46,563 research outputs found

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    Evolution of Swarm Robotics Systems with Novelty Search

    Full text link
    Novelty search is a recent artificial evolution technique that challenges traditional evolutionary approaches. In novelty search, solutions are rewarded based on their novelty, rather than their quality with respect to a predefined objective. The lack of a predefined objective precludes premature convergence caused by a deceptive fitness function. In this paper, we apply novelty search combined with NEAT to the evolution of neural controllers for homogeneous swarms of robots. Our empirical study is conducted in simulation, and we use a common swarm robotics task - aggregation, and a more challenging task - sharing of an energy recharging station. Our results show that novelty search is unaffected by deception, is notably effective in bootstrapping the evolution, can find solutions with lower complexity than fitness-based evolution, and can find a broad diversity of solutions for the same task. Even in non-deceptive setups, novelty search achieves solution qualities similar to those obtained in traditional fitness-based evolution. Our study also encompasses variants of novelty search that work in concert with fitness-based evolution to combine the exploratory character of novelty search with the exploitatory character of objective-based evolution. We show that these variants can further improve the performance of novelty search. Overall, our study shows that novelty search is a promising alternative for the evolution of controllers for robotic swarms.Comment: To appear in Swarm Intelligence (2013), ANTS Special Issue. The final publication will be available at link.springer.co

    Paging and Registration in Cellular Networks: Jointly Optimal Policies and an Iterative Algorithm

    Full text link
    This paper explores optimization of paging and registration policies in cellular networks. Motion is modeled as a discrete-time Markov process, and minimization of the discounted, infinite-horizon average cost is addressed. The structure of jointly optimal paging and registration policies is investigated through the use of dynamic programming for partially observed Markov processes. It is shown that there exist policies with a certain simple form that are jointly optimal, though the dynamic programming approach does not directly provide an efficient method to find the policies. An iterative algorithm for policies with the simple form is proposed and investigated. The algorithm alternates between paging policy optimization and registration policy optimization. It finds a pair of individually optimal policies, but an example is given showing that the policies need not be jointly optimal. Majorization theory and Riesz's rearrangement inequality are used to show that jointly optimal paging and registration policies are given for symmetric or Gaussian random walk models by the nearest-location-first paging policy and distance threshold registration policies.Comment: 13 pages, submitted to IEEE Trans. Information Theor

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    A Framework for M-Commerce Implementation in Nigeria

    Get PDF
    The Internet has brought about the concept of grobalilation, which has revolutionized the way business is transacted all over the world. The E-comnterce is of particular interest, though widely used but still has some security challenges in terms of transparency and confidentiality of transactiorts. This papei focuses on M-contnrcrce as an extensiott to E-commerce hnplementatiott with the Bankiltg industry proposed as core implementation consideration in ortler to guarantee high level security. We have reviewed some cqses of onlilrc frauds and eliscussed tlte emerging critical issues afficting software development of M-cornmerce applicatiotts. Afranrcworkfor M-commerce implementationis therefore,proposed for countries such as Nigeria, Romania and Indonesia where cases of online scam are alanning

    Coherent energy migration in solids: Determination of the average coherence length in one‐dimensional systems using tunable dye lasers

    Get PDF
    The coherent nature of energy propagation in solids at low temperatures was established from the time resolved response of the crystal to short optical pulses obtained from a dye laser (pumped by a nitrogen gas laser). The trapping and detrapping of the energy by shallow defects (x traps) was evident in the spectra and enabled us to extract the coherence length: l≳700 Å=186 molecules for the one‐dimensional triplet excitons of 1,2,4,5‐tetrachlorobenzene crystals at T<4.2° K. This length which clearly exceeds the stochastic random walk limit is related to the thermalization mechanisms in this coupled exciton–trap system, and its magnitude supports the notion that exciton–phonon coupling is responsible for the loss of coherence on very long molecular chains (trap concentration is 1/256 000)

    Distributed SIR-Aware Opportunistic Access Control for D2D Underlaid Cellular Networks

    Full text link
    In this paper, we propose a distributed interference and channel-aware opportunistic access control technique for D2D underlaid cellular networks, in which each potential D2D link is active whenever its estimated signal-to-interference ratio (SIR) is above a predetermined threshold so as to maximize the D2D area spectral efficiency. The objective of our SIR-aware opportunistic access scheme is to provide sufficient coverage probability and to increase the aggregate rate of D2D links by harnessing interference caused by dense underlaid D2D users using an adaptive decision activation threshold. We determine the optimum D2D activation probability and threshold, building on analytical expressions for the coverage probabilities and area spectral efficiency of D2D links derived using stochastic geometry. Specifically, we provide two expressions for the optimal SIR threshold, which can be applied in a decentralized way on each D2D link, so as to maximize the D2D area spectral efficiency derived using the unconditional and conditional D2D success probability respectively. Simulation results in different network settings show the performance gains of both SIR-aware threshold scheduling methods in terms of D2D link coverage probability, area spectral efficiency, and average sum rate compared to existing channel-aware access schemes.Comment: 6 pages, 6 figures, to be presented at IEEE GLOBECOM 201

    A systematic review of digital interventions for improving the diet and physical activity behaviors of adolescents

    Get PDF
    Many adolescents have poor diet and physical activity behaviors, which can lead to the development of noncommunicable diseases in later life. Digital platforms offer inexpensive means of delivering health interventions, but little is known about their effectiveness. This systematic review was conducted to synthesize evidence on the effectiveness of digital interventions to improve diet quality and increase physical activity in adolescents, to effective intervention components and to assess the cost-effectiveness of these interventions. Following a systematic search, abstracts were assessed against inclusion criteria, and data extraction and quality assessment were performed for included studies. Data were analyzed to identify key features that are associated with significant improvement in behavior. A total of 27 studies met inclusion criteria. Most (n = 15) were Web site interventions. Other delivery methods were text messages, games, multicomponent interventions, emails, and social media. Significant behavior change was often seen when interventions included education, goal setting, self-monitoring, and parental involvement. None of the publications reported cost-effectiveness. Due to heterogeneity of studies, meta-analysis was not feasible.It is possible to effect significant health behavior change in adolescents through digital interventions that incorporate education, goal setting, self-monitoring, and parental involvement. Most of the evidence relates to Web sites and further research into alternate media is needed, and longer term outcomes should be evaluated. There is a paucity of data on the cost-effectiveness of digital health interventions, and future trials should report these data
    corecore