28 research outputs found

    A Near-linear Time Constant Factor Algorithm for Unsplittable Flow Problem on Line with Bag Constraints

    Get PDF
    Consider a scenario where we need to schedule a set of jobs on a system offering some resource (such as electrical power or communication bandwidth), which we shall refer to as bandwidth. Each job consists of a set (or bag) of job instances. For each job instance, the input specifies the start time, finish time, bandwidth requirement and profit. The bandwidth offered by the system varies at different points of time and is specified as part of the input. A feasible solution is to choose a subset of instances such that at any point of time, the sum of bandwidth requirements of the chosen instances does not exceed the bandwidth available at that point of time, and furthermore, at most one instance is picked from each job. The goal is to find a maximum profit feasible solution. We study this problem under a natural assumption called the no-bottleneck assumption (NBA), wherein the bandwidth requirement of any job instance is at most the minimum bandwidth available. We present a simple, near-linear time constant factor approximation algorithm for this problem, under NBA. When each job consists of only one job instance, the above problem is the same as the well-studied unsplittable flow problem (UFP) on lines. A constant factor approximation algorithm is known for the UFP on line, under NBA. Our result leads to an alternative constant factor approximation algorithm for this problem. Though the approximation ratio achieved by our algorithm is inferior, it is much simpler, deterministic and faster in comparison to the existing algorithms. Our algorithm runs in near-linear time (O(nlog2n)O(n*log^2 n)), whereas the running time of the known algorithms is a high order polynomial. The core idea behind our algorithm is a reduction from the varying bandwidth case to the easier uniform bandwidth case, using a technique that we call slicing

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    Signalisierte Netzwerkflüsse - Optimierung von Lichtsignalanlagen und Vorwegweisern und daraus resultierende Netzwerkflussprobleme

    Get PDF
    Guideposts and traffic signals are important devices for controlling inner-city traffic and their optimized operation is essential for efficient traffic flow without congestion. In this thesis, we develop a mathematical model for guideposts and traffic signals in the context of network flow theory. Guideposts lead to confluent flows where each node in the network may have at most one outgoing flow-carrying arc. The complexity of finding maximum confluent flows is studied and several polynomial time algorithms for special graph classes are developed. For traffic signal optimization, a cyclically time-expanded model is suggested which provides the possibility of the simultaneous optimization of offsets and traffic assignment. Thus, the influence of offsets on travel times can be accounted directly. The potential of the presented approach is demonstrated by simulation of real-world instances.Vorwegweiser und Lichtsignalanlagen sind wichtige Elemente zur Steuerung innerstädtischen Verkehrs und ihre optimale Nutzung ist von entscheidender Bedeutung für einen staufreien Verkehrsfluss. In dieser Arbeit werden Vorwegweiser und Lichtsignalanlagen mittels der Netzwerkflusstheorie mathematisch modelliert. Vorwegweiser führen dabei zu konfluenten Flüssen, bei denen Fluss einen Knoten des Netzwerks nur gebündelt auf einer einzigen Kante verlassen darf. Diese konfluenten Flüsse werden hinsichtlich ihrer Komplexität untersucht und es werden Polynomialzeitalgorithmen für das Finden maximaler Flüsse auf ausgewählten Graphenklassen vorgestellt. Für die Versatzzeitoptimierung von Lichtsignalanlagen wird ein zyklisch zeitexpandiertes Modell entwickelt, das die gleichzeitige Optimierung der Verkehrsumlegung ermöglicht. So kann der Einfluss geänderter Versatzzeiten auf die Fahrzeiten direkt berücksichtigt werden. Die Leistungsfähigkeit dieses Ansatzes wird mit Hilfe von Simulationen realistischer Szenarien nachgewiesen

    A Primal-Dual Algorithm for Multicommodity Flows and Multicuts in Treewidth-2 Graphs

    Get PDF
    We study the problem of multicommodity flow and multicut in treewidth-2 graphs and prove bounds on the multiflow-multicut gap. In particular, we give a primal-dual algorithm for computing multicommodity flow and multicut in treewidth-2 graphs and prove the following approximate max-flow min-cut theorem: given a treewidth-2 graph, there exists a multicommodity flow of value f with congestion 4, and a multicut of capacity c such that c ? 20 f. This implies a multiflow-multicut gap of 80 and improves upon the previous best known bounds for such graphs. Our algorithm runs in polynomial time when all the edges have capacity one. Our algorithm is completely combinatorial and builds upon the primal-dual algorithm of Garg, Vazirani and Yannakakis for multicut in trees and the augmenting paths framework of Ford and Fulkerson

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Methods and Techniques for Dynamic Deployability of Software-Defined Security Services

    Get PDF
    With the recent trend of “network softwarisation”, enabled by emerging technologies such as Software-Defined Networking and Network Function Virtualisation, system administrators of data centres and enterprise networks have started replacing dedicated hardware-based middleboxes with virtualised network functions running on servers and end hosts. This radical change has facilitated the provisioning of advanced and flexible network services, ultimately helping system administrators and network operators to cope with the rapid changes in service requirements and networking workloads. This thesis investigates the challenges of provisioning network security services in “softwarised” networks, where the security of residential and business users can be provided by means of sets of software-based network functions running on high performance servers or on commodity devices. The study is approached from the perspective of the telecom operator, whose goal is to protect the customers from network threats and, at the same time, maximize the number of provisioned services, and thereby revenue. Specifically, the overall aim of the research presented in this thesis is proposing novel techniques for optimising the resource usage of software-based security services, hence for increasing the chances for the operator to accommodate more service requests while respecting the desired level of network security of its customers. In this direction, the contributions of this thesis are the following: (i) a solution for the dynamic provisioning of security services that minimises the utilisation of computing and network resources, and (ii) novel methods based on Deep Learning and Linux kernel technologies for reducing the CPU usage of software-based security network functions, with specific focus on the defence against Distributed Denial of Service (DDoS) attacks. The experimental results reported in this thesis demonstrate that the proposed solutions for service provisioning and DDoS defence require fewer computing resources, compared to similar approaches available in the scientific literature or adopted in production networks

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    corecore