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The use of Landsat data has historically been constrained to spectral and spatial 

information derived from a carefully selected image or set of images. However, free and open 

access to Landsat imagery combined with advances in data storage and computing are 

revolutionizing how the Landsat temporal domain is used to map and monitor land surface 

properties and land cover change. Since the opening of the USGS archives in 2008, many 

different time series analysis approaches have been developed without a unified framework for 

characterizing information extracted from dense time series of Landsat imagery. 

In Chapter 1, we define SpectralTemporal Features (STFs) as discrete or continuous 

features derived from time series of remotely sensed observations. Like spectral indices, STFs 

represent a transformation of the original image data and can provide new information about land 

surface properties and other biophysical parameters. STFs offer a number of improvements over 

conventional spectral or spatial inputs, including seamless coverage over large extents, more 

consistent and stable feature sets for classification through time, and new information on both 

spectral and temporal variability in reflectance that can be related to biophysical parameters. 

To demonstrate how STFs can be applied in practice, we present a series of case studies 

spanning a range of geographic locations within different ecosystem types, and study objectives. 

These case studies illustrate relationships between different STFs and various biophysical 



parameters and yield insight into the specific ecological metrics that can be discovered and 

characterized with the spectraltemporal domain.  

With the release of collectionstyle Landsat products and continued advances in 

preprocessing algorithms, as well as availability of tiled Analysis Ready Data and improved 

access to cloud and clusterbased computing resources such as Google Earth Engine, the 

Australian Data Cube, and Sentinel Hub, time series approaches are becoming increasingly 

prevalent. We argue that STFs provide new information on both spectral and temporal variability 

in reflectance in different ecosystems that can be related to biophysical parameters. Thus, there is 

a critical need to continue to review and standardize the discussion and application of STFs for 

locallyaccurate mapping and monitoring of forested ecosystem dynamics. 

In Chapter 2, we test the utility of primary STFs derived from time series of all available 

Landsat TM/ETM+ observations, including Global Surface Water (GSW) features, for 

discriminating among wetlands at different categorical resolutions within the National Wetlands 

Inventory (NWI) classification taxonomy. We examine two key types of primary STFs, 1) 

reflectance STFs, which characterize reflectance values of spectral indices used, and 2) day of 

year (DOY) STFs, which quantify the timing of their associated reflectance STFs. As an 

exploratory measure, we also abstract and evaluate spatialtemporal climate features, such as the 

perpixel annual maximum of daily maximum temperature, to yield insight into potential drivers 

of wetland characterization. Using an NWI reference dataset from two Oregon ecoregions in 

distinctly different ecohydrological climate zones, we test classification agreement and examine 

relative performance of different classification inputs across ecoregions and wetland categories. 

We test an array of classifications that use consistent training and testing datasets, but vary the 

features and featuresets used as model inputs. Beyond classification performance, we also 

explore categoricallevel agreement and the importances of different features for differentiation 

within different wetland categories. Our aim is not to estimate the accuracy of the reference NWI 

map or monitor wetland change over time and space, but rather to build a framework for 

multilevel wetland classification across climate gradients.  

We found that STFs featuresets consistently produced high overall accuracies and were 

able to accurately delineate wetland habitats  across climate gradients and wetland categorical 



resolutions even further when combined with other features. Additionally, accuracies decreased 

with increasing categorical resolution in both energyand waterlimited ecosystems. Evaluation 

of individual feature importance for distinguishing between different wetland habitats showed 

that different features are more important for different climate gradients and categorical 

resolutions. However, GSW Occurrence was consistently valuable for both ecoregions across all 

categorical resolutions, exemplifying the value of utilizing the GSW dataset for wetland 

classification. Further, although not all types of features were found to be important in overall 

classification, in quantifying correlations between individual features and individual wetland 

habitat classification probabilities, we found that all feature types were had and strong positive 

and negative correlations with individual habitats. This indicates the importance of using the 

various features as inputs for wetland classification.  

In Chapter 3, we use all available Landsat imagery from 1985  2017 to explore how 

Pacific Northwest wetland ecosystems are changing over time in different climate zones and at 

varying categorical resolutions. Additionally, we investigate the long term changes in abstracted 

Landsat spectraltemporal features that are closely associated with different aspects of wetland 

hydroecological processes. We found that our annual classification model built from Landsat 

spectraltemporal features, climatetemporal features, and ancillary datasets performs well in 

showing change in wetland habitat. Individual STFs also display distinct changes in intraannual 

wetland dynamics in the context of wetland land use change. In terms of long term wetland 

change, Willamette Valley wetlands are trending toward more nonvegetated wetlands, fewer 

vegetated wetlands, and extreme annualconditions with the lower extrema occurring earlier in 

the year. In addition to other drivers, this change may be attributed to increased precipitation and 

increased temperature. In contrast North Basin wetlands are trending towards more vegetated 

wetlands, fewer nonvegetated wetlands, and extreme annualconditions with the lower extrema 

occurring earlier in the year, except for max TCW which is trending towards later annual 

occurrence. Timing and persistence are key for wetland habitats and this study begins the work 

to examine change in both occurrence of wetland habitat type and timing of key hydrologic and 

phenological features and ecosystem drivers. 
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Introduction 
The land surface properties and dynamics that can be distinguished from 

remotely sensed imagery are largely determined by the spectral, spatial and temporal 

characteristics of available images and image collections. In its most basic form, an 

image acquired by an optical remote sensing instrument is a collection of digital 

numbers recorded for each pixel over a continuous area at a given time (Cracknell 

1998; Strahler et al. 1986). Although these observations--which are typically 

corrected to measures of top of atmosphere and/or surface reflectance--may serve as 

direct inputs for land surface characterization and change detection, observed values 

can also be transformed to enhance information content and highlight particular 

patterns and properties (Wulder et al. 2016). There is a long-standing use of image 

data transformation in the spectral and spatial domains and these transforms have 

been, and continue to be, utilized in a broad range of applications  (e.g. Cohen and 

Goward 2004; Pettorelli et al. 2005). However, we argue that the integration of the 

spectral and temporal domains has lacked a formalized characterization.  

Unlike spectral and spectral-spatial analyses, which maximize the information 

content of individual images, spectral-temporal analyses rely on information extracted 

from multi-date image stacks. While the use of spectral-temporal transforms has been 

more prevalent for sensors with a high temporal resolution, such as the Advanced 

Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging 

Spectrometer (MODIS), the opening of the Landsat archive in 2008 (Woodcock et al. 
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2008) has resulted in a dramatic increase in the use of dense time series of Landsat 

imagery. With continued advances in automated pre-processing algorithms (e.g. 

Loveland and Dwyer 2012; Markham and Helder 2012; Masek et al. 2008; Zhu and 

Woodcock 2012) and improved access to cloud- and cluster-based computing 

resources (e.g. Gorelick et al. 2017), combined with the reorganization of the Landsat 

archive into tiered collections designed to  “provide a consistent archive of known 

data quality to support time-series analyses and data ‘stacking’, while controlling 

continuous improvement of the archive and access to all data as they are acquired” 

(USGS 2017), more researchers and end-users are able to work directly with 

multi-temporal observations. Furthermore, with the Landsat and European Space 

Agency’s Sentinel programs both providing free access to their complementary data 

streams, we expect both the use and density of Landsat and Landsat-like time series 

will only continue to increase going forward. Thus, there is a critical need to 

formalize a description of the spectral-temporal domain within the context of other 

remote sensing domains, e.g. spectral and spectral-spatial, and to provide practical 

examples of spectral-temporal products and applications.  

In this paper, we first review the use of the spectral, spectral-spatial, and 

spectral-temporal domains and present a conceptual framework that generally applies 

to both spatial and temporal analysis of remotely sensed imagery. We then focus on 

recent advances in the use of the Landsat spectral-temporal domain and provide a 

series of case studies illustrating the information content of various spectral-temporal 

 



 
 

 
 

4 
combinations. Our goals are to (1) support efforts to generate, utilize and discuss 

spectral-temporal products or “features”, as well as to (2) display the breadth of 

applications that could benefit from the evolving use of the spectral-temporal domain, 

especially for Landsat data .  

Background 
Spectral, Spectral-Spatial, and Spectral-Temporal Transforms 

The spectral domain is the foundation of optical remote sensing. Analysis of 

spectral data assumes that surface materials can be distinguished based on distinct 

reflectance profiles (Jordan 1969; Ollinger 2010; Price 1994). Though the use of data 

from individual spectral bands from both broadband and hyperspectral sensors 

remains common in image processing and classification (e.g. Chang et al. 1999; 

Cohen et al. 2018), a long history of spectral analysis has resulted in development of 

numerous spectral indices and transformations that can be applied to individual 

images to further emphasize particular land surface properties.  

Broadly defined, spectral indices  are transformations of two or more spectral 

bands constructed to augment various components of landscapes. These indices are 

computed directly, without any bias or assumptions regarding cover class or climate 

conditions (Huete et al. 2002). With the continued advancement of civilian remote 

sensing instruments programs, many spectral indices that highlight general landscape 

components such as vegetation and soil properties have been developed such as the 

 



 
 

 
 

5 
normalized difference vegetation index (NDVI), the normalized burn ratio (NBR), 

and the normalized difference water index (NDWI). This basic spectral information 

can then be further extended by characterizing the spatial and temporal context of 

spectral observations.  

The spatial context of spectral observations describes the structure of the 

imaged landscape (Woodcock and Strahler 1987). Thus, spectral-spatial analysis 

characterizes spectral properties in relation to their spatial arrangement, and typically 

is conducted for individual images (i.e. bands x rows x columns). Given the tendency 

to work with single-date imagery, the use of spatial-spectral domain is relatively 

well-established (Adams et al. 1986, Keshava and Mustard 2002, Asner et al. 2011 ). 

However, space-borne remote sensing platforms, as well as some regular aerial 

surveys, also offer a unique opportunity to analyze time series of imagery (Gómez et 

al. 2016).  

The temporal context of spectral observations describes the spectral variability 

of the imaged landscape, revealing both short- and long-term patterns and processes 

(Coppin 2004, Kennedy et al. 2014). Spectral-temporal analysis transforms spectral 

information-based temporal relationships, and utilizes stacks of imagery, resulting in 

a time series of observations for each pixel (i.e. bands x time). As more applications 

integrate spectral-temporal analysis, there is a need to describe the use of the 

spectral-temporal domain in the context of existing remote sensing approaches. 
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 We have identified a set of methods used to generate analogous 

spectral-spatial and spectral-temporal features. These methods, rescaling , moving 

window , and segmentation , can be applied to both image data (e.g. arrays of pixels) 

and time series (e.g. repeated observations for an individual pixel) (Figure 1). Though 

the focus of this paper is on the use of the spectral-temporal domain, we find 

extending concepts from the spatial to the temporal domain provides a sound 

foundation for analysis in both of these core dimensions. 

Rescaling 
Rescaling operations, as we consider them here, depend on a fixed 

user-specified spatial or temporal interval size. When observations are spatially 

rescaled or aggregated, spectral values within non-overlapping n-by-n pixel 

neighborhoods are used to calculate spectral-spatial features, which could include 

block statistics (Chavez et al. 1991) as well as texture metrics (Blan and Butler 1999; 

Hamunyela et al. 2016; Irons and Petersen 1981; Reiche et al. 2018; Wolock and 

Price 1994). Similarly, when observations are temporally rescaled, spectral values are 

grouped by a user-specified temporal interval, such as calendar year or season. The 

result of re-scaling operations are images or time series with a reduced number of 

values that summarize information content over discreet areas or intervals (Al-Bakri 

and Suleiman 2004; Hansen et al. 2002; Helldén and Tottrup 2008; Ricotta et al. 

1999) (Figure 1).  
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Moving Window 
Moving window operations are another type of neighborhood method used to 

smooth or “filter” observed data. Unlike rescaling, which is based on discrete, 

non-overlapping spatial or temporal intervals, a single spectral observation can 

contribute to multiple estimates produced by moving window approaches (Figure 1). 

In the spectral-spatial domain, moving windows can be used to generate block 

statistics, texture metrics (Arai, 1993; Chica-Olmo and Abarca-Hernández 2000; 

Miranda et al. 1992) and measures of autocorrelation (Anselin 1995; Getis and Ord 

1992; Paez and Scott 2004; Qi and Wu 1996; Wulder and Boots 1998). In the 

temporal domain, smoothing operations can also be used to generate summary 

statistics, such as moving averages or variance (Archibald and Scholes 2007; Beck et 

al. 2006; Chen et al. 2004; Hird and McDermid 2009; Ma and Veroustraete 2006; 

Reed et al. 1994; Velleman 1980; White et al. 2009), as well as more complex 

interpolated values such as splines (Bradley et al. 2007; Fan and Yao 2008; Hermance 

et al., 2007; Jonsson and Eklundh 2002), filters (Chen et al. 2004; ), and LOWESS 

(Cleveland 1979; Nagendra 2010).  

Segmentation 
A final methods for calculating spectral-spatial and spectral-temporal features 

is segmentation (Figure 1). In spatial segmentation, spectral-spatial information is 

used to automate the assignment of pixels to larger objects and features (Benz et al. 

2004; Dey et al. 2010; Ryherd et al. 1996; Woodcock and Harward 1992). Similarly, 

 



 
 

 
 

8 
in the spectral-temporal domain, temporal segmentation is used to automatically 

partition time series of observations into a set of segments and breaks (e.g. Chance et 

al. 2016; Kennedy et al. 2010; Keogh 2001; Hermosilla et al. 2015 a.,b.; Zhu et al. 

2014). Properties of objects and segments, as well as differences between adjacent 

boundaries and segment-based spectral values provide new information about 

landscape properties and dynamics. 

Primary and Secondary Spectral-temporal Features (STFs) 

Having established a general set of methods that can be applied across both 

spatial and temporal dimensions, we further explore the features produced by these 

methods specifically for the temporal domain. Rescaling, moving window, and 

segmentation methods may be applied to a time series of spectral observations in any 

number of ways. For example, a re-scaling approach could be applied to generate a 

time series of annual means, then a model could be fit to these means to identify 

breaks and segments. Alternatively, segments could be identified from all observed 

data, then means could be generated for each segment. Because of the ability to 

utilize and chain multiple methods in feature creation, there is a need to further 

differentiate between different categories of spectral-temporal features based on the 

characteristics of the data they are generated from.  

To distinguish these different types of features, we use the terms primary and 

secondary features. Specifically, we consider spectral-temporal features (STFs) 

 



 
 

 
 

9 
calculated directly from observed time series of spectral observations, indices or 

transforms to be “primary” STFs (Table 1). These STFs include standard population 

summary metrics such as the minimum, maximum, mean, median and range, and can 

be computed for any temporal interval or segment. Though some assumptions must 

be made regarding the underlying distribution of observed spectral values, primary 

STFs are the result of a direct transformation of an observed spectral time series. 

An additional category of “secondary” STFs can be produced when 

parametric or non-parametric smoothing functions or models are fit to observed data. 

Secondary STFs include modeled interval/segment attributes, as well as land cover 

change features. A variety of different modelling approaches for extracting 

spectral-temporal information have been developed (Table 2). For example, many 

change detection approaches rely on regression models to fit a series of breaks and 

segments to dense time series of reflectance observations. Coefficients from these 

models, including model intercepts, trends, and harmonic amplitudes and phases, 

would be considered secondary STFs. The use of fitted models also enables the 

production of additional STFs that estimate model error/residuals, such as RMSE and 

correlation coefficients, which can be used to characterize model uncertainty as well 

as stochasticity in reflectance dynamics. Thus, through the use of model fitting, 

secondary STFs can provide a second tier of information on land surface properties 

and change. 
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Synthetic images 
An added benefit of generating model-based secondary STFs is the ability to 

produce interpolated or “synthetic” spectral observations, essentially upsampling or 

increasing the frequency of observed values. Unlike true primary and secondary 

STFs, which are a transformation of the spectral-temporal domain over a given 

interval (e.g. the mean of a single year or range over a segment), synthetic 

observations are predicted values for a particular date or point in time (e.g. predicted 

NDVI for a given day of year). By predicting spectral values from a continuous fitted 

curve, synthetic images eliminate issues of cloud cover, reduce noise in the temporal 

signal, and enable the production of images for days between overpasses (Gao et al. 

2006).  

Synthetic images tend to provide more stable estimates of long-term 

reflectance patterns (Kennedy et al. 2010), and provide greater flexibility in the 

choice of image dates used for analysis (Zhu et al. 2014). For example, Cohen et al. 

(2017) use both observed time series and time series of synthetic Landsat imagery to 

evaluate different change detection products, while Pasquarella et al. (2017) 

difference observed and synthetic images to characterize short-term changes in 

ecosystem condition. We include synthetic images in our discussion of STFs as they 

are closely associated products and offer an alternative to compositing approaches for 

producing cloud-free images (e.g. White et al. 2014). With improved access to time 

series of moderate resolution broad-band imagery combined with advances in 

 



 
 

 
 

11 
computing and modeling approaches, continued development and utilization of 

synthetic images is expected.  

Case Studies in the Landsat 
Spectral-Temporal Domain 

Use of the spectral-temporal domain is primarily limited by the availability of 

regularly acquired, high quality calibrated imagery. The launch of the first Landsat 

satellite (formally known as ERTS-1) marked the advent of space-based Earth 

observing systems and a significant advance in the collection of regularly repeated 

observations of the global land surface (Lauer et al. 1997; Williams et al. 2006; 

Loveland and Dwyer 2012). However, prior to the opening of the Landsat archive in 

2008, time series analysis of remotely sensed imagery tended to focus on sensors with 

high temporal resolution and open data access policies (Wulder et al. 2016).  

AVHRR imagery (1981-present) has been used for decades to characterize 

land surface phenology (Heumann et al. 2007; Jonsson and Eklundh 2002, 2004; 

White et al. 2009). More recently, time series of MODIS observations have been used 

to map global land cover using spectral-temporal features such as EVI phenology 

(Friedl et al. 2002), forest composition using features calculated from harmonic 

models (Wilson et al. 2012), and disturbance processes using maximum land surface 

temperature and EVI (Mildrexler et al. 2009) and thermal anomalies (Mildrexler et al. 

2018). These studies clearly demonstrate the utility of the spectral-temporal domain 

 



 
 

 
 

12 
for a variety of applications; however, the coarse spatial resolution of AVHRR and 

MODIS presents a significant challenge for monitoring highly heterogeneous 

ecosystems and landscapes (Wulder et al. 2016). 

While interest in the Landsat spectral-temporal domain has increased over 

time (Collins and Woodcock 1994; Collins and Woodcock 1996; Oetter et al. 2001; 

Schroeder et al. 2007; Song et al. 2002, 2007), prohibitive costs and processing 

requirements historically limited how many Landsat images could be included in any 

given analysis, resulting in both restricted use of STFs and a more limited concept of 

change (Coppin et al. 2004; Kennedy et al. 2014). Today, with free and open access 

to Landsat imagery, it is now possible to generate STFs from dense time series of all 

clear Landsat observations (Kennedy et al. 2014).  

The evolving use of the Landsat spectral-temporal domain has recently been 

discussed in other reviews, particularly in the context of large-scale land cover and 

land cover change mapping (Gomez et al. 2016; Wulder et al. 2016) and change 

detection (Zhu 2017). Our conceptual framework, including methods for generating 

spectral-temporal features, characterization of primary and secondary STFs and 

description of synthetic imagery produced from interpolated models, provides a more 

generalized overview of the use of the spectral-temporal domain. We support the 

application of our framework with a series of case studies to illustrate how STFs 

calculated from Landsat time series can be used for land surface mapping and 

monitoring.  
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We begin with a general example of how STFs are calculated and visualized 

(New England, USA). We then present examples of STF applications for representing 

diverse geographies and a range of ecosystem processes, including  identifying 

plantation species (Southern Thailand), mapping forest recovery and floodplain forest 

variability (Colombia Amazon), characterizing forest disturbance (Western Canada) 

and monitoring wetland dynamics (Pacific Northwest, USA) (Figure 2). Our goal is to 

highlight the evolving suite of STFs that can be calculated from Landsat and 

Landsat-like datasets, as well as the detailed information content these STFs can be 

used to explore and characterize. 

Selecting And Visualizing STFs (New England, USA) 

A time series of observations for an individual pixel (or group of pixels) can 

be used to calculate any number of spectral-temporal features. The features ultimately 

selected for analysis will depend on the application and objectives. To illustrate our 

approach to exploring and visualizing STFs, we will use a classic example of 

“before-after” land cover change, i.e. an abrupt change from one relatively stable land 

cover to another. Specifically, we will consider an example of urban development 

where forested area in the Northeastern United States was converted from temperate 

mixed-deciduous forest to impervious surface cover, in this case, a shopping mall 

(Figure 3).  
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The change in land cover from forest to impervious surface results in a 

distinct change in spectral-temporal attributes of the example pixel across all Landsat 

bands. More conventional before-after approaches that compare images acquired on 

two different dates could suffice for identifying this step-like pattern of change, and 

observed values (those not obscured by clouds or shadows) could possibly be used to 

assign before and after land cover labels (e.g. Coppin 2004). However, even in the 

case of “simple” before-after change, the use of the full record of observations 

enhances information content while reducing reliance on any individual observation 

and associated uncertainty (e.g. Kennedy et al. 2014; Pasquarella et al. 2016). 

We calculated annual STFs, specifically the mean and 90th percentile, for a 

time series of Tasseled Cap Greenness (TCG) observations. We also fit a harmonic 

break detection model (CCDC; Zhu et al. 2014) to the same time series to illustrate 

differences in the resulting characterizations of the spectral-temporal trajectory for 

this pixel (Figure 3). We chose to show time series of TCG because the land cover 

change of interest involves the removal of vegetation; however, similar features could 

be calculated for any spectral band, index or transform.  

In general, we find that annual STFs are more sensitive to year-to-year 

variability in the reflectance signal. As would be expected, the deciduous vegetation 

shows a larger range of TCG values annually than the impervious surface, which is 

consistently near zero for both the mean and range. These patterns are also 

well-characterized by the harmonic break detection model. In this case, the time 
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series has been divided into two temporal segments, each with an associated set of 

secondary STFs, such as the model intercept and amplitude of the annual (12-month) 

harmonic. Individual STF values may be used to characterize land cover at a 

particular point in time. Fitted models can also be used to predict reflectance values at 

any given point in time (i.e. points along curve in bottom panel of Figure 3). 

When change processes are of interest, the differences in values of annual and 

segment-based STFs can be calculated across years to produce a set of secondary 

change features. For example, we define a set of “delta-Tasseled Cap” or “dTC” 

features that represent the different in TC values from one harmonic model segment 

to another. These dTC features provide information on the magnitude and direction of 

spectral change, and have great potential for use in change process attribution. 

While single-band, single-pixel visualizations are a useful starting 

point for exploring the spectral-temporal domain, multi-band RGB rasters and scatter 

plots provide additional tools for examining spectral-temporal patterns across pixels. 

STF values for each pixel can be assigned to the Red, Green and Blue channels of a 

raster image to show both spatial patterns and the relative values of multiple STFs. In 

some cases, it may be desirable to examine the same STF, e.g. annual mean, 

calculated for different spectral bands or transforms, e.g. TCB, TCG and TCW 

(Figure 4, d-f). It may also be useful to compare different features for the same 

transform, e.g. segment-based harmonic model intercept, annual amplitude and 

RMSE for TCG (Figure 4, g-i). Difference features, such as the aforementioned dTC 

 



 
 

 
 

16 
features (Figure 4, j-l), and predicted values, e.g. synthetic images (Figure 4, m-o), 

can also be displayed as multi-band rasters.  

In visualizing our development example as a series of STF rasters (Figure 4), 

we see spatial, spectral, and temporal variability in the calculated values, and there 

are notable differences across the various methods and combinations of spectral 

values. For example, the annual features for 2007 likely include areas just being 

cleared, therefore early signs of development are evident in the raster visualization. In 

the segment-based features, a more linear feature, likely a road, is detected as having 

changed by 2007, and results in a somewhat different spatial pattern than that shown 

by the annual features. The annual features also suggest a greater range of variability 

when comparing the developed areas in the 2015 rasters, which makes sense given 

the more stable nature of model parameters. It is worth noting that the range of 

variability is greater for the dTC visualization, which includes multiple TC bands, 

compared to the harmonic visualization that only includes TCG features, suggesting 

the benefit of utilizing a variety of STFs. 

To further examine the separability of different surface attributes and 

processes spectral-temporal feature space, we can produce series of two-dimensional 

scatterplots for STF values. Like the Tasseled Cap planes presented by Kauth and 

Thomas (1976), these plots allow us examine pairwise comparisons of the three STFs 

used to create the RGB image. By coloring data points to match corresponding colors 

in the RGB image, we can see clustering in land cover types and/or surface processes. 
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In the following case studies, we visualize different STFs first through RGB images, 

where different STFs are mapped to the red, green, and blue channels individually, 

and then through two-dimensional scatterplots for STF values to show the spectral 

separability of different STFs in classification and change detection.  

Using harmonic STFs to map plantation species (Thailand) 

Forest plantations represent special case of forest type mapping, as they 

typically represent systematically arranged monocultures of a single species. Yet 

despite their relatively homogeneous composition, the identification of specific 

plantation species can be difficult due to the similarity in their canopy structure to that 

of a primary forest ( Global Forest Resources Assessment,  2015). While this spectral 

similarity makes single-date imagery of limited use, differences in the 

spectral-temporal characteristics of primary forest and various plantation species can 

aid in their distinction. For example, the seasonal defoliation of rubber trees during 

the monsoon season gives them a unique phenological profile (Dong et al., 2013). 

Secondary STFs generated from harmonic models are particularly well-suited 

for forest mapping applications because maturing forests typically exhibit relatively 

stable seasonal cycles and long-term dynamics. Thus, harmonic features characterize 

long-term patterns while remaining relatively robust to noise. We fit harmonic 

(CCDC) models to Landsat time series stacks covering the Southern Thailand (Figure 

5). Exploratory analysis indicated that short-wave indices showed the greatest 
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differences among native forest, palm plantations and rubber plantations, therefore, 

we chose to visualize the model intercept for first Short-wave band (SWIR1), which 

characterizes a long-term baseline reflectance, as well as sine and cosine coefficients 

for the Normalized Difference Moisture Index (NDMI), which characterize 

phenological patterns (timing of seasonal events) (Figure 5). 

We find that native forest and the two types of plantations show visually 

distinct spectral-temporal patterns. The NDMI sine and cosine terms of the native 

forest are close to zero, whereas palm has negative cosine and positive sine, and 

rubber has the opposite--a negative NDMI sine and positive NDMI cosine. This 

difference in the sine and cosine STFs across plantation types and between plantation 

and native forest suggests improved discrimination is possible. Additionally, both 

cloud cover and data availability are significant limiting factors in many tropical areas 

where plantation agriculture is most extensive. Therefore, the use of harmonic models 

aids in minimize noise and fill temporal gaps, resulting in secondary STFs like those 

used in this case study that can be generated for any date and used as inputs for any 

number of classification methods. 

Using Trend STFs To Map Forest Regrowth (Colombia) 

Secondary STFs that characterize trends are particularly useful for 

examining gradual change processes (Vogelmann et al. 2012; Vogelmann et al. 

2016). In many countries, attempting operational deforestation monitoring, 
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monitoring forest regrowth is also an important goal. Trend analysis can be 

performed directly on time series of observations (e.g. Czerwinski et al. 2014), and 

segment-based change detection approaches typically include a trend term as part of 

regression modeling (Zhu et al. 2014, Kennedy et al. 2010, Brooks et al.). 

We extracted model slope terms from harmonic (CCDC) models fit to 

time series of NIR and two SWIR bands for an actively disturbed forested landscape 

in the Colombian Amazon (Figure 6). When the slope terms of these three STFs are 

combined into an RGB image, we find that pixels with near-zero trends in all three 

bands are mapped in gray tones, while regrowth is mapped in shades of green, 

indicating a positive slope in the NIR and negative slopes in the SWIR bands (Figure 

6). This matches well with the expected spectral-temporal pattern of regrowth, with 

increasing vegetation cover and density making the land surface brighter in the NIR 

and darkers in the SWIR.  

This relatively simple secondary STF approach enables first-level 

visual identification of potential areas of regrowth. The spatial coherence of trend 

patterns is encouraging, and fits the expectation that disturbances and subsequent 

recovery have a patchy distribution on this landscape. Given the ongoing 

development of time-series-based change detection and validation methods for 

tropical deforestation monitoring (e.g. DeVries et al. 2016), information on 

spectral-temporal trends is becoming more readily available and, as shown in this 

 



 
 

 
 

20 
case study, trend-based secondary STFs reveal interesting new perspectives on 

long-term forest dynamics.  

Using Harmonic Change STFs For Forest Change 
Agent Attribution (Western Canada) 

While exploring spectral-temporal trends for individual bands is useful for 

examining specific types of gradual change, many different change agents may be 

acting on a particular landscape at a given point in time, with resulting changes 

occurring at a range of spatial and temporal scales (Kennedy et al 2014). At a most 

basic level, time series change detection algorithms typically produce binary maps of 

changed and unchanged areas, often with additional information on the timing of 

change. However, temporal segmentation results can also be used to estimate 

spectral-temporal trajectories and extract secondary change or “delta” STFs that 

provide information on the magnitude and direction of change.  

We use synthetic image generated from harmonic break detection models 

(CCDC; Zhu et al. 2014) to calculate change in the three Tasseled Cap (TC) 

components between two anniversary dates (1985-1999). Different forest change 

processes common to the landscapes of Western Canada, including fire, logging and 

regrowth, show distinct patterns in associated delta TC or “dTC” features (Figure 7). 

As would be expected, disturbance processes (fire, logging) show opposite trends 

across all three TC components compared to recovery processes (regrowth). Logging 

appears to result in a larger increase in TCB and decreased in TCW than fire or 
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regrowth, with each process forming distinct clusters in spectral-temporal feature 

space (Figure 7). 

Using Primary STFs To Map Wetland Condition 
(Pacific Northwest, USA) 

Most work in wetland ecological characterization and classification using 

satellite imagery has employed single-date classification, two-date change detection, 

or short-term (0–5 years) change detection using annual images (e.g. Baker et al. 

2007; Frohn et al. 2009; Johnston and Barson 1993; Lunetta and Balogh 1999; Wright 

and Gallant 2007). However, with the augmented availability of Landsat data, 

time-series analysis for detailed characterization of both inland and coastal wetlands 

has increased as researchers recognize the power of the temporal domain for 

identifying key wetland dynamics (Fickas et al. 2016; Halabisky et al. 2016; 

Hermosilla 2018; Pasquarella 2016; Sagar et al. 2017, 2018). Although continuous, 

modeled STFs have been found to be more robust than single and multi-date image 

stacks in forest type classification (Pasquarella et al. 2018), intra-annual freshwater 

wetland dynamics can display too much natural variability to be fit to a spectral 

harmonic model or time series segmentation. Sinusoidal harmonic models, such as 

CCDC (Zhu et al. 2014), are most accurate in characterizing ecosystems that have 

predictable intra-annual cycles (such as forests) and less ecologically defensible and 

accurate when fitting curves to habitats with inter-annual and/or intra-annual 
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variability. Therefore, wetland time series data may not contain enough spectral 

consistency to fit a robust sinusoidal curve.  

Here, we utilize a conceptually and computational simple primary STF, the 

statistical range of the Tasseled Cap Transformation (TC) spectral index, to 

characterize wetlands in the Pacific Northwest, USA, based on their annual spectral 

variability (Figure 8). The annual statistical range is derived by differencing the 

maximum and minimum values from individual TC B,G, and W bands for each year. 

Broadly, this STF uses observed (rather than modeled) data to represent the within 

period variability of a given wetland pixel. The pixels chosen to demonstrate the 

power of the statistical range are from wetland areas in the Malheur National Wildlife 

Refuge (MWR) of Eastern Oregon. 

We visualize STF data from two Palustrine National Wetland Inventory 

(NWI) wetland hydroperiods in the MWR: semipermanently Flooded and seasonally 

flooded wetlands. The statistical range of TCB, TCG, and TCW for the year 1995 are 

mapped to the red, green, and blue channels respectively (Figure 8). Semipermanently 

flooded wetlands show high annual variability in TCB and TCW but relatively low 

variability in TCG. In contrast, seasonally flooded wetlands show relatively higher 

variability in TCG and lower variability in TCB and TCW. The TC range exemplifies 

the ability of computationally simply STFs to highlight separability in fine categorical 

classification, such as wetland hydroperiods.  
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Discussion 
The use of Landsat data has historically been constrained to spectral and 

spatial information derived from a carefully selected image or set of images. 

However, free and open access to Landsat imagery combined with advances in data 

storage and computing are revolutionizing how the Landsat temporal domain is used 

to map and monitor land surface properties and land cover change. In addition to the 

availability of tiled Analysis Read Data (ARD) products, continued advances in 

pre-processing algorithms, improved access to cloud-and cluster-based computing 

resources such as Google Earth Engine, the Australian Data Cube, and Sentinel Hub, 

time series approaches are becoming increasingly prevalent. However, many different 

time series analysis approaches have been developed without a unified framework for 

characterizing information extracted from dense time series of Landsat imagery.  

We argue that STFs provide new information on both spectral and temporal 

variability in reflectance in various ecosystems that can be related to biophysical 

parameters. Thus, there is a critical need to continue to review and standardize the 

discussion and application of STFs for locally-accurate mapping and monitoring of 

forested ecosystem dynamics. Our conceptual framework builds on the long traditions 

of spatial and spectral analysis of remotely sensed imagery and aims to provide a 

unified means of describing methods for generating STFs. STFs offer a number of 

improvements over conventional spectral or spatial inputs, including seamless 
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coverage over large extents, more consistent and stable feature sets for classification 

through time, and new information on both spectral and temporal variability in 

reflectance that can be related to biophysical parameters.  

STFs in Practice 
Our case studies emphasize several important aspects of STFs to consider 

when utilizing features for classification or change detection of remotely sensed time 

series imagery. First, the breadth of features that we employ in our case studies 

demonstrates that many different STFs can be generated from the same time series of 

observations. However, the selection of which spectral transform(s) and 

spectral-temporal analysis methods will depend on the process the user is trying to 

characterize. Temporal segmentation approaches and associated secondary STFs 

work well for land cover with relatively stable reflectance signatures, like forests. Use 

of temporal segmentation and/or model fitted features has additional benefit of 

change detection features through predicted spectral-temporal trajectories. More 

dynamic systems, like wetlands, require STFs with a finer temporal grain. In these 

systems, primary STFs tend to offer more flexibility and can be used to characterize 

changes in reflectance for shorter time steps. However, these features are more 

subject to ephemeral noise and natural variability than modeled features, therefore 

additional filtering/QA may be required during exploratory phase. 

In addition to careful consideration for which type of STF to use in a given 

system based on spectral-temporal variation, STF users must also recognize 
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limitations in data density. More robust primary and secondary STFs can be produced 

for pixels with a greater number of high quality, cloud free observations. However, 

the number of observations per pixel varies geographically as a function of 

acquisition strategies, downlink capabilities, and atmospheric conditions/cloud cover 

(Wulder et al. 2016). In places with fewer cloud-free observations, shorter summary 

periods (e.g. seasonal, annual) may not be suitable. Attention must also be given to 

periods of missing data, which are common in places served from non-US receiving 

stations. The total number of cloud-free observations also varies substantially 

depending on whether one or two Landsat satellites are in operation, and more stable 

primary STFs and more accurate time series models can generally be produced 

following the launch of Landsat 7 in 1999. Thus, an important consideration for any 

study utilizing STFs will include the features that can reliably be calculated given the 

data density. 

Spectral-Temporal Features and Spectral Composites  
In considering STF visualization, it is important to note that STF images are 

distinct from best-available-pixel (BAP) image composites (Roy et al. 2010; White et 

al. 2014; Hermosilla et al. 2015; Hermosilla et al. 2016). Here, we distinguish the two 

categories by data-utilization objectives and purposes. Many STFs, such as the mean, 

variance or modeled annual amplitude, represent a new transformation of the existing 

reflectance values, while other STFs, such as the maximum and minimum, are 

existing values from individual images chosen using a selection criteria. The 
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objective of STFs, therefore, is to abstract new information from an existing dataset 

for the purpose of characterizing land surface properties. BAP composites, on the 

other hand, are generated and scored from rule-based algorithms to eliminate cloud, 

shadow, snow, water or other cover, maximize phenological criteria (such as peak 

NDVI), and target specific acquisition timestamps or image overlaps (White et al. 

2014). Under this categorization, the objective of composites is to construct the first 

step in land cover classification by creating high-quality, seamless, large-area images 

that are free of clouds (or other masked categories/contamination) for the purpose of 

further image analysis. While composite imagery is becoming increasingly common 

in land cover and land cover change mapping applications (e.g. Huang et al. 2010, 

Kennedy et al. 2010), composited pixel values from different images could 

potentially influence higher-level analysis products such as classification results 

(Pasquarella et al. 2018).  

The Future of STFs 
Simple visualization techniques applied to the case studies presented here 

indicate separability of land surface types and processes that go beyond what would 

have been possible using only the spectral or spectral-spatial domain. We believe this 

is just the beginning for STFs. With improved access to time series analysis code, 

image collections, and cloud-based computing resources, we expect to see increased 

availability and use of STF datasets as well as the development of new models for 

characterizing the spectral-temporal domain. Specifically, to increase the potential for 
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future, high quality time series data analysis, it is essential that data that are 

consistently processed to the highest scientific standards and level of processing 

required for direct use in applications. Further, the ability to reduce the burden of 

processing on data users, could yield a path towards dense time series as the standard 

in classification and change detection. We believe that dense time series analysis and 

products will advance at unprecedented rates with global ARD data products. Tiled 

ARD datasets integrate reflectance observations at a pixel (rather than scene) level, 

facilitating analysis of time series of all available Landsat observations for a given 

location. ARD will help users, who currently have to download and process large 

amounts of Landsat image-based data for time series analysis, consistently analyze 

time series data faster and with greater repeatability. Though ARD data was not 

necessarily used for all of the case studies presented in this paper, in developing the 

framework presented here, we assume that STFs can (and should) be calculated from 

time series of all available high-quality surface reflectance (and brightness 

temperature) observations, and that ARD (and the Collection data used to produce it) 

will become the standard data source for generate STF datasets going forward.  

In addition to ARD and ARD-like products, Landsat integration with other 

sensors will augment time series observation density creating more robust STFs and 

STF products. The Sentinel-2A satellite was successfully launched in summer of 

2015, as part of the European Copernicus program. Sentinel-2 carries a wide-swath, 

high-resolution, multispectral imager (MSI) with 13 spectral bands (Drusch et al. 
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2012). The minimum five-day global revisit time (with two satellites in concurrent 

orbit) creates the beginning of a very dense remote sensing time series. Similar to 

Landsat, Sentinel data are freely available at the global scale and also have 

comparable spectral resolutions and the same geographic coordinate system as the 

Landsat data; this creates an important opportunity to fuse the two types of satellite 

sensor data together. Together, these two sensors can collect more frequent 

observations and be utilized for continuous monitoring. Landsat and Sentinel data 

integration creates a very high temporal resolution data stream that reduces 

limitations of STF use in areas that can be frequently obscured  by clouds or 

processes, such as fine scale phenology, that require high temporal resolution for 

observation and detection.  

Spectral-Temporal-Spatial Features  
Though we do not wish to conflate our spectral-temporal feature conceptual 

model with the addition of the spatial domain, we do want to note that 

spectral-temporal-spatial features (STSFs) are the next step in merging the separate 

remote sensing data domains (i.e. spatial, spectral, and temporal). One example of an 

early STSF is the Healey et al. 2005 Disturbance Index (DI). The DI was developed 

to emphasize the un-vegetated spectral-temporal responses associated with forest 

disturbance and isolate them from all other forest features. Specifically, the DI is a 

linear combination of the three TC indices and applies the theory that recently cleared 

forest systems exhibit high TCB and low TCG and TCW in relation to undisturbed 
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forests. To employ the DI transformation, for every pixel, each TC index value is 

re-scaled to its standard deviation above or below the entire image’s mean forest 

value. For example  

TCB r = (TCB - TCB μ)/ TCB σ where TCB = pixel TCB value, TCB r = rescaled 

TCB, TCB μ =  mean forest TCB, and TCB σ = standard deviation of forest TCB. Once 

the three TC indices are normalized, they are transformed linearly to create DI: DI = 

TCB r  - (TCG r + TCWr ). A single image DI transformation is a distinct example 

spectral-spatial feature, where the TC indices act as the spectral features and rescaling 

based on image-wide statistics operates as the spatial domain component. However, 

the DI can, theoretically, be applied consistently to any image date or  be re-scale 

based on both spatial and temporal statistics of any image size or temporal interval. 

Adding the temporal domain to the spectral-spatial feature then creates a 

spectral-temporal-spatial feature. This is only one example of 

spectral-temporal-spatial features but, as spatial, spectral, and temporal image 

boundaries disappear with ARD, multi-sensor integration, and cloud-based data 

processing, we expect a conceptual model of the spectral-temporal-spatial domain as 

the next step in dense time-series analysis.   
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CHAPTER 1 FIGURES 

 

Figure 1.1: Analogue methods for extracting information from the spectral-spatial 
and spectral-temporal domains.  
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Figure 1.2: Global locations of case studies. 
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Figure 1.3: Examples of different STFs calculated for a Landsat time series of 
Tasseled Cap Greenness. 
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Figure 1.4: Examples of STF rasters that help display the spatial, spectral, and 
temporal variability in the calculated STF values.  
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Figure 1.5:  Examples of harmonic STFs for plantation species in Southern Thailand 
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Figure 1.6:  Examples of trend STFs for forest regrowth in the Columbian Amazon.  
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Figure 1.7:  Examples of harmonic change STFs for forest change agent attribution in 
Western Canada. 
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Figure 1.8:  Examples of primary STFs to map wetland condition in the Pacific 
Northwest, USA 
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CHAPTER 1 TABLES 

Feature Description Example Applications 

Maximum (Max), 
Minimum (Min) 

Measures of ordered extremes in 
reflectance 

Maximum annual NDVI (DeFries 
et al. 1995) 

Mean, Median, 
Medoid 

Measures of reflectance averages 
and central tendency 

Mean reflectance values for 
observations between selected 
percentiles (Potapov et al. 2012)  

Range, Variance, 
Quantiles, 
Percentiles 

Measures of variability in 
reflectance 

Forest z-score (FZ) and integrated 
forest z-score (IFZ) (Huang et al. 
2010) 
 
Normalized Spectral Index (NSD) 
(Jin et al. 2013) 
 
Spectral Vegetation Variability 
Index (SVVI) (Coulter et al. 
2016). 

Table 1.1: Examples of primary STFs. These metrics are calculated directed from time series 
of remotely sensed observations 
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Feature Description Algorithm 

Intercept Long-term reflectance Image Trends from Regression 
Analysis (Vogelmann et al. 2012) 
  
LandTrendr (Kennedy et al. 
2010,2012) 
  
BFAST (Verbesselt et al. 2010) 
 
Exponentially Weighted Moving 
Average Change Detection (Brooks 
et al. 2014) 
 
CCDC (Zhu et al. 2014) 
 
VerDET (Hughes et al. 2017) 

Slope (Trend) Long-term trend in reflectance 

Amplitude 
(Seasonal) 

Strength of signal in a given 
frequency, e.g. annual 

BFAST (Verbesselt et al. 2010)  
 
EWMACD (Brooks et al. 2014) 
 
CCDC (Zhu et al. 2014) 

Phase (Seasonal) Temporal offset of harmonic in a 
given frequency 

Start of season Long-term mean timing of spring Melaas et al. 2013 
 

End of season Long-term mean timing of autumn 

Growing  
season length 

Days between start and end of 
season 

DOY of peak 
greenness (e.g. 
EVI) 

Timing of maximum vegetation 
greenness  

Model error  
(e.g .RMSE, r) 

Measure of model goodness-of-fit, Melaas et al. (2013) 
 
CCDC (Zhu et al. 2014) 

Number of 
changes 

How many times a change was 
detected 

LandTrendr (Kennedy et al. 2010, 
2012)  
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Date of change Timing of each change BFAST (Verbesselt et al. 2010) 
 
EWMACD (Brooks et al. 2014) 
 
CCDC (Zhu et al. 2014) 
 
VCT (Huang et al. 2010) 
 
MIICA (Jin et al. 2013) 
 
VerDET (Hughes et al. 2017) 

Magnitude of 
change 

Before-after change in reflectance 
values 

Synthetic images Model-generated values for any 
band, any date 

CCDC (Cohen et al. 2017; 
Pasquarella et al. 2016; Zhu et al. 
2015) 
 
Splines (Bullock et al. 201X) 

Table 1.2:  Examples of secondary STFs. These metrics are estimated from models fit to time 
series of remotely sensed observations, and examples of algorithms that can be used to 
generate each feature are provided. 
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CHAPTER 2 
 

CHARACTERIZING 
INTRA-ANNUAL VARIABILITY IN 
WETLAND ECOSYSTEMS USING 

THE LANDSAT 
SPECTRAL-TEMPORAL DOMAIN: 

A FRAMEWORK FOR 
MULTI-LEVEL CLASSIFICATION 
ACROSS CLIMATE GRADIENTS  

 

  

 



 
 

 
 

42 

  
Introduction 
 

As key ecosystems across the planet, Wetlands are found on every continent            

except Antarctica (Fraser and Keddy 2009). Providing a wide variety of ecosystem            

services, wetlands are known to cleanse polluted waters, protect shorelines, recharge           

groundwater aquifers, buffer flood and drought severity, and provide unique habitat           

to a wide variety of plants and animals (Mitsch and Gosselink 2000). A wetland              

ecosystem occurs when inundation by water produces soils dominated by anaerobic           

processes that force the biota to adapt to flooding (Keddy 2014). Bridging the gap              

between terrestrial and aquatic ecosystems, wetlands have both coastal (saltwater)          

and interior (freshwater) areas with the global majority characterized as freshwater           

(Lehner and Doll 2004). Despite their ubiquity and importance, the planet has lost             

roughly 50% of its wetlands since 1900 (Nicholls 2004). In the United States, nearly              

half of all states have lost more than 50% of their wetland area between the 1780s and                 

the 1980s (Dahl 1997) with losses continuing into the present (Dahl and Stedman             

2013, Fickas et al. 2015). 

The National Wetlands Inventory 
To protect and conserve the nation’s remaining wetlands, it is essential to            

know and understand where, how, and when wetland resources are changing. To help             

answer these questions, the U.S. Fish and Wildlife Service (USFWS) began the            
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National Wetland Inventory (NWI) in 1974 as an endeavor to map and monitor the              

nation’s wetlands. The NWI utilizes digital delineation of single-date aerial          

photography, remote sensing data, field work, and other ancillary cover class maps            

such as soils and land use (Wilen and Bates 1995). The NWI has been the workhorse                

for U.S. wetland mapping and monitoring for three decades, providing five reports to             

congress on the Status and Trends of Wetlands and Deepwater Habitats of the             

Conterminous United States (FGDC 2013). However, the NWI is a federal program            

with an enormous task and limited budget and must balance detail and accuracy with              

precision. NWI products are slow to update, with some maps over two decades old              

(Gibbs 2000). Priorities for mapping have been centered on the data needs of the              

USFWS and partners and the availability of funding and high-quality aerial           

photographs. Nationally, work has been focused on coastal zones, prairie wetlands,           

playa lakes, flood plains of major rivers, and areas of importance to the nation’s              

waterfowl (Wilen et al. 1996). While many individual wetland mapping and           

monitoring products and projects exist in the peer-reviewed and grey literature across            

the country at finer scales and higher accuracies, the NWI is still the most widely               

available and suggested tool for monitoring wetlands in the U.S. (Stolt and Baker             

1995, Kudray and Gale 2000, Johnson 2013 ). 

Ideally, NWI wetland aerial-photo interpretation delineation methodology       

calls for a late-spring image to capture both wetland hydrology and vegetation but,             

often, images available are from summer, when vegetation in other ecosystems, such            
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as forests, is most robust (Beeri et al. 2007). Summer imagery is particularly             

problematic for wetland delineation as wetlands are usually driest in the summer            

months and it can be hard to distinguish between wetlands and similar upland             

ecosystems such as grasslands (Daniels 2006, Schroeder et al. 2011, Fickas et al.             

2015). Beyond issues with date of acquisition, the concerns with single-date wetland            

classification have far-reaching consequences. Wetlands are fundamentally transient        

and transitional in nature with ecological morphologies based on both allogenic and            

autogenic factors that can shift in influence throughout the year and from year to year               

or decade to decade (Mitsch and Gosselink 2015).  

In particular, wetland hydroperiod – the seasonal pattern of the water level of             

a wetland and a wetland’s hydrologic signature (Snodgrass et al. 1996) – cannot, by              

definition, be distinguished with single-date imagery. Some wetlands, such as prairie           

potholes, vary considerably from year to year depending on climate and a wet-dry             

cycle of 10 to 20 years may be observed. Other wetlands, such as alluvial swamps in                

the southeastern U.S., may react distinctly to precipitation events rather than observe            

a general seasonal pattern (Brinson et al. 1980). Hydrology is considered one of the              

single most important determinant characteristics of establishment and persistence of          

wetlands and wetland processes (Zhang et al. 2012, Todd et al. 2010) and forms the               

specific ecological conditions that make wetland habitats distinct from upland          

terrestrial systems. If wetlands are only observed at a snapshot in time with varying              

map recurrence, it is hard to distinguish seasonal, yearly, or decadal spatial,            
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hydrological, and ecological patterns from variability in imagery acquisition date.          

Consequently, robust categorical classification of wetlands compared to uplands and          

within wetland categories themselves, is dependent on a high-temporal resolution of           

data to capture intra-annual hydrologic and vegetation variability.  

Remote Sensing of Wetlands 
In 1992, the Federal Geographic Data Committee determined that the use of            

remote sensing satellite imagery (including Landsat) to aid in federal wetland           

mapping lacked the required spatial resolution for classification detail and wetness           

designation that aerial photography provided (FGDC 1992). However, with the          

launch of a free and open Landsat archive in 2008 and there is now over 45 years of                  

freely available, high quality annual imagery, offering the longest running time series            

of systematically collected remote sensing data (Cohen and Goward 2004).          

Additionally, development of algorithms for deriving information from Landsat time          

series (e.g. Zhu and 2012; Melaas et al., 2013; Zhu and Woodcock, 2014; Brooks et               

al., 2014; DeVries et al., 2015) has advanced opportunities to use the Landsat             

temporal domain to improve classification of many different land use types. Rather            

than using single images or image sets to distinguish land use and land cover classes,               

it is now possible to characterize both spectral and temporal variability from dense             

time series of all available observations (Kennedy et al., 2014; Pasquarella et al.,             

2016, Pasquarella et al. 2018). Although challenging, it is essential to begin to             
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understand how to utilize the power of the entire Landsat archive to classify and              

monitor both U.S. and global wetlands.  

Global Surface Water 
Similar to wetland ecosystems, un-vegetated surface water dynamics present a          

classification and delineation challenge when using a limited temporal scope for           

mapping and characterization. River course changes, loss and gain of lakes and            

reservoirs, and intra-annual inundations and flood–irrigation cycles all require at least           

two dates of image data to capture. Recognizing the need for a global surface water               

dynamics characterization and map, Pekel et al. 2016 employed the entire Landsat 5,             

7 and 8 archive from 1984 and 2015 to map the spatio-temporal variability of global               

surface water and subsequently monitor its long term changes. First, utilizing the            

dense time series data, each 30m Landsat pixel was was classified as water or land               

and returned classification results with less than 5% error of commission and less             

than 1% error of omission for surface water pixels. Second, intra-and inter-annual            

variability of classified pixels were used to create a thematic map of surface water              

dynamics. These maps include several pixel-level, spatio-temporal water-dynamic        

features. First, Global Surface Water (GSW) Occurrence, the frequency with which           

water was present over the 32 year study-period, is calculated by summing water             

detections (WD) and valid observations (VO) from the same months and then            

dividing the sum of WD by the sum of VO for each month. Averaging the results of                 

monthly Occurrence values then gives the long-term overall surface water          
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Occurrence. The second feature, GSW Recurrence, is the frequency with which water            

reappears inter-annually across the time-series. Recurrence is calculated as the ratio           

of the number of ‘water years’ to ‘observation years’ where a ‘water year’ is a year                

with at least one water observation, while an ‘observation year’ is a year with at least                

one valid observation within the ‘water season’; the water season is defined as the              

months of the year that have water. GSW Seasonality yields information relevant to             

the intra-annual dynamics of water surfaces for a single year for both permanent and              

seasonal water and is calculated as the number of months water was present for a               

given time period. With these features, Pekel et al. 2016 was then able to observe and                

document both spatial and temporal trends in global surface water dynamics over a 32              

year period. 

Dense Time-Series Remote Sensing of Wetlands 
As wetlands could be simplistically defined as areas of global surface water            

that also incorporate vegetation dynamics, following in Pekel et al. 2016’s path and             

creating thematic maps of spatio-temporal wetland dynamics using all available          

Landsat imagery emerges is a logical progression in remote sensing of           

water-dependent ecosystems. However, it is not as simple as adding vegetation           

dynamics to surface water maps. The ecological variability of wetlands makes them            

difficult to detect and classify with remote sensing imagery and it is difficult to              

discriminate the boundaries between vegetation habitat types (Schmidt and Skidmore          

2003, Zomer et al. 2008, Adam et al. 2010). This variability, combined with the              
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recurrent spectral obstruction of wetland vegetation by soil, atmospheric, and          

hydrologic patterns associated with wetland habitats, classification becomes even         

more complicated (Guyot 1990, Yuan and Zhang 2006). Identifying and          

characterizing freshwater wetland habitats using satellite imagery has many         

challenges and accurate and reliable remotely sensed products of wetland locations           

and intra-and inner-annual dynamics have remained elusive.  

Prior to the 2008 opening of the Landsat archive, most work in wetland             

ecological characterization and classification using satellite imagery used single-date         

classification, two-date change detection, or short-term (0–5 years) change detection          

using annual images (e.g. Baker et al. 2007; Frohn et al. 2009; Johnston and Barson               

1993; Lunetta and Balogh 1999; Wright and Gallant 2007). However, with the            

augmented availability of Landsat data, time-series analysis for detailed         

characterization of both inland and coastal wetlands has increased as researchers           

recognize the power of the temporal domain for identifying key wetland dynamics            

(Fickas et al. 2015; Halabisky et al. 2016; Hermosilla et al. 2018; Pasquarella et al.               

2016; Sagar et al. 2017, 2018).  

Free, publically available dense time series data from multiple sensors has           

allowed researchers to develop and users to employ new analysis strategies to            

augment the quality of time series interpretation and application. One methodology           

that uses all available imagery to both classify and detect land use change is              

Continuous Change Detection and Classification (CCDC). Zhu and Woodcock 2014          
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developed CCDC (adapted from Zhu et al. 2012’s Continuous Monitoring of Forest            

Disturbance Algorithm (CMFDA)) as an algorithm that uses the statistical boundary           

method with all available Landsat data. Algorithms using statistical boundary assume           

the time series temporal trajectory to follow a given statistical boundary and any             

deviation from the boundary (at a given threshold) is classified as change. This             

algorithm utilizes all available imagery, Landsat bands 2–5 and 7 as the change             

indices, and has the spatial resolution of a single Landsat pixel (30 m). 

While CCDC takes advantage of the full temporal depth of Landsat data,            

yielding information about intra-annual changes and the potential for new, temporally           

defined cover classes, this algorithm, and ones like it, present several limiting factors             

for their use in wetland characterization. First, they are most accurate in            

characterizing ecosystems that have predictable intra-annual cycles (such as forests)          

and less ecologically defensible and accurate when fitting curves to habitats with            

inter-annual and/or intra-annual variability. Therefore, wetland time series data may          

not contain enough spectral consistency to fit a robust sinusoidal curve. Second, a key              

ecosystem feature of wetlands is the presence of water (Cole et al. 1997). Some              

wetland hydrology is driven exclusively by precipitation (Brinson 1993) and with           

precipitation, there are often clouds occluding the ground surface at the time when             

wetlands are most saturated. This means the availability of clear observations may be             

particularly limited in wetland habitats, further constraining harmonic-fit model         

utility in characterizing wetland habitats. Pengra et al. 2016 used CCDC to map             
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wetland cover at one categorical scale (i.e. no further categorical refinement beyond            

the ‘wetlands’ class) in the Land Change Monitoring, Assessment, and Projection           

(LCMAP) project and found that wetlands were hardest to map in areas with a high               

percentage of wetland area (i.e. areas where wetlands are not generally isolated            

ecosystems) with the greatest confusion coming from forest and wetlands at ecotonal            

gradients and areas with mixed class pixels. In some areas, overall accuracy was as              

low as 35%. 

STFs 
To utilize dense time-series of remotely sensed imagery for wetland          

classification and characterization, a methodology that efficiently captures and         

recognizes the importance intra-annual variability in wetland ecosystems must be          

developed. Spectral-temporal features (STFs) have been identified as a powerful way           

to extract individual, meaningful features from multi-date image stacks at the           

pixel-level (e.g. DeFries et al. 1995, Potapov et al. 2012, Huang et al. 2010, Jin et al.                 

2013, Coulter et al. 2016, Vogelmann et al. 2012, Verbesselt et al. 2010, Melaas et al.                

2013). In the spectral domain, an individual spectral index is the transformation of             

two or more spectral bands constructed to augment various components of the            

landscape (Huete et al. 2002). Similarly, a spectral-temporal feature is a           

transformation of spectral information-based temporal relationships and, by utilizing         

stacks of imagery, results in a time series of spectral-temporal calculations for an             

individual pixel (Pasquarella et al. 2018).  
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STFs can be further distinguished into two categories: primary and secondary           

STFs. Primary STFs are the result of a direct transformation of an observed spectral              

time series. These STFs include standard population summary metrics and statistics           

such as the minimum, maximum, mean, median and range, and can be computed for              

any temporal interval or segment (Pasquarella, Fickas et al. 2018 in prep). Secondary             

STFs can be extracted when smoothing functions or models are fit to observed data.              

These features include modeled interval/segment attributes, as well as land cover           

change features. For example, CCDC, discussed above, is a modeling approach that            

produces a set of sinusoidal model coefficients, intercepts, trends, and harmonic           

amplitudes and phases, which are all considered to be secondary STFs. The use of              

these models also yields the production of additional secondary STFs that estimate            

model error and residuals, such as RMSE and can be used to estimate model              

uncertainty as well as stochasticity in reflectance dynamics.  

In detailed classification, analysis and comparison against single and         

multi-date image stacks, Pasquarella et al. 2018 found that transformed Landsat           

secondary STFs such as annual amplitude, RMSE, and day of year of modeled             

phenological metrics to be to be effective and superior in forest type classification.             

However, for wetlands, these features contain the same issues and limiting factors as             

their originating models. Intra-annual freshwater wetland dynamics may display too          

much natural variability to be fit to a spectral harmonic model or time series              

segmentation and their associated STFs will not be representative of wetland           
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variability or as effective in classification (Pengra et al. 2016). Primary STFs, on the              

other hand, have been overlooked in most land-use and land-cover classification in            

favor of their more complex, secondary counterparts, but should be considered for            

and tested in wetland ecosystems because they preserve real intra-annual wetland           

dynamics though direct transformation of observed (rather than modeled) time series           

data . 

In the study presented here, we build on the work by Pasquarella et al. 2018               

and Pekel et al. 2016 and test the utility of primary STFs derived from time series of                 

all available Landsat TM/ETM+ observations, including Global Surface Water         

(GSW) features, for discriminating among wetlands at different categorical         

resolutions within the NWI classification taxonomy. In addition to GSW features, we            

examine two key types of primary STFs, 1) reflectance STFs, which characterize            

reflectance values of spectral indices used, and 2) day of year (DOY) STFs, which              

quantify the timing of their associated reflectance STFs. As an exploratory measure,            

we also abstract and evaluate spatial-temporal climate features, such as the per-pixel            

annual maximum of daily maximum temperature, to yield insight into potential           

drivers of wetland characterization. As far as we are aware, this is the first time               

primary STFs derived from all available Landsat TM/ETM+ observations have been           

utilized for detailed wetland classification. Using an NWI reference dataset from two            

Oregon ecoregions in distinctly different eco-hydrological climate zones, we test          

classification agreement and examine relative performance of different classification         
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inputs across ecoregions and wetland categories. We test an array of classifications            

that use consistent training and testing datasets, but vary the features and feature-sets             

used as model inputs. Beyond classification performance, we also explore          

categorical-level agreement and the importances of different features for         

differentiation within different wetland categories. Our aim is not to estimate the            

accuracy of the reference NWI map or monitor wetland change over time and space,              

but rather to build a framework for multi-level wetland classification across climate            

gradients.  

Specifically, at different categorical resolutions and ecoregional climate        

zones, our objectives are to: 

1) Systematically explore and quantify feature-set accuracies and wetland         

classification performance, 

2) Evaluate individual feature importance for distinguishing between different         

wetland habitats,  

3) Quantify correlations between individual features and individual wetland         

habitat classification probabilities, and 

4) Describe a new framework for annual wetland classification that captures           

intra-annual variability with spectral-temporal and related features.  
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Methods 

Study Area 
Given the manner in which wetland dynamics vary among different wetland           

categories, it is important to consider specific temporal-climatic features that drive           

and influence wetland ecosystems. Two key, abiotic ecological drivers in wetland           

habitats are hydrology (water) and energy (light) (Cole et al. 2007). Across its             

geographic boundaries, the State of Oregon has a wide spatial and quantitative            

gradient in temperature (Figure 1A), precipitation (Figure 1(B), and solar irradiance,           

making it an ideal location to explore spatio-temporal dynamics across different           

climate regions. 

To capture the spatio-temporal climate gradient in Oregon when evaluating          

wetland intra-annual characteristics and categorization, we chose two distinct Level          

III EPA ecoregions at opposite ends of the State (Figure 2A): the Willamette Valley              

(Figure 2B) and the Northern Basin and Range (called the North Basin from here on               

out) (Figure 2C) (Omernik and Griffith 2014). The Willamette Valley is bounded by             

the Coast Range to the west, the Cascade mountains mountains to the east and north,               

and the Calapooia mountains to the south. The Northern Basin and Range ecoregion             

covers the southeastern portion of the state and, in Oregon, is bordered on the west by                

the Cascades mountains and foothills, and on the north by the Blue Mountains.             

Although the the two selected ecoregions contain similarly classified ecosystems          
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(Vogelmann et al. 1998), at 480 kilometers apart, their varying geo-climatic settings            

create specific differences in temporal-ecohydrological behavior. Broadly, the North         

Basin can be characterized as a water-limited ecoregion, where water availability is            

typically the primary limiting resource in determining hydrology and vegetation          

patterns (Fernandez-Illescas and Rodriguez-Iturbe 2003) (Figure 1). Conversely, the         

Willamette Valley sits in an energy-limited setting where solar irradiation (sunlight)           

limits wetland ecological dynamics (Gallucci 1973). 

To further specify our study sites, we chose wetland habitat areas in both             

ecoregions from the National Wildlife Refuge System (NWRS) (Figure 2B,C).          

NWRS listed wetlands were chosen specifically because of the NWRS federal           

directive to maintain biological integrity, diversity, and environmental health of          

habitats protected under the system’s authority. This policy uses historic conditions           

(“those prior to substantial human related changes to the landscape”) as the standard             

condition and goal for the integrity and environmental health directive. Oregon has            

lost over 98% of its wetland ecosystems in the past century with losses continuing              

(Fickas et al. 2015) and finding ecologically consistent and low anthropogenic           

disturbance wetland habitats can be difficult. However, the NWRS Improvement          

Act’s focus on ecosystem integrity makes NWRS sites ideal locations as reference            

systems (Andel and Aronson 2012) when exploring intra-annual wetland dynamics at           

different categorical resolutions. In the Willamette Valley we chose the Willamette           
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Valley National Wildlife Complex, and in the North Basin, we chose the Malheur             

National Wildlife Refuge. 

Willamette Valley National Wildlife Complex 

A system of three NWRs managed by the U.S. Fish and Wildlife Service was              

established in the mid-Willamette Valley the 1960s: Ankeny, Baskett Slough, and           

William L. Finley National Wildlife Refuges (Figure 2B). Spread across the           

Willamette Valley, these refuges are a combined total of 4450 ha. These refuges             

contain some of the most ecologically significant blocks of native habitat in the             

Willamette Valley, including large tracts of undisturbed or restored wetlands and one            

if the last remaining intact wet prairie wetlands in the valley. The Refuge is hosts five                

species of plant listed as endangered or threatened under to U.S. Endangered Species             

Act (USDI 2013), all of which utilize wetland habitat: Golden paintbrush (Castilleja            

levisecta), Bradshaw’s desert parsley (Lomatium bradshawii), Willamette daisy        

(Erigeron decumbens), Kincaid’s lupine (Lupinus sulphureus), and Nelson’s        

checker-mallow (Sidalcea nelsoniana). In addition to endangered and threatened         

vegetation species, these refuges are also home to several federally listed wildlife and             

fish species such as Fender’s blue butterfly (Icaricia icarioides fenderi) and Oregon            

chub (Oregonichthys crameri). The refuges additionally provide large tracts of          

suitable habitat for the streaked horned lark (Eremophila alpestris strigata), an avian            

species consistently listed as a candidate for the federal listing (Stinson 2005). 
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The NWRs in the Willamette Valley do not contain large lake habitat systems             

the like the Malheur National Wildlife Refuge. To match the wetland habitat            

categorical breadth from reference wetlands in the North Basin and the greater            

Willamette Valley, we augment the wildlife refuges in the Willamette Valley with            

another protected wetland managed by the the Oregon Department of Fish and            

Wildlife (ODFW), the Fern Ridge Wildlife Area (FRWA) (Figure 2B). The FRWA            

was established in 1956 and is management area that includes a large lake feature and               

surrounding wetland habitat. As with its Willamette Valley NWR counterparts, the           

FRWA supports a variety of endangered and endemic flora a fauna. The Willamette             

Valley National Wildlife Complex combined with the Fern Ridge Wildlife Area           

brings the Willamette Valley study sites to a total of 10,000 ha. 

The Willamette Valley’s climate is greatly influenced by the Pacific Ocean,           

which regulates temperature as marine air masses move from west to east across the              

Pacific Northwest. The climate in the Valley is generally mild throughout the year             

and clear of extreme temperatures, with cool, wet winters and warm, dry summers.             

The Valley has a prevalent winter rainfall climate with precipitation largely varying            

inversely with temperature; cooler months of the year are the wettest and the warm,              

summer months are the driest (Taylor and Bartlette 1993). Winters in the Valley are              

likely to be cloudy. Average cloud cover through the coldest months is greater than              

80 percent, with a mean of roughly 26 cloudy days in January. Conversely, in the               

summer months, sunshine is more abundant with mean cloud cover less than 40             
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percent and greater than 50 percent of days in July are cloud-free (Taylor and              

Bartlette 1993). Specifically, average mean monthly temperatures at the refuges          

ranged from 4°C in January to 19°C in August. Roughly 50% of all annual              

precipitation in the refuges falls from December through February and varies from            

102 to 155 centimeters each year. On average, the MNWR receives measurable            

precipitation 267 days per year (USFWS 2011). Rainfall is the predominant form of             

precipitation in the region; annual snowfall only averages 15 centimeters per year            

(Figure 1B). 

Malheur National Wildlife Refuge 

One of the first NWRs, the Malheur National Wildlife Refuge (MNWR) was            

established in 1908 by President Theodore Roosevelt as a preserve and breeding            

ground for native birds. The MNWR is located within the Harney Basin watershed in              

southeastern Oregon, roughly 48 kilometers south of the city of Burns, Oregon and is              

comprised of two large lakes, the Malheur and Mud and the Donner und Blitzen              

River (Figure 2). This part of the State is sparsely populated, arid with cold winters,               

and defined by wide open spaces. The MNWR is only a small portion of the North                

Basin’s comprehensive area, but represents immense ecological importance as a          

source of wildlife habitat within the region. The MNWR is a crucial stop along the               

Pacific Flyway (Smith et al. 1989) and supports resting, breeding, and nesting habitat             

for hundreds of migratory birds and other wildlife, including species highlighted as            
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top priority in national bird conservation plans (USFWS 2013). In addition to            

supporting critical habitat to migratory birds, the MNWR also supports four federally            

listed or under consideration under the U.S. Endangered Species Act: Malheur           

wire-lettuce (Stephanomeria malheurensis), Great Basin Columbia spotted frog (Rana         

luteiventris), Yellow-billed cuckoo (Coccyzus americanus), and the Greater        

sage-grouse (Centrocercus urophasianus) (USFWS 2013).  

The MNWR is situated in the open spaces of the Harney Basin in southeastern              

Oregon on the northern edge of the Great Basin (Figure 2). The Harney basin is a                

hydrographically closed catchment and is situated within the High Lava Plains and            

characterized as alluvial lowlands and surrounding volcanic rock uplands (USFWS          

2013). The Refuge centers on three shallow playa lakes (shallow depressional           

recharge wetlands), the Malheur, Mud, and Harney. These lakes are within the lowest             

portion of the Harney Basin and collect their life-producing hydrology from the            

surrounding higher-relief topography. A drought year can yield very dry conditions           

with lakes reduced to a small percentage of their previous size. WIth very low              

topographic relief, a small change in water levels can result in several hectares of              

flooding. Years with anomalously high precipitation can drive water levels beyond           

refuge boundaries and double or triple the size of the marsh (USFWS 2013).  

The mean annual temperature for the refuge is 8°C (USFWS 2013). July is the              

warmest month with a mean monthly maximum of 29°C and January is the coldest              

month with a mean monthly minimum of -8°C. Mean monthly minimum           
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temperatures are below 0°C from November through April with an average of 182             

days of the year with temperatures below freezing. Temperatures only rise above            

32°C for 18 days a year on average (USFWS 2013). Mean annual precipitation for              

MNWR is 28 centimeters with the majority (24 cm) falling from October to June.              

July through September is very dry with the exception of August in some years with               

thunderstorm activity (USFWS 2013).  

Wetland habitat in MNWR is dependent on the annual availability of water            

resources, mainly from the Blitzen River. The Blitzen River begins on Steens            

Mountain and flows north through the Blitzen Valley and into Malheur Lake, joined             

by other tributaries as it flows northward. Except years of very high precipitation, the              

Blizten River provides the only water supporting the MNWR. The Blitzen River has             

an array of physical conditions including a deep, wide channel, limited riparian            

vegetation, bare banks, and minimal habitat complexity (USFWS 2013).  

The Blizten River receives most of its volume from Steens Mountain as            

snowmelt and by the time it drains into refuge wetlands, it has drained an area of                

197,000 hectares. Snowmelt discharge into the river begins in early March and            

reaches a peak in May. The average May volume is 10.5 cubic meters, representing              

25 percent of the total annual runoff. Flows tend to decline sharply in June with               

minimum levels in August or september, averaging a discharge of 1.2 cubic meters             

for the month.  
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Water saturation level fluctuations in the wetlands are characteristic of closed basins            

and can observe high inter-annual variability.  

Wetlands Reference Data 
Currently, the NWI uses a hierarchical classification taxonomy of Cowardin et           

al. (1979) to delineate and characterize individual wetlands. Nationwide, the NWI has            

been found to be variable in its accuracy with low error of commission but high error                

of omission (Stolt and Baker 1995; Wright and Gallant 2007). Although the NWI is              

unsuccessful in its goal to map all wetlands, because of its low error of commission, it                

can be used as baseline wetland distribution for regional-scale classification and           

identification (Nielsen et al. 2008). 

Oregon’s NWI dataset is considered public record and can be accessed           

directly from the USFWS. The color-infrared photos used for the latest Oregon NWI             

map were collected between 1990 and 1994 and delineation maps were generated in             

1995. The structure of the NWI classification is hierarchical, advancing from Systems            

and Subsystems at the broadest levels to Classes , Subclasses , and Dominance Types .            

Additionally, Modifiers for water regime, water chemistry, and soil are applied to            

Classes and Subclasses (Cowardin et al. 1979, FGDC 2013). Within the taxonomy,            

System refers to a group of wetlands that have a similar influence from hydrologic,              

geomorphologic, chemical, or biological drivers and are divided into more specific           

categories called Subsystems . The five Systems include Marine, Estuarine, Riverine,          

Lacustrine, and Palustrine. While Oregon contains wetlands from all five Systems , we            
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investigate only Lacustrine and Palustrine wetlands in our study ( Table 1). Neither            

the Willamette Valley ecoregion nor the North Basin ecoregion contain Marine or            

Estuarine wetlands and Riverine wetlands contain many, if not a majority of,            

delineated polygons that are less than one Landsat pixel wide (30 meters) and             

therefore heavily subject to edge effects (Zhang et al. 2016). It should be noted,              

however, that Riverine wetlands only represent areas within a channel and do not             

include floodplain wetland habitats associated with a specific river or stream, which            

are part of the Palustrine System . 

Inland, freshwater Lacustrine wetlands include permanently flooded lakes         

and reservoirs and intermittent lakes with extensive areas of deep water. Lacustrine            

wetlands are geographically limited by upland habitat or by Palustrine wetlands           

dominated by trees, shrubs, and persistent emergents. In locations where a river enters             

a lake, the extension of the Lacustrine shoreline forms the Riverine-Lacustrine           

boundary. The Lacustrine System contains two Classes : Limnetic and Littoral, and six            

Subclasses : Rock Bottom, Unconsolidated Bottom, Aquatic Bed, Rocky Shore,         

Unconsolidated Shore, and Non-Persistent Emergent. 

The Palustrine System was developed to group vegetated wetlands such as           

marshes, swamps, bogs, and fens. Palustrine habitats also include small, shallow,           

permanent or intermittent water bodies often called ponds. Palustrine wetlands can be            

found shoreward of lakes and river channels, on river floodplains, in isolated            

catchments, or on slopes. They can also occur as island patches in lakes or rivers. In                
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the NWI taxonomy, the Palustrine System contains no Classes and eight Subclasses :            

Rock Bottom, Unconsolidated Bottom, Aquatic Bed, Unconsolidated Shore,        

Moss-Lichen Wetland, Emergent Wetland, Scrub-Shrub Wetland, and Forested        

Wetland. 

To conceptually simplify the understanding of wetland types, the NWI also           

contains a category of “Generalized Wetland Habitat Type”, from here on out            

referred to as ‘Type’, which aggregates Subclasses into broader categories. Lacustrine           

wetlands contain one generalized habitat, Lakes, while Palustrine wetlands contain          

Ponds, Emergent, Forested, and Scrub Shrub ( Table 2 ).  

NWI wetland Modifiers are used to further characterize wetland dynamics          

within the classification hierarchy. Water Regime Modifiers , from here on out           

referred to as ‘ Hydroperiods ’, describe hydrologic characteristics such as timing of           

intra- and inter- annual surface inundation and groundwater fluctuations. Nontidal          

Hydroperiods are defined in relation to the growing season which begins with            

green-up and bud-break of native plants in the spring and ends with plant dieback and               

leaf-drop in the fall. NWI Hydroperiods investigated in this study are described in             

Table 3 . 

To explore the utility of STFs for wetland classification at different           

categorical resolutions, we test our model on the separability of wetland System ,            

Type, and Hydroperiod. As formal NWI wetland classification terms could be           

confused with informal wetland language (i.e. the word ‘type’), we remain consistent            
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in capitalizing and italicizing NWI categorical terms (e.g. Type), and refer to            

individual features within each category as ‘habitats’ and capitalize their label (i.e.            

Lacustrine).  

Oregon NWI polygons used as reference data were selected based on their            

spatial intersection with the study site boundaries. To augment the quality of the             

reference dataset, NWI polygons were additionally filtered based on size. Small           

polygons can be subject to edge effect, therefore polygons less than 5 pixels were              

eliminated. Three separate reference datasets were derived based on categorical          

resolution: Systems polygons, Types polygons, and Hydroperiod polygons. Due to the           

hierarchical nature of the NWI classification scheme, these data overlap. For           

example, Palustrine wetlands also contain wetland habitats from different Types and           

Hydroperiods . 

Classification Inputs 

Landsat Data 
We used Google Earth Engine (GEE) (Gorelick et al. 2017) to access all             

available Landsat Thematic Mapper (TM) Surface Reflectance Tier 1 pixel-level data           

for the period January 1 1995 through December 31 1995. Landsat Tier 1 data are               

atmospherically corrected using LEDAPS (Masek et al. 2006), processed at Level-1           

Precision Terrain (L1TP), and georegistered consistently and within <=12 m RMSE.           

Pixels were masked for cloud, shadow and snow using CFMASK (Foga et al. 2017)              

and further masked by the reference dataset polygon boundaries. The Tasseled Cap            
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(TC) Transformation spectral vegetation index (Crist et al. 1985) was then applied to             

every unmasked pixel for all available dates. 

Remote sensing of wetland ecosystems has utilized a variety of spectral           

vegetation indices for classification and change detection. Most recent remote sensing           

wetland studies have taken advantage of the Tasseled Cap (TC) indices (Fickas et al.              

2015, Pasquarella et al. 2016, Kayastha et al. 2012, Baker et al. 2006, Baker et al.                

2007, Wright and Gallant 2007). In our study, we rely on TC as our main spectral                

feature when transforming over time and do not investigate the applicability of            

individual Landsat bands in wetland classification. The TC transformation of the six            

Landsat reflectance bands results in three vegetation indices known as brightness           

(TCB), greenness (TCG), and wetness (TCW) (Crist et al. 1985). We recognize that             

other indices and individual bands could be used to differentiate among wetland            

Systems , Types , and Hydroperiods , however, it was not feasible to explore every            

possible spectral combination for this study. Further, because TC is calculated           

directly as a straightforward transformation of spectral bands, it allows consistent           

spatial, temporal, and spectral comparisons in monitoring seasonal, intra-and         

inter-annual, and long-term variations of landscape biophysical parameters. TC         

indices add more data dimensionality than single SVIs, such as NDVI, which is             

especially important in spatially and temporally heterogeneous ecosystems such as          

wetlands. In addition to TCG’s link to landscape vegetation dynamics, the           

combination of the TCB and TCW indices is correlated with soil moisture content,             
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giving additional insight to distinction between wetland and upland vegetation          

(Fickas et al. 2015). 

Spectral-Temporal Features 
To coincide with the date of acquisition of the NWI reference data, annual             

primary STFs were derived from our processed Landsat pixels from the year 1995.             

The first five derived STFs include the 1995 annual 1) maximum (max), 2) minimum              

(min), 3) median (med), 4) mean, and 5) range (difference between maximum and             

minimum), for our three spectral features, TCB, TCG, and TCW, individually. In            

addition to the primary reflectance STFs, their respective day of year (DOY) was also              

derived; these are also considered primary STFs. This includes DOY of the annual 1)              

max, 2) min, 3) med, and 4) range (range of days between the DOY of annual max                 

and min) of TCB, TCG, and TCW. Together, the primary STFs add 27 features to the                

classification model.   

Climate-Temporal Features 
To supply spatial climate datasets that are realistic representations of the           

major forcing factors that affect spatial climate patterns, Daly et al. 2008 developed             

the Parameter-elevation Relationships on Independent Slopes Model (PRISM).        

Currently, the PRISM Climate Group houses two types of datasets: 1) long-term            

climate averages and 2) climate time-series. Long-term average datasets calculate a           

climate–elevation regression for an 800m digital elevation model (DEM) pixel using           

location, elevation, coastal proximity, topographic facet orientation, vertical        
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atmospheric layer, topographic position, and orographic power of the landscape as           

feature inputs (Daly et al. 2008). Conversely, the time-series datasets are modeled            

with climatologically-aided interpolation (CAI). In CAI, the long-term average         

datasets act as the predictor grids, instead of a DEM. Broadly, CAI is based on the                

assumption that the best first guess of the spatial pattern of climatic conditions for a               

given month or day is the long-term average pattern. PRISM long-term average            

datasets exist from 1971 - present and time-series datasets are available on a daily or               

monthly temporal resolution from 1985 - present. 

To create what we term ‘climate-temporal features’ (CTFs) as model inputs,           

we accessed the PRISM Daily Spatial Climate Dataset (AN81d) from GEE (Gorelick            

et al. 2017) from January 1, 1995 to December 31, 1995, which includes 365 days of                

measurements for four climate features, including daily 1) maximum temperature          

(tMax), 2) minimum temperature (tMin), 3) mean temperature (tMean), and 4) total            

precipitation (ppt). From the 365 daily measurements available, we abstracted five           

CTFs for each of the four climate features: 1) max, 2) min, 3) med, 4) mean, and 5)                  

range ( Table 6). To match the spatial resolution of our Landsat STFs, data were              

resampled from 800 m pixels to 30 m pixels using the nearest neighbor approach.              

Together, these CTFs add 20 features to the classification model. 
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Ancillary Datasets 

Digital Elevation Model 
Since wetlands are more likely occur in relatively-depressional terrain         

surfaces, knowledge of topography is key in determining the existence of wetlands in             

a given area. For this reason, we used a 30m DEM, labeled as Elevation, derived from                

the Shuttle Radar Topography Mission (SRTM), flown in February 2000 (Farr et al.             

2007) ( Table 7 ). 

Global Surface Water 
To investigate the applicability and accuracy of the Pekel et al. 2016 Global             

Surface Water data-set, we utilized GSW features as their own feature-set and            

combined with other feature-sets as model inputs for our wetland classification           

models. Using GEE (Gorelick et al. 2017), we collected 1) GSW Occurrence, 2)             

GSW Recurrence), and 3) GSW Seasonality (Table 7). GSW Occurrence and           

Recurrence are both abstracted from a 32 year time series and GSW Seasonality is              

calculated for each year, but the only available dataset is for the year 2014-2015.              

Consequently, we used the 2014-15 GSW Seasonality data-set to determine if this            

type of spatio-temporal feature was applicable and relevant to wetlands classified at            

an earlier date. Given they are derived from Landsat data, GSW features have a              

corresponding 30 m pixel resolution (Pekel et al. 2016). Combined with Elevation,            

GSW features create four additional model input features.  
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Wetland Classification 

A series of classifications were used to systematically compare the utility of            

STFs, CTFs, and ancillary data for discriminating among two wetland Systems , four            

wetland Types , and 10 wetland Hydroperiods . A Random Forest (RF) classifier           

(Breiman, 2001) was used to assign wetland System , Type, and Hydroperiod labels to             

pixels based on the given combination of individual feature inputs, termed           

‘feature-sets’ (Table 8). The RF family of classifiers have become increasingly           

common in remote sensing applications due to their flexible, non-parametric nature           

and ability to limit overfitting (Rodríguez-Galiano 2012, Gómez et al., 2016), and            

have been shown to outmatch a number of other classifiers across a variety of datasets               

(Fernández-Delgado et al., 2014).  

We employed a Python implementation of the RF classifier (Pasquarella et al.            

2018, Pedregosa et al., 2011), building ensembles of 500 trees (Belgiu and Drăguţ             

2016). For each feature-set (Table 8), we employed a winner-takes-all hard           

classification output, where each pixel was assigned to a single RF class for the              

purposes of assessing agreement and feature importance. To create a continuous           

data-set in which to test individual feature values against the likelihood of a given              

pixel classified as a specific wetland habitat, RF probabilities were also built and             

output for the ‘All Features’ feature-set classification for individual wetland habitats           

within System , Type, and Hydroperiod  categories. 
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Agreement Assessment 
Agreement between RF results and the NWI wetland System , Type, and           

Hydroperiod reference dataset acted as our estimate of model feature performance.           

For each classification, training data were selected and a three-fold cross-validation           

(CV) methodology was used where two-thirds of the reference polygons were used            

for training and one-third allocated for testing. Considering the autocorrelation of           

pixels derived from the same polygon in the reference dataset, folds were randomly             

assigned and determined based on polygon ID, guaranteeing that all pixels from a             

given polygon were placed in the same fold (Friedl et al., 2000, Pasquarella et al.               

2018). Given agreement scores can vary considerably based on the metric used, we             

characterized classification result quality using three metrics, (1) out-of-bag (OOB)          

agreement, (2) overall agreement, and (3) area-weighted (adjusted) agreement. 

Numerous remote sensing classification studies have employed OOB scores         

as a measure of classification agreement or accuracy (e.g. Rodriguez-Galiano et al.,            

2012; DeVries et al., 2016). When reference training data is composed of an             

independent pixel-level sample, OOB scores can provide reasonable estimates of          

error with reduced supplementary analytical requirements (Genuer et al. 2010).          

However, in many, if not most, reference datasets, including the NWI polygon layer             

used here, training data are delineated at the polygon scale, yielding inherent spatial             

autocorrelation at the pixel-level. In this study, the OOB agreement scores are            

calculated within each fold and may include both training and testing pixels from the              

 



 
 

 
 

71 
same polygon. Therefore, the OOB estimates of agreement are included here to            

examine the effect of autocorrelation on agreement scores. For overall agreement,           

each location (e.g. pixel) equally contributes to the final calculation of agreement,            

while in the case of area-weighted agreement, the input of each location is inversely              

proportional to the total number of locations in that class, such that each habitat              

(rather than each pixel) contributes uniformly to the final measure of agreement.            

Consequently, area-weighted agreement better represents wetland classification       

performance for both rare and common classes, and as the number of wetland             

locations labeled correctly in each class increases, area-weighted agreement will trend           

towards overall agreement. 

To compare the configuration and significance of agreement between the NWI           

reference data and the predicted classification for wetland System , Type, and           

Hydroperiod, confusion matrices were built to calculate producer and user agreement           

scores for each feature-set . Accuracy percentages (the inverse of error percentages)            

were subsequently built from confusion matrices. 

Feature Importance Assessment and Correlation 
While differences in agreement across feature-sets help to explore how          

different feature combinations can accurately predict wetland categories, more         

information is needed to examine which individual features within feature-sets are           

most important for classification of wetland System , Type, and Hydroperiod across           

different climate gradients. When running the RF classification using the ‘All           
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Features’ feature-set, feature importance scores were calculated using the Gini index           

(Pal et al. 2005) and reported as additional model outputs. Greater Gini index scores              

correlate with features that are systematically used more frequently and used higher            

up in the splits of individual RF decision trees (Strobl et al. 2007). An advantage of                

using the TC index as our primary spectral feature set, as opposed to individual              

Landsat spectral bands, is a weaker correlation among the three bands (TCB, TCG,             

and TCW) compared to stronger correlation within individual Landsat spectral bands           

containing overlapping information. The weaker the correlation among the features,          

the higher the Gini feature importance score. Individual feature importances were           

calculated as percentages of the ratio of individual Gini score to the entire wetland              

category (i.e. Type) Gini score sum. 

Feature importance scores demonstrate which features were most valuable in          

discriminating wetland habitats across an entire wetland category, however, they do           

not clarify how feature values correspond to individual wetland habitats. To explore            

this explore this issue, we ran a per-pixel Kendall Tau (KT) correlation test (Kendall              

1938) with fuzzy classification probabilities of individual wetland habitats within          

wetland categories against individual feature values. KT was chosen because it is a             

strong, nonparametric measure of the strength and direction of association that exists            

between two variables measured on a continuous scale. Especially within wetland           

Systems , binary wetland habitat probabilities were not normally distributed, making          

other common regression and correlation tests, such as Pearson’s correlation          
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coefficient, inapplicable (Ahlgren et al. 2003). High, positive KT values indicate a            

strong correlation between high wetland habitat classification probability and high          

feature values. Low, negative KT values suggest a strong correlation between high            

wetland habitat probabilities and low feature values. KT scores were calculated for            

each wetland habitat in each wetland category and for all classification features.  

Results 

Feature-set Accuracy Agreement 
Feature-set agreement assessments exhibited a wide range of variability across          

both ecoregions and wetland categories ( Figure 3,4). The OOB agreement score for            

each classification is consistently higher than the overall agreement score and exhibits            

a much smaller range of variability than overall and area-adjusted measures of            

agreement. The comparison between overall accuracy and OOB accuracy serves as an            

indicator of spatial-autocorrelation in the classification of wetland Systems and the           

difference between overall accuracy and area-adjusted accuracies yields insight into          

model performance with more frequent versus rarer wetland Systems. 

Willamette Valley Wetland Systems 
Compared to all Willamette Valley wetland categories, feature-set        

classifications run to distinguish between Lacustrine and Palustrine System wetlands          

contained the highest of all three accuracies scores across the entire range of             

feature-sets, within individual sets, and for all sets combined ( Figure 3A ). ‘STFs’ and             
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‘DOY STFs’ classification runs contained similar, high scores across all three           

accuracies types. After ‘All-Features’, accuracies were highest in the ‘All-STFs +           

GSW’ classification run and displayed the smallest difference between OOB accuracy           

and overall and area-adjusted accuracies, suggesting a minimization of spatial          

autocorrelation for that feature-set. Both the ‘CTFs’ and ‘GSW’ classifications          

contained relatively high overall accuracies without containing any STF features,          

correctly distinguishing between Palustrine and Lacustrine wetlands 71.6% and         

93.9% of the time, respectively. Adding elevation to the ‘All STFs’ feature-set            

improved accuracies scores marginally.  

The OOB accuracy scores compared to overall accuracy for wetland Systems           

classification were higher, but not substantially so ( Figure 3B). This suggests that for             

distinguishing between two wetland Systems , spatial-autocorrelation does not play a          

large role in affecting classification performance. Similarly, area-adjusted accuracy         

scores were generally between 30-40% lower than overall accuracies, indicating that           

the rarity of wetland System had an impact on classification performance, but only             

dipped below 50.0% for one feature-set, ‘CTFs’ at 47.5%. 

Producer and user accuracy matrices help to explore which Systems were most            

problematic in overall accuracies ( Figures 5,6, Table 9 ). Palustrine wetlands had a             

high user accuracy of 96%, with reference Palustrine pixels only being incorrectly            

identified as Lacustrine 4% of the time. Lacustrine wetlands had a lower producer             

accuracy (and higher error of omission) of 81%, meaning reference Lacustrine pixels            
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were misidentified as Palustrine wetlands 19% of the time. However, Palustrine           

wetlands had a lower user accuracy of 83%, indicating that 17% of pixels labeled as               

Palustrine were actually Lacustrine. That’s compared to Lacustrine wetlands, which          

had a user accuracy of 96%, indicating that only 4% of labeled Lacustrine pixels were               

actually Palustrine. 

Willamette Valley Wetland Types 
Going from two classification categories in Willamette Valley Systems , to          

four categories in wetland Type classification, Type consistently contained lower          

scores across all three accuracies compared to System ( Figure 3B). The ‘STFs’            

classification outperformed ‘DOY STFs’ in overall accuracy by 6.7% (81.4%          

compared to 74.7%) and when combined into ‘All STFs’, improved overall accuracy            

by less than 1.0%. Unlike the wetland Systems classification, the ‘CTFs’ feature-set            

correctly predicted wetland Types less than 50% of the time, with an overall accuracy              

of 44.5%. The ‘GSW’ feature-set, on the other hand, performed relatively well            

without any STF feature input, with an overall accuracy of 66.4%, but still nearly              

30% less accurate than when distinguishing between wetland Systems . When both           

GSW and Elevation features were added to the ‘All STFs’ feature-set, overall            

accuracy improved by less than 1.0%, to 82.7% and 81.96% respectively. The final             

wetland Type classification of the ‘All Features’ feature-set was less accurate than            

wetland System classification, but still performed well with an overall accuracy of            

80.4%. 
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When comparing OOB and area-adjusted accuracy to overall accuracy,         

variability between the three was higher in classifying wetland Types compared to            

Systems ( Figure 3A, B). The ‘DOY STFs’ feature-set, for example, had OOB,            

overall, and area-adjusted accuracy scores of 90.8%, 74.7%, and 25.3% respectively.           

This suggests that classification using DOY features to distinguish between wetland           

Types is not only subject to spatial-autocorrelation, but also shows a high discrepancy             

in performance between more frequently occuring Types versus rare Types . Using the            

three accuracy scores as an indicator, spatial-autocorrelation and underperformance in          

rare Types occurs within each feature-set, including the ‘All Features’ set.  

Wetland Types had lower producer accuracies for individual categories         

compared to wetland Systems ( Figure 5, Table 9). Lake, Forested, and Emergent            

wetlands all had relatively high producer accuracies at 85%, 83%, and 73%            

respectively. Pond wetlands were more problematic. Reference Pond wetland pixels          

were only identified correctly 4% of the time, with the most (67%) misclassified as              

Emergent wetlands 17% misclassified as Forested wetlands, and 12% misclassified as           

Lake wetlands. Other notable (>10%) misclassifications came from reference Lake          

wetlands misclassified as Ponds 14% of the time, reference Forested wetlands           

identified as Emergent 17% of the time, and reference Emergent wetlands labeled as             

Forested wetlands 17% of the time.  

User accuracies saw similar issues for Pond wetlands with only 17% of            

predicted Pond wetlands actually being Pond ( Figure 6, Table 10). The majority            
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(38%) of labeled Pond wetlands were actually Emergent, 26% were Lake wetlands,            

and 19% were Forested. Other notable (>10%) mislabels include 23% of predicted            

Forested wetlands actually being Emergent, and 23% and 10% of labeled Emergent            

wetlands actually being Lake and Forested wetlands respectively.  

Willamette Valley Wetland Hydroperiods 
Transitioning from two and four categories in wetland Systems and Types , to            

six categories in wetland Hydroperiods , overall accuracy of the final Hydroperiods           

classification using the ‘All Features’ feature-set was reduced, but still relatively high            

at 79.6% ( Figure 3C ). Across all feature-sets, overall accuracy was reduced between            

roughly 5-10% compared to Types , and between 20-30% compared to Systems . Both            

the ‘STFs’ and ‘DOY STFs’ feature-sets had overall accuracies greater than 65%,            

with the ‘STFs’ feature-set performing better at 74.0% compared to 66.9%. When the             

two feature-sets were combined into ‘All STFs’, overall accuracy rose to 76.7%. Like             

wetland Types classification, the ‘CTFs’ feature-set correctly predicted wetland Types          

less than 50% of the time, with an overall accuracy of 44.1%. The ‘GSW’ feature-set               

performed even worse, with a very low overall accuracy score of 12.3%. Adding the              

‘GSW’ and ‘Elevation’ feature-sets individually to ‘All STFs’ both improved the           

score by roughly 4.0%, bringing it up to 78.0% and 78.10% respectively. As noted,              

although wetland Hydroperiod contained 200% more wetland categories than Systems          

and 50% more categories than Types , overall accuracy for the ‘All Features’            
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feature-set was lower than the other two groups, at 80% overall accuracy, it was still               

within 1% of Types and 13% of Systems . 

When comparing OOB to overall accuracy, variability between the two was           

similar in classifying wetland Hydroperiods compared to Types and higher when           

compared to Systems ( Figure 3B, C ), yielding the indication that classification using            

DOY features to distinguish between wetland Hydroperiods is also subject to           

spatial-autocorrelation. Differences between overall accuracy and area-adjusted       

accuracy were smaller in classifying wetland Hydroperiods compared to Types and           

similar compared to Systems , again suggesting a difference in performance between           

more frequently occuring Hydroperiods versus rare Hydroperiods . Further, because          

accuracies of some individual feature-sets were much lower in Hydroperiod          

classification, area-adjusted accuracies were also very low. For example, in the           

‘GSW’ feature-set classification, area-adjusted accuracy barely breaks zero accuracy         

at 1.1%, indicating the GSW features perform very poorly for rarer Hydroperiods . 

While the ‘All Features’ classification had relatively high overall accuracy,          

individual Hydroperiod categories were imbalanced in their accuracies, as indicated          

by the adjusted accuracy and further by examining the producer and user accuracy             

matrices ( Figure 5C, 6C, Table 11). Hydroperiods 1 and 3 had the highest producer              

accuracies of 63% and 92% respectively and when Temporarily Flooded was           

misclassified, it was labeled as Seasonally Flooded the majority of the time (37%).             

Hydroperiods 2, 4, 5, and 6, all had producer accuracies below 50%, meaning             
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reference wetland pixels were misidentified more often as the wrong type of            

Hydroperiod than the correct Hydroperiod . When misclassified, these reference         

Hydroperiod pixels were majority (all 70% or greater) identified as Seasonally           

Flooded. 

Compared to producer accuracies, user accuracies were higher and more          

balanced than producer accuracies for wetland Hydroperiods ( Figure 5C, 6C, Table           

11). Only Hydroperiods 4 and 5 had user accuracies lower than 70%, but they were               

substantially low at 2.2% and 1.1% respectively. This means that less than 3% of              

classified Hydroperiods 4 and 5 actually represent those Hydroperiods . The majority           

(93%) of pixels labeled Semipermanently Flooded actually represented Seasonally         

Flooded, as did the majority (75%) of  pixels labeled Permanently Flooded . 

North Basin Wetland Systems 
In comparison to all North Basin wetland categories, feature-set classifications          

run to distinguish between Lacustrine and Palustrine System wetlands contained the           

highest of all three accuracies scores across the entire range of feature-sets, within             

individual sets, and for all sets combined ( Figure 4A ). ‘STFs’ and ‘DOY STFs’             

classification runs contained similar, high scores (82.7% and 81.0%) but combining           

the two together into the ‘All STF’ feature set improved overall accuracy by less than               

1%. After the ‘All-Features’ top overall accuracy score of 84.5%, overall accuracies            

were highest and very similar in the ‘GSW’, ‘All-STFs + GSW’, and ‘All-STFs +              
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Elevation’ classification runs. Without any additional spectral input, the ‘CTFs’          

feature-set had a relatively high overall accuracy of 79.9%. 

The OOB accuracy scores were roughly 5-15% higher compared to overall           

accuracy for the wetland Systems classification ( Figure 4A, B). This suggests that for             

distinguishing between the two North Basin wetland Systems , spatial-autocorrelation         

does not play a large role in affecting classification performance. Additionally,           

area-adjusted accuracy scores were generally between 5-10% lower than overall          

accuracies, indicating that the rarity of wetland System had a relatively small impact             

on classification performance, with adjusted accuracies never dipping below 70%. 

Producer accuracy was high for both Palustrine and Lacustrine wetlands at           

88% and 83% respectively, indicating that wetland System classification performed          

well in correctly classifying reference wetland pixels, only misclassifying the two           

wetland System pixels 12% and 17% of the time ( Figure 7A, Table 12). User              

accuracy performed similarly with scores at 83% for Palustrine wetlands and 88% for             

Lacustrine wetlands, meaning wetland System pixels were only labeled incorrectly          

17% of the time for Palustrine wetland pixels and 12% for Lacustrine pixels ( Figure              

8A, Table 12). 

North Basin Wetland Types 
Going from two classification categories in North Basin Systems , to four           

categories in wetland Type classification, Type consistently contained lower scores          

across all three accuracies compared to System ( Figure 4A, B). The ‘STFs’            
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classification outperformed ‘DOY STFs’ in overall accuracy (79.2% compared to          

65.0%) and when combined into ‘All STFs’, the two feature-sets together actually            

decreased overall accuracy. Unlike the wetland Systems classification, the ‘CTFs’          

feature-set correctly predicted wetland Types less than 50% of the time, with an             

overall accuracy of 43.1%. The ‘GSW’ feature-set also underperformed in wetland           

Types compared to Systems. Without any STF feature input, GSW features had an             

overall accuracy of 34.3%, still over 50% less accurate than when distinguishing            

between wetland Systems . When both GSW and Elevation features were added to the             

‘All STFs’ feature-set, overall accuracy decreased slightly in both feature-sets.          

Interestingly, the ‘All Features’ feature-set was less accurate than the ‘STFs’, ‘All            

STFs’, ‘All STFs + Elevation’, and ‘All STFs + GSW’. This indicates that, when              

combined, these feature-sets may have informational redundancies that leads to          

poorer model performance. 

When comparing OOB and area-adjusted accuracy to overall accuracy,         

variability between the three was higher in classifying wetland Types compared to            

Systems ( Figure 4A, B). The ‘CTFs’ feature-set, for example, had OOB, overall, and             

area-adjusted accuracy scores of 71.1%, 43.1%, and 8.4% respectively. This suggests           

that classification using CTF features to distinguish between North Basin wetland           

Types is not only subject to spatial-autocorrelation, but also shows a high discrepancy             

in performance between more frequently occuring Types versus rare Types . Using the            

comparison of three accuracy scores as an indicator, spatial-autocorrelation and          
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underperformance in rare Types occurs within each feature-set, but is lowest in            

‘STFs’.  

Wetland Types had lower producer accuracies for individual categories         

compared to wetland Systems ( Figure 7B). Lake and Emergent wetlands both had            

relatively high producer accuracies at 83% and 81% respectively. Pond and Forested            

wetlands, however, had more issues with accuracy. Reference Pond wetland pixels           

were only identified correctly 18% of the time, with the most (58%) misclassified as              

Emergent wetlands and 24% misclassified as Lake wetlands. Other notable (>10%)           

misclassifications came from reference Lake wetlands classified as Emergent 15% of           

the time, Forested wetlands misclassified as Emergent 27% of the time and Pond             

wetlands 11% of the time, and Emergent wetlands classified as Lake wetlands 13% of              

the time. 

Similar to producer accuracy, user accuracy and error of omission varied           

among wetland Types ( Figure 8B, Table 13). As with producer error, Lake and             

Emergent wetlands both had relatively high user accuracies at 87% and 77%, but             

Pond and Forested wetlands were only labeled correctly 20% and 11% of the time,              

respectively. For both Pond and Forested wetlands, the majority (59% and 66%,            

respectively) of labeled Pond wetlands were actually Emergent wetlands, while 21%           

of labeled Pond pixels and 23% of Forested pixels were actually Lake wetlands.             

Other notable (>10%) misclassifications came from 11% of labeled Lake wetlands           

actually being Emergent and 17% of labeled Emergent wetlands actually being Lake. 
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North Basin Wetland Hydroperiods 
Transitioning from two and four categories in wetland Systems and Types , to            

six categories in North Basin wetland Hydroperiods , overall accuracy of all           

Hydroperiods classifications was significantly reduced, with overall accuracy never         

reaching above 37% ( Figure 4C ). Across all feature-sets, overall accuracy was           

reduced between roughly 30-40% compared to Types , and between 45-60% compared           

to Systems . The ‘STFs’, ‘DOY STFs’, ‘All STFs’, ‘All STFs + Elevation’, and ‘All              

STFs + GSW’ feature-sets had low overall accuracy percentages in the mid-to-low            

30s. Like wetland Types classification, the ‘CTFs’ and ‘GSW’ feature-sets poorly           

predicted wetland Hydroperiods with overall accuracies of 18.1% and 19.1%. After           

the ‘CTFs’ and ‘GSW’ feature-sets, the ‘All Features’ set had the lowest overall             

accuracy. 

The most substantial variability in the North Basin Hydroperiods         

classifications comes from the large divergence between OOB, overall, and adjusted           

accuracies ( Figure 4C ). OOB accuracies are significantly higher than overall          

accuracies. The ‘All Features’, ‘All STFs’, ‘All STFs + Elevation’, and ‘All STFs +              

GSW’ feature-sets all have OOB accuracy percentages in the low to mid 90s. That,              

for example, yields a nearly 65% difference between OOB and overall in the ‘All              

Features’ feature-set, indicating high influence of spatial-autocorrelation on the         

model. Area-adjusted accuracies are also low for wetland Hydroperiods , but the           

difference between overall and adjusted accuracies are not as great compared to            
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OOB. However, both ‘CTFs’ and ‘GSW’ feature-sets have area-adjusted accuracies          

below 1%, indicating nearly zero confidence in mapping rare-type Hydroperiods with           

these feature-sets. Generally, area-adjusted accuracy scores were generally between         

15-20% lower than overall accuracies, indicating that the rarity of wetland System had             

a noticeable impact on classification performance. 

Overall accuracy in Hydroperiod classification was at 30.0% and this is           

reflected in low producer and user accuracies ( Figure 7C, 8C, Table 14). No             

Hydroperiods had producer accuracies above 40%, meaning error of commission was           

at least 60% for all Hydroperiods . With this low producer accuracy, reference            

wetland pixels were misidentified more often than not, across all Hydroperiods .           

Temporarily Flooded was most commonly misclassified as Seasonally Flooded 58%          

of the time, followed by Semipermanently Flooded , 19% of the time. Seasonally            

Saturated was misclassified as Seasonally Flooded 62% of the time and Temporarily            

Flooded 12% of the time. Seasonally Flooded reference pixels were misclassified as            

Semipermanently Flooded 52% of the time and Temporarily Flooded 17% of the            

time. Semipermanently Flooded wetlands were misclassified as Seasonally Flooded         

48% of the time, whereas Permanently Flooded wetlands most commonly          

misclassified as Artificially Flooded 51% of the time and Seasonally Flooded 11% of             

the time. Artificially Flooded was misclassified 90% of the time as Semipermanently            

Flooded.  
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User accuracies across all Hydroperiods were comparably low compared to          

producer accuracies ( Figure 7C, 8C ). Similar to Hydroperiod producer accuracies,          

user accuracies never rose above 45%, meaning error of omission was at least 55%              

across all Hydroperiods . The majority, 62% of labeled Temporarily Flooded wetlands           

were actually Seasonally Flooded, and 13% were truly Semipermanently Flooded.          

Nearly all, 86%, of pixels labeled Seasonally Saturated were actually Temporarily           

Flooded, whereas labeled Seasonally Flooded pixels had no majority (>50%)          

mislabeled Hydroperiod , and were actually Semipermanently Flooded 29% of the          

time and Temporarily Flooded 25% of the time. Similarly, labeled Semipermanently           

Flooded pixels were actually Seasonally Flooded 49% of the time and Artificially            

Flooded 31% of the time. Labeled Permanently Flooded wetlands had the lowest user             

accuracy of 2.7% and were actually Artificially Flooded 70% of the time and             

Seasonally Flooded 22% of the time. Lastly, pixels labeled Artificially Flooded           

wetlands were actually Semipermanently Flooded 60% of the time and Seasonally           

Flooded 16% of the time.  

Feature Importance 

Willamette Valley System Feature Importances 
When the classifier was trained using the ‘All Features’ feature-set to           

discriminate between Willamette Valley Lacustrine and Palustrine wetland Systems ,         

Tasseled Cap Greenness STFs and the Global Surface Water features comprised the            

top six most important features ( Figure 9A ). Max TCG had the highest overall             
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importance (0.16), followed by Med TCG (0.13), GSW Occurrence (0.11), GSW           

Seasonality (0.09), Mean TCG (0.08), and GSW Recurrence (0.08).  

Feature importance scores only points to feature importance for the entire           

classification, not individual categories within the Systems . Due to the binary nature            

of wetland Systems , KT scores of feature importances were positive and negative            

reciprocals of each other for Palustrine and Lacustrine classes. For example, the most             

positive KT score for Lacustrine wetlands, the GSW Recurrence feature (0.89), was            

the reciprocal, most negative, KT score for Palustrine wetlands (-0.89) (Figure 11).            

The result indicates that Lacustrine wetlands are strongly and significantly correlated           

with high GSW Recurrence values and Palustrine wetlands are strongly and           

significantly correlated with low GSW Recurrence values. For vegetated Palustrine          

wetlands, of the top five features that have the highest positive correlations with the              

Class , four include a Tasseled Cap Greenness STF. This includes Max TCG (0.75),             

Mean TCG (0.74), Med TCG (0.74), and Min TCG (0.72). Range of TCG (0.69)              

comes in sixth after Max TCB (0.70). Lacustrine wetlands followed a similar pattern.             

Of the top five features that have the highest positive correlations with the Lacustrine              

Class , the first three are GSW features, followed by two Tasseled Cap Wetness STFs.              

This includes GSW Recurrence (0.89), GSW Seasonality (0.88), GSW Occurrence          

(0.80), Mean TCW (0.73), and Med TCW (0.73). Not far behind, Min TCW (0.72)              

and Max TCW (0.69) were sixth and seventh. As noted, the top positive features for               

each System correspond to the top negative features for the other.  
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Willamette Valley Wetland Types Feature Importance and 

Correlation 

Similar to wetland Systems , when the classifier was trained using the ‘All            

Features’ feature-set to discriminate between Willamette Valley Lake, Pond, Forested          

and Emergent wetland Types , Tasseled Cap Greenness and Wetness STFs and the            

Global Surface Water features comprised the top six most important features ( Figure            

9B) . GSW Occurrence had the highest overall importance (0.15), followed by GSW             

Seasonality (0.14), Mean TCG (0.11), GSW Recurrence (0.08), Med TCW (0.06),           

and Med, Min and Max TCG (0.06).  

Given that Lake Type wetlands, are comprised entirely of Lacustrine System           

wetlands, their top KT correlation scores for individual features are similar in            

composition (Figure 12). Lake wetlands are most strongly correlated with high GSW            

feature values and Tasseled Cap Wetness STF values. The top positively correlated            

features are GSW Seasonality and Recurrence (0.88), followed by GSW Occurrence           

(0.80), Mean TCW (0.73), Med TCW (0.73), Min TCW (0.72), and Max TCW             

(0.69). Lake wetlands were most strongly, negatively correlated with Tasseled Cap           

Greenness STFs. The strongest negative KT correlation score for Lake probabilities           

was Max TCG (-0.75), followed by Med and Mean TCG (-0.74), and Min TCG              

(-0.72).  
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Pond wetlands did not have any feature correlation, positive or negative, with            

a KT score above 0.20, but of its feature correlations, Tasseled Cap Brightness STFs              

were most-relatively-strongly, positively correlated. Max, Mean, and Med TCB and          

Min TCG all tied for the top positive correlations with KT scores of 0.14, followed by                

Med ppt, Mean TCG, Med TCG, and Min TCB, all with scores of 0.13. Pond wetland                

probabilities were most strongly, negatively correlated with GSW features and          

Tasseled Cap Wetness STFs. Pond probabilities were most strongly, negatively          

correlated with GSW Recurrence (-0.20), GSW Seasonality (-0.19), GSW Occurrence          

(-0.18), and Med, Mean, and Max TCW (-0.15). 

High Forested wetland probabilities were strongly and positively correlated         

with the suite of Tasseled Cap Greenness STFs. Max, Mean, and Med TCG STFs all               

had the top positive KT correlation value of 0.61, followed by Range of TCG (0.58),               

and Min TCG (0.57). After Greenness, the suite of Tasseled Cap Brightness STFs             

makeup the the next 5 positively correlated KT values. Similar to Pond wetlands,             

Forested wetland probabilities were most strongly, negatively correlated with GSW          

Recurrence (-0.68), GSW Seasonality (-0.67), GSW Occurrence (-0.6), and Max          

TCW (-0.54), Mean TCW (-0.48), and Mean TCW (-0.46). 

High Emergent wetland probabilities were strongly and positively correlated         

with STFs of Tasseled Cap Brightness, Greenness, and Wetness. Range of TCW had             

the strongest positive correlation value of 0.57, followed by Max TCB (0.51), Range             

of TCB (0.50), Mean TCB (0.48), and Min TCG (0.47). Similar to the other two               
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wetland Types (Pond and Forested) that fall into the Palustrine Class , Emergent            

wetlands were most strongly, negatively correlated with GSW features and Tasseled           

Cap Wetness STFs. Emergent probabilities were most strongly, negatively correlated          

with GSW Seasonality (-0.64), followed by Min TCW (-0.61), GSW Recurrence           

(-0.60), and Mean TCW (-0.56). 

Willamette Valley Wetland Hydroperiod Feature Importance and       

Correlation  

As will both Willamette Valley Systems and Types , when the classifier was            

trained using the ‘All Features’ feature-set to discriminate between Willamette Valley           

Temporarily Flooded, Seasonally Saturated, Seasonally Flooded, Semipermanently       

Flooded, Permanently Flooded, and Artificially Flooded Hydroperiods , the features         

with the top importances values were a mix of GSW features, Tasseled Cap             

Greenness STFs, and Tasseled Cap Wetness STFs ( Figure 9C ). GSW Occurrence           

had the highest overall importance (0.16), followed by GSW Seasonality (0.11), Max            

and Mean TCG (0.10), Med TCW (0.09), and Min TCG (0.08).  

Probabilities for individual Hydroperiods had a wide range of variability for           

strong positive and negative correlations with individual features (Figure 13). The           

features with the highest positive correlation values with Temporarily Flooded          

probabilities include Max TCG (0.49), Range of TCG (0.49), Med ppt (0.48), Mean             

TCG (0.44), Med TCB (0.43), and Min TCG (0.43). Temporarily Flooded was            
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similarly strongly negatively correlated with GSW Recurrence (-0.54), Seasonality         

(-0.52), and Occurrence (-0.47), Mean tMean (-0.45), and Med TCW (-0.44).  

Seasonally Saturated probabilities had similar reciprocal correlation values to         

Temporarily Flooded, with high probabilities positively correlated to GSW         

Occurrence (0.59), Seasonality (0.52), and Recurrence (0.5), DOY Min TCG (0.47),           

and Min TCW (0.43). Likewise, probabilities were positively correlated with Max           

TCG (-0.5), Med TCB (-0.47), Mean TCB (-0.45), and Range of TCG (-0.43). 

The rest of the Hydroperiods all had considerably weaker positive correlation values            

compared to Temporarily Flooded and Seasonally Saturated. Seasonally Flooded was          

most positively correlated with Elevation (0.33), DOY Max TCG (0.32), Range of            

tMax (0.27), and Min tMin (0.22). It had similarly strong negative correlation values,             

however, and was most negatively correlated with Max TCG (-0.50), Med TCB            

(-0.47), Mean TCB (-0.45), and Range of TCG (-0.43).  

Semipermanently Flooded was weakly positively correlated with Min tMin         

(0.18) and DOY Max TCG (0.17) and weakly negatively correlated with DOY Min             

TCG (-0.16), GSW Seasonality (-0.13), GSW Recurrence (-0.13), and Med     

tMean (-0.13). With correlation values just at or above 0.10, Permanently Flooded            

was even more weakly correlated with Mean TCB (0.11), Med ppt (0.10), Max TCB              

(0.10), Med TCB (0.10), Min TCB (0.10), and Min TCG (0.10). Again, Permanently             

Flooded was weakly negatively correlated with GSW Recurrence (-0.14), Seasonality          

(-0.13), and Occurrence (-0.13), Med TCW (-0.11), Mean TCW (-0.11), Max TCW            
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(-0.11), and Min TCW (-0.10). Permanently Flooded was the only Hydroperiod that            

had its top correlation values correspond to CTFs. It was most positively correlated             

with Range tMin (0.13), Med tMax (0.13), Mean tMax (0.12), Max tMin (0.12), and              

min tMax (0.12). Permanently Flooded was most negatively correlated with GSW           

Recurrence (-0.14), Mean ppt (-0.14), Seasonality (-0.13), and Max TCW (-0.13).  

North Basin Systems Feature Importances and Correlations 
When the classifier was trained using the ‘All Features’ feature-set to           

discriminate between North Basin Lacustrine and Palustrine wetland Systems , GSW          

Occurrence was the top most important feature (0.13), with Med TCB (0.08) and             

Mean TCW (0.08) in second place ( Figure 10A ). These top three importance values             

are lower in magnitude compared to Willamette Valley Systems feature importances.           

In fourth place is Max TCW (0.07), followed by Min TCW (0.06) and Elevation              

(0.06). 

As with the Willamette Valley ecoregion, within fuzzy classification         

probabilities for North Basin Palustrine and Lacustrine Systems , individual KT          

correlation values of feature importances were positive and negative reciprocals of           

each other (Figure 14). At the top, Palustrine wetlands were most strongly, positively             

correlated with high Elevation values and a KT value of 0.64. This was followed by               

Min TCG (0.60), Max and Mean TCG (0.59), and Med TCG (0.56). These strong,              

positive KT correlation values of the Palustrine System correspond to the strong,            

negative KT correlation values of the Lacustrine wetlands. The strong, positively           
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correlated features of the Lacustrine System include GSW Occurence (0.72), GSW           

Recurrence (0.69), Mean TCW (0.60), Med TCW (0.59), Min TCW (0.57), and Max             

TCW (0.51). The negative reciprocals of these values account for the features that             

Palustrine System probabilities are most strongly,negatively correlated with. 

North Basin Types Feature Importances and Correlations  
Classification of North Basin wetland Types had nearly identical top feature           

importances compared to North Basin Systems , but with lower feature importance           

values ( Figure 10B). GSW Occurrence and Med TCB were the top most important             

feature (0.10), followed by Mean TCW (0.08) and Med TCW (0.07). 

Like Willamette Valley Lake wetlands, this wetland Type in the North Basin            

consists of only Lacustrine System wetlands, and, consequently, their KT correlation           

scores for individual features are nearly identical. At the top is GSW Occurrence             

(0.72), followed by GSW Recurrence (0.69), Mean TCW (0.60), Med TCW (0.59),            

Min TCW (0.57), and Max TCW (0.51).  

Pond Type wetlands had lower degrees of both positive and negative KT            

correlation values (Figure 15). Ponds were most strongly, positively correlated with           

Mean TCB (0.19), Med Brightness (0.18), Max TCB (0.13), Range of TCW (0.13),             

and DOY of Med TCB, TCG, and TCW (0.12). Pond were most strongly correlated              

to low values of Med TCW (-0.18), Min and Mean TCW (-0.17), GSW Seasonality              

(-0.15), and DOY of Min TCB (-0.14). 
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Forested Type wetlands had lower magnitude KT correlation values compared          

to Lake wetlands and Emergent wetlands, but higher values than Pond wetlands. At             

the top, Forested wetlands were most strongly correlated with high values of            

Elevation (0.22), Max tMean (0.17), Range of tMean (0.17), Mean TCG (0.17), Max             

TCG (0.16), and Med TCG (0.16). Forested wetlands were most strongly correlated            

with low values of GSW Occurrence and Recurrence (-0.19), and Max and Range in              

ppt (-0.12). 

Like Lake wetlands, Emergent Type wetlands had high negative and positive           

correlation values with top features. Emergent wetland probabilities were most          

strongly correlated with high values of elevation (0.62), followed by Max, Mean, and             

Min TCG (0.59), Med TCG (0.56), and Med TCB (0.50). Similar to Forested             

wetlands, Emergent wetlands were most strongly, negatively correlated with GSW          

Occurrence (-0.70) and GSW Recurrence (-0.67). These features were followed by           

Mean TCW (-0.57), Med TCW (-0.56), Min TCW (-0.54), and Mac TCW (-0.49).  

North Basin Hydroperiods Feature Importances and Correlations 

As with the classification runs using ‘All Features’ to distinguish between           

North Basin Systems and Types , North Basin Hydroperiods had GSW Occurrence,           

Med TCB and Mean TCW as the top three most important feature, but with lower               

feature importance values of 0.08, 0.06, and 0.04 ( Figure 10C ). Med TCG, Mean             

TCG, Min TCW, and Max TCW were next, all with feature importance values of              

0.04.  
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Probabilities for individual Hydroperiods had a wide range of variability for           

strong positive and negative correlations with individual features’ high and low           

values (Figure 16). Temporarily Flooded was most strongly positively associated with           

DOY Med TCB, TCG, and TCW (0.37), followed by Mean TCB (0.36), Med TCB              

(0.34), Min TCB (0.25), and Max TCB (0.20). This Hydroperiod was most strongly             

correlated with low values of Med TCW (-0.33), Mean TCW (-0.33), GSW            

Seasonality and Occurrence (-0.29), Min TCW (-0.28), and GSW Recurrence (-0.27). 

Seasonally Saturated had the weakest correlation values, both positive and          

negative, of any North Basin Hydroperiod . Max tMin, Max tMean, 'Range of tMin,             

Range of tMean, Med tMean, Mean tMean, Min TCG, DOY of Max TCW, and              

Elevation all tied for the top, positive correlation value of 0.02. GSW Recurrence,             

Occurrence, Max TCW, Range of ppt, and Max ppt all tied for the strongest, negative               

correlation values of -0.02. Of the 51 features tested, 36 of them (71%) had absolute               

value KT correlation scores at or below 0.01. 

Fuzzy classification probabilities of Seasonally Flooded wetlands were most         

strongly correlated with high values of DOY of Min TCG (0.41), DOY of Max TCB               

(0.36), Mean tMax (0.03), Range tMean (0.28), and Max and Mean tMean (0.27).             

This Hydroperiod was most strongly correlated with low values of Range of TCB             

(-0.29), DOY Med TCW, TCG, and TCB (-0.28), Max TCV (-0.28), and Mean ppt              

(-0.28).  
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Semipermanently Flooded had relatively high KT values was most strongly,          

positively correlated with high Tasseled Cap Greenness STF values. Med TCG           

(0.38), Mean TCG (0.37), and Max TCG (0.36) had the top correlation values with              

Semipermanently Flooded, followed by Range of TCW (0.32), and Min TCG (0.31).            

GSW Seasonality (-0.33), Occurrence (-0.32), and Recurrence (-0.30) were most          

strongly, negatively correlated with Semipermanently Flooded probabilities, followed        

by Min TCW (-0.27), and DOY of Min TCB (-0.22). 

Similar to Seasonally Saturated wetlands, Permanently Flooded classification        

probabilities had very weak KT correlation values. At the top, DOY of Med TCB,              

TCG, and TCW had positive KT values of 0.09, followed by GSW Seasonality             

(0.08). Negative correlation scores were stronger, but still relatively weak, with low            

values of Med and Mean TCB (-0.1) and Min TCB and Max and Range of tMin most                 

strongly correlated with high probabilities values of Permanently Flooded wetlands.  

North Basin Artificially Flooded wetlands had the strongest positive and          

negative KT correlation values across this ecoregion’s Hydroperiod classification         

probabilities. High probabilities were most strongly correlated with high values of           

GSW Occurrence (0.43) and Recurrence (0.41), Mean ppt (0.36), Max TCW (0.36),            

and Range of DOY for TCB (0.35). High probabilities were most strongly correlated             

with low values of Med TCB (-0.44), DOY of min TCG (-0.40), DOY Max TCB               

(-0.36), and Mean TCB (-0.36). 
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Discussion 

Accurate wetland mapping and monitoring is essential to the conservation of           

area and functionality of these valuable ecosystems. In the U.S., the NWI is             

over-classified for the level of detail and spatial, temporal, and spectral scale used to              

classify, delineate, and monitor wetlands. Using the NWI taxonomy, there are           

currently 7,500 unique classification codes available for interpreters (Cowardin         

1979). While there has been a recognition by the USFWS to limit the number of               

classification codes and aim for quality over detail, there is still a disconnect between              

the ecological and hydrological classifications applied and the types of data used.            

This disconnect begins with the USFWS’s working definition of a wetland (FGDC            

2013): 

“Wetlands are lands transitional between terrestrial and aquatic systems where the           

water table is usually at or near the surface or the land is covered by shallow water.                 

For purposes of this classification wetlands must have one or more of the following              

three attributes (1) at least periodically, the land supports predominantly          

hydrophytes; (2) the substrate is predominantly undrained hydric soil; and (3) the            

substrate is nonsoil and is saturated with water or covered by shallow water at some               

time during the growing season of each year.” 
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In the given definition, there is an explicit temporal element in two out of              

three attributes used to distinguish wetland from upland habitat. However, a single            

image can only capture conditions at one point, in one day, during one year and will                

lend no insight into ecological, hydrological, or climatic conditions the rest of the             

year and may confound classifications if conditions happen to be anomalous on the             

acquisition date. 

In spite of wetland habitats being intrinsically linked to temporal phenomena,           

global and local wetland classification and monitoring remains largely devoid of           

robust, long-term, intra-annual temporal analysis of hydrology or other wetland          

functions. Wetlands are key ecosystems across the planet and we argue that to fully              

comprehend significant patterns of global wetland degradation and loss (Gibbs 2000),           

wetland phenological dynamics must be understood to place habitat change in the            

context of fundamental ecosystems drivers. In this study, we used spectral-temporal           

features as a way to capture intra-annual variability in Oregon wetlands to classify             

habitats across climate gradients and categorical resolutions. Across climate gradients          

and wetland categories, we then compared classification accuracies over feature-sets ,           

feature importances, and correlations among features and wetland habitat         

classification probabilities. 

Wetland Systems 
At the coarsest categorical resolution in our study, Palustrine and Lacustrine           

wetlands broadly represented vegetated and unvegetated wetlands respectively. By         
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measure of overall accuracy, classification performance for distinguishing between         

these two habitats was higher in the Willamette Valley compared to the North Basin              

by roughly 10%, suggesting it may be easier to make a binary delineation between              

vegetated and unvegetated wetland habitats in the energy-limited ecoregion. Water          

availability is not a limiting factor in the Willamette Valley and Lacustrine wetlands,             

in particular, may see more continuous saturation throughout the year, making them            

easier to differentiate between wetlands that have less saturation and more vegetative            

cover.  

Although the Willamette Valley had higher accuracies overall, the         

climate-temporal feature-set had a higher overall accuracy score for North Basin           

wetlands compared to the Willamette Valley. This suggests that annual climate           

features may more easily predict whether a wetland is vegetated or unvegetated in the              

water-limited ecoregion. In the Willamette Valley, because temperatures remain         

relatively mild throughout the year and below freezing temperatures are observed less            

than 25 percent of the calendar year, temperature alone is not a limiting factor in               

vegetation phenologies. In contrast, roughly half of the year in the North Basin (from              

November to April) observes temperatures below freezing, severely limiting         

vegetative growth, even if sunlight (energy) is abundant. In addition to vegetation,            

snowpack melt, a primary input for North Basin wetland water budgets, is also             

directly related to ambient temperature. The timing of snowpack melt will determine            

when, where, and which vegetation species propagate and senesce within the wetland            
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habitat. Additionally, soil temperature regulates the rate of chemical reactions          

(described above), which significantly slows at temperatures below 5°C. Because the           

refuge is so cold, these reactions will have a narrow window in spring and summer               

and will be dependent on ambient temperature. The timing of these reactions will             

create a specific climate-temporal pattern of vegetation species based on temperature           

of soil. In addition to temperature, precipitation is also a limiting factor for North              

Basin wetland phenologies. Snowpack melt is typically released from April through           

June. Precipitation in this region, a direct driver of snowpack accumulation, will            

influence duration of saturation and water table depth into the dry season, influencing             

when and where different species are established (with topography as additional           

driver). The stronger, climate-driven vegetation phenological pattern may explain         

why climate features can better classify North Basin vegetated and non-vegetated           

wetlands without any other features as inputs.  

Based on producer accuracy scores, in both the Willamette Valley and the             

North Basin, it was easier to correctly predict Palustrine wetlands compared to            

Lacustrine wetlands, but classification performance in the Willamette Valley was          

better in predicting Palustrine wetlands compared to the North Basin, but worse for             

predicting Lacustrine wetlands compared to the North Basin. These results were           

unanticipated. Lacustrine wetlands are, generally, ecologically ‘simpler’ compared to         

Palustrine wetlands, and we predicted that they would be easier for our RF             

classification to predict on the landscape. We believe our hypothesis may have been             
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rejected because many NWI classified Lacustrine wetlands are in a status of            

ecological ambiguity and exist as a mix of Palustrine and Lacustrine, making them             

harder to definitively differentiate between vegetated and non-vegetated wetlands,         

especially in a water-limited ecoregion. In contrast to producer accuracy, user           

accuracy for both the Willamette Valley and North Basin was higher for Lacustrine             

wetlands compared to Palustrine and the Willamette Valley had lower error of            

commission for Lacustrine wetlands. Given Lacustrine wetlands had lower error of           

commission, this indicates that when wetland pixels were labeled Lacustrine, they did            

were labeled accurately more often than Palustrine wetlands. Comparing user and           

producer accuracies, for both ecoregions, more reference Palustrine wetlands were          

correctly classified as Palustrine but fewer predicted Lacustrine wetlands were          

confused with reference Palustrine wetlands in classification.  

Feature importances in distinguishing between vegetated and non-vegetated        

wetlands were divergent between the Willamette Valley and the North Basin. In the             

Willamette Valley, a mix of features that represent vegetation cover (such as TCG)             

and surface water cover (such as the GSW features) were most important in             

classifying Lacustrine and Palustrine wetlands. This result is logical given that           

Lacustrine wetlands are surface water features and Palustrine wetlands contain          

vegetation cover. In contrast, classification North Basin Lacustrine and Palustrine          

wetlands was most dependent on features that represent surface water, such as GSW             

Occurrence and TCW, exclusively. We theorize that features that represent vegetation           
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cover were not as important in the North Basin because it is a water-limited              

ecoregion. As noted above, water is the limiting factor in establishment of North             

Basin wetlands, especially Lacustrine wetlands, so saturation level, rather than          

vegetative cover, may be most important in determining between vegetated and           

non-vegetated wetlands. It is interesting to note that both the Willamette Valley and             

North Basin had GSW Occurrence as the top GSW feature within feature importances             

for classification. This indicated that the persistence of surface water, rather than            

seasonality or recurrence, may be most valuable in classifying between Palustrine and            

Lacustrine wetlands, regardless of climatic context. 

Despite differences in the overall RF hard classification feature importances,          

Willamette Valley and North Basin Palustrine and Lacustrine wetland classification          

probabilities had very similar top feature compositions in respect to KT correlation            

scores. Palustrine wetlands in both ecoregions were most positively correlated with           

Tasseled Cap Greenness STFs and most negatively correlated with GSW features and            

Tasseled Cap Wetness STFs. Interestingly, high probabilities of Willamette Valley          

Palustrine wetlands were most closely correlated with high values of maximum           

greenness, meaning the absolute highest values of greenness are linked to Palustrine            

wetlands. Conversely, high probabilities of North Basin Palustrine wetlands were          

most closely correlated with high values of minimum greenness, which means           

something subtly different than being correlated with high values of maximum           

greenness. It indicates that North Basin Palustrine wetlands may require a specific            
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lower threshold of intra-annual vegetation cover in order to persist. It should also be              

noted that the top positive correlation with North Basin Palustrine wetland           

probabilities was with Elevation, suggesting that in the context of the landscape,            

Palustrine wetlands are positioned in higher elevations than Lacustrine wetlands. In           

both the Willamette Valley and North Basin, Lacustrine wetland probabilities were           

most strongly, positively correlated with GSW features, and wetness features,          

although the Willamette Valley had stronger KT scores. This, once again, suggests            

that Lacustrine wetlands are more distinct habitat features compared to Palustrine           

wetlands, in the Willamette Valley. 

Wetland Types 
At a finer categorical scale than wetland Systems , wetland Types represent           

more ecologically specific wetland habitats and ecosystem variables. By measure of           

overall accuracies, classification performance was weaker in both Willamette Valley          

and North Basin wetland Types ; this is expected as the RF classifier has more habitats               

to choose from and more specificity in feature values. For both ecoregions,            

classification accuracies decreased generally uniformly across all feature sets except          

for CTFs and GSW features, and North Basin accuracies decreased by a lower             

magnitude going to a finer categorical resolution compared to the Willamette Valley.            

For both ecoregions, this indicates that, on their own, climate features and measures             

of surface water dynamics cannot capture the ecological variability seen between           

Lakes, Ponds, Forested Wetlands, and Emergent Wetlands as well as they could for             
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Palustrine and Lacustrine wetlands. This may represent the divergence between          

categorical resolutions that are dependent on climate for intra-annual variability.          

While climate features still have a notable role, predicting wetland Types correctly            

nearly 50% of the time for both ecoregions without any other feature input, species              

composition may begin to play a larger driving function for wetland Types , as             

wetland Type habitats are no longer vegetated and non-vegetated like Systems , but,            

instead, represent a vegetation cover density gradient from Lakes (no vegetation) to            

Forested wetlands (dense, woody vegetation).  

When comparing against Systems , in the North Basin GSW accuracies          

decreased by a greater magnitude compared to the Willamette Valley, suggesting that            

particularly for the water-limited ecoregion, surface water dynamics are poor          

measures of variability in finer wetland habitats. This is somewhat unexpected given            

that two out of four (50%) of the wetland Types are surface water wetlands. However,               

75% of the wetland types have associated vegetation dynamics, perhaps          

demonstrating lower dependence on GSW features on their own, similar to the            

limitations noted for climate features. 

Despite low accuracies when classifying wetlands on their own, GSW features           

had top feature importance scores for both ecoregions, indicating that when combined            

with other features, measures of surface water dynamics are valuable in           

distinguishing between Lakes, Ponds, Forested Wetlands, and Emergent Wetlands.         

Similar to wetland Systems , top features in classifying Willamette Valley wetland           
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Types were a mixture of surface water features (such as GSW features and TCW)              

and TCG and top features in North Basin wetland Types were almost all surface water               

features. One notable difference for the North Basin is the addition of Max TCG as a                

top five most important feature. While vegetation cover features did not play top roles              

in hard classification for North Basin Systems , the added categorical refinement of a             

vegetation gradient in wetland Types likely required a feature representative of           

vegetation. However, even at finer categorical resolution, surface water dynamic          

features were still the top features for both the energy-limited and water-limited            

ecoregions, further reinforcing the importance of hydrology in wetland ecosystem          

classification and characterization. 

Lake Type wetlands are comprised entirely of Lacustrine System wetlands,          

and therefore had very similar positive and negative KT correlations for both            

ecoregions. Pond wetland classification probabilities had very low positive and          

negative KT correlations for both ecoregions. We contribute this to a higher level of              

categorical uncertainty of this wetland habitat in the NWI, defined as ‘Wetlands with             

vegetative cover less than 30 percent and lack of large stable surfaces for plant and               

animal attachment’. Ecologically, we theorize that Pond wetlands may exist in a            

categorical space of a mixture of Emergent and Lake wetlands and, therefore, do not              

have high correlations with any particular feature because they do not have distinct             

ecological signatures. This is confirmed with high error of omission and commission            

for Ponds. The top three positive feature correlations with Pond wetland probabilities            

 



 
 

 
 

105 
are TCB STFs for both ecoregions. This is a confounding result and warrants further              

exploration. We theorize high Pond probability correlations with TCB could come           

from three different sources, or a mixture. First, surface aquatic vegetation, such as             

algae or cyanobacteria, reflects highly in TCB. Second, ponds may experience more            

areas of bare soil in the hot, dry months, devoid of both vegetation and water, which                

would cause them to reflect highly in TCB. Last, while we did include a snow and ice                 

mask for our Landsat pixels, gaps could occur; because they are shallower than             

Lakes, Pond would be more vulnerable to surface water freeze in the winter months,              

which would also yield high TCB values. The last hypothesis would be more             

applicable in the North Basin, where freezing temperatures are common in winter. An             

additional unexpected result from Pond classification probability correlations is the          

strongly negative KT values for surface water features (GSW and TCW) for both the              

Willamette Valley and North Basin. Although there are a number of reasons this             

could be the case, we theorize that this result is from the RF classifier comparing               

between Lake habitat and Pond habitat, and placing pixels with higher GSW and             

TCW feature values in Lakes because they are deeper and, perhaps, more saturated. 

The most interesting comparisons between ecoregions in wetland Type         

probability correlations comes from the transition into wetlands classified by their           

vegetation type. Willamette Valley Forested Wetland probabilities were most strongly          

correlated with high values of all five TCG STFs and low values of GSW features               

and TCW STFs. This result is intuitive as high TCG is very well established as an                
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indicator of forested ecosystems (Healey et al. 2005) and, although they are wetlands,             

surface water features and reflectance will not be as great compared to Ponds or              

Lakes, because the majority of wetland surface area is vegetated. Results for North             

Basin KT correlations in Forested Wetlands were much different. High probabilities           

of Forested Wetlands were correlated first with high values in elevation, suggesting            

they are positioned in areas of relatively higher elevation rather than in depressions,             

followed by high values of annual maximum of the mean daily temperature and             

annual range of the mean daily temperature. Generally, this means that in the North              

Basin, in areas that contain vegetated wetlands, the warmer it is on average during              

the year, the more likely it is to be Forested (compared to Emergent). Woody              

vegetation is better at surviving during periods of water stress (i.e. high temperature)             

compared to herbaceous vegetation (Griffin and Smith 2004) so it could be that in              

vegetated wetlands, habitats that are found in sites where it gets relatively warmer,             

wetlands are more likely to be Forested. High probabilities of North Basin Forested             

Wetlands were most strongly correlated with lower values of GSW Occurrence and            

Recurrence and annual max and range of daily total precipitation. The negative            

correlation with surface water features is likely explained by similar factors as            

Willamette Valley Forested wetlands, and precipitation by similar reciprocal factors          

as temperature. 

High probabilities for Willamette Valley Emergent wetlands were correlated         

with high values of TCW, TCB, and TCG STFs and low values of GSW features and                
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TCW STFs. Herbaceous vegetation generally reflects higher in the TCB spectral           

domain, thus a mix of high TCG and high TCB values makes sense here. The               

interesting comparison is between correlations with high values of the range of TCW             

and low values of minimum, mean, median, and max TCW. Broadly, this indicates             

emergent wetlands are found in sites that have a wide range in wetness values, i.e.               

places where the maximum and minimum saturation values are far apart. Plainly,            

these are places where it gets relatively very wet and very dry within the year.               

However, with negative correlations with low minimum, mean, median, and max           

wetness values, it seems Willamette Valley Emergent wetlands have a threshold for            

how wet they get. We theorize that if a Willamette Valley emergent wetland gets too               

wet, it then becomes a Pond or Lake. High probabilities in North Basin Emergent              

Wetlands had the same strong, negative correlations as the Willamette Valley, but            

differing positive correlations. As with Forested Wetlands, Emergent Wetland         

probabilities were correlated first with high values in elevation, suggesting they are            

positioned in areas of relatively higher elevation rather than in depressions, followed            

by maximum, mean, min, and median TCG, indicating North Basin Emergent           

wetlands are linked to high vegetation cover.  

Wetland Hydroperiods 
One of the most important features in wetland characterization and          

classification is the wetland hydroperiod. At a finer categorical scale than both            

wetland Systems and wetland Types , wetland Hydroperiods represent a         
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eco-hydrologically specific wetland classification based on intra-annual variability.        

By measure of overall accuracies, classification performance was weaker in both           

Willamette Valley and North Basin wetland Hydroperiods compared to wetland          

Types and Systems . This is not surprising given that Hydroperiods are specifically            

classified based on intra-annual variability and require more complex contextual          

information beyond differences in vegetation density and type. While both ecoregions           

had lower accuracies in Hydroperiods , Willamette Valley Hydroperiods classification         

performance was not substantially lower than Type classification in most feature-sets,           

except for CTFs and GSW features. In contrast, North Basin Hydroperiod accuracies            

were reduced by more than half compared to wetland Types, with CTFs and GSW              

features barely registering accuracies above 15%. As with wetland Types , these           

results suggest that climate features and measures of surface water dynamics cannot            

capture the intra-annual hydrological and ecological variability needed to distinguish          

between different Hydroperiods  on their own. 

The sharp divergence between classification performance for Willamette        

Valley and North Basin Hydroperiods suggests there could be a meaningful           

difference between the intra-annual dynamics that our input features can capture for            

energy-limited wetland versus water-limited wetlands. NWI Hydroperiod       

classification is based around magnitude of inundation (saturated versus flooded) and           

the intra-annual duration of inundation (continuously, seasonally, temporarily, or         

permanently). We hypothesize that Willamette Valley wetlands may have a stronger           
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temporal-hydrological signal because water is not a limiting resource and, therefore,           

the differences between magnitude and duration of inundation are more distinct and            

distinguishable using our input features. Further, this could also point to the known             

and described limitation of NWI classification in which single date imagery or single             

date site visits cannot accurately characterize hydrological dynamics of the entire           

year, with this effect exaggerated in more hydrologically variable, water-limited          

ecosystems. 

Individual feature importances were also much lower for North Basin          

Hydroperiod classification compared to the Willamette Valley. For both ecoregions,          

however, despite performing poorly as their own feature-set in classification, GSW           

features landed as the top most important features when combined with all 51 features              

in classification. GSW Occurrence, which could also be thought of as a proxy             

measure of long-term averages of inundation duration, ranked highest for both           

ecoregions. This suggests that, while the long-term measures of GSW features may            

not be able to accurately distinguish differences in wetland Hydroperiods on their            

own for individual years, they are very useful when combined with other features             

such as TCG and TCW STFs in the Willamette Valley and TCB, TCG, and TCW               

STFs in the North Basin and should be considered as feature inputs for future              

classification of wetland Hydroperiods . 

Individual feature correlations with Hydroperiod habitat classification       

probabilities were the most diverse between any wetland category. For the sake of             
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brevity, we will not discuss feature correlations for each Hydroperiod between and            

within each ecoregion (which would result in nearly 20 individual comparisons).           

Instead, we highlight first analyze one Hydroperiod in depth and then highlight other             

interesting aspects of the other five. For Willamette Valley Temporarily Flooded           

wetland classification probabilities, i.e. wetlands that have high inundation for low           

duration, Max TCG and the annual median of daily precipitation were the most             

strongly, positively features. Ecologically, Max TCG represents the highest         

vegetation signal throughout the year so it makes sense that wetlands with high             

greenness would be associated with hydroperiods of low inundation duration because           

lower duration inundation and high inundation magnitude will yield an increased           

hydrological input through flooding and then more opportunity for vegetation to grow            

by receding quickly. The annual median of daily precipitation as a strong, positive             

correlation with Willamette Valley classification probabilities is also logical; areas          

with annually high daily intermediate values are more likely to have flooding. GSW             

features were most strongly, negatively correlated with GSW features and annual           

mean temperature of the daily mean. Given that GSW features can be conceptually             

linked to duration and recurrence of inundation, it makes sense that wetlands that             

have low inundation duration are correlated with low GSW values, especially           

seasonality. Classification probability correlation with low values of average         

temperature is an intriguing result that could have a variety of hydro-ecological            
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explanations. For example, Low temperatures could facilitate a free-thaw cycle that           

creates flooded wetlands for a short period of time. 

Feature correlations for North Basin Temporarily Flooded wetland        

classification probabilities differed considerably compared to the Willamette Valley.         

The DOY of median TCB, TCG, and TCW were the most strongly, positively             

correlated with classification probabilities in this ecoregion. This suggests that time is            

an essential component for characterizing low duration, high magnitude inundation          

for this water-limited ecoregion. Broadly, if the median of TC reflectance values            

occur later in the year, the more likely it is to be a Temporarily Flooded wetland in                 

the North Basin. This suggests that for the North Basin, this Hydroperiod wetland is              

most likely to have its extrema, specifically inundation and vegetation growth earlier            

in the year, which could be linked to the habitat’s dependence on hydrologic input              

availability, such as runoff. North Basin Temporarily Flooded wetland classification          

probabilities were most strongly, negatively correlated with high values of TCW           

STFs and GSW features suggesting that high magnitude inundation wetlands were           

not characterized well by common measures of wetness. We hypothesize that in the             

North Basin, water is a limited resource so Temporarily Flooded wetlands are            

inundated for periods shorter than systems where water is not a limited resource.             

Therefore, it is possible that satellite imagery could more easily miss TCW extrema             

due to date of acquisition mismatch or obscruction by clouds. 
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Important differences in feature correlations with individual Hydroperiod        

wetlands between the two ecoregions exist for the other five habitats as well and they               

do not, generally, appear to follow a pattern in relation to each other. However,              

within-ecoregion patterns appear to exist. For the Willamette Valley, three out of four             

“Flooded” Hydroperiods have strong negative correlations with GSW features and          

four out of four have strong positive correlations with climate features. This indicates             

that flooded wetlands may be more spatially ephemeral and not characterized well by             

surface water dynamics are more dependent on local climate conditions. Saturated           

wetlands in the Willamette Valley do not have a similar distinguishable pattern. In the              

North Basin, three out of four “Flooded” Hydroperiods have strong positive or            

negative correlations with DOY STFs, suggesting that persistence of flooded          

wetlands is connected to timing of eco-hydrological dynamics.  

In the Willamette Valley Seasonally Saturated wetlands are strongly         

positively correlated with GSW features, while Continuously Saturated wetlands are          

strongly, negatively correlated. In contrast, in the north basin both “Saturated”           

wetlands are strongly negatively correlated with GSW features. High GSW features           

values indicate wetlands that occur, recur and occur for many months, and it could be               

that “Seasonally Saturated” wetlands have relatively stable inter-annual persistence         

and contain more temporal-autocorrelation year to year. 
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Future Use Of Landsat STFs In Wetland Ecosystems 
In our study, we chose to explore the usability of specific primary            

spectral-temporal, climate-temporal, and ancillary features for wetland classification        

in areas of known wetland and did not investigate model performance or feature             

importance to wetland detection . In wetland classification, the model had specific           

wetland habitats to choose from for each wetland category and each pixel was             

assumed to have a base condition as a wetland. In wetland detection, pixel state is               

unknown at the beginning of the model run and upland systems need to be included               

as possible classification categories. Wetland detection with Landsat imagery presents          

an even more challenging task but is the next critical step in remote sensing of               

wetland ecosystems.  

The presence of a distinct hydroperiod may serve as the first step in             

differentiating wetlands from uplands. Accurate classification of wetland        

hydroperiods has been a subject of multiple remote sensing studies in recent years.             

However, these studies tend to be based on wetlands that are in arid landscapes              

(Halabisky et al. 2016, Dvorett et al. 2015), individual wetland sites (Díaz-Delgado et             

al. 2016), or a fusion of multisource imagery such as Landsat, MODIS, and SAR              

(Townsend et al. 2001). Here, we demonstrate that NWI Hydroperiods can be            

classified in both energy-and water-limited ecosystems for areas of known wetland           

presence and believe the transition to hydroperiod detection using spectral-temporal          
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features will be complementary. Once a binary presence of a hydroperiod is            

established, wetland classification can follow. 

In addition to wetland detection and classification, we also believe there is            

utility in improving upon the categorical NWI hierarchical taxonomy, especially for           

hydroperiods. Hydroperiod definitions are moderately esoteric, overlapping, and not         

necessarily ecologically relevant. One solution lies in unsupervised classification. Our          

results demonstrate that primary STFs are able to capture the intra-annual variability            

needed to characterize different wetland categories and habitats. Allowing STFs and           

other relevant features to separate and ‘cluster’ hydroperiods into separate habitats           

based purely on statistical measures may yield more hydro-ecologically relevant          

Hydroperiod definitions.  

After annual classification or detection of intra-annual wetland dynamics, the          

next step is applying the classification across time. Due to the inter-annually            

ephemeral nature of wetland habitats, we believe fuzzy classification, i.e. utilizing           

classification probabilities rather than hard classification, will be most useful and           

yield more stable insight into long term wetland dynamics. Wetlands are transient and             

transitional and may naturally migrate between two wetland habitats from year to            

year, however, monitoring probabilities generates more consistent, continuous,        

information about wetland behavior over time. Further, specific features identified          

here were strongly correlated with different wetland habitats. Researchers or          

managers interested in studying habitat functioning or area over time can also monitor             
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features as proxies for relevant biophysical parameters in the ecosystem. Lastly, the            

inclusion of climate data that also predicts values into the future, such as the NASA               

earth Exchange Global Daily Downscaled Projections (NEX-GDDP) (Ahmadalipour        

et al. 2016) could be utilized to predict wetland behavior into the future for the               

purposes of planning, management, and conservation. 

Conclusions 
● Through systematic exploration and quantification of feature-set accuracies        

and wetland classification performance, we found that STFs-only feature-sets         

consistently produced high overall accuracies and were able to accurately          

delineate wetland habitats across climate gradients and wetland categorical         

resolutions even further when combined with other features. Additionally,         

accuracies decreased with increasing categorical resolution in both energy-and         

water-limited ecosystems.  

● Evaluation of individual feature importance for distinguishing between        

different wetland habitats showed that different features are more important          

for different climate gradients and categorical resolutions. However, GSW         

Occurrence was consistently valuable for both ecoregions across all         

categorical resolutions, exemplifying the value of utilizing the GSW dataset          

for wetland classification.  
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● Although not all types of features were found to be important in overall             

classification, in quantifying correlations between individual features and        

individual wetland habitat classification probabilities, we found that all feature          

types -- primary reflectance STFs, DOY STFs, CTFs, GSW features, and           

Elevation -- had strong positive and negative correlations with individual          

habitats. This indicates the importance of using the various features as inputs            

for wetland classification. 

● Future studies should focus on using the feature-sets described here for           

wetland detection and apply the model through time for long term trend            

analysis. 

 

 



 
 

 
 

117 

CHAPTER 2 FIGURES 

Figure 2.1: 30-year average of mean annual temperature (A) and mean annual 
precipitation (B) for the state of Oregon. Willamette Valley (left) and Northern 
Basin and Range (right) EPA Level III Ecosystems are outlined in black.  
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Figure 2.2: State of Oregon with EPA Level III Ecoregion study areas outlined in 
black (A) . Individual wetland study sites in the Willamette Valley Ecoregion are 
indicated with red dots (B); the Willamette Valley ranges in elevation from 825 m 
to -58 m. Wetland study sites in the Northern Basin and Range Malheur NWR are 
indicated with red dots (B); higher than the Willamette Valley, the Northern Basin 
and Range ranges in elevation from 2965 m to 687 m. 
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Figure 2.3: Distribution of three pixel-scale agreement scores (Out-of-Bag [oob] 
from Random Forest and independently assessed overall and area-weighted 
[adjusted] agreements), measured as percentage correct relative to reference labels, 
for each feature-set in classification of Willamette Valley wetland Systems (A), 
Types (B), and Hydroperiods  (C). 
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Figure 2.4: Distribution of three pixel-scale agreement scores (Out-of-Bag [oob] 
from Random Forest and independently assessed overall and area-weighted 
[adjusted] agreements), measured as percentage correct relative to reference labels, 
for each feature-set in classification of North Basin wetland Systems (A), Types 
(B), and Hydroperiods  (C).  
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Figure 2.5: Habitat level producer accuracy  for ‘All Features’ feature-set. 
Confusion matrices are shown as heat maps, with darker colors corresponding to 
higher scores for each habitat in classification of Willamette Valley wetland 
Systems (A), Types (B), and Hydroperiods  (C).  
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Figure 2.6: Habitat level user accuracy for ‘All Features’ feature-set. Confusion 
matrices are shown as heat maps, with darker colors corresponding to higher scores 
for each habitat in classification of Willamette Valley wetland Systems (A), Types 
(B), and Hydroperiods  (C).  
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Figure 2.7: Habitat level producer accuracy  for ‘All Features’ feature-set. 
Confusion matrices are shown as heat maps, with darker colors corresponding to 
higher scores for each habitat in classification of North Basin wetland Systems (A), 
Types (B), and Hydroperiods  (C).  
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Figure 2.8: Habitat level user accuracy  for ‘All Features’ feature-set. Confusion 
matrices are shown as heat maps, with darker colors corresponding to higher scores 
for each habitat in classification of North Basin wetland Systems (A), Types (B), 
and Hydroperiods  (C).  
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Figure 2.9:  Feature importances for discriminating among Willamette Valley 
wetland Systems (A), Types (B), and Hydroperiods (C). Higher feature 
importances suggest higher placement across trees and thus greater discriminatory 
power. 
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Figure 2.10:  Feature importances for discriminating among North Basin wetland 
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Systems (A), Types (B), and Hydroperiods (C). Higher feature importances suggest 
higher placement across trees and thus greater discriminatory power. 

 

Figure 2.11:  Kendall Tau correlation scores for classification features and System 
classification probabilities.  
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Figure 2.12:  Kendall Tau correlation scores for classification features and Type 
classification probabilities.  
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Figure 2.13:  Kendall Tau correlation values for classification features and 
Willamette Valley Hydroperiod classification probabilities.  
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Figure 2.14:  Kendall Tau correlation values for classification features and North 
Basin System classification probabilities.  
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Figure 2.15:  Kendall Tau correlation values for classification features and North 
Basin Type classification probabilities.  
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Figure 2.16:  Kendall Tau correlation values for classification features and North 
Basin Hydroperiod classification probabilities.  
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CHAPTER 2 TABLES 

 

Wetland System Habitat Description 

Palustrine Vegetated wetlands traditionally called by such names as 
marsh, swamp, bog, fen, and prairie. Also includes small, 
shallow, permanent or intermittent water bodies. May be 
situated shoreward of lakes and river channels, on river 
floodplains, or in isolated catchments. They may also 
occur as islands in lakes or rivers.  

Lacustrine 

Permanently flooded lakes and reservoirs, and intermittent 
lakes. Typically, there are extensive areas of deep water 
and there is considerable wave action. Islands of Palustrine 
wetlands may lie within the boundaries of the Lacustrine 
System. 

Table 2.1 : NWI descriptions of System level wetland habitats (Cowardin et al. 1979; FGDC 
2013) 
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Wetland Type Habitat Description 

Lake All Lacustrine System  wetlands. 

Pond Palustrine System , includes subclass 
‘Unconsolidated Bottom’. Wetlands 
with vegetative cover less than 30 
percent and lack of large stable surfaces 
for plant and animal attachment. 

Forested Palustrine System ; includes subclasses 
‘Scrub Shrub’ and ‘Forested’. Wetlands 
where woody plants are the dominant 
vegetative life for. Wetlands possess an 
overstory of trees, an understory of 
young trees or shrubs, and an 
herbaceous layer. 

Emergent 

Palustrine System ; includes subclass 
‘Emergent’. Wetlands  where erect, 
rooted, herbaceous hydrophytes are the 
tallest life form with at least 30% areal 
coverage. Vegetation is present for 
most of the growing season in most 
years. 

Table 2.2 : NWI descriptions of Type level wetland habitats (Cowardin et al. 1979; 
FGDC 2013) 
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Wetland Hydroperiod 
Habitat 

Description 

Temporarily Flooded Surface water is present for brief periods (from a few days 
to a few weeks) during the growing season, but the water 
table usually lies well below the ground surface for the 
most of the season. 

Seasonally Saturated The substrate is saturated at or near the surface for 
extended periods during the growing season, but 
unsaturated conditions prevail by the end of the season in 
most years. Surface water is typically absent, but may 
occur for a few days after heavy rain and upland runoff. 

Seasonally Flooded Surface water is present for extended periods (generally 
for more than a month) during the growing season, but is 
absent by the end of the season in most years. When 
surface water is absent, the depth to substrate saturation 
may vary considerably among sites and among years. 

Continuously Saturated The substrate is saturated at or near the surface throughout 
the year in all, or most, years. Widespread surface 
inundation is rare, but water may be present in shallow 
depressions that intersect the groundwater table. 

Permanently Flooded Water covers the substrate throughout the year in all years. 

Artificially Flooded 
The amount and duration of flooding are controlled by 
means of pumps or siphons in combination with dikes, 
berms, or dams. 

Table 2.3 : NWI descriptions of Hydroperiod  level wetland habitats (Cowardin et al. 1979; 
FGDC 2013) 
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Feature Label Equation 

TCB Maximum TCB Max max( TCB) 

TCG Maximum TCG Max max( TCG ) 

TCW Maximum TCW Max max( TCW) 

TCB Minimum TCB Min min( TCB) 

TCG Minimum TCG Min min( TCG ) 

TCW Minimum TCW Min min( TCW) 

Range of TCB Range of TCB |max( TCB) - min( TCB)| 

Range of TCG Range of TCG |max( TCG ) - min( TCG )| 

Range of TCW Range of TCW |max( TCW) - min( TCW)| 

TCB Median TCB Med x̃( TCB) 

TCG Median TCG Med x̃( TCG ) 

TCW Median TCW Med x̃( TCW) 

TCB Mean TCB Mean x̅( TCB) 

TCG Mean TCG Mean x̅( TCB) 

TCW Mean TCW Mean x̅( TCW) 
Table 2.4 : Reflectance spectral-temporal features calculated for Tasseled Cap 
Brightness (TCB), Greenness (TCG), and Wetness (TCW). Features are calculated 
for all available images for the year 1995.  
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Feature Label Equation 

DOY TCB Maximum TCB Max DOY max(TCB) 

DOY TCG Maximum TCG Max DOY max(TCG ) 

DOY TCW Maximum TCW Max DOY max(TCW) 

DOY TCB Minimum TCB Min DOY min(TCB) 

DOY TCG Minimum TCG Min DOY min(TCG ) 

DOY TCW Minimum TCW Min DOY min(TCW) 

DOY Range of TCB Range of TCB DOY |max(TCB) - min( TCB)| 

DOY Range of TCG Range of TCG  |DOY max(TCG ) - DOY min(TCG )| 

DOY Range of TCW Range of TCW DOY |max(TCW) - min( TCW)| 

DOY TCB Median TCB Med DOY x̃( TCB) 

DOY TCG Median TCG Med DOY x̃( TCG ) 

DOY TCW Median TCW Med DOY x̃( TCW) 

Table 2.5 : Day of year (DOY) spectral-temporal features calculated for Tasseled Cap 
Brightness (TCB), Greenness (TCG), and Wetness (TCW) reflectance STFs (Table 4). 
Features are extracted from  all available images for the year 1995.  
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Feature Label Equation 

Maximum of the Daily Maximum 
Temperature 

Max tMax max(tMax) 

Minimum of the Daily Maximum 
Temperature 

Min tMax min(tMax) 

Range of the Daily Maximum 
Temperature 

Range of tMax |max(tMax) - min(tMax)| 

Median of the Daily Maximum 
Temperature 

Med tMax x̃( tMax) 

Mean of the Daily Maximum 
Temperature 

Mean tMax x̅max( tMax) 

Maximum of the Daily Minimum 
Temperature 

Max tMin max(tMin) 

Minimum of the Daily Minimum 
Temperature 

Min tMin min(tMin) 

Range of the Daily Maximum 
Temperature 

Range of tMin |max(tMin) - min(tMin)| 

Median of the Daily Minimum Med tMin x̃( tMax) 
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Temperature 

Mean of the Daily Minimum 
Temperature 

Mean tMin x̅max( tMax) 

Maximum of the Daily Median 
Temperature 

Max tMed max(tMed) 

Minimum of the Daily Median 
Temperature 

Min tMed min(tMed) 

Range of the Daily Median Temperature Range of tMed |max(tMed) - min(tMed)| 

Median of the Daily Median 
Temperature 

Med tMed x̃( tMed) 

Mean of the Daily Median Temperature Mean tMed x̅max( tMed) 

Maximum of the Daily Mean 
Temperature 

Max tMean max(tMean) 

Minimum of the Daily Mean 
Temperature 

Min tMean min(tMean) 

Range of the Daily Mean Temperature Range of tMean |max(tMean) - 
min(tMean)| 

Median of the Daily Mean Temperature Med tMean x̃( tMean) 

 



 
 

 
 

140 

Mean of the Daily Mean Temperature Mean tMean x̅max( tMean) 

Maximum of the Daily Total 
Precipitation 

Max ppt max(ppt) 

Minimum of the Daily Total 
Precipitation 

Min ppt min(ppt) 

Range of the Daily Total Precipitation Range of ppt |max(ppt) - min(ppt)| 

Median of the Daily Total Precipitation Med ppt x̃( ppt) 

Mean of the Daily Total Precipitation Mean ppt x̅max( ppt) 

Table 2.6 : Per-pixel climate-temporal features calculated for daily Max, Min, 
Med, and Mean temperature, and Max, Min, Med, and Mean ppt. Features are 
extracted from 365 days of PRISM climate model data from 1995.  

 

Feature Label Description 

Global Surface Water Occurrence  GSW 
Occurrence 

The frequency with which water is 
present. 

Global Surface Water Recurrence  GSW 
Recurrence 

The frequency with which water returns 
from year to year. 

Global Surface Water Seasonality  GSW 
Seasonality 

Number of months water is present. 

Digital Elevation Model Elevation Elevation 
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Table 2.7 : Ancillary data features. GSW Occurrence and Recurrence are calculated for the 
time period 1984 - 2015 and GSW Seasonality is calculated for the period 2014-2015. 
Elevation is derived from the The Shuttle Radar Topography Mission in February 2000.  

 
 
 
 
 

Feature-Set Features 

STFs All reflectance STFs 

DOY STFs All DOY STFs 

All STFs Reflectance STFs and DOY STFs 

CTFs CTFs 

GSW GSW features 

All STFs + Elevation Reflectance STFs, DOY STFs, and 
Elevation 

All STFs + GSW Reflectance STFs, DOY STFs, and 
GSW features 

All Features Reflectance STFs, DOY STFs, CTFs, 
GSW features, and Elevation 

Table 2.8 : Feature-set names and the features that are contained within each group 
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 Truth 

Predicted Palustrine Lacustrine Total 
Error of 

Commission 
(%) 

Palustrine 27399 5757 33156 17.4 

Lacustrine 995 24070 25065 4.0 

Total 28394 29827 58221  

Error of 
Omission (%) 3.5 19.3   

Table 2.9: Pixel-scale confusion matrix for Willamette Valley Wetland Systems. 
Values correspond to number of pixels correctly or incorrectly labeled based on 
agreement between reference data (truth) and classified pixels (predicted). 
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 Truth 

Predicted Lake Pond Forested Emergent Total 
Error of 

Commission  
(%) 

Lake 25432 30 48 1569 27079 6.1 

Pond 15 10 11 22 58 82.8 

Forested 88 40 9398 2887 12413 24.3 

Emergent 4292 161 1877 12341 18671 33.9 

Total 29827 241 11334 16819 58221  

Error of 
Omission 

(%) 
14.7 95.85 17.1 26.6   

Table 2.10: Pixel-scale confusion matrix for Willamette Valley Wetland Types. Values 
correspond to number of pixels correctly or incorrectly labeled based on agreement between 
reference data (truth) and classified pixels (predicted). 

 
 

 Truth 

Predicted Temporarily 
Flooded 

Seasonally 
Saturated 

Seasonally 
Flooded 

Continuously 
Saturated 

Permanently 
Flooded 

Artificially 
Flooded Total 

Error of 
Commission 

(%) 

Temporarily 
Flooded 

4220 7 1259 21 4 1 5512 23.4 

Seasonally 
Saturated 

0 3340 1444 0 3 0 4787 30.2 

Seasonally 2511 5386 38639 530 152 109 47327 18.4 
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Flooded 

Continuously 
Saturated 

7 0 417 10 14 0 448 97.8 

Permanently 
Flooded 

0 23 71 0 1 0 95 98.9 

Artificially 
Flooded 

0 0 7 0 0 45 52 13.5 

Total 6738 8756 41837 561 174 155 58221  

Error of 
Omission (%) 

37.4 61.8 7.6 98.2 99.4 71.0   

Table 2.11: Pixel-scale confusion matrix for Willamette Valley Wetland Hydroperiods. 
Values correspond to number of pixels correctly or incorrectly labeled based on agreement 
between reference data (truth) and classified pixels (predicted). 

 
 

 
 

Truth 
 

Predicted Palustrine Lacustrine Total 
Error of 

Commission 
(%) 

Palustrine 276132 55846 331978 16.86 

Lacustrine 37124 276604 313728 11.83 

Total 313256 332450 645706  

Error of 
Omission (%) 

11.8 16.8   

Table 2.12: Pixel-scale confusion matrix for North Basin Wetland 
Systems. Values correspond to number of pixels correctly or incorrectly 
labeled based on agreement between reference data (truth) and classified 
pixels (predicted). 

 
 

 Truth 

Predicted Lake Pond Forested Emergent Total 
Error of 

Commission 
(%) 

Lake 275170 5881 370 35696 317117 13.2 
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Pond 4775 4559 1 13244 22579 79.8 

Forested 1830 14 890 5278 8012 88.9 

Emergent 50675 14517 2094 230712 297998 22.6 

Total 332450 24971 3355 284930 645706  

Error of 
Omission 

(%) 
17.2 81.7 73.5 19.0   

Table 2.13: Pixel-scale confusion matrix for North Basin Wetland Types. 
Values correspond to number of pixels correctly or incorrectly labeled based on 
agreement between reference data (truth) and classified pixels (predicted). 

 
 

 Truth 

Predicted 
Temporarily 

Flooded 
Seasonally 
Saturated 

Seasonally 
Flooded 

Continuously 
Saturated 

Permanently 
Flooded 

Artificially 
Flooded Total 

Error of 
Commission 

(%) 

Temporarily 
Flooded 6599 0 9469 3971 0 2528 22567 70.8 

Seasonally 
Saturated 44 5 0 0 0 0 49 89.8 

Seasonally 
Flooded 24871 2 29374 13761 51 2737 70796 58.5 

Continuously 
Saturated 7604 0 21578 18516 0 1368 49066 62.3 

Permanently 
Flooded 0 0 0 103 0 0 103 100.0 

Artificially 
Flooded 721 0 872 3716 145 582 6036 

90.3578528
8 

Total 39839 7 61293 40067 196 7215 148617  

Error of 
Omission (%) 83.4 28.6 52.1 53.8 100.0 91.9   

Table 2.14: Pixel-scale confusion matrix for North Basin Wetland Hydroperiods. 
Values correspond to number of pixels correctly or incorrectly labeled based on 
agreement between reference data (truth) and classified pixels (predicted). 

  

 



 
 

 
 

146 
 

 

CHAPTER 3 
APPLYING ANNUAL LANDSAT 

SPECTRAL-TEMPORAL 
FEATURES TO MONITOR 

INTRA-AND INTER-ANNUAL 
WETLAND ECOSYSTEM 

DYNAMICS FROM FROM 1985 - 
2017 
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Introduction 
Globally, wetlands cover between 5 and 10% of the land surface but are 

decreasing in area and functionality at accelerating rates as a result of land use change 

and water resource expansion for agricultural, urban and industrial development 

(Tockner et al., 2008, Fickas et al. 2015). A probable impact of climate change will 

be increasing rates of wetland decline across the planet, as wetland ecosystems are 

specifically vulnerable to changes in quantity and quality of water supply (Burket and 

Kusler, 2000; Dawson et al.,2003; Kingsford, 2011).  As it progresses, climate change 

will, broadly, modify precipitation and evapotranspiration rates and yield changes in 

runoff and groundwater levels (House et al. 2016). The essential roles of these drivers 

in controlling wetland vegetation (Baldwin et al., 2001, animals (Ausden et al., 2001; 

McMenamin et al., 2008) and biogeochemical cycling (Grimm et al., 2003) means 

that climate change is likely to have major impacts on global wetlands, species 

dependent on these habitats, and the various ecosystem services which they provide. 

However, the effects of climate and other anthropogenic change in wetlands are 

unlikely to be uniform across climate zones and ecohydrological contexts (Arnell and 

Reynard,1996; Radojevic et al., 2010).  
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Wetland Hydrology and Phenology 
Hydrology is regarded as an essential determinant characteristics of 

establishment and persistence of wetlands and wetland processes (Zhang et al. 2012, 

Todd et al. 2010). Wetland hydrology starts at the interaction between climate and 

landscape geomorphology . With all other metrics held constant, wetlands are more 

likely to persist in cool wet climates than hot or dry climates. Cooler climates are less 

subject to evapotranspirative water loss and wetter climates experience greater 

precipitation, often in surplus (Mitsch and Gosselink 2015). Geomorphology of the 

system, catchment, and greater landscape also frame wetland habitat persistence. 

Areas of  high relief and steep terrain are less likely to house wetlands than locations 

with gentle slopes and depressions. Further, wetlands in isolated catchments will have 

distinct differences in hydrologic behavior than ecosystems with connectivity to 

streams or tidal inundation. Considered together in the context of hydrology climate 

and geomorphology constitute a wetland system’s hydrogeomorphology. 

The hydrogeomorphology of a wetland ecosystem drives and influences the 

inflow and outflow of water into the system, creating a wetland water budget. A 

freshwater wetland’s water budget can be seen as (Mitsch and Gosselink 2015): 

V/t = Pn + Si + Gi - ET - SO - GO 

where  

V= volume of water storage in wetlands 

V/t = change in volume of water storage in wetlands per unit time, t 
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Pn = net precipitation 

Si  = surface inflows, including stream flooding 

Gi = groundwater inflows 

ET = evapotranspiration 

SO = surface outflows 

GO = groundwater outflows 

In addition to hydrogeomorphology, the temporal hydrologic signature of a 

wetland further characterizes and distinguishes wetland behavior. The seasonal 

pattern of a wetland’s water budget can be defined as a hydroperiod (Euliss et al. 

1999) (also referred to as a water regime). A hydroperiod describes the temporal rise 

and fall pattern of a wetland ecosystem’s surface and subsurface water through 

temporal specification of the wetland’s water budget. A wetland hydroperiod is not 

the same each year and can fluctuate annually, seasonally, daily, or unpredictably 

with climate and antecedent conditions (Brooks 2004).  

A wetland’s hydroperiod is significantly related to its vegetation community 

variation (Toogood and Joyce 2009) and is a key physical factor underlying 

ecosystem conditions at a given time (Katz et al. 2009). Specifically, wetland 

hydrology drives chemical and physical processes in wetlands creating biotic 

feedbacks. First, hydrology acts as a limiter or stimulus to vegetative species richness 

by selecting water-tolerant species (hydrophytes) and excluding flood-intolerant 

species. The hydroperiod, therefore, influences the spatio-temporal competitive 

 



 
 

 
 

150 
interactions among species (Keddy & Reznicek 1986). Hydroperiods that include 

sustained flooding for extended durations tend to be associated with lower species 

richness and primary productivity, whereas species richness and primary productivity 

tends to be higher in wetlands with pulsing hydrology and hydroperiods with greater 

complexity (Odum et al. 1995). The temporal pattern of hydrology, therefore has a 

direct affect on wetland phenology.  

Phenology can be characterized as the timing of recurrent biological events, 

the causes of their timing with regard to biotic and abiotic forces, and the interrelation 

among phases of the same or different species (Lieth 1974). From organisms to 

ecosystems, plant species are highly calibrated to the temporal patterns of their 

surrounding environment (Cleland et al. 2007). Phenology varies widely over 

geographic scales and climate zones and significant variability in phenological 

features is seen as a result of interannual variability in climate and weather 

(Richardson et al. 2013). 

Vegetation phenologies (as opposed to animal phenologies) are largely 

characterized through phenoclimatic measures (metrics of temperature that assimilate 

over important temporal stages for plant growth and development) and phenophases 

(period of development such as bud burst, flowering, or senescence). In many upland 

terrestrial ecosystems, such as deciduous hardwood forests, phenological processes 

and drivers are well studied with predictable annual cycles. For example, air 

temperature is the most important factor in regulating budburst and leaf-out in 
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temperate and boreal woody plants (Linkosalo et al. 2006; Polgar and Primack 2011) 

with photoperiod also understood to play a role (Ghelardini et al. 2014). However, 

given that wetlands are more transitional and spatially and temporally complex 

ecosystems, phenology cycles may not be as predictable and hydrology is likely to 

play a much larger role.  

In addition to vegetation phenologies, wetland hydroperiods also drive 

geochemical patterns essential for wetland habitats. Soils that are subject to long 

periods of saturation are referred to as hydric soils and inundation or prolonged 

saturation creates chemical shifts in the soil environment. When oxygen is restricted 

below the soil surface, changes in the chemical composition of soil minerals and 

carbon will occur as both physical and biological processes . In reaction to restricted 

oxygen levels, there are changes in the activity of soil microbes that use oxygen as the 

terminal electron acceptor in the process of oxidation of organic molecules. Oxygen 

that is available in the soil is depleted through microbial metabolism. Once oxygen 

levels are drained, biological activity is restricted to microbial communities that have 

the capacity to use elemental minerals other than oxygen as electron receptors in 

metabolism. Through this process, the oxidized forms of the soil minerals are 

reduced.  

In wetland ecosystems, the reduction-oxidation (redox) potential of soils is a 

key indicator of physically and/or biologically driven chemical reactions such as 

oxygen demand, decomposition, geochemical equilibria, and potential plant stress 
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(Thomas et al. 2009). Soil redox potential is controlled by soil temperature, water 

levels, soil carbon, and nutrient supply (Thomas et al. 2009; Pezeshki and DeLaune). 

Soil temperature regulates the rate of chemical reactions, which significantly slows at 

temperatures below 5°C (Megonigal and Faulkner 1996). Water level is also directly 

linked to redox potential. As water saturation levels decrease, redox potential 

increases linearly or exponentially, depending on wetland type (Niedermeier and 

Robinson 2007; Thomas et al. 2009). Water depth and temperature vary temporally 

and spatially and through multiple scales. Relative to wetland phenological metrics, 

the seasonal variation in water depth and temperature will result in temporal 

variability and therefore unique phenologies among different wetland ecosystems. 

From a phenological perspective, wetland vegetation phenophases are driven by both 

the more traditional phenoclimatic measures such as temperature, but also by timing 

of wetland hydrology. Hydrophytic species have a range of flood tolerances and will, 

therefore, be distributed temporally (both intra-and inter-annually) and spatially based 

on hydrologic drivers at the local, regional, and landscape scale. 

Pacific Northwest 
Monitoring the hydrologic change in global surface water dynamics has 

recently been recognized as a key necessity for monitoring important hydrological 

and ecological resources over time and observing the effects of climate and 

anthropogenic change on water resources. In the Pacific Northwest (PNW) of the 

United States, the various impacts of climate variations on hydrology have been well 

 



 
 

 
 

153 
studied (Hamlet and Lettenmaier, 1999; Payne et al., 2004; Luce and Holden, 2009; 

Lee et al., 2009; Elsner et al., 2010; Hamlet et al., 2010; Luce et al., 2013; Safeeq et 

al., 2014, Vano et al. 2015). The PNW is a topographically complex region with a 

unique relationship to climate, weather, and hydrology. In this region, most 

precipitation occurs in the fall and winter, and complex topography, such as the 

Cascade mountain range, allows precipitated snow to accumulate in winter, melt in 

spring and summer (Vano et al. 2015), and serve as a natural reservoir that slowly 

releases water throughout the dry season providing sustained streamflow critical for 

water-dependent ecosystems, such as wetlands.  

For locations where water is not a limiting resource in the PNW, such as the 

Willamette Valley Ecoregion, runoff, precipitation, and groundwater all supply key 

hydrologic inputs to wetland ecosystems. In contrast, in water-limited regions, such 

as the Northern Basin and Range Ecoregion, surface streamflow released from 

seasonal snowpack is the main source of hydrologic input and essential to wetland 

persistence and function. While the Willamette Valley has more hydrologic inputs to 

buffer against change in individual variables compared to the Northern Basin and 

Range, both ecoregions are subject to climate variability through changes in 

temperature and precipitation patterns but may vary in their ecohydrological response 

. To begin to understand where, when, and how wetland habitats are changing over 

time, it is essential to implement wetland ecosystem classification and monitoring that 

captures both intra-and inter-annual variability across broad scales of space and time.  
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The U.S. monitors its national wetlands with the National Wetland Inventory, 

a mapping and monitoring program run by the U.S. Fish and Wildlife Service that 

utilizes digital delineation of single-date aerial photography, remote sensing data, 

field work, and other ancillary feature class maps to classify wetlands. However, the 

NWI is implemented at the State level and some maps are over three decades old. In 

other ecosystems, such as forests, remote sensing has emerged as the key technology 

for detailed mapping of land surface processes across a range of spatial scales. 

Specifically, with the free and open Landsat archive, intra-and inter-annual land cover 

classification of large geographic areas over multiple decades is now achievable 

(Hermosilla et al. 2018). In the study presented here, we use all available Landsat 

imagery from 1985 - 2017 to explore how Pacific Northwest wetland ecosystems are 

changing over time in different climate zones and at varying categorical resolutions. 

Additionally, we investigate the long term changes in abstracted Landsat 

spectral-temporal features that are closely associated with different aspects of wetland 

hydro-ecological processes.   Specifically our objectives are to: 

1) Employ a new modeling framework for annual wetland classification that 

captures intra-annual variability with Landsat spectral-temporal and related 

features, 

2) Test our model on areas of known wetland land use changes, 

3) Quantify how the probability of occurrence of individual wetland habitats 

arechanging over time, and 
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3) Explore how trends in specific Landsat spectral-temporal features can be 

used as measures for wetland hydrological and ecological dynamics change 

over time. 

Methods 

Study Area 
Across its geographic boundaries, the Pacific Northwest has a wide gradient in 

temperature (Chapter 2, Figure 1A) and precipitation (Chapter 2, Figure 1B), yielding 

a fitting geographical context in which to explore how wetlands are changing over 

time and in divergent climate zones. The State of Oregon, specifically, contains a 

varied and distinct climatic gradient, and hosts a diversity of wetland habitat that is 

critical to sustaining important waterfowl populations in the Pacific Flyway migratory 

path as well as rare, threatened, and endangered species.  

The most influential geographic feature of Oregon climate is the Pacific           

Ocean, which lines the entire state on the western border. Air masses move west to               

east off of the coast and have traveled extensively over the Pacific before making              

landfall. Subsequently, annual minimum and maximum temperatures are highly         

moderated, especially in the western portion of the state with temperature extremes            

generally associated with continental air masses. Journeys across the Pacific allow air            

masses access to an unlimited supply of moisture, a feature that yields abundant             

precipitation in western Oregon and high elevations in eastern Oregon. 
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With close proximity to and paralleling the coastline, Oregon’s Coast Range           

mountains run the full length of the State and range between 600 - 1700 meters. As                

marine air systems move east across the state, the Coast Range forces the air masses               

to rise. Fontal storm systems, often already precipitating, are pushed against the            

range, producing heavy rainfall through orographic lift and significantly reducing          

available moisture in the air (Smith et al. 2005). Moving eastward, air then moves              

into the Willamette Valley and subsequently ascends into the Cascade Mountains,           

which parallel the Coast Range roughly 120 km inland through the majority of the              

state. Similar to the path over the Coast Range, air masses are forced to rise over the                 

Cascades and let go of moisture. However, precipitation potential of the air mass was              

reduced by the transition over the Coast Range and, therefore, rainfall on the western              

slopes of the Cascades (at similar elevations) is at 50-65% of Coast Range levels. On               

the easterly, leeward side of the Cascades, precipitation is even further reduced and             

begins to sharply diminish as it moves east across the North Basin and Range. 

To capture the spatio-temporal climate gradient in Oregon when evaluating 

wetland change over time, we chose two Level III EPA ecoregions: the Willamette 

and the Northern Basin and Range (called the North Basin from here on out) (Chapter 

2, Figure 2). Broadly, the North Basin can be characterized as a water-limited 

ecoregion, where water availability is typically the primary limiting resource in 

determining hydrology and vegetation patterns (Fernandez-Illescas and 

Rodriguez-Iturbe 2003). Conversely, the Willamette Valley sits in an energy-limited 
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setting where solar irradiation (sunlight) limits wetland ecological dynamics (Gallucci 

1973). 

Wetlands Reference Data 

We used the Oregon NWI map from 1995 as reference data to train our 

classification model. Currently, the NWI uses a hierarchical classification taxonomy 

of Cowardin et al. (1979) to delineate and characterize individual wetlands. 

Generally, NWI maps have shown variability in accuracy with low errors of 

commission but relatively high errors of omission (Stolt and Baker 1995; Wright and 

Gallant 2007). With its lower errors of commission, the NWI can act as a reliable 

source for reference wetland spatial data (Nielsen et al. 2008). 

Due to both natural and anthropogenic change, locating functionally 

consistent and low anthropogenic disturbance wetland ecosystems can be a challenge. 

To further ensure our wetlands reference data was as accurate as possible, we used 

NWI wetland locations in both ecoregions from the National Wildlife Refuge System 

(NWRS) (Chapter 2, Figure 2). NWRS policy uses historic conditions as the 

reference condition for maintaining wetland ecosystem functioning, yielding optimal 

reference sites for wetland classification and characterization (Andel and Aronson 

2012). In the Willamette Valley we chose the Willamette Valley National Wildlife 

Complex and Fern Ridge Wildlife Area, and in the North Basin, we chose the 

Malheur National Wildlife Refuge. 
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To explore long-term trends in wetland ecosystems at different ecological 

resolutions, we ran our classification model on NWI wetland System, Type, and 

Hydroperiod wetlands separately. In this study, system-level wetlands include 

Palustrine (vegetated) and Lacustrine (non-vegetated) wetlands. At a finer ecosystem 

categorical resolution, Type-level wetlands include Lake, Pond, Forested, and 

Emergent wetlands. Lastly, wetlands in different Hydroperiods are distinguished by 

their saturation level and inundation duration (Chapter 2, Tables 1-3). 

The NWI polygons used as reference data were selected based on their spatial 

intersection with the NWRS boundaries in both ecoregions. These polygons were 

further refined based on size. To reduce the impact of edge effect, polygons less than 

5 pixels were eliminated. Although both study areas contain Riverine System 

wetlands (Cowardin et al. 1979), many, if not a majority of, Riverine polygons are 

less than one Landsat pixel wide (30 meters) and therefore more influenced by edge 

effects. We, consequently, did not include Riverine wetland polygons in our study. 

By NWI definition, Riverine wetlands only represent habitats within a channel and do 

not include floodplain wetland habitats associated with a specific river or stream, 

which are part of the Palustrine System. 

Three separate reference datasets were derived based on ecological categorical 

resolution: Systems polygons, Types polygons, and Hydroperiod polygons. Due to 

the hierarchical nature of the NWI classification scheme, these data overlap. For 
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example, Palustrine wetlands also contain wetland habitats from different Types and 

Hydroperiods. 

Classification Inputs 

Landsat Data 
All available Landsat Thematic Mapper (TM), Enhanced Thematic Mapper         

Plus (ETM+), and Operational Land Imager (OLI) Surface Reflectance Tier 1           

pixel-level data was accessed from Google Earth Engine (GEE) (Gorelick et al. 2017)             

for the period January 1 1985 through December 31 2017. Landsat Tier 1 data are               

atmospherically corrected using LEDAPS (Masek et al. 2006), processed at Level-1           

Precision Terrain (L1TP), and georegistered to a consistent standard. Pixels were           

masked for cloud, shadow and snow using CFMASK (Foga et al. 2017). The Tasseled              

Cap (TC) Transformation spectral vegetation index, which orthogonally converts the          

six Landsat reflectance bands results into three indices known as brightness (TCB),            

greenness (TCG), and wetness (TCW) (Crist et al. 1985), was then applied to every              

unmasked pixel for all available dates.  

While some spectral indices, such as the normalized difference vegetation          

index (NDVI) are computationally and theoretically simpler, many recent remote          

sensing wetland studies have found the utility in the TC transformation. TC indices             

adds more data dimensionality than single vegetation indices, which is especially           

important in spatially and temporally heterogeneous ecosystems such as wetlands.          

Further, in addition to TC greenness’s link to vegetation dynamics, the combination            
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of the brightness and wetness indices is correlated with soil moisture content, giving             

additional insight to distinction between wetland and upland vegetation (Fickas et al.            

2016). Several studies have successfully demonstrated the power of TC indices in            

spatio-temporal wetland classification and change detection (Fickas et al. 2016,          

Pasquarella et al. 2016, Kayastha et al. 2012, Baker et al. 2006, Baker et al. 2007,                

Wright and Gallant 2007).  

Spectral-Temporal Features 
Annual, primary STFs (Pasquarella et al. 2018 in prep) were calculated from            

our processed Landsat pixels for each year (Julian date 0-365) from 1985 - 2017. The               

first five derived STFs include the annual 1) maximum (max), 2) minimum (min), 3)              

median (med), 4) mean, and 5) range (difference between maximum and minimum),            

for our three spectral features, TCB, TCG, and TCW, individually. In addition to the              

primary reflectance STFs, their respective day of year (DOY) was also extracted.            

These DOY STFs include DOY of the annual 1) max, 2) min, 3) med, and 4) range                 

(range of days between the DOY of annual max and min) of TCB, TCG, and TCW.                

Together, the primary STFs add 27 features to the classification model (Chapter 2,             

Table 5).   

Climate-Temporal Features 
Given the importance of local and regional climate variability to the 

functionality and persistence of wetland habitats, we include spatio-temporal climate 

features to our wetland classification model. To utilize what we term 
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‘climate-temporal features’ (CTFs) as model inputs, we accessed the PRISM Daily 

Spatial Climate Dataset (AN81d) (Daly et al. 2008) from GEE (Gorelick et al. 2017) 

from January 1, 1985 to December 31, 2017, which includes 365 days of annual 

measurements for four climate features, including daily 1) maximum temperature 

(tMax), 2) minimum temperature (tMin), 3) mean temperature (tMean), and 4) total 

precipitation (ppt). From the daily measurements available, we abstracted five annual 

(Julian dates 0-365) CTFs for each of the four climate features: 1) max, 2) min, 3) 

med, 4) mean, and 5) range. To match the spatial resolution of our Landsat STFs, data 

were resampled from 800 m pixels to 30 m pixels using the nearest neighbor 

approach. Together, these CTFs add 20 features to the classification model (Chapter 

2, Table 6). 

Ancillary Datasets 

Digital Elevation Model 
Wetlands habitats are more likely be situated in relatively-depressional terrain          

surfaces. Therefore, we augmented our model inputs with a 30m DEM, labeled as             

Elevation, derived from the Shuttle Radar Topography Mission (SRTM), flown in           

February 2000 (Farr et al. 2007) (Chapter 2, Table 7). 

Global Surface Water 
To investigate the applicability and accuracy of the Pekel et al. 2016 Global             

Surface Water (GSW) data-set, we utilized GSW features model inputs for our            

wetland classification models. Using GEE (Gorelick et al. 2017), we collected 1)            
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GSW Occurrence, 2) GSW Recurrence), and 3) GSW Seasonality. GSW Occurrence           

and Recurrence are both abstracted from a 32 year time series from 1984 - 2015,               

overlapping our study period almost exactly. GSW Seasonality is calculated for each            

year, but the only available dataset is for the year 2014-2015. Consequently, we used              

the 2014-15 GSW Seasonality data-set to determine if this type of spatio-temporal            

feature was applicable and relevant to wetlands classified in other years. GSW            

features are derived from Landsat data and have a corresponding 30 m pixel             

resolution (Pekel et al. 2016). Combined with Elevation, GSW features create four            

additional ancillary model input features (Chapter 2, Table 7).  

Wetland Classification 
A Random Forest (RF) classifier (Breiman, 2001) was used to assign wetland            

System, Type, and Hydroperiod labels to pixels based on all model inputs. We used a               

Python implementation of the RF classifier (Pasquarella et al. 2018, Pedregosa et al.,             

2011), building ensembles of 500 trees (Belgiu and Drăguţ 2016). Our model was             

first trained using input features from 1995 and 1995 NWI reference polygons from             

the NWRS wetland habitats. For model training, we employed a winner-takes-all hard            

classification output, where each pixel was assigned to a single RF class (i.e. wetland              

habitats within System, Type, or Hydroperiod). The trained RF classification model           

was then applied to all NWI wetland pixels within the entirety of each ecoregion for               

each year from 1985 - 2017 using the annual input features for each year. 
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For this study, we aimed to investigate how the probability of wetland habitat             

occurrence is changing over time. Therefore, when applying the trained model to all             

years, instead of a winner-takes-all hard classification, per-pixel RF classification          

probabilities were built and output for individual wetland habitats within System,           

Type, and Hydroperiod categories. This output yields a per-pixel probability value for            

each wetland System (x2), Type (x4), and Hydroperiod (x6) for each year (x32) for a               

total of 384 values per pixel. This is a much more informationally-rich dataset             

compared to hard classification, and, perhaps more importantly, accounts for the           

ephemeral nature of wetland ecosystems, where a given wetland pixel may be a mix              

of multiple habitats for a specific year.  

Accuracy agreement between the 1995 trained RF hard classification results          

and the 1995 NWI wetland System , Type, and Hydroperiod reference dataset acted as             

our estimate of model performance. Detailed accuracy agreement methods and results           

can be found in Chapter 2. 

Time-series Change Detection 
Annual NWI reference data does not exist for the state of Oregon so there is 

no readily available way to systematically and consistently compare model 

classification probability performance and accuracy agreement for each year. To 

qualitatively assess model performance, we selected three sites within our study area 

of known wetland land use change to explore if our model was able to accurately 
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detect the identified change and to see how specific STFs performed in change 

detection.  

Linear transects of varying lengths and single pixel height were drawn to 

intersect areas of known wetland change. Hovmoller diagrams were then built for 

each transect using all years (1985-2017) of classification probabilities and STFs. For 

Landsat pixels, Hovmoller diagrams can be characterized as a type of heat-map where 

the x-axis is the left-to-right pixel position (or change in longitude at 30 m intervals 

for a transect that runs perfectly west-to-east), the y-axis is time in years (ascending 

from top to bottom), and the value of a given feature (such as classification 

probability or STF) is represented through a colormap. Hovmoller diagrams give an 

illustrative and qualitative view of large amounts of data in a meaningful and 

understandable figure. For our study, we built Hovmollers to display 4 dimensions of 

data (x, y, time, and feature value) in a single figure, allowing us to visually assess 

model and STF performance for annual wetland change. 

Time-series Trend Analysis 
To assess trends in probability changes of wetland Systems, Types, and 

Hydroperiods, we extracted pixel-level classification probability values for all 

wetland habitats in both ecoregions, as bounded by the NWI reference dataset. We 

then calculated the mean per-pixel classification probability for each wetland System, 

Type, and Hydroperiod for each year from 1985-2017. To test the strength and 

direction of trends in wetland habitats over time, we calculated the Kendall Tau (KT) 
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correlation test (Kendall 1938) for each mean time series. KT was chosen over 

traditional linear regression tests, such as Pearson’s r, because it is a strong, 

nonparametric measure of the strength and direction of association that exists 

between two variables measured on a continuous scale. Further, KT tests for 

monotonic relationships of any kind, not just linear, yielding a buffer against natural 

inter-annual variability in wetland habitat occurrence. Similarly, to assess changes in 

spectral-temporal features related to wetland ecosystem occurrence and persistence 

over time, we extracted pixel-level STF values for all wetland habitats in both 

ecoregions and calculated the mean per-pixel STF value, as bounded by the NWI 

reference dataset. We then calculated KT values for each mean STF time series from 

1985-2017. 

Results 

Time-series Change Detection 

Willamette Valley Shift from Emergent to Pond Wetland 
Hovmoller diagrams constructed for four different locations across our two 

ecoregion study sites show distinct trends in wetland habitat type classification 

probabilities and STFs over time as wetland habitats change. The first location is 

situated adjacent to the Main Stem Willamette River to the west and agricultural 

fields to the east (Figure 1). This wetland transect begins as a mixture of riparian 

Forested and Emergent Type wetland habitat and is then converted into a quarry pond 
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with some remaining vegetation in 1995. Hovmollers show the annual Max TCB, 

TCG, and TCW over time, and the annual classification probabilities of the four 

Types of wetland habitats (Figure 1). All 7 Hovmollers display a distinct feature 

change in 1995, indicating both the STFs and our wetland Type classification model 

were able to detect the change in wetland habitat Type. Individually, Max TCB and 

TCG both decrease as the wetland shifts from Emergent and Forested to Pond and 

maximum TCW increases. The probabilities of the transect being classified as Lake 

and Pond wetland habitat increases, and the probability of the transect being 

classified as Forested and Emergent decreases, although Forested probabilities 

decrease at a greater magnitude. 

Willamette Valley Creation of Emergent/Pond Wetland 
The second transect is situated within an agricultural field matrix east of the 

Main Stem Willamette River and displays a more complex wetland land use change 

(Figure 2). This transect starts out as an agricultural field and was then converted to a 

series of ponds and emergent wetlands in 2007 as part of a wetland restoration 

project. To maximize visual change, we display the annual minimum TCB and TCG 

and the annual median TCW. All three STFs show a clear change in 2007 and 

highlight the distinct lateral-spatial pattern of the restored wetland complex. In 2007 

and forward, annual TCB and TCG generally increase in pixels of created Emergent 

wetland and decrease in pixels containing restored Pond wetlands. Interestingly, 

Hovmollers of wetland Type classification probabilities show a more spatially distinct 
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increase in probabilities of Lake wetland compared to Pond wetland classification 

probabilities which are high across the entire transect, rather than being constrained to 

the spatial outline of the actual pond wetland. Following restoration, probabilities in 

Forested wetland classification increase with the spatial pattern of vegetation 

surrounding individual ponds. Emergent wetland probabilities display spatial 

behavior similar to Ponds where there is a general increase across the entirety of the 

transect rather than a distinct spatial pattern that fits the restored wetland outline.  

North Basin Transitional Lake and Emergent Wetland 
To observe how our classification model behaved for wetlands that are 

variabile inter-annually, our third transect is in the North Basin within the Malheur 

Wildlife Refuge and contains a wetland that switches annually between an Emergent 

island wetland within a Lake wetland  or an entirely Lake wetland depending on 

inundation levels (Figure 3). To maximize visual change, we display the annual mean 

TCB, TCG, and TCW over time. The STF Hovmollers show a distinct 

spatial-temporal pattern of the transitional wetland. The east and west margins of the 

wetland transect appear to be most variable, with mean TCB and TCG decreasing on 

the ends of the transects in years where TCW increases. Hovmollers of wetland 

classification probabilities are less distinct although they do follow the similar 

spatial-temporal pattern in the margins of the transect. In years where mean TCW is 

high, probabilities of wetland classification of Lake wetlands are also high, although 

probabilities for this wetland Type are relatively high across the whole transect 
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throughout the 32 years. Both Pond and Forested wetland classifications remain 

relatively low in the transect pixels throughout the time series, however, Forested 

wetland probabilities are highest in the middle of the transect, where high inundation 

levels would, spatially, reach last. Emergent wetland classification probabilities, like 

Lake wetlands, are relatively high throughout the time series, but also follow a similar 

spatial pattern as all other Hovmollers where their probabilities are highest in the 

middle of the transect, especially in years where mean TCW increases on the transect 

margins. 

Time-series Trend Analysis 

Wetland Habitat Probabilities 
Long term trends in KT correlation values were not consistent across wetland 

categorical resolutions, climate gradients, or features (Table 1).  In the Willamette 

Valley, we found that Palustrine wetlands are decreasing at a rate of -0.14, but are 

increasing at a rate of 0.16 in the North Basin. In contrast, Lacustrine wetlands are 

increasing at a rate of 0.15 in the Willamette Valley and decreasing by -0.16 in the 

North Basin. Lake wetlands are decreasing for both ecoregions, but by more than 

double the rate in the North Basin. Pond wetlands are decreasing in the Willamette 

Valley by a rate of -0.23 and increasing in the North Basin by 0.26. Forested wetlands 

are increasing in both ecoregions but weakly so in the Willamette Valley (0.09) and 

strongly in the North Basin (0.40). Emergent wetlands are on the rise for both 

 



 
 

 
 

169 
ecoregions at similar rates; 0.29 for the Willamette Valley and 0.24 for the North 

Basin. 

Moving into Hydroperiods, Temporarily Flooded wetlands show a weak 

decrease in the Willamette Valley (-0.01) and a moderate rate of increase in the North 

Basin (0.17). Seasonally Saturated wetlands are increasing in the Willamette Valley 

(0.19) and remaining relatively stable in the North Basin. Seasonally Flooded 

wetlands are not changing in the North Basin and have a very weak rate of decline 

(-0.01) in the Willamette Valley. Continuously Saturated wetlands are weakly 

declining in both ecoregions at at similar rates: -0.09 in the Willamette Valley and 

-0.06 in the North Basin. Permanently Flooded wetlands are barely changing in the 

Willamette Valley (0.03) and stable (0.0) in the North Basin. Artificially Flooded 

wetlands appear to be increasing weakly in the Willamette Valley (0.03) and 

increasing in the North Basin (0.23). 

From 1985 - 2017, trends in STFs had stronger rates of change than wetland 

classification probabilities in many instances. Collectively, Max TCB, TCG, and 

TCW all had positive rates of change in both ecoregions although Max TCG and 

TCW both had a stronger rate of change in the Willamette Valley compared to the 

North Basin. Min TCB, TCG, and TCW all had negative rates of change in both 

ecoregions, except for min TCB in the North Basin, which had a positive rate of 

change. Range of TCB, TCG, and TCW had positive rates of change for both 

ecoregions, as did the Median TCB, TCG, and TCW, except for the Median TCW in 
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the North Basin which had a relatively strong rate of decline at -0.43. Mean TCB, 

TCG, and TCW was more varied between the ecoregions. The Mean TCB decreased 

by -0.08 in the Willamette Valley, but increased substantially more (0.49) in the 

North Basin. Mean TCG increased in the Willamette Valley by 0.41 and 0.25 in the 

North Basin. Mean TCW also increased in the Willamette Valley but decreased by 

nearly double in the North Basin.  

In the 32 year time series, DOY STFs had variable rates of change between 

ecosystems and across STFs. The DOY of the annual maximum TCB increased 

positively, but weakly in both ecoregions. DOY of Max TCG decreased weakly in the 

Willamette Valley but increased by 0.13 in the North Basin. DOY of Max TCW did 

not change in the Willamette Valley and increased weakly in the North Basin. DOY 

of Min STFs had stronger rates of change than Max. In the North Basin, the DOY of 

Min TCB decreased more than three times the rate (-0.34) compared to the 

Willamette Valley (-0.10). DOY of Min TCG decreased at similar rates in both 

ecoregions both DOY of min TCW decreased at over double the rate (-0.32) in the 

North Basin compared to the Willamette Valley (-0.13). The number of days between 

the Max and the Min STFs, the Range of DOY, increased for TCB, TCG, and TCW 

in both ecosystems except for the TCW in the Willamette Valley which decreased 

weakly at -0.04. DOY of the median TCB, TCG, and TCW all decreased at a similar 

rate around -0.20. 
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Discussion 
Wetlands are highly vulnerable to climate change due to the primary 

importance of the hydrological regime in controlling their ecological characteristics 

(e.g. Baker et al., 2009). To comprehend significant patterns of global wetland 

degradation and loss, wetland hydro-temporal and phenological dynamics must be 

understood to place habitat change in the context of fundamental ecosystems drivers. 

Both land cover classification and land cover change are key information needs when 

monitoring wetland ecosystems, highlighting status and trends, and providing key 

model features for carbon budgets, habitat, biodiversity, and resource management 

projects (Hermosilla et al. 2018).  

In the traditional remote sensing supervised classification, results are given in 

a one-pixel-one-class  method and class mixture cannot be taken into consideration in 

determining a specific pixel’s class appointment (Wang 1990). Given that wetlands 

are naturally intra-and inter-annual ephemeral ecosystems with a higher degree of 

categorical ecosystem mixing than many other land use features, one-pixel-one-class 

(i.e. one-pixel-one-habitat here) significantly limits the ability to understand how 

naturally variable wetlands may be changing in a way that cannot be described by a 

single classification membership. An alternative to conventional hard classification is 

fuzzy classification, which allows partial land cover classification membership for 

each pixel and better represents cover type mixtures, ephemeral conditions. In this 

 



 
 

 
 

172 
study, we employed a fuzzy classification model for annual wetland classification that 

captured intra-annual variability with Landsat spectral-temporal features and 

quantified how wetland habitat classification probabilities, rather than hard 

classifications are changing over time. To yield further insight into why wetland 

habitat occurrence probabilities may be changing, we also explored trends in specific 

Landsat spectral-temporal features as measures of wetland hydrological and 

ecological dynamics change over time. 

 

Wetland Land Use Change 
To visually inspect the performance of our annual wetland fuzzy classification 

model, we built Hovmoller diagrams in areas of known wetland habitat change to 

inspect how STFs and classification probabilities behaved over time. We believe our 

results were promising. All three examples show clear change in STFs and wetland 

probabilities that correspond to the correct spatio-temporal patterns of wetland habitat 

change. As expected, results are clearer in more ecologically and categorically 

explicit contexts. For example, the distinct transition from Emergent/Forested riparian 

wetland to a Pond wetland resulted in more distinct feature changes compared to the 

creation of a mixed Emergent/Forested/Pond wetland in the second example. 

The primary objective of this study was not to assess a wetland habitat model 

performance over time, rather we create and use our model to for the purpose of 

investigating how wetlands may be changing over time. An accurate model is 
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required for this objective, but we feel comfortable with the Hovmoller diagrams 

presented here, and many others that we did not include, provide an adequate measure 

of model performance capabilities. Additionally, we hope that researchers and 

managers may be able to employ our model with similar features in any region and 

for any time period. If users are constrained to the requirement of high-quality annual 

reference datasets to test model applicability in their study area, we believe this would 

be prohibitive. Hovmollers provide a way for model users to see where wetland 

classification time series probabilities perform well for their system and where the 

limitations lie. 

Change in Wetland Habitat Over Time 
In our study we did not quantify correlations with wetland habitat change and 

potential drivers of change such as climate metrics or land use features, like urban or 

agricultural expansion. However, we believe it is still valuable to have a qualitative 

discussion about potential drivers of change for different wetland habitat types in the 

different ecoregions. We utilize classification model time series, STF time series, and 

annual climate data time series for the two ecoregions collected from the NOAA 

National Centers for Environmental information (NOAA 2018) to explore how and 

why wetlands may be changing in the two different climate zones. 

Willamette Valley 
In the Willamette Valley, classification probabilities of vegetated Palustrine 

wetlands are decreasing and non-vegetated Lacustrine wetlands are increasing. This 
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result is in-line with what Fickas et al. 2015 found when exploring annual wetland 

loss, gain, and conversion in the Willamette River floodplain from 1972 - 2012. 

Similarly, Lake and Pond wetlands are increasing while Forested and Emergent 

wetlands are decreasing, with Emergent wetlands decreasing more rapidly than 

Forest. Fickas et al. 2015 attributed the majority of wetland change to agricultural and 

industrial expansion along the margins of Willamette River. However, we 

hypothesize that there is also likely a climate factor at play. In the Willamette Valley, 

average annual precipitation and temperature are both on the rise with precipitation 

increasing by 5.8 cm per decade and temperature warming by 0.11 °C per decade 

from 1985 -2017. The combination of increased precipitation mixed with increased 

temperatures could account for a gain of inundated wetlands and a loss of vegetated 

wetlands with biological and ecological elements that are sensitive to temperature.  

We did not find any notable change in wetland Hydroperiods from 1985 - 

2017 except for an increase in Seasonally Saturated wetlands. Seasonally saturated 

wetlands are ‘saturated at or near the surface for extended periods during the growing 

season, but unsaturated conditions prevail by the end of the season in most years. 

Surface water is typically absent, but may occur for a few days after heavy rain and 

upland runoff’ (Cowardin et al. 1979). Even though non-vegetated wetlands are 

increasing, the increase in this Hydroperiod may indicate that wetlands are trending 

towards lower intra-annual inundation and moderate duration. 
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Although vegetated wetlands are on the decline in the Willamette Valley, 

maximum annual TCG is increasing relatively substantially (along with both TCB 

and TCW) and the minimum of all three indices is decreasing. These results have two 

key ecological implications. First, an annual rise in max TCG suggests that wetland 

habitats that are able to persist as vegetated are experiencing ecological succession 

from Emergent hydrophytic vegetation to denser vegetation such as woody Forested 

or, vegetated wetlands are slowly transitioning into denser upland vegetation. Second, 

the increase in annual max TCB, TCG, and TCW and decrease in min TCB, TCG, 

and TCW (resulting in an increasing range for all three as well) indicates that 

intra-annual ecological conditions are tending towards extremes. Very high and very 

low TCB, TCG, and TCW values may correspond to increasing occurrence of very 

dry soil conditions and very wet or densely vegetated conditions. 

The STFs that correspond to temporal and phenological conditions also 

changed across the time series. Of important note is a decrease in the day of year of 

minimum TCB, TCG, and TCW. If we consider TCB corresponding to bare soil, 

TCG as a proxy of vegetation cover, and TCW as a metric of inundation, this suggest 

that the driest soils, lowest vegetation density, and lowest inundation levels have a 

trend towards occurring earlier in the year. This trend is also seen in the day of year 

of median TCB, TCG, and TCW. Combined with results from our model 

classification and the other primary STFs, Willamette Valley wetlands appear to be 
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heading towards more non-vegetated wetlands, fewer vegetated wetlands, and 

extreme annual-conditions with the lower extrema occurring earlier in the year.  

North Basin  

In contrast to the Willamette Valley, North Basin classification probabilities 

of vegetated Palustrine wetlands are increasing and non-vegetated Lacustrine 

wetlands are decreasing, although at inversely similar rates as the Willamette Valley. 

Likewise, Lake and Pond wetlands are decreasing and Emergent and Forested 

wetlands are increasing, with Forested wetlands increasing nearly double the rate of 

Emergent wetlands. Outside of the Malheur NWR, long term wetland habitat change 

is not well studied in this ecoregion so it is hard to begin to explore primary and 

subsequent drivers of change. Wetlands in this ecoregion have recently been 

recognized by many conservation groups as focal habitats for restoration and 

conservation and one possible driver of change from over the three decades studied 

could be a natural resources management focus on converting un-vegetated wetlands 

to vegetated habitats. As with the Willamette Valley, we do not seek to make 

conclusive statements on drivers of change, so other potential anthropogenic factors 

should be explored. However, like the Willamette Valley, there is a compelling 

connection between climate change and wetland habitat change in this ecoregion. In 

the North Basin, average annual temperature is warming by  0.23 °C per decade and 

precipitation is decreasing by 0.25 cm per decade from 1985 - 2017. A partially 

inverse phenomenon of the Willamette Valley, the combination of decreased 
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precipitation mixed with increased temperatures could account for a loss of inundated 

wetlands that require sufficient hydrologic input for persistence and a gain of 

vegetated wetlands that are better adapted to extreme conditions compared to 

Willamette Valley wetlands. 

Two Hydroperiods had notable increases in this ecoregion: Temporarily 

Flooded and Artificially Flooded wetlands. We hypothesize that these two wetlands 

may be very categorically similar to each other, especially considered in an annual 

context. This trend may suggest that due to increasing temperatures and decreasing 

precipitation, wetland hydroperiods are becoming ‘flashier’ with high inundation that 

does not last long, perhaps facilitated by natural resource managers. 

Although inundated, un-vegetated wetlands are declining in the North Basin, 

max TCW is increasing, along with both TCG and TCB, and may be associated with 

the increased hydroperiod flashiness. As in the Willamette Valley, the increase in 

annual max TCB, TCG, and TCW and decrease in min TCG and TCW indicates that 

intra-annual ecological conditions in this ecoregion are also trending towards 

extremes. Min TCB was the exception here, which saw an increase in the study 

period. One possible explanation is an increase in vegetation cover through increase 

in vegetated wetlands, which limits soil brightness in the driest periods.  

Some rates of change in STFs that correspond to temporal and phenological 

conditions were stronger in the North Basin compared to the Willamette Valley but 

also variable across features. Specifically, the day of year of max TCG is increased 
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but the day of year of minimum TCB, TCG, and TCW all decreased. Ecologically, 

this could indicate that there is trend toward vegetation reaching maximum growth 

earlier in the year and the driest soils, lowest vegetation density, and lowest 

inundation levels trending towards occurring earlier in the year. Combining these 

results with those from our model classification and the other primary STFs, Noth 

Basin wetlands seem to be trending towards more vegetated wetlands, fewer 

non-vegetated wetlands, and extreme annual-conditions with the lower extrema 

occurring earlier in the year, except for max TCW which occurring later in the year. 

Ecohydrological Context and Consequences of 

Change 

The distinct differences in habitat and climate trends in the Willamette Valley 

and North Basin are demonstrative of the importance of considering wetland trends in 

a climatic and ecohydrological context. Willamette Valley wetlands are already 

energy limited and are trending even further towards wetlands that are more heavily 

inundated from hydrologic inputs rather than higher functioning vegetated wetlands. 

North Basin wetlands are water-limited and a decrease in precipitation may be an 

emphasized driver for a loss of inundated wetlands that already relied on a limited 

water supply for persistence.  

In the Willamette Valley, vegetated wetland habitats hold substantial 

ecological significance for many plant and wildlife species. Of the twenty species that 
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occur in the Willamette Valley that are listed under the federal Endangered Species 

Act and the 155 that are imperiled, wet prairies provide habitat for 31 for at least 

some portion of their lifecycle (Floberg et al. 2004). Wet prairies alone also provide 

critical reproductive habitat for 38 different wildlife species and an additional 54 

breeding species (Primozichand Bastasch 2004). Annual decrease of these critically 

important wetland habitats could be problematic for the species that rely on them in 

any part of their lifecycle. 

 In the North Basin, an overall reduction in surface water may yield an 

increase in wetland salinity levels. Some local and migratory shorebirds that utilize 

North Basin wetlands in the Pacific Flyway depend on a mosaic of freshwater and 

saline wetlands to meet their needs at specific times of the year, especially during the 

breeding season. Because of the metabolic costs associated with feeding in higher 

salinity environments, this trend could yield higher mortality in shorebird chicks. 

Further compounding this issue, in wetland systems, shorebird species that require 

specific salinity levels and have a limited capacity to relocate to wetlands are more 

likely to be vulnerable to climate-induced changes in habitat and hydrology. 

In addition to change in area and proportion of habitat types in both 

ecoregions, change in the timing hydrology and phenological features observed could 

also be problematic for flora and fauna dependent on key temporally-linked 

ecosystem dynamics. For example, both ecoregions host migratory waterfowl in their 

wetlands as part of the Pacific Flyway and different invertebrate species are important 
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food sources for migratory birds in these wetlands (Both et al. 2006). Changes in 

timing of wetland hydrology and soil dynamics could lead to changes in vegetation 

phenology, which are coupled with invertebrate phenologies. If invertebrate 

phenologies shift but avian migratory phenologies do not, there could be a substantial 

temporal mismatch in foodsource, which may lead to birds failing to breed and/or 

migrate at the time of maximal food abundance (Both et al. 2006). 

We believe future studies should focus not only on annual wetland 

classification, but also wetland detection to explore if wetland habitats are changing 

in proportion to their upland counter parts. Additionally, this study utilized time series 

derived from classified pixels, which only exploits the temporal aspect of our model 

classification.  Change in wetland spatial arrangement, fragmentation, and 

connectivity can all be derived from our model output and would be a very valuable 

data source for resource managers.  

Conclusions 
By evaluating wetland habitat change across climate gradients and categorical 

resolutions from 1985-2017 using Landsat spectral-temporal features, we found that: 

● Through visual evaluation, our annual classification model built from Landsat 

spectral-temporal features, climate-temporal features, and ancillary datasets 

performs well in showing change in wetland habitat. Individual STFs also 
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display distinct changes in intra-annual wetland dynamics in the context of 

wetland land use change. 

● Willamette Valley wetlands are trending toward more non-vegetated 

wetlands, fewer vegetated wetlands, and extreme annual-conditions with the 

lower extrema occurring earlier in the year. In addition to other drivers, this 

change may be attributed to increased precipitation and increased temperature. 

● North Basin wetlands are trending towards more vegetated wetlands, fewer 

non-vegetated wetlands, and extreme annual-conditions with the lower 

extrema occurring earlier in the year, except for max TCW which is trending 

towards later annual occurrence. 

● Change in both occurrence of wetland habitat type and timing of key 

hydrologic and phenological features and ecosystem drivers presents an issue 

for wetland-dependent flora and fauna. 

● Future studies should attempt to detect wetlands across the entire landscape 

rather than just areas of known wetland habitat. Additionally, exploitation of 

the spatial domain in time series analysis would yield an even more 

informationally rich analysis of how, when, and where wetland ecosystems 

are changing. 
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CHAPTER 3 FIGURES 

 
Figure 3.1: Hovmoller diagrams of STFs (top) and wetland classification probabilities 
(bottom) for a Willamette Valley wetland land use change from Emergent to Pond in 1995.  
 
 

 
Figure 3.2: Hovmoller diagrams of STFs (top) and wetland classification probabilities 
(bottom) for a Willamette Valley wetland land use change from agriculture (no wetland) to a 
mosaic of Emergent and Pond in 2007.  
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Figure 3.3: Hovmoller diagrams of STFs (top) and wetland classification probabilities 
(bottom) for a North Basin wetland inter-annually ephemeral land use change wetland 
between Lake and Emergent throughout the timeseries.  
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CHAPTER 3 TABLES 
 

Habitat 
Willamette Valley KT 
Correlation Value 

North Basin KT 
Correlation Value 

Palustrine -0.14 0.16 

Lacustrine 0.15 -0.16 

Lake -0.13 -0.32 

Pond -0.23 -0.26 

Emergent 0.09 0.4 

Forested 0.29 0.24 

Temporarily Flooded -0.01 0.17 

Seasonally Saturated 0.19 0.00 

Seasonally Flooded -0.01 0.00 

Continuously Saturated -0.09 -0.06 

Permanently Flooded 0.03 0.00 

Artificially Flooded 0.01 0.23 

Max TCB 0.31 0.34 

Max TCG 0.5 0.39 

Max TCW 0.34 0.16 

Min TCB -0.46 0.19 

Min TCG -0.24 -0.22 

Min TCW -0.23 -0.46 

Rng TCB 0.38 0.32 

Rng TCG 0.41 0.33 

Rng TCW 0.33 0.27 

Med TCB 0.08 0.62 

Med TCG 0.46 0.37 
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Med TCW 0.18 -0.43 

Mean TCB -0.08 0.49 

Mean TCG 0.41 0.25 

Mean TCW 0.21 -0.37 

DOY Max TCB 0.06 0.08 

DOY Max TCG -0.06 0.13 

DOY Max TCW 0.00 0.05 

DOY Min TCB -0.1 -0.34 

DOY Min TCG -0.13 -0.12 

DOY Min TCW -0.13 -0.32 

DOY Rng TCB 0.08 0.16 

DOY Rng TCG 0.17 0.43 

DOY Rng TCW -0.04 0.21 

DOY Med TCB -0.2 -0.2 

DOY Med TCG -0.22 -0.2 

DOY Med TCW -0.25 -0.17 
 
Table 3.1 : Kendall Tau correlation values between time (years) and habitat fuzzy 
classification probabilities. This value is interpreted as rate of change.   
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