in c1c2(c2
1 + c2s

2
1 +

s2
1s

2
2

α3
) is larger than

zero. Thus the determinant of the Jacobian matrices would be zero only if q3

equals zero. Hence, the singularity occurs only at the RCM point, which is an

expected characteristic of RCM mechanism.

To verify the correctness of our kinematic analysis and validate the feasibility of

this robot system for multiple RFA needle insertions, we conducted a simulation

study based on a CT image of a patient’s liver organ. Firstly, three dimensional

models of human, liver and liver tumor were reconstructed from CT data. A

preoperative RFA ablation planning method according to our previous research

[17] was then applied to determine the location of each ablation. Each ablation

volume was represented by a sphere. The multiple ablations were aligned so that

the total ablation volume covers the entire tumor. After the ablation planing,

the two motorized linear slides adjusted the RCM mechanism to a proper position

where the effective workspace of the robot system could cover the entire tumor.

For the convenience of inverse kinematics calculation, the base frame was attached

to the supporting plane of the RCM mechanism with the origin located at the RCM

point. The coordinate system was then established with regard to this base frame.

From the ablation plan, the coordinates of all the RFA needle insertion target

points could be obtained. A sequence of these target points was specified for the

RFA needle insertion simulation. For every target point, inverse kinematics was

conducted to calculate the joint parameters. In order to maintain SIP during

multiple RFA needle insertions, the RCM mechanism was moved to the position

where the RCM point, insertion port and target point of insertion are located

at the same line. Since the base frame is attached to the RCM mechanism, the
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coordinates of the target points were adjusted after every movement of the RCM

mechanism.

Figure 4.12: Multiple RFA ablations of liver tumor using our robot system. The models of
human (in gray color), liver (in light red color) and liver tumor (in black) are constructed from
a set of CT data of a real patient. Sphere (in dark red) with radius 25mm is used to estimate

the destruction volume of one RFA ablation. The horizental plane where the RCM point
moves is indicated as RCM plane.

Figure 4.12 shows the simulation results of multiple RFA ablations of liver tumor

using our robot system. The effect of gap between RCM point and insertion port

is counteracted by allowing the RCM mechanism move in a horizontal plane.

In this simulation, six ablations are required to cover the entire tumor. All six

ablations pass through SIP as indicated by the red dot in the figure.

To prove the correctness of our new analytical method for modeling the kine-

matics of the RCM mechanism, each RFA needle insertion is displayed in Figure

4.13. As shown in Figure 4.13, every needle is inserted to the correct position

(the center of each sphere) as planned in the preoperative ablation planing. The

needle insertion in this simulation is controlled by the joint parameters, which is
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Figure 4.13: Each RFA needle insertion and ablation volume. The shape in gray
represents liver tumor. Each red sphere represents one ablation volume. The position of

each sphere is preplanned in the ablation plan. The goal of this simulation is to show that the
RFA needle can be placed in the center of each planned sphere through SIP.

calculated from the inverse kinematics presented in previous section. The results

indicate that our new understanding of the motion of this RCM mechanism is

correct.

4.3 Dynamics Analysis

The kinematic analysis in Section 4.2 describes the motion of the RCM mech-

anism without consideration of the associated torques. In order to know the

torques that have caused the motion, the dynamic model of this RCM mecha-

nism is required. This dynamic model can help us to select appropriate motors

and design control strategies.

In our RCM mechanism, there are two rotational joints and one translational

joint. The translational joint is realized using a ball screw system. The axial

force along the ball screw can be calculated by:

F = 2πM/P, (4.12)

where F is the axial force along the ball screw, M is the torque of the motor, P is
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the lead of the ball screw. The lead of our ball screw is P = 0.001m. According

to Equation 4.12, F ≈ 6283M . The translational joint can provide sufficient

force for the needle insertion. Therefore, the translational joint is ignored in the

dynamic analysis.

Some assumptions and simplifications are made to derive the dynamic model.

Firstly, the mass of the two semi-circular arches (see Figure 4.2) are ignored since

they are very light compared to the sliding mechanism within them (see Figure

4.14). Secondly, the mass of the sliding mechanism is assumed to be lumped at

its center of gravity and the center of gravity will not move when the needle moves.

Lastly, the frictions are ignored in the dynamics analysis.

Figure 4.14: The sliding mechanism within the two arches.

The schematic representation of the simplified dynamic model is shown in Figure

4.15. The motion of this RCM mechanism can be considered as a point mass doing

circular motions around the x axis and y axis. Assuming L is the distance from

the point mass to the RCM point andm is the mass of the sliding mechanism. The

point mass has multiple motions, the circular motion around x axis and circular

motions around y axis; v1 is the speed orbiting x axis and v2 is the speed orbiting
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y axis; q1 and q2 are the rotational angles of the two joints respectively.

Figure 4.15: Schematic representation of the simplified dynamic model.

The dynamic model can be derived by Newton-Euler formulation with dynamic

equation represented by

τ = D(q)q̈ + C(q, q̇)q̇ +Gq, (4.13)

where D(q), C(q, q̇) and G(q) are the dynamic coefficients of the robot. The

inertia matrix, D(q) is a square matrix and contains the acceleration terms. Each

diagonal element of the matrix, for example, dii , describes the acceleration of

joint i caused by torque τi. Every other element, for example, dik, describe the

reaction torque which is induced by the acceleration of joint k and acts at joint

i and vice versa. The C(q, q̇) matrix is a nonlinear coriolis and centrifugal force

vector. The centrifugal force terms contain the square of the joint velocities ( q̇2
i )

whereas the Coriolis force terms contain the product of two joint velocities ( q̇iq̇j).

The G(q) matrix is a vector of the gravitational forces acting on the mechanism.

It represents the moment generated by gravity at the axis of joint i, in the current

configuration of the system. The three matrices D(q), C(q, q̇) and G(q) can be
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calculated by the following procedure.

As shown in Figure 4.15, the speed v1 and v2 can be calculated by

v1 = q̇1Lcosq2, (4.14)

and

v2 = q̇2Lcosq1. (4.15)

The kinetic energy of the system, K, can be derived by

K =
1

2
mv1

2 +
1

2
mv1

2

=
1

2
q̇T

mL2cos2q2 0

0 mL2cos2q1

 q̇, (4.16)

where q̇ = [q̇1, q̇2]T . So, D(q) can be calculated by

D(q) =

mL2cos2q2 0

0 mL2cos2q1

 . (4.17)

C(q, q̇) can be calculated by Ckj =
∑n

i=1Cijkq̇i, where Cijk =
1

2
(
∂dkj
∂qi

+
∂dki
∂qj
−
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∂dij
∂qk

). Hence,

C111 =
1

2

∂d11

∂q1

= 0

C112 =
∂d21

∂q1

− 1

2

∂d11

∂q2

= mL2sinq2cosq2

C121 = C211 =
1

2

∂d11

∂q2

= −mL2sinq2cosq2

C122 = C212 =
1

2

∂d22

∂q1

= −mL2sinq1cosq1

C221 =
∂d12

∂q2

− 1

2

∂d22

∂q1

= mL2sinq1cosq1

C222 =
1

2

∂d22

∂q2

= 0,

and

C11 = C111q̇1 + C211q̇2 = −mL2sinq2cosq2q̇2

C12 = C121q̇1 + C221q̇2 = mL2(sinq1cosq1q̇2 − sinq2cosq2q̇1)

C21 = C112q̇1 + C212q̇2 = mL2(sinq2cosq2q̇1 − sinq1cosq1q̇2)

C22 = C122q̇1 + C222q̇2 = −mL2sinq1cosq1q̇1.

C(q, q̇) is

C(q, q̇) =

 −mL2sinq2cosq2q̇2 mL2(sinq1cosq1q̇2 − sinq2cosq2q̇1)

mL2(sinq2cosq2q̇1 − sinq1cosq1q̇2) −mL2sinq1cosq1q̇1

 .
(4.18)

The potential energy of the system P is

P = mgLcosq1cosq2. (4.19)
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Hence, G(q) is:

P =
∂P

∂q
=

−mgLsinq1cosq2

−mgLcosq1sinq2

 . (4.20)

Substituting the expressions of D(q), C(q, q̇) and G(q), the dynamic equation of

the mechanism can be expressed as

τ =

mL2cos2q2 0

0 mL2cos2q1


q̈1

q̈1


+

 −mL2sinq2cosq2q̇2 mL2(sinq1cosq1q̇2 − sinq2cosq2q̇1)

mL2(sinq2cosq2q̇1 − sinq1cosq1q̇2) −mL2sinq1cosq1q̇1


q̇1

q̇1


+

−mgLsinq1cosq2

−mgLcosq1sinq2

 . (4.21)

4.4 Integrative Velocity and Position Control

Figure 4.16: Robot system overview. (a)Setup of RFA needle insertion robot,which
consists of the RCM mechanism and the motorized linear slides, in real scenario.

(b)Controller of the RFA needle insertion robot.
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The RFA needle insertion robot consists of a RCM mechanism and two mo-

torized linear slides. The two motorized linear slides are used to move the RCM

mechanism in horizontal plane (see Figure 4.16(a)). The RCM mechanism has

three independent DOFs. The control scheme we described here is focuses on the

three DC motors of the RCM mechanism. As shown in Figure 4.16(a), the two

rotational joints and one translational joints of the RCM mechanism are all driven

by DC motors. An integrated controller and chassis (NI cRIO-9081) is used to

achieve real-time control of the DC motors.

The goal of this RFA needle insertion robot is to guide the RFA needle to

the target spots in tumor accurately. Therefore, precise position control for the

three DC motors is required. Moreover, to guarantee the RFA procedure performs

safely and smoothly, the robot should move at a slow and steady speed. Speed

control should also be added to the control scheme. Thus, an integrative speed

and position control strategy was applied in our application.

The DC motor can be represented by a transfer function. A transfer function

describes the mathematical relationship of the inputs and outputs of a system. In

this case, the input to the system is voltage (Vm) and the output from the system

is angular speed (Ωm). The equation below can be used to represent the model

of our DC Motor:

G(s) =
Ωm(s)

Vm(s)
=

Km

JeqRms+K2
m

, (4.22)

where Km = Motor back electromotive force constant (V/(rad/s)), Rm = Motor

armature resistance (Ω), Jeq = Equivalent moment of inertia (kg ∗m2).

Figure 4.17 shows the control scheme for each DC motor. There are two closed-

loops in the control scheme: speed control loop and position control loop. Proportional-

integral-derivative(PID) controllers are used in both loops. The ”Position/speed

control selector” is used to determine which control command is selected as the in-
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Figure 4.17: Schematic of the closed-loop control system

put of the motor. The ”Position/speed control selector” works as follows. Firstly,

a small threshold of the position value is determined. Then when the control

commands(V1 and V2) of the speed and position control loop go into the selector,

the following decision is made to determining which command is send to the mo-

tor: if the difference of motor position θ and position setpoint θd is greater than

the threshold, V1 will be send to the motor. Otherwise, V2 is send to the motor.

So, the motor firstly move at a given speed toward the new position under the

speed control when a new position is send to the control system. Then when the

motor position is closed enough to the new position, position control is applied to

make sure the motor arrives at the given position.

The speed and position trajectories of the motors during an ablation process

are plotted in Figures 4.18 to 4.20. From the figures, we can observe that the

overshoots and oscillations for the position and speed trajectories are small for

each motor. The motors can hence, move smoothly.

4.5 Experiments

To test the RFA needle insertion robot, we conducted two ex-vivo experiments

and one in-vivo experiment. The first ex-vivo experiment aimed to test the ac-
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(a) (b)

Figure 4.18: Trajectories of motor 1 for one ablation. (a)Position trajectories of motor 1.
(b)Speed trajectories of motor 1.

(a) (b)

Figure 4.19: Trajectories of motor 2 for one ablation. (a)Position trajectories of motor 2.
(b)Speed trajectories of motor 2.

(a) (b)

Figure 4.20: Trajectories of motor 3 for one ablation. (a)Position trajectories of motor 3.
(b)Speed trajectories of motor 3.

curacy of the robot while the second one demonstrated that the robot is able to

guide the RFA needle to multiple targets through a single insertion port. The

specifications of the RFA needle insertion robot were shown in Table 4.1. The
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motors used to drive the two semi-circular arches are DC motors from Maxon

(part number: 268214). The nominal torque for this motor is 85.6mNm. This

motor is equipped with a gear box with reduction rate of 1093:1 (part number:

166961). The motor used to drive the ball screw system is also DC motors from

Maxon (part number: 339152). The nominal torque for this motor is 28.8mNm.

This motor is equipped with a gear box with reduction rate of 24:1 (part number:

144033).

Table 4.1: Specifications of the RFA needle insertion robot

Specifications value Specifications value
Range of rotation angle (rad) (−π/6, π/6) Range of translation (mm) (0,180)

Rotation speed (rad/s) π/30 Translation speed(mm/s) 4
Maximum torque for
arch rotation (N/m)

92.9
Maximum torque for

ball screw system (N/m)
0.691

Accuracy of the linear slides (mm) 0.01 Weight of the sliding mechanism(kg) 0.62

Figure 4.21: Accuracy test of the RFA needle insertion robot

Figure 4.21 shows the accuracy test of the RFA needle insertion robot. We

drew a coordinate system and four target points(A, B, C, D) on a plane below the

robot. The robot was required to guide the RFA needle to each target point. The

experimental results show that the RFA needle can get to the target points very

72



Chapter 4 RFA Needle Insertion Robot

Figure 4.22: The RFA needle insertion robot tested on phantom. (a) System setup in a
laboratory environment. (b) A silicon cover overlaying the phantoms chest and belly was used
to simulate human skin. Three plasticine models (red balls) were used to mimic target tumors.

accurately: the errors are within 1mm. Figure 4.22 demonstrates a phantom test

of the RFA needle insertion robot. In this experiment, the task for robot was to

guide the RFA needle to the three targets through the insertion port on the skin(as

shown in Figure 4.22(b)) and the robot completed the task very well.

Through the experiments, we showed that the accuracy of the RFA needle in-

sertion robot is quite high and can satisfy the accuracy requirements in RFA ap-

plication(as indicated by the doctor). The proposed robot can also achieve SIP

during multiple RFAs, and this will greatly reduce the invasiveness of the RFA

procedure.

4.6 Summary

In this chapter, a novel RCM mechanism for RFA needle insertion was designed,

analyzed and implemented. The RCM mechanism used in our study is based on

the concept of a spherical mechanism with two semi-circular arches. Compared

to previous mechanisms in literature [91–98], additional two translational degrees

were integrated to our mechanism. The modified RCM mechanism is capable of
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conducting multiple RFA needle insertions through a SIP. We proposed a novel an-

alyzing method to accurately model the motion of this mechanism. This method

is able to overcome the limitations of previous methods in the literature. An

integrative speed and position control strategy was used to achieve smooth and

precise motion of the robot. Experimental results demonstrate the feasibility of

our proposed RFA needle insertion robot in multiple RFAs application.
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Registration

In our robotic RFA needle insertion system, computed tomography (CT) images

are used for pre-operative RFA planning. Clinicians are able to define the needle

placements for RFA needle insertions. Accurately transforming the CT planning

data to the robot coordinate system is a key issue in our study. In this chapter, a

maker-based registration method was proposed to transform the CT image data to

the robot coordinate system. This registration method achieves the registration

by targeting feature points on the maker using our robot. This method works

well in our system but may have limitations in other robotic systems. Therefore,

a generic vision-based registration method was also proposed. The experiment

results showed that both registration methods can achieve the required accuracy

in RFA for liver tumor based on the clinician’s feedback.

5.1 Reason for Registration

In pre-operative stage of RFA, CT images are used to do ablation planning.

The planning data is based on a patient coordinate system. The patient coordi-

nate system is built by the following step. First, we attached a L-shape marker to
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the patient (see Figure 5.1(a)) and do a CT scan for the patient to obtain the 2D

CT images (see Figure 5.1(b)). From the 2D CT images, we can reconstruct the

3D patient model (see Figure 5.1(c)). The patient coordinate system can then be

established based on the marker (see Figure 5.1(c)). The planning data, including

insertion port position and ablation target positions, are all based on this patient

coordinate system.

(a) (b) (c)

Figure 5.1: Preoperative CT planning data in the patient coordinate system. (a)marker on
the patient. (b)2D CT image. (c)3D reconstructed patient model.

Figure 5.2: Illustration of the coordinate transformation from patient coordinate system P
to robot frame coordinate system R.
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To execute the RFA needle insertion using our robot system, the planning data

need to be transformed from the patient coordinate system P to robot frame co-

ordinate system R (as shown in Figure 5.2). The RFA needle insertion robot can

then execute the task based on the kinematic analysis in Chapter 4.2. Therefore,

an accurate registration method is required to enable correct execution of robotic

RFA needle insertion.

5.2 Registration by Targeting Feature Points us-

ing Robot

As shown in Figure 5.2, the objective of registration is to find out the relation-

ship between the patient coordinate system P and robot frame coordinate system

R. An easy way to achieve this is to find the feature points on the marker and

establish the transformation matrix based on the feature points’ positions. As

shown in Figure 5.3, the L-shape marker has three feature points which are O, X

and Y respectively. O indicates the origin of the patient coordinate system P .

X and Y indicate a point on the x axis and y axis of P respectively. The origin

Figure 5.3: Feature points on the marker.
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of the robot coordinate system R is the RCM point of the spherical mechanism,

and the x axis and y axis of R are parallel to the two motorized linear stages (as

shown in Figure 5.2). Let R
PT denote the transformation matrix from the patient

coordinate system P to the robot coordinate system R. R
PT can be calculated by

the following steps.

Firstly, we obtain coordinates of the three feature points in the robot coordinate

system R. We control the robot to move along the x axis, y axis and z axis of

R to reach the three feature points and record their coordinates by a LabVIEW

program. The interface of the program is shown in Figure 5.4. The robot is

allowed to move along the x axis, y axis and z axis by step ranging from 0.5 mm

to 10 mm. After the needle reach a feature point, the user can click the related

button to save the position. Assuming O = (Ox, Oy, Oz), X = (Xx, Xy, Xz) and

Figure 5.4: Interface of the position-obtaining LabVIEW program. The robot is allowed to
move along the x axis, y axis and z axis by step ranging from 0.5mm to 10 mm. After the

needle reach a feature point, the user can click the related button to save the position.

Y = (Yx, Yy, Yz), the vector along x axis and y axis of P expressed in R can be
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calculated by

OX = (Xx −Ox, Xy −Oy, Xz −Oz), (5.1)

and

OY = (Yx −Ox, Yy −Oy, Yz −Oz). (5.2)

The orthogonal unit vectors of P expressed in R can then be calculated by

RxP =
OX

|OX|
, (5.3)

and

RyP =
OY

|OY |
, (5.4)

and

RzP =R xP ×R yP , (5.5)

where RxP is xP expressed in R, RyP is yP expressed in R, RzP is zP expressed in

R.

The rotation matrix from P to R can be calculated by

R
PR = [RxP ,

R yP ,
R zP ]. (5.6)

The transformation matrix R
PT can be calculated by

R
PT =

 R
PR O′

0 1

 , (5.7)

where O′ = (Ox, Oy, Oz)
′ is the origin of P expressed in R. With the transforma-

tion matrix R
PT , the planning data can be transformed to the robot coordinate
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system.

5.3 Registration Using Vision-based Method

Since our robot system can realize the movement along x axis, y axis and z

axis by the two motorized linear slides and the translational mechanism for the

RFA needle (as shown in Figure 5.5 ), we can conveniently move the RFA needle

to the feature points by sending commends to robot manually. Therefore, the

registration method by targeting feature points can be easily implemented in our

robot system. However, this registration method may not suitable for other robot

system which cannot realize the movement along x axis, y axis and z axis easily.

For example, the Da Vinci robot (see Figure 5.6) achieves the movement of surgical

Figure 5.5: Realization of the movement along x axis, y axis and z axis in our robot system

tool by controlling multiple joints to work in coordination. It is hard to estimate

how each joint should move in order to reach a point in the Cartesian coordinate

system. Therefore, a vision-based registration method which can be applied in
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general robot systems was proposed.

Figure 5.6: Davinci robot system.
(https://www.emaze.com/@AOIZCIFT/Surgical-Robot)

5.3.1 Vision-based Registration Process

The principle of this vision-based registration method is similar to that of the

manually registration method in Section 5.2. Instead of obtaining the feature

points position by the robot, KINECT (Microsoft, Redmond, Washington, United

States) was used to detect the feature points on the markers and obtain their co-

ordinates. As shown in Figure 5.7, two L-shape markers were used in the vision-

based registration process. One marker was attached to the patient and the other

was attached to the robot. Let W , P , R∗, R denote the world coordinate sys-

tem established by the KINECT, the patient coordinate system, the robot marker

coordinate system and the robot coordinate system respectively (See Figure 5.7).
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Since R∗ to R is a simple translation and the relative position of the two coordi-

nate systems is fixed, the transformation matrix R
R∗T from R∗ to R can be easily

obtained. The transformation matrix P
RT from patient coordinate system P to

robot coordinate system R can then be calculated by

R
PT =R

R∗ T
R∗

P T, (5.8)

where R
R∗T denotes the transformation matrix from the patient coordinate system

P to the robot marker coordinate system R∗. Therefore, the objective of this

Figure 5.7: Vision-based registration process illustration.

vision-based registration is to find the transformation matrix R∗
P T from the patient

coordinate system P to the robot coordinate system R∗. R∗
P T can be calculated
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by

R∗

P T =R∗

W T W
P T = (WR∗T )−1 W

P T, (5.9)

where W
R∗T denotes the transformation matrix from the robot marker coordinate

system R∗ to the world coordinate system W and W
P T denotes the transformation

matrix from the patient coordinate system P to the world coordinate system W .

With KINECT, we are able to obtain the positions of feature points on patient

marker and robot marker.

The marker used in the vision-based registration has two layers (see Figure

5.8). The marker cover has a flat surface and can be used to indicate the marker

plane. After the marker plane is identified, the marker cover will be removed.

The bottom marker with features can be used to mark the features on the 2D

color image.

Figure 5.8: Maker used in the vision-based registration.

The positions of feature points on the marker can be obtained by the following

steps. Firstly, the range (x, y, z range in W ) of marker region should be identified

so that the marker can be segmented from a small region. As shown in Figure

5.9(a), the environment in the full range point cloud view is very complex and

it is hard to segment the marker. By defining the range of the marker, we can

extract a very small region (see Figure 5.9(b)) to segment the marker. Based on
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(a) (b)

Figure 5.9: Maker region extraction by defining the range of the marker region. (a)Full
range point cloud view. (b)Extracted marker region.

the color difference of the marker (blue) and the background (yellow), the marker

can be segmented out from the environment. Since noises exist in the point cloud

data from the KINECT range camera, linear regression method is used to find the

marker plane (See Figure 5.10). With the estimated marker plane, the feature

Figure 5.10: Marker plane fitting for patient coordinate system construction.

points on the marker can be determined by finding the feature points on the 2D

color image from KINECT. Since there is a mapping between the depth image

and the 2D color image, coordinates of the feature points can be obtained. W
R∗T
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and W
P T can then be calculated by following Equation 5.1 to Equation 5.7.

5.3.2 Registration Error Compensation

In our vision-based registration method, the feature points on marker are used

to establish the coordinate system. However, small errors are inevitable when

detecting the features on the marker due to the limit of camera precision. As

shown in Figure 5.11, a small deviation in identifying the feature points can cause

obvious errors of the coordinate system. The errors can be classified into two

categories: rotational error and translational error. Since the translational error

Figure 5.11: Illustration of the registration error when detecting the marker features.

d is always smaller than the radius of the feature region (1.5mm), it can be ignored

in this application. However, the rotational error of the coordinate system may

cause large error of the RFA targets. As shown in Figure 5.11, the rotational

error θ can be estimated by

θ = arctan(
d

L
), (5.10)

where d is the translational error and L is the distance between two feature points.

θ is a smaller angle since d is always very small. The targeting error will increase
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as its distance from marker increases. In our application, the marker on the robot

is quite far from the liver (about 200mm). Therefore, the errors caused by the

robot marker cannot be ignored.

A simulation based on an animal experiment data was conducted to demon-

strate the errors in a robotic RFA experiment environment. In this simulation,

we assume the error of feature point x in robot marker is −1mm and other feature

points’ positions are accurate. 16 targets inside the pig liver is selected. The ac-

tual targets and deviated targets are plotted in Figure 5.12. The error of every

target is shown in Table

Figure 5.12: Simulation of the errors of 16 RFA targets. Red dots represent the actual
targets, and green dots represent the deviated targets.

Table 5.1: Error of every target.

No. Error(mm) No. Error(mm) No. Error(mm) No. Error(mm)
1 (-9.4,-1.4,0) 2 (-9.2,-1.6,0) 3 (-9.1,-2.1,0) 4 (-9.0,-2.7,0)
5 (-9.9,-1.2,0) 6 (-9.8,-1.7,0) 7 (-9.7,-2.3,0) 8 (-9.6,-2.8,0)
9 (-10.5,-1.3,0) 10 (-10.4,-1.8,0) 11 (-10.2,-2.4,0) 12 (-10.1,-2.9,0)
13 (-11.0,-1.4,0) 14 (-10.9,-2.0,0) 15 (-10.7,-2.5,0) 16 (-10.7,-3.0,0)

Although the error of each point is different, they can be regarded as the same

value within a small zone. In practice, the size of ablated zone is small com-

pared to the distance from the liver to robot marker. Therefore, it is possible to
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compensate the errors by finding the error of one test point near the targets and

calibration after the vision-based registration was proposed. The errors of targets

can be compensated by the following steps. Firstly, a test point near the targets’

zone (liver) should be defined. Since the patient marker is just near the liver, we

can define one of its feature points as the the test point. The position of this test

point can be obtained from the CT image. The position of this test point is then

transformed to the robot coordinate system by R
PT so that the RFA needle can

reach the test point. The error between the actual position of the needle tip and

the test point can be obtained by two ways: (1). We can control the robot to

move the needle to the test point and record the robot movement as described in

Section 5.3. (2). Since the needle tip is close to the patient marker, the needle

tip position in the patient marker coordinate system can be easily measured. The

error with respect to the patient marker coordinate system P can be obtained.

The error expressed in the robot coordinate system can be calculated by

ER =R
P T EP , (5.11)

where ER and EP is the error expressed in the robot coordinate system and the

patient coordinate system respectively, RPT is the transformation matrix from the

patient coordinate system to the robot coordinate system. For each target, this

error can be compensated before execution.

5.4 Evaluation for Registration Methods

To test the accuracy of the two registration methods, nine points on a coordinate

paper were set as ablation target points(see Figure 5.13(a)). After registration,

the robot performed the multiple RFA needle insertion to the nine points in se-

87



Chapter 5 Preoperative Registration

quence. Deviation of the RFA needle tip from target point was recorded as the

execution error. The execution error can be read directly from the coordinate pa-

per (see Figure 5.13(b)). The execution errors of the two registration methods are

(a) (b)

Figure 5.13: Accuracy test for the two registration methods. (a)Target points on a
coordinate paper . (b)Registration error read.

showed in Table 5.2. Method 1 represents the registration by targeting feature

points using robot. Method 2 represents the vision-based registration method.

The mean error and the standard deviation(STD) of the nine insertions were cal-

culated. For Method 1, the mean error is 1.2mm and the STD is 0.1mm. For

Method 2, the mean error is 2.0mm and the STD is 0.5mm. The small mean

Table 5.2: Execution errors of the two registration methods.(unit: mm)

1 2 3 4 5 6 7 8 9 mean STD
Method 1 1.3 1.2 1.3 1.4 1.1 1.2 1.3 1.1 1.2 1.2 0.1
Method 2 1.5 1.2 1.5 2.1 2.3 2.5 2.8 1.8 2.1 2.0 0.5

errors (1.2mm and 2.0mm) indicate that the robot system can achieve good ac-

curacy using both registration methods. The STD of Method 1 (0.1mm)is much

smaller than that of Method 2 (0.5mm). The reason is that a constant error

for the test point was used to compensate all the targets’ errors, which are actu-
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ally different. Nonetheless, the experiment results showed that both registration

methods can achieve the required accuracy in RFA for liver tumor.

5.5 Summary

In this chapter, two registration methods were proposed to transform the com-

puted tomography (CT) image data to the robot coordinate system. The first

registration method achieves the registration using our robot. This method can

result in higher accuracy and can be easily implemented in our robotic system.

However, it may have limitations in other robotic manipulators that cannot reach

a target intuitively. Therefore, a generic vision-based registration method was

also proposed. KINECT was used to detect the maker features in this method.

To compensate the detecting error in KINECT, a calibration process need to be

conducted before executing the task. The experiment results showed that both

registration methods can achieve the required accuracy in RFA for liver tumor.
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Experiments

In this chapter, an ex-vivo experiment on phantom Model and an in-vivo exper-

iment on Porcine Model are presented to test the effectiveness of our RFA needle

insertion robot system in clinical environment. The aim of this RFA needle inser-

tion robot system is to execute multiple RFAs from a single insertion port. There-

fore, we tested two major performances of the robot system. Firstly, we want to

ascertain that the robot can insert the RFA needle to the targets as planned. Sec-

ondly, we want to ascertain that the multiple insertions actually enter the patient

body through a single insertion port. The experimental setup and work flow are

introduced. Pre-operative planning, registration and intra-operative robot exe-

cution were conducted to test the whole system. During in-vivo experiment, the

liver tissue is ablated after the needle insertion. The ablation result were evalu-

ated by the clinician. The ex-vivo and in-vivo experimental results demonstrated

that our robot system is able to conduct multiple RFAs with minimal incision

effectively. Challenges and limitations are also discussed in this chapter.
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6.1 Experimental Setup

Figure 6.1 shows the experimental setup of our robotic RFA needle insertion sys-

tem. The system includes 1) the RFA needle insertion robot, 2) a computer for

preoperative CT image processing and RFA planning, 3) a computer for robot con-

trol and 4) KINECT for registration. For in-vivo experiment on porcine model,

Figure 6.1: Experimental set-up of our robotic RFA needle insertion system.
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the radio-frequency ablation generator (see figure 6.2(a)), breath control device

for the patient (see Figure 6.2(b)), and monitoring equipment (see Figure 6.2(c))

for the patient are also included in the system. Since we use CT image data to

(a) (b) (c)

Figure 6.2: Additional devices for in-vivo experiment. (a)Radio-frequency ablation
generator. (b) breath control device for the patient. (c) monitoring equipment for the

patient

do RFA planning, it is important to avoid moving the patient too much after CT

scan. Therefore, the whole system was set up in the CT room to make sure that

the patient and liver positions during the RFA procedure is similar to those in

the CT image. The robot frame has four wheels and can be moved when the pa-

tient need to do CT scan. After the CT scan is done, the robot can be moved to

the right position and fixed by locking the wheels. The patient should be placed

close to the RCM mechanism so that the workspace of the robot can cover a large

volume of tumor. This can be achieved by adjusting the height of the surgical

bed.

6.2 Experimental Work Flow and Software Ar-

chitecture

As shown in Figure 6.3, the work flow of the robotic RFA needle insertion

experiment can be divided into four main parts: preoperative RFA simulation,

preoperative RFA planning, registration and robot execution. To reduce the du-
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ration of the experiment, RFA simulation was conducted before the experiment.

During the experiment, simulation results can be displayed to the clinician as a

reference. The experiment begins with CT scan for the patient. When the pa-

Figure 6.3: Work-flow of the experiment.

tient arrives at the CT room, the L-shape marker is attached to the patient. The

patient is then send to do CT scan with the marker. A RFA planning software

(see Figure 6.4) is used to process the 2D CT images. The planning software is
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able to reconstruct the 3D model of the patient and establish a marker-based coor-

dinate system. The clinician is allowed to choose the insertion port and ablation

targets from the software. The positions of the insertion port and the targets

Figure 6.4: The RFA planning software.

with respect to the patient coordinate system can be exported as the input of

patient-robot registration. Registration is then conducted by targeting feature

points on the patient marker. The transformation matrix from patient coordi-

nate system to the robot coordinate system is established. The position of the

insertion port and the targets are thus converted to the robot coordinate system.

Inverse kinematics is conducted to calculate the joints’ variable values for each

target. A user interface (see Figure 6.5) is designed to control the RFA needle

insertion process. By using the control software, the robot can be moved either

manually or automatically. In manual control mode, the robot can be controlled

by defining each joint variable command. This mode can be used in testing the

94



Chapter 6 Experiments

Figure 6.5: Robot control interface.

robot. In automatic control mode, the software obtains ablation data from out-

side and moves the RFA needle automatically. Some control functions, such as

”move back”, ”pause” and ”insertion speed”, are integrated to the automatic con-

trol mode. In this RFA needle insertion experiment, the control software read the

ablation data calculated from registration process and automatic control mode is

used during the experiment. During needle insertion, the direction of RFA nee-

dle is first adjusted and then inserted after the needle orientation is ascertained.

When the needle moves close to the patient skin, insertion is paused to allow the

clinician to cut a small incision for the needle to go in. In the in-vivo experiment,

the RFA generator is turned on for two minutes after the needle reaches the abla-

tion target. The needle is moved back after one ablation is done. This ablation

process is repeated for every ablation until all targets have been ablated.
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6.3 Ex-vivo Experiment on Phantom Model

This section presents the results of the RFA needle insertion experiment con-

ducted on a human phantom. The phantom used for this experiment is shown

in Figure 6.6. The liver model in the phantom was replaced by a silicon liver to

allow the RFA needle to go inside. A mold is fabricated using 3D printer to build

the silicon liver. As shown in Figure 6.7(a), the mold is used to build the top half

of the liver. For our RFA needle insertion experiment, only the top half silicon

liver is sufficient. The bottom half of the liver is solid so that it can support the

top half and keep the liver stable in the human phantom (see Figure 6.7(b)). To

(a) (b)

Figure 6.6: Phantom model used in the experiment. (a)Inside of the phantom model. (b)
Phantom cover with a small silicon skin to mimic the human skin.

mimic the tumor and make it easy to select targets in the RFA planning, three

fake tumors made of red clay balls are also included in the silicon liver (see Figure

6.7(c)). On the cover of the phantom, a small hole is cut to allow the RFA needle

to go through and a piece of fake skin made of silicon is attached on top of the hole

to simulate human skin (see Figure 6.6(b)). A L-shape marker is also attached

96



Chapter 6 Experiments

to the phantom to establish the patient coordinate system.

(a) (b) (c)

Figure 6.7: Fabrication of the liver in phantom test. (a) Liver mold for top half of the
liver. (b) Bottom half of the liver model (solid). (b) Silicon half liver using the liver mold

with three red clay balls as the tumor.

The CT images of the phantom are used to construct the 3D model of the

phantom and establish the marker-based patient coordinate system (see Figure

6.8). By establishing the marker-based coordinate system, all the planning data

can be expressed in this coordinate system. The ablation targets are selected

Figure 6.8: Reconstructed 3D phantom model from CT image and marker based patient
coordinate system.

as the centers of the three clay balls and the insertion port are selected on the

silicon skin. As shown in Figure 6.9(a), the insertion port and targets can be

selected in 2D CT images. The red dot indicates the selected insertion port and

the green dots indicate the selected targets. The 3D planning effect is shown

in figure 6.9(b). The red dot indicates the selected insertion port and the green
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balls indicate the ablation spheres on the targets. The results of this ex-vivo

(a) (b)

Figure 6.9: Preoperative planning for phantom test (a)Selected insertion port (red dot) and
targets (green dots) on 2D slice. (b) Insertion port (red dot) and targets (green balls) in the

patient coordinate system.

(a) (b)

Figure 6.10: Phantom test results (a) Actual insertion port (black dot) on the skin. (b)
Actual entry ports (black dots) on the liver.

phantom test is shown in Figure 6.10. As shown in Figure 6.10(a), the three

insertions all go through a single insertion port (as indicated by the black dot).

Figure 6.10(b) shows the silicon liver after the experiment. The three black dots

indicate the three entry points to the liver. From their positions and the direction

of the RFA needle, we can assert that the RFA needle has reached the three targets
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as planned. After the experiment, the fake tumors were taken out from the silicon

liver. To demonstrate the accuracy of this experiment, each tumor was split along

the insertion trajectory (see Figure 6.11). Since our targets were at the centers

of the tumors, the execution errors can be measured approximately. Table 6.1

shows the execution errors in targeting the tumors. The errors are acceptable in

the application of RFA needle insertion.

Figure 6.11: Insertion trajectory inside the fake tumor.

Table 6.1: Execution errors for in the tumors.

Tumor Number Execution error(Unit: mm)
Tumor 1 1.5
Tumor 2 1.2
Tumor 1 2.1

6.4 In-vivo Experiment on Porcine Model

To test the system feasibility in real clinical environment, an in-vivo experiment

on porcine model was conducted (see Figure 6.12). Since breath of the pig can

affect the position of the targets in liver and also the insertion port on the skin,

the breath of the pig is hold during the CT scan and RFA process. To make the

internal organs’ positions during the RFA the same as those in the CT image, CT

scan and the RFA were both conducted during the inhale phase of the pig. As in

the phantom experiment, a L-shape marker is attached to the patient before the
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CT scan. Figure 6.13 shows the reconstructed 3D porcine model from CT images.

Figure 6.12: an in-vivo experiment on porcine model.

Patient coordinate system (see Figure 6.13) can also be established based on the

marker features. In this in-vivo experiment, the RFA planning was conducted

Figure 6.13: Reconstructed 3D porcine model from CT image and marker based patient
coordinate system.
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by the clinician. By using our planning software (see Figure 6.4), clinician was

allowed to select the insertion port and ablation targets in the 2D CT image (see

Figure 6.14(a)). After the selection, they can check the plan by inspecting the

predicted outcomes on the 3D model (see Figure 6.14(b)).

(a) (b)

Figure 6.14: Preoperative planning for porcine model test (a)Selected insertion port (red
dot) and targets (green dots) on 2D slice. (b) Insertion port (red dot) and targets (green

balls) in the patient coordinate system.

Figure 6.15 shows the results of the in-vivo experiment on porcine model. In

this experiment, the clinician selected three locations to conduct RFA. In each

location, one insertion port and three targets were selected. From Figure 6.15(a),

we can observe that there are three small incisions left on the patient skin. On

the liver, we can observe that three separate RFA lesion zones (see Figure 6.15(b)).

Each lesion zone consists of three sequential RFA lesions.

This in-vivo experiment shows that our RFA needle insertion system is able to

conduct multiple RFAs through a single insertion port. The target ablation vol-

ume can be covered by the RFA lesions as we planned in preoperative stage. The

feasibility and effectiveness of our system has been proven. Table 6.2 presents the

duration for successful targeting one ablation. The times for the robot are mea-

sured from our experiment and the times for manual ablation are obtained from
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(a) (b)

Figure 6.15: Porcine test results (a) Insertion ports on the skin. (b) Ablation results on
the liver.

Patriciu’s study [16]. Since our robotic execution depends on the pre-operative

planning data, we do not need to do CT scan for every insertion. We can observe

that the targeting time for robot is much less than the time for manual ablation.

The robotic RFA needle insertion is thus more efficient than manual ablation.

Table 6.2: Time for successful targeting (min)

Mean STD Max Min
Robotic 0.43 0.04 0.51 0.38
Manual 8.57 1.99 12 6

6.5 Summary

In this chapter, an ex-vivo experiment on phantom model and an in-vivo exper-

iment on porcine model are presented to test the feasibility and effectiveness of

our RFA needle insertion robot system in clinical environment. The experimen-

tal setup and work flow are introduced. Pre-operative planning, registration and

102



Chapter 6 Experiments

intra-operative robot execution were conducted to test the whole system. During

in-vivo experiment, the liver is ablated after the needle insertion. The ablation re-

sult were evaluated by the clinician. The ex-vivo and in-vivo experimental results

demonstrated that our robot system is able to conduct multiple RFAs with min-

imal incision effectively and efficiently. Our system demonstrates good potential

for percutaneous RFA of large liver tumor.
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Conclusion and Future Work

Three main issues related to computer-aided and robot-assisted RFA of large

liver tumor, i.e. preoperative simulation and planning, robotic RFA execution,

and surgical registration, are investigated in this research. A computer-aided and

robot-assisted RFA needle insertion system was built to implement and test our

methods. Ex-vivo and in-vivo experimental results show that our RFA needle

insertion system is capable of conducting RFA procedure for large liver tumor

with small incision. For the patients who are not physically fit to undergo liver

resection, the computer-aided and robot-assisted RFA needle insertion system

offers them an alternative. Hence, their chance of survival can be increased.

The probabilistic RFA simulation method we proposed takes account of the in-

trinsic variations of liver tissue and shows that the temperature inside the liver

tissue follows normal distribution. Compared to previous studies about RFA sim-

ulation, our study improves the reliability of current RFA simulations. The prob-

abilistic nature of biological tissue is revealed, and this probabilistic method can

be useful for other simulations on biological tissue.

To achieve ’Remote Center of Motion (RCM)’ of the RFA needle and realize

single insertion port on patient skin, a novel spherical mechanism was designed
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and implemented. A new kinematic analysis method was proposed in our study.

This method overcomes the limitations of previous methods. To realize smooth

motion of the manipulator during RFA needle insertion, an integrative speed and

position control strategy was also investigated. The ex-vivo experiment proves

that the RFA needle insertion robot is able to do multiple RFA needle insertions

through a single insertion port accurately and efficiently, showing that this robot

is capable of executing multiple RFAs for large liver tumor treatment.

Registration is a process that synthesizes the preoperative planning data and the

real surgical environment. The accuracy of the RFA needle insertion largely de-

pends on the accuracy of registration. A novel L-shape marker-based registration

method was proposed to transform the computed tomography (CT) image data

to the robot coordinate system. This method establishes the transformation be-

tween the patient coordinate system and robot coordinate system by finding the

feature points of the patient marker using the robot. This method works well

in our system but has limitations for other robot systems. Therefore, a generic

vision-based registration was also proposed. The experiment results showed that

both registration methods can achieve the required accuracy in RFA for liver tu-

mor based on the clinician’s feedback.

However, it should be noted that our study also has some limitations. Firstly,

some assumptions was used in the RFA simulation model. For example, we as-

sumed that the temperature on the liver surface and the initial temperature of

the liver is always 37◦C. We also assumed that the voltage on the liver surface

is zero. These assumptions may not be accurate in real situation, and they may

lead to inaccuracy of the model. As far as we know, all the models for liver

have some simplifications and assumptions. This is because human liver is a very

complex organ and it is almost impossible to model it exactly. However, for our

RFA planning application, this model can provide enough information. Secondly,
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our study does not take into account the deformation of liver and RFA needle.

When the RFA needle is inserted to the liver, both the needle and the liver will be

deformed. The temperature change during RFA could also cause deformation of

the tissue [9]. The deformation of liver and RFA needle could affect the accuracy

of RFA needle insertion. This deformation process is very hard to model because

the initial condition for each insertion is different and it is impossible to model it

when we do not know the initial condition. Nevertheless, the error caused by the

deformation is acceptable because we always ablate more volume than the actual

tumor volume to make sure the tumor is completely destroyed and we are target-

ing large tumors. In addition, real-time image feedback is still needed to monitor

any possible accident during the RFA process even when we have preoperative

RFA planning.

In order to make the RFA needle insertion robot be routinely used in clinic,

several improvements are required in our prototype system. Firstly, our robotic

RFA needle insertion are purely based on preoperative CT data. Therefore, real-

time feedback of patient images for example, via intraoperative ultrasound imaging

should be incorporated into the RFA needle insertion system. With real-time

feedback, we can avoid possible complications such as damaging of vital organs

during RFA execution. Secondly, the human-machine interface should also be

optimized to provide clear guidance to the clinician and clinical team. Finally,

more animal experiments are required to test the safety, precision and stability of

our system.
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Appendix

Video Links

1. Robot accuracy test
https://youtu.be/cAoy0lAOsVc

2. Single insertion point demonstration
https://youtu.be/N5PzMugtKYM

3. Ex-vivo experiment on human phantom
https://youtu.be/mdHRlur_8aw

4. In-vivo experiment on porcine model
https://youtu.be/MFcsQuhQudg
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