43 research outputs found

    Forensic Technique for Detection of Image Forgery

    Full text link
    Todays digital image plays an important role in all areas such as baking, communication, business etc. Due to the availability of manipulation software it is very easy to manipulate the original image. The contents in an original image can be copy-paste to hide some information or to create tampering. The new area introduces to detect the forgery is an image forensic. In this paper proposes the new image forensic technique to detect the presence of forgery in the compressed images and in other format images. The proposed method is based on the no subsampled contoured transform (NSCT). The proposed method is made up of three parts as preprocessing, nsct transform and forgery detection. The proposed forensic method is flexible, multiscale, multidirectional, and image decomposition is shift invariant that can be efficiently implemented via the à trous algorithm. The proposed a design framework based on the mapping approach. This method allows for a fast implementation based on a lifting or ladder structure. The proposed method ensures that the frame elements are regular, symmetric, and the frame is close to a tight one. The NSCT compares with and dct method in this paper

    Speckle Reduction of Retinal Optical Coherence Tomography Based on Contourlet Shrinkage

    Get PDF
    published_or_final_versio

    Automatic Side-Scan Sonar Image Enhancement in Curvelet Transform Domain

    Get PDF
    We propose a novel automatic side-scan sonar image enhancement algorithm based on curvelet transform. The proposed algorithm uses the curvelet transform to construct a multichannel enhancement structure based on human visual system (HVS) and adopts a new adaptive nonlinear mapping scheme to modify the curvelet transform coefficients in each channel independently and automatically. Firstly, the noisy and low-contrast sonar image is decomposed into a low frequency channel and a series of high frequency channels by using curvelet transform. Secondly, a new nonlinear mapping scheme, which coincides with the logarithmic nonlinear enhancement characteristic of the HVS perception, is designed without any parameter tuning to adjust the curvelet transform coefficients in each channel. Finally, the enhanced image can be reconstructed with the modified coefficients via inverse curvelet transform. The enhancement is achieved by amplifying subtle features, improving contrast, and eliminating noise simultaneously. Experiment results show that the proposed algorithm produces better enhanced results than state-of-the-art algorithms

    Speckle Noise Reduction in Medical Ultrasound Images

    Get PDF
    Ultrasound imaging is an incontestable vital tool for diagnosis, it provides in non-invasive manner the internal structure of the body to detect eventually diseases or abnormalities tissues. Unfortunately, the presence of speckle noise in these images affects edges and fine details which limit the contrast resolution and make diagnostic more difficult. In this paper, we propose a denoising approach which combines logarithmic transformation and a non linear diffusion tensor. Since speckle noise is multiplicative and nonwhite process, the logarithmic transformation is a reasonable choice to convert signaldependent or pure multiplicative noise to an additive one. The key idea from using diffusion tensor is to adapt the flow diffusion towards the local orientation by applying anisotropic diffusion along the coherent structure direction of interesting features in the image. To illustrate the effective performance of our algorithm, we present some experimental results on synthetically and real echographic images

    The Nonsubsampled Contourlet Transform Based Statistical Medical Image Fusion Using Generalized Gaussian Density

    Get PDF
    We propose a novel medical image fusion scheme based on the statistical dependencies between coefficients in the nonsubsampled contourlet transform (NSCT) domain, in which the probability density function of the NSCT coefficients is concisely fitted using generalized Gaussian density (GGD), as well as the similarity measurement of two subbands is accurately computed by Jensen-Shannon divergence of two GGDs. To preserve more useful information from source images, the new fusion rules are developed to combine the subbands with the varied frequencies. That is, the low frequency subbands are fused by utilizing two activity measures based on the regional standard deviation and Shannon entropy and the high frequency subbands are merged together via weight maps which are determined by the saliency values of pixels. The experimental results demonstrate that the proposed method significantly outperforms the conventional NSCT based medical image fusion approaches in both visual perception and evaluation indices

    Change detection in multitemporal monitoring images under low illumination

    Get PDF

    A novel fast and reduced redundancy structure for multiscale directional filter banks

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A Novel Multiscale Edge Detection Approach Based on Nonsubsampled Contourlet Transform and Edge Tracking

    Get PDF
    Edge detection is a fundamental task in many computer vision applications. In this paper, we propose a novel multiscale edge detection approach based on the nonsubsampled contourlet transform (NSCT): a fully shift-invariant, multiscale, and multidirection transform. Indeed, unlike traditional wavelets, contourlets have the ability to fully capture directional and other geometrical features for images with edges. Firstly, compute the NSCT of the input image. Secondly, the K-means clustering algorithm is applied to each level of the NSCT for distinguishing noises from edges. Thirdly, we select the edge point candidates of the input image by identifying the NSCT modulus maximum at each scale. Finally, the edge tracking algorithm from coarser to finer is proposed to improve robustness against spurious responses and accuracy in the location of the edges. Experimental results show that the proposed method achieves better edge detection performance compared with the typical methods. Furthermore, the proposed method also works well for noisy images
    corecore