265 research outputs found

    Uncertainty quantification for probabilistic machine learning in earth observation using conformal prediction

    Full text link
    Unreliable predictions can occur when using artificial intelligence (AI) systems with negative consequences for downstream applications, particularly when employed for decision-making. Conformal prediction provides a model-agnostic framework for uncertainty quantification that can be applied to any dataset, irrespective of its distribution, post hoc. In contrast to other pixel-level uncertainty quantification methods, conformal prediction operates without requiring access to the underlying model and training dataset, concurrently offering statistically valid and informative prediction regions, all while maintaining computational efficiency. In response to the increased need to report uncertainty alongside point predictions, we bring attention to the promise of conformal prediction within the domain of Earth Observation (EO) applications. To accomplish this, we assess the current state of uncertainty quantification in the EO domain and found that only 20% of the reviewed Google Earth Engine (GEE) datasets incorporated a degree of uncertainty information, with unreliable methods prevalent. Next, we introduce modules that seamlessly integrate into existing GEE predictive modelling workflows and demonstrate the application of these tools for datasets spanning local to global scales, including the Dynamic World and Global Ecosystem Dynamics Investigation (GEDI) datasets. These case studies encompass regression and classification tasks, featuring both traditional and deep learning-based workflows. Subsequently, we discuss the opportunities arising from the use of conformal prediction in EO. We anticipate that the increased availability of easy-to-use implementations of conformal predictors, such as those provided here, will drive wider adoption of rigorous uncertainty quantification in EO, thereby enhancing the reliability of uses such as operational monitoring and decision making

    Remote Sensing Applications in Monitoring of Protected Areas

    Get PDF
    Protected areas (PAs) have been established worldwide for achieving long-term goals in the conservation of nature with the associated ecosystem services and cultural values. Globally, 15% of the world’s terrestrial lands and inland waters, excluding Antarctica, are designated as PAs. About 4.12% of the global ocean and 10.2% of coastal and marine areas under national jurisdiction are set as marine protected areas (MPAs). Protected lands and waters serve as the fundamental building blocks of virtually all national and international conservation strategies, supported by governments and international institutions. Some of the PAs are the only places that contain undisturbed landscape, seascape and ecosystems on the planet Earth. With intensified impacts from climate and environmental change, PAs have become more important to serve as indicators of ecosystem status and functions. Earth’s remaining wilderness areas are becoming increasingly important buffers against changing conditions. The development of remote sensing platforms and sensors and the improvement in science and technology provide crucial support for the monitoring and management of PAs across the world. In this editorial paper, we reviewed research developments using state-of-the-art remote sensing technologies, discussed the challenges of remote sensing applications in the inventory, monitoring, management and governance of PAs and summarized the highlights of the articles published in this Special Issue

    Mapping historical forest biomass for stock-change assessments at parcel to landscape scales

    Full text link
    Understanding historical forest dynamics, specifically changes in forest biomass and carbon stocks, has become critical for assessing current forest climate benefits and projecting future benefits under various policy, regulatory, and stewardship scenarios. Carbon accounting frameworks based exclusively on national forest inventories are limited to broad-scale estimates, but model-based approaches that combine these inventories with remotely sensed data can yield contiguous fine-resolution maps of forest biomass and carbon stocks across landscapes over time. Here we describe a fundamental step in building a map-based stock-change framework: mapping historical forest biomass at fine temporal and spatial resolution (annual, 30m) across all of New York State (USA) from 1990 to 2019, using freely available data and open-source tools. Using Landsat imagery, US Forest Service Forest Inventory and Analysis (FIA) data, and off-the-shelf LiDAR collections we developed three modeling approaches for mapping historical forest aboveground biomass (AGB): training on FIA plot-level AGB estimates (direct), training on LiDAR-derived AGB maps (indirect), and an ensemble averaging predictions from the direct and indirect models. Model prediction surfaces (maps) were tested against FIA estimates at multiple scales. All three approaches produced viable outputs, yet tradeoffs were evident in terms of model complexity, map accuracy, saturation, and fine-scale pattern representation. The resulting map products can help identify where, when, and how forest carbon stocks are changing as a result of both anthropogenic and natural drivers alike. These products can thus serve as inputs to a wide range of applications including stock-change assessments, monitoring reporting and verification frameworks, and prioritizing parcels for protection or enrollment in improved management programs.Comment: Manuscript: 24 pages, 7 figures; Supplements: 12 pages, 5 figures; Submitted to Forest Ecology and Managemen

    Climate Change Impacts in Virginia: Status of Natural Resource Data Records as Tools to Assess Continuing Trends

    Get PDF
    As scientists we pose the hypothesis that climate change over the past decades has left a signal in natural resource status and productivity in Virginia. This signal exists subsumed in a variety of data from crop and forestry production, to fishery landings, to spatial distribution of numerous plant and animal species of interest. Description of these signals in concert with known changes in climate descriptors (temperature, rainfall and more) provide a basis for hind-casting possible cause and effect relationships. If such relationships exist, and we hypothesize that they do, then projections of climate descriptors (temperature, rainfall and more) provide the basis for projections of impacts on defined natural resources, with obvious economic and societal impacts. Before a comprehensive analysis of extant data can occur we must start with a simple inventory of available data. As simplistic as this may sound we can find no single database that describes the general status of natural resources in Virginia over the past decades. Indeed, we suggest that the majority of such data exists as unpublished (in peer review, and in some instances even technical reports) compilations spread among the various state and federal natural resource agencies active in Virginia. This body of work had several goals; 1) to assess the scope of natural resource descriptive data available in the Commonwealth of Virginia, 2) to assemble an index of such data, and 3) develop a bibliography to serve as a resource for more comprehensive analyses in the future

    Long-term Prairie Wetlands Extraction and Change Detection with Multi-spatial and Multi-temporal Remote Sensing Data

    Get PDF
    Prairie wetlands, also called “potholes”, provide both ecological and hydrological functions and have experienced dramatic change over the past century. This research aims to: 1) compare the capacity of Landsat and SPOT in mapping open water and wet areas with advanced classification methods; 2) monitor and quantify the changes in wetlands and drainage channels, between 1948 and 2009, with aerial photography; and 3) evaluate Landsat’s ability to extract historical wetland coverage data across seasons using a variety of methods. Results indicate that Landsat is capable for mapping open water, wet areas and other LULC types in PPR; however only 48.5% of wetland areas are identified as compared with air photos. Historical analysis of air photo generated wetland and drainage channels show that the whole basin’s wetlands rapidly decreased from 1958 to 1990 (24% to 13%) and slowly decreased from 1990 to 2009 (13% to 10%) with the least reduction in sub basin 1. Drainage channels slowly increased from 1958 to 1990 (119 km to 269 km) and dramatically increased from 1990 to 2009 (269 km to 931km). Wetland area is highly correlated with accumulated snowfall in the previous three years in sub basin 2 (r=0.91, p<0.05) due to its memory effect to previous water conditions. For the full basin, however, there were not enough years of data to prove this correlation. Even though the minimum distance algorithm in early spring is optimal for mapping wetlands in the Prairie Pothole Region (PPR), comparing with air photos, SPOT imagery underestimated wetlands smaller than 1200 m2, while Landsat imagery is not able to detect wetlands smaller than 900 m2 and underestimates areas smaller than 1600 m2. Although free-archived Landsat can detect water bodies larger than 900 m2, its ability to detect prairie wetland is limited due to missing numerous small-scale wetlands and misclassification of seasonal wetlands.

    A Knowledge-based approach of satellite image classification for urban wetland detection

    Get PDF
    Title from PDF of title page, viewed on July 30, 2014Thesis advisor: Wei JiVitaIncludes bibliographical references (pages 85-93)Thesis (M. S.)--Dept. of Geosciences. University of Missouri--Kansas City, 2014It has been a technical challenge to accurately detect urban wetlands with remotely sensed data by means of pixel-based image classification. This is mainly caused by inadequate spatial resolutions of satellite imagery, spectral similarities between urban wetlands and adjacent land covers, and the spatial complexity of wetlands in human-transformed, heterogeneous urban landscapes. Knowledge-based classification, with great potential to overcome or reduce these technical impediments, has been applied to various image classifications focusing on urban land use/land cover and forest wetlands, but rarely to mapping the wetlands in urban landscapes. This study aims to improve the mapping accuracy of urban wetlands by integrating the pixel-based classification with the knowledge-based approach. The study area is the metropolitan area of Kansas City, USA. SPOT satellite images of 1992, 2008, and 2010 were classified into four classes -- wetland, farmland, built-up land, and forestland -- using the pixel-based supervised maximum likelihood classification method. The products of supervised classification are used as the comparative base maps. For our new classification approach, a knowledge base is developed to improve urban wetland detection, which includes a set of decision rules of identifying wetland cover in relation to its elevation, spatial adjacencies, habitat conditions, hydro-geomorphological characteristics, and relevant geostatistics. Using ERDAS Imagine software's knowledge classifier tool, the decision rules are applied to the base maps in order to identify wetlands that are not able to be detected based on the pixel-based classification. The results suggest that the knowledge-based image classification approach can enhance the urban wetland detection capabilities and classification accuracies with remotely sensed satellite imageryAbstract -- List of illustrations -- List of tables -- Acknowledgements -- Introduction -- Literature review -- Methodology -- Findings and analysis -- Discussion and conclusion -- Reference lis

    Tree species mapping around reclaimed oil and gas wells sites using hyperspectral and Light Detection and Ranging (LiDAR) remote sensing

    Get PDF
    Oil and gas activities in Alberta require disturbing forested lands, among other ecosystems, in order to extract resources. Due to the number of oil and gas sites requiring reclamation, monitoring can be problematic. Remote sensing provides cost-effective, timely, and repeatable data of these areas in support of monitoring efforts. Support Vector Machine (SVM) and Multiple Endmember Spectral Mixture Analysis (MESMA) were tested in order to identify tree species around reclaimed and abandoned well sites near Cold Lake, Alberta using CHRIS satellite imagery with and without airborne LiDAR data. A hierarchical classification approach was employed, which achieved an accuracy of 83.4 % when using SVM together with CHRIS imagery and LiDAR. This positive result indicates the ability of remote sensing to support reclamation management and monitoring objectives within Alberta’s forested areas.Natural Science and Engineering Research Council of Canada (NSERC) CREATE scholarship (Advanced Methods, Education and Training in Hyperspectral Science and Technology; AMETHYST). Alberta Terrestrial Imaging Centre (ATIC). TECTERRA. Oil Sands Research and Information Network (OSRIN). Alberta Environment and Sustainable Resource Development (ESRD
    • …
    corecore