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A Novel Fast and Reduced Redundancy Structure
for Multiscale Directional Filter Banks
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Abstract—The multiscale directional filter bank (MDFB) im-
proves the radial frequency resolution of the contourlet transform
by introducing an additional decomposition in the high-frequency
band. The increase in frequency resolution is particularly useful
for texture description because of the quasi-periodic property of
textures. However, the MDFB needs an extra set of scale and di-
rectional decomposition, which is performed on the full image size.
The rise in computational complexity is, thus, prominent. In this
paper, we develop an efficient implementation framework for the
MDFB. In the new framework, directional decomposition on the
first two scales is performed prior to the scale decomposition. This
allows sharing of directional decomposition among the two scales
and, hence, reduces the computational complexity significantly.
Based on this framework, two fast implementations of the MDFB
are proposed. The first one can maintain the same flexibility in
directional selectivity in the first two scales while the other has the
same redundancy ratio as the contourlet transform. Experimental
results show that the first and the second schemes can reduce the
computational time by 33.3%–34.6% and 37.1%–37.5%, respec-
tively, compared to the original MDFB algorithm. Meanwhile,
the texture retrieval performance of the proposed algorithms is
more or less the same as the original MDFB approach which
outperforms the steerable pyramid and the contourlet transform
approaches.

Index Terms—Fast algorithm, multidirection, multiscale, multi-
scale directional filter bank (MDFB), texture retrieval.

I. INTRODUCTION

I N the past decades, various filter bank-related techniques
have been developed for image processing tasks such as

texture retrieval, segmentation, image compression, denoising,
enhancement, etc. Their corresponding basis functions or
frames are often localized in spatial and frequency domain
so as to provide an efficient representation of natural images.
Some popular filter bank approaches include wavelet transform
[1], Gabor wavelets [2], [3], steerable pyramids [4]–[6], and
contourlet transform [7], [8].

The standard 2-D wavelet transform possesses multires-
olution and maximum decimation properties. However, the
wavelets have limited directional sensitivity due to its sepa-
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rable nature so it is not very effective in edge representation.
Recently, several direction-adaptive approaches [9]–[11] based
on wavelet transform have been proposed so as to provide a
sparse representation of images with edges. In bandelets [9]
and directionlets [10], 1-D wavelet transform is applied to the
orientations of local directional features of images. In [11],
directional lifting [12] is performed adaptively by selecting an
appropriate direction from a set of candidates. Their adaptive
nature leads to high compression ratio but this may incur
difficulty in image comparison. Furthermore, these algorithms
usually involve extra operations for direction selection.

Gabor wavelets, steerable pyramids and the contourlet trans-
form provide a nonadaptive representation of image with high
flexibility in orientation decomposition but the representation
is over-complete. In the contourlet transform, the Laplacian
pyramid (LP) [13], [14] is used for multiscale decomposi-
tion while the directional filter bank (DFB) [15] is employed
for directional decomposition. Since the DFB is maximally
decimated, the contourlet transform has lower redundancy
and computational complexity than the Gabor wavelets and
steerable pyramids. It has been shown that the contourlets can
achieve the same asymptotic rate of decay in reconstruction
error as curvelets [16]. Therefore, the contourlet transform is
suitable for image compression as well as image comparison
and analysis. On the other hand, the decimation in the DFB as
well as in the LP introduces aliasing in the subband domain. It
has been pointed out that the aliasing problem would deterio-
rate the directional sensitivity [17] and shift invariant property
[5]. The aliasing, however, can be alleviated by requiring the
lowpass filter used in scale decomposition to have stopband
edge at or below . The adverse effect of the stopband edge
constraint is the reduction of frequency resolution in high and
mid radial frequency bands.

In [18] and [19], we proposed the multiscale directional filter
bank (MDFB) to improve the radial frequency resolution in the
contourlet transform by splitting the highest frequency band in
the LP into two frequency bands. Besides compensating the ad-
verse effect of the nonaliasing requirement in the LP, the in-
crease in resolution of high and mid-frequency range is par-
ticular useful for texture characterization. Our previous works
have shown that the MDFB has better performance in texture re-
trieval than the steerable pyramid and comparable to the Gabor
wavelet. Since no decimation is performed in the new scales, the
MDFB has higher redundancy than the contourlet transform.

The framework of the original MDFB follows the steerable
pyramid and the contourlet transform that all the multiscale de-
composition is performed prior to the directional decomposi-
tion. In this paper, we propose two fast versions of the MDFB by
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swapping the two processes, i.e., scale and directional decompo-
sition in the first two scales. In the first scheme, each directional
subband in the first level of the LP is split into two frequency
bands of different radial frequency ranges by lowpass filtering
and subtraction. It has the same flexibility as the original MDFB
that different scales can have different directional selectivity, but
the saving in computational complexity can be more than 33%.
In the second scheme, the scale decomposition of directional
subbands is implemented using a wavelet-like transform. Sim-
ilar reduction in computational complexity to the first approach
can be achieved. Although due to decimation, directional de-
composition is required to be the same in the first two scales,
the resultant MDFB has the same redundancy as the contourlet
transform, i.e., redundancy ratio .

This paper is organized as follows. In Section II, we give
background on the MDFB. In Section III, scale decomposition
in directional subbands is first analyzed. From the analysis, we
find that the contourlet subbands can be further split into finer
scales. Two methods have been developed to split the contourlet
subbands into two different scales. One method uses lowpass
filtering and subtraction. Another method employs a wavelet-
like transform. In Section IV, we adopt the proposed splitting
schemes to implement two fast algorithms of the MDFB. We
also discuss the filter designs for the new algorithms and esti-
mate the computational complexity using the number of arith-
metic operations. Section V presents experimental results on
the computational time and texture retrieval performance of our
proposed algorithms. The results are also compared with those
based on the original algorithm and the contourlet transform.
Finally, we conclude the paper in Section VI.

II. BACKGROUND

A. Laplacian Pyramid

The Laplacian pyramid (LP) [13] is an overcomplete de-
composition in which an input image is represented by a set
of bandpass images and a lowpass image. Ideally, the th
bandpass image represents components in frequency range

where
and is the number of decomposition levels. A lowpass image
contains frequency components in . In the LP,
the input image is first processed by a lowpass filter
and a downsampler to generate a lowpass image. A coarse
prediction of the original image is computed by upsampling
and subsequently convolving the lowpass image using another
lowpass filter . By subtracting the coarse prediction
from the input signal, a bandpass image is obtained. The
process can be iterated on the lowpass image to generate other
bandpass images in lower frequency range. A block diagram
of this iterative process is shown in Fig. 1. In this paper, we
set to be the time reverse version of , i.e.,

for convenience. In addition,
is realized using separable filtering with a 1-D filter . The
main feature of the LP is that decimation is performed only
on the lowpass image. Thus, there is no frequency scrambling.
Further processing such as directional decomposition can be
performed directly on the bandpass images [7], [8].

Fig. 1. Iterative structure of the LP.

Fig. 2. Partitioning of the frequency plane in a three-level DFB.

Fig. 3. Building blocks of the DFB (a) type I and (b) type II. In the figures,
H (!!!) andH (!!!) are complementary diamond-shaped filters.Q and
R are a quincunx downsampling matrix and a resampling matrix, respectively.

B. Directional Filter Bank

Directional filter bank (DFB) was originally proposed in [15]
as a critically sampled directional decomposition. The DFB
partitions a frequency plane into a set of wedge-shape region
as illustrated in Fig. 2. It can be implemented efficiently in a
tree structure using two types of building blocks as shown in
Fig. 3. Both types of building blocks rely on a two-channel filter
bank in which a complementary diamond-shaped filter pair is
followed by a quincunx downsampling. In the type I building
block, modulation is performed prior to the two-channel filter
bank so that fan-shaped partitions are generated. In the type
II building block, the modulator is replaced by a resampler.
Its function is to shear the desired frequency partitions into
diamond shape so that the two-channel filter bank can give
the desired frequency bands. Because of sampling, subbands
would suffer from spatial distortion [20], [21]. The problem can
be solved by adopting backsampling at the output of the DFB.
The backsampling reorders the subbands so that the overall
sampling is diagonal. For subband , the overall sampling
matrix is given by

in

in
(1)

where is the index of output stage of DFB, ,
0, 1 are spectral regions defined in Fig. 4 and downsampling
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Fig. 4. Definition of frequency regions < , j = 0, 1.

Fig. 5. Spectrum decomposition in frequency [��; �] n [��=2; �=2] for (a)
the contourlet transform and (b) the MDFB.

matrices and are defined by and

, respectively.

C. Multiscale DFB

The multiscale DFB (MDFB) [18] modifies the pyramidal
directional filter bank (PDFB) or the contourlet transform by
splitting the finest scale in frequency
into two scales in frequency and

. The scale decomposition of the
MDFB is achieved by first applying a lowpass filter of cutoff fre-
quency at to an input image. The lowpass image is sub-
tracted from the input image to generate the first scale. The LP
is then applied on the lowpass image. The second scale is ob-
tained as the first bandpass image in the LP. The third scale is the
second bandpass image in the LP, and so on. After that, the DFB
is applied separately on each bandpass image. Fig. 5 compares
the decomposition of the contourlet transform and the MDFB
in the frequency . As seen, the decom-
position of the finest bandpass image increases the frequency
resolution at high and mid-frequency range. It has been shown
that this can improve the texture description [18], [19] because
texture images have quasi-periodic patterns [22]. As a result,
[19] shows that the MDFB outperforms steerable pyramid in
texture retrieval. As mentioned in [17], the lowpass filter used
in the LP should have stopband edge at or below to avoid
aliasing, which would cause reduction in angular resolution. For
nonideal filters, it requires lowering the cutoff frequency of the
lowpass filter below , and so this decreases the resolution at

Fig. 6. Ideal spectrum of directional subband “8” in Fig. 2: (a) in the sub-
band domain and (b) in the input domain with backsampling. In the figures,
the high-frequency and low-frequency regions in the input domain are denoted
respectively by light and dark colors.

Fig. 7. (a) Lowpass filtered directional subband and (b) the equivalent fre-
quency response of the filtered subband in (a) at the input of the DFB.

the high-frequency subband. Therefore, the additional decom-
position of the finest bandpass image can compensate the ad-
verse effect of nonaliasing filters, as well [19].

III. ADDITIONAL SCALE DECOMPOSITION

IN A CONTOURLET SUBBAND

As mentioned in Section II-C, the MDFB splits the first scale
of the contourlet transform into two scales. Actually, the addi-
tional scale decomposition for the first scale can be applied on
other scales and vice versa. In this section, we develop two effi-
cient additional scale decomposition schemes suitable for any
bandpass scale of the contourlet transform. At first, analysis
on scale decomposition in directional subbands is presented.
Based on the analysis, we propose two subband decomposi-
tion schemes, namely, the lowpass filtering approach and the
wavelet-like decomposition approach.

A. Analysis of Scale Decomposition in Directional Subbands

In our proposed algorithms, further scale decomposition is
performed after the DFBs. Given a DFB with two or more levels
and without loss of generality, consider a directional subband
in a three-level DFB, which corresponds to a frequency region
shown in Fig. 6(b). Because of modulation and sampling,
subbands of the DFB suffer from frequency scrambling which
translates the low-frequency components to high-frequency
regions as indicated in Fig. 6(a). If a vertical bandpass filter
is applied to extract frequency components corresponding
to a scale in region 1, it is inevitable to mix with frequency
components in region 2. Similar situation occurs for filtering
in region 2. The extraction is different for a lowpass filter. As
demonstrated in Fig. 7, a scale can be obtained without mixing
with other scales because scrambled frequency components
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across the DC line belong to the frequency region. Unfortu-
nately, this is limited to only one mid-frequency region. In fact,
delicate nonseparable filters are required to have flexible scale
decomposition. However, the situation is simplified if either
region 1 or region 2 is removed. Apart from the lowpass sub-
band, we always have the scenario that region 2 is removed as a
by-product in the contourlets. Hence, the bandpass contourlets
can be split using the simple bandpass filtering. For another
scenario that region 1 is removed, the bandpass filtering scheme
can be used to obtain the coarser scale components. However,
the overall scheme is not as effective as the contourlet transform
because in order to obtain the second scenario, downsampling
cannot be performed on the lowpass residual in the first scale
decomposition. This increases the computational complexity
in the subsequent directional decomposition and scaling de-
composition, as well as overall redundancy. Therefore, we
focus on the splitting of the bandpass contourlets. In particular,
each scale of the contourlet transform is split into two scales
despite that the number of split scales can be more. We will see
that the proposed splitting schemes can be used to obtain fast
algorithms for the MDFB.

B. Splitting Based on Lowpass Filtering

Suppose that a directional subband of the DFB is in spec-
tral region defined in Fig. 4. We apply a 2-D lowpass vertical
filter to extract the lower frequency band, . The
higher frequency band is obtained by subtracting the lower
frequency band from the directional subband. Mathematically,

and are generated by

(2)

(3)

With backsampling, the overall sampling of stage after the
second stage is a downsampler in the horizontal direction .
Using noble identity [23], the corresponding filter response just
after the second stage is the same as the upsampled vertical filter

given by

(4)

Using noble identity and demodulation, it can be shown that
is related to a filter at the input of the DFB

by

(5)

where is the frequency shift due to the modulation
in the first two stages. Substituting (4) into (5), we have

(6)

Here, the -periodic property of spectrum is used in the case
of . Using (6), it can be verified that a vertical lowpass
filter in the subband domain illustrated in Fig. 8(a) is equiva-
lent to a bandpass filter with centre frequency at

Fig. 8. Lowpass filtering for a contourlet subband: (a) response in the subband
domain. (b) Response at the input of the DFB. The filter response is shown in a
dot pattern.

Fig. 9. Spectra of c[n] (a) in the subband domain and (b) at the input of the
DFB.

Fig. 10. Spectra of d[n] (a) in the subband domain and (b) at the input of the
DFB.

described in Fig. 8(b). For the highpass channel, the equiva-
lent response consists of two passbands centred at and

. The spectra of outputs and are, thus, given as
in Figs. 9 and 10, respectively. For directional subbands in spec-
tral region , the roles of and are interchanged.
should be a horizontal lowpass filter. Using a similar approach,
the equivalent filter at the input can be expressed as follows:

(7)

Furthermore, the spectra of , and are similar to
those illustrated in Figs. 8–10 reflected about the line ,
respectively.

The use of lowpass filtering and subtraction can be extended
to the case that the split scales have different directional decom-
position. First, the DFB with smaller decomposition is applied
on the bandpass image in the LP. Each subband is then split
into two different radial frequency bands using either a vertical
or horizontal lowpass filter depending on the spectral region
that the directional subband situates. As the filtering would not
change the directional partitioning in the subbands, subsequent



2062 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 8, AUGUST 2007

Fig. 11. (a) Proposed structure for splitting a contourlet subband into two subbands in different scales based on lowpass filtering. (b) Notations of analysis DFB
stages in (a): block “DFB ” represents an analysis DFB of larger directional decomposition among the two scales while the block “DFB ” denotes the analysis
DFB of smaller directional decomposition. “DFB ” and “B ” represent the subsequent stages of “DFB ” in “DFB ” and inverse of backsampling for the
ith subband of “DFB .” Note that all the analysis DFB blocks are incorporated with backsampling implicitly.

Fig. 12. (a) Synthesis structure for the proposed decomposition in Fig. 11. (b) Notations of DFB stages in (a): block “DFB ” represents a synthesis DFB of
larger directional decomposition among the two scales while the block “DFB ” denotes the synthesis DFB of smaller directional decomposition. “DFB ”
and “B ” represent the previous stages of the synthesis “DFB ” in “DFB ” and backsampling for the ith subband of “DFB .” Note that all the synthesis
DFB blocks are incorporated with inverse of backsampling implicitly.

DFB stages of larger directional decomposition can be applied
to the corresponding radial frequency bands after inversing the
backsampling in the previous directional decomposition. As a
result, different directional decompositions can be performed
on the two scales. In this way, the smaller directional decom-
position is shared among two scales. Fig. 11 depicts the overall
decomposition scheme.

The synthesis filter banks of the proposed framework are im-
plemented by cascading the synthesis system of subfilter banks
in the reverse order of the analysis counterparts in Fig. 11. The
overall structure of synthesis is shown in Fig. 12. If the basic
building blocks of the DFB can perfectly reconstruct a signal,
the directional subbands before scale decomposition can be re-
constructed without distortion. In fact, the analysis and syn-

thesis filter banks of the scale decomposition form a perfect re-
construction system. The synthesis signal is calculated by

(8)

Substitute the analysis formula (3) into (8), and we have

(9)

The above calculation also implies that the reconstruction prop-
erty is independent of the lowpass filter used. Since the subse-
quent reconstruction of the DFB is perfect, the overall recon-
struction is lossless. In the above discussion, 2-D filter
is used. However, in the actual implementation, a 1-D filter
can be applied to each of the columns (rows) instead, if
is a vertical (horizontal) filter.
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Fig. 13. Analysis and synthesis filter banks for scale decomposition based on
the wavelet-like transform.

In summary, the process of lowpass filtering and subtraction
provides a simple framework for splitting the contourlet sub-
bands. Perfect reconstruction is always possible for the scale de-
composition regardless of the choice of . Furthermore,
it is possible to have different directional decomposition in the
two newly split scales.

C. Splitting Based on Wavelet-Like Decomposition

Besides splitting with lowpass filtering and subtraction, a
wavelet-like transform can be used to decompose a subband
in the contourlet transform. However, due to decimation, the
directional decomposition is required to be the same in the
two scales. Fig. 13 describes the decomposition scheme based
on the wavelet-like transform. The subband signal , its
mid-frequency band and high-frequency band are
related, respectively, by

(10)

(11)

where is given by

in
in

(12)

As in the framework of Section III-B, there are either vertical or
horizontal filters subject to the spectral region where the sub-
band is located. Downsampling by a factor of 2 is then per-
formed along the filtering direction. In reconstruction, the syn-
thesis filter bank corresponding to the scale splitting is added to
each input of the synthesis filter bank of the DFB. The overall
analysis and synthesis system is similar to the system using low-
pass filtering with the scale filter banks indicated by dotted lines
in Figs. 11 and 12, which are to be replaced by filter banks, as
shown in Fig. 13. Besides, there is no additional DFB stage for
scale of larger angular resolution because the directional decom-
position is assumed to be the same over the two scales. Despite
that the number of subbands in the decomposed scale is doubled,
the data rate in each subband is halved because of decimation
so that the number of coefficients remains unchanged. It is ob-
vious that if the DFB and the wavelet-like filter bank allow per-
fect reconstruction, the proposed filter bank can reconstruct the
bandpass image perfectly. For FIR design, we set

and , where
for in and for in so that the

aliasing components are cancelled in the reconstructed signal.

Fig. 14. Spectrum partitioning obtained by applying splitting algorithms on
(a) the finest scale and (b) all scales in the contourlet transform.

For perfect reconstruction, it is further required that

(13)
Because of efficiency, it is usually preferred to implement the
2-D filter bank by applying 1-D filter bank on each column or
row. In this way, the perfect reconstruction condition has the
same form as (13) with and replaced by
their 1-D counterparts and and as given
in [24]. In brief, the splitting approach based on the wavelet-like
transform works similar to the one based on lowpass filtering
with the same directional decomposition in the two split scales.
Nonetheless, the wavelet based approach can generate outputs
with the same number of coefficients as the decomposed con-
tourlet subband. The complete decomposition of MDFB, thus,
possesses the same redundancy ratio as the contourlet transform,
i.e., 4/3.

D. Comments on Decomposition Without Backsampling

In Section III-B and C, backsampling is always assumed.
It has been shown in [25] that a backsampling matrix is a uni-
modular matrix, which skews a subband in spectral region
in the vertical direction and a subband in spectral region in
the horizontal direction. That means that the skewing direction
is always perpendicular to the filtering direction of and

. Hence, the characteristics of the equivalent frequency
response of and at the input of the DFB do
not change. As a result, the proposed algorithm can still work
on a directional subband at a given bandpass LP level without
backsampling.

IV. FAST ALGORITHM FOR MDFB

In Section III, we have proposed two ways to split a contourlet
subband into two scale components. If the splitting is applied
on each scale of the contourlet transform, the frequency plane
is partitioned as illustrated in Fig. 14(b). If only the finest scale
is split, the same frequency partitioning of the MDFB as shown
in Fig. 14(a) is achieved. In this paper, we are interested in the
use of the splitting algorithms for the fast implementation of
the MDFB. As the finest scale in the contourlet transform has
the largest bandwidth, it should be the most effective to split the
finest scale for more useful decomposition. Furthermore, the use
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of nonaliasing LP as mentioned in Section II-C would broaden
the bandwidth of the finest scale. This increase of bandwidth
does not occur in the other coarser scales. This is because the
upper end of the frequency range decreases with the lower end
due to lowpass filtering in the previous level. As a result, it may
not be effective for further decomposition in the coarser scale
subbands as in the finest scale.

The splitting of the contourlet subbands at the finest scale
using the proposed methods can reduce the complexity of the
MDFB. In the original scheme, the scale decomposition is per-
formed before the DFB is applied. Each split scale requires a
single directional decomposition so in total there are two di-
rectional decompositions. However, in the new method, the di-
rectional decomposition with lower angular resolution is per-
formed before scale decomposition. Thus, one set of operations
for directional decomposition with lower angular resolution is
saved by sharing. As the DFB belongs to a maximally decimated
scheme, the total number of subband coefficients is the same
as the size of the original image. Therefore, the scale decom-
position would introduce no extra operations in contrary to the
original algorithm. For separable implementation, the proposed
method requires one less filtering step because it involves fil-
tering in one direction only. If the MDFB is implemented using
the decomposition method based on the wavelet-like transform
described in Section III-C, the MDFB results in the same redun-
dancy as the contourlet transform. Although it needs additional
highpass filtering and downsampling, it should still be more ef-
ficient than the original method. In the subsequent analysis, the
first and second approaches will be referred to fast algorithms 1
and 2, respectively. In Section IV-A, the issues of FIR filter de-
sign for the fast MDFB algorithms will be addressed. Then we
show our estimation on the computational complexity in Sec-
tion IV-B.

A. Filter Bank Design

Using FIR implementation, filters have no sharp transition
band. Because of nonideal response, it is possible that the fre-
quency response of a highpass filter in the proposed scheme,
which extracts high-frequency components of a subband, would
overlap with the lower frequency components. Denote ,
and as the passband edge, stopband edge and transition
bandwidth of filter , where respectively.
Note that and are the lowpass and highpass filters
used in the proposed splitting algorithms while is the low-
pass filter adopted in the LP. The bandpass image in the LP is
approximately zero in frequency (e.g., is a
nonaliasing filter/QMF filter). Fig. 15 compares the equivalent
filter response of with the bandpass response of the LP
in frequency domain at the input of the DFB. In order to avoid
overlapping, it is required that

or equivalently (14)

For fast algorithm 1, (14) is equivalent to

(15)

because the lowpass and highpass responses are complemen-
tary to each other so that . Besides that, the cutoff

Fig. 15. (Left spectrum) Contrast of the equivalent highpass filter h [n]
and (right spectrum) the resultant frequency response of the directional filter
and the bandpass response of the LP. Note that the frequency response of the
bandpass image of the LP is approximately zero in [�! ; ! ] .

frequency of the lowpass filter must not be too large or too
small. Otherwise, the bandwidth difference between the two
split scales might be too large which in turns lower the frequency
resolution. Therefore, we set the cutoff frequency of to be

. In this case, and so
. In addition to the advantage in frequency resolution,

setting cutoff frequency to be allows the use of a halfband
filter which has one polyphase component of one coefficient
only [23]. As a result, about half of the computational time can
be saved. Examples 1 and 2 about the filter bank design have
been worked out based on different additional considerations.
For fast algorithm 2, a filter bank design based on QMF filters
[26] will be given in example 3.

Example 1—Aliasing LP: For aliasing LP, usually has
(e.g., QMF13 and ER13 used in [19]) This implies

. If , (15) is satisfied. Using
the Parks–McClellan algorithm [27], we design an equiripple

such that and , so (15) is
satisfied. It is found that ripple magnitude equal to 45 dB can be
achieved if the filter length is 13.

Example 2—Nonaliasing LP: To avoid aliasing in the LP, it
requires the stopband edge of , . Let us set

. Besides condition (15), is imposed.
It requires that

(16)
Considering both (15) and (16), we have

and (17)

In order to satisfy the criteria, equiripple with
and and with and
are designed. For length 23, the ripple magnitudes of and

are 42 and 41 dB, respectively. It should be noted that only
the first bandpass image in the LP is decomposed. Therefore,

is required to satisfy the given criteria in the first level
only. For other levels, other nonaliasing filters of shorter length,
e.g., binomial filter of length 7 (binom7), can be used.

Example 3—Fast Algorithm 2: can be designed to be
an equiripple filter while and form a QMF filter pair.
Due to power complementary property of QMF filters,

still holds as in the case of fast algorithm 1. Therefore, sim-
ilar designs in examples 1 and 2 can be used. For nonaliasing LP,
we design a lowpass QMF filter with using a
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method in [28]. The filter has length 28 with peak ripple magni-
tude in stopband equal to 39 dB. Then .
designed in example 2 can be re-used in this example. Same as
example 2, this filter is used in the first level of LP only while
another nonaliasing filter of shorter length, binom7, is used for
the remaining levels in order to reduce computational load.

B. Estimation of Computational Complexity

Computational complexity can be measured in terms of the
number of arithmetic operations. Without loss of generality, we
estimate the number of multiplications because filter banks re-
quire similar number of additions and multiplications. The filter
banks considered are constructed in polyphase structures, which
use separable filtering. In particular, the DFB is implemented in
a ladder structure [29]. To simplify our discussion, all polyphase
components of prototype filters used are assumed to have the
same length . Define , and to
be the number of multiplications in the original algorithm of the
MDFB, fast algorithms 1 and 2, respectively. For an -pixel
image, the original MDFB requires multiplications in the
first scale decomposition. The generated lowpass image still has

points so the bandpass image at the th level in the LP con-
sists of points. The number of multiplications used in
the th LP level is . For a -point signal, the DFB
requires for orientations. In this paper, the number
of levels in the DFB is decremented by one for every two coarser
levels in the LP as suggested in [7], [8]. Suppose that there are

DFB levels for the initial scale. We obtain the following es-
timation of :

(18)

For our first proposed splitting algorithm, if a halfband filter
is used, multiplications are required. The complexity is
the same for the second proposed splitting algorithm if a QMF
filter is used. Together with the analysis at the beginning of Sec-
tion IV, and are, thus, given by

(19)

Let us denote and as the percentages of reduction in the
computational complexity using fast algorithms 1 and 2 as com-
pared to the original MDFB, respectively. Using (18) and (19),
we have

(20)
For , . Apart from number of opera-
tions, the actual running time of the algorithms has been evalu-
ated. They are given in Section V together with further discus-
sion on the computational complexities.

V. EXPERIMENTS AND DISCUSSION

Simulation results have been performed to evaluate the ac-
tual computational time and retrieval performance of the two
proposed algorithms. For comparison purpose, results for the
original MDFB and the contourlet transform are included. Their
implementations are based on nonaliasing LPs because aliasing
would deteriorate the angular resolution. The number of direc-
tions in the scales follows the construction rule given in [7],
[8] that the number of directions is halved for each two coarser
levels in the LP. It should be noted that the construction rule
may not be optimal for all applications other than image com-
pression [8], [19], and it is used for comparison purpose only.

In the computational time experiment, the algorithms, which
are implemented in Matlab 6.5, are performed on Lena image
of size 512 512 in a computer with CPU of Intel Pentium 4
2.4 GHz. The retrieval experiments were performed on a data-
base derived from Brodatz album [30]. The central part of each
of the 111 album images of size 512 512 was extracted. It was
then divided into nine 128 128 regions. As a result, the data-
base has 999 images of 111 different classes. Each image in the
database was selected once as a query image. The first nine im-
ages closest to the query image were returned from the retrieval
system and used to calculate the retrieval accuracy. The mean
of retrieval accuracies of all query images was used for evalua-
tion. In feature extraction, L1 norm of the subbands excluding
the lowpass one are calculated. For subband , it is given by

(21)

Since the contourlet transform and the MDFBs have different
number of subbands, greedy algorithm is applied to obtain an
optimal set of features for a given number of features. The dis-
tance between two texture images and was calculated
using weighted sum of absolute difference [2], i.e.,

(22)

where is the standard deviation of the selected feature over
the entire database and the superscript of features denotes the
texture index.

Table I shows the computational time in seconds while the
percentages of reduction in the computational time together
with the estimated reduction in complexity in Section IV-B
is given in Table II. From Table I, it can be seen that the
two proposed algorithms always use less time as compared
with the original algorithm. The percentages of reduction in
computational time of the proposed algorithms are between
33.3%–37.5% for both of fast algorithm 1 and fast algorithm 2
as compared to the original MDFB algorithm. Our estimation
given in Section IV-B agrees roughly with the experimental
results with some variations. The variations partly attribute to
the assumption that all polyphase components of filters have
the same length. Another reason is that besides arithmetic
operations, there are other operations such as memory access in
sampling, etc. Despite this, both of them show considerable re-
duction in computational complexity which mainly comes from
the saving of directional decomposition on the finest bandpass
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TABLE I
COMPUTATIONAL TIME IN SECOND FOR THE PROPOSED FAST ALGORITHMS

AND THE ORIGINAL ALGORITHM OF THE MDFB
AND THE CONTOURLET TRANSFORM

Fast algorithms 1 and 2 are implemented as in examples 2 and 3 given
in Section IV-A, respectively. The LP and DFB in the original algorithm
MDFB and the contourlet transform are implemented in the same way as in
the fast algorithms. For the original MDFB algorithm, the decomposition
of the finest scale is achieved using 2-D separable filtering based on an
equiripple filter of length 17.

For MDFB algorithms, decomposition (d � d ; d ; d ) refers to
the MDFB in which d and d levels directional decompositions are
performed for the first and second scales split from the finest bandpass
image in the LP, respectively, while d levels and d levels directional
decompositions are performed in the second and third bandpass images in the
LP respectively. For the contourlet transform, decomposition (d ; d ; d )
refers to the contourlet transform with d level decomposition on the ith
bandpass image in the LP, i = 1, 2, and 3.

TABLE II
PERCENTAGE OF REDUCTION IN COMPUTATIONAL TIME AND NUMBER

OF MULTIPLICATIONS FOR THE PROPOSED FAST ALGORITHMS

Fig. 16. Comparison of retrieval accuracy of the contourlet transform, the orig-
inal MDFB algorithms (OMDFB), fast algorithm 1 (FMDFB1), and fast algo-
rithm 2 (FMDFB2) at different number of selected features for decomposition
(3-3, 3, 2)/(3, 3, 2).

image in the LP. In our estimation and implementation of fast
algorithm 2, QMF filters that can be implemented in an efficient
polyphase structure are considered. For general implementa-
tion, fast algorithm 2 should require more operations than fast
algorithm 1 because it requires an extra bandpass filtering.

Compared with the contourlet transform, the fast algorithm
uses slightly more time because of additional scale decompo-
sition. However, this additional scale splitting allows the pro-
posed algorithms to outperform the contourlet transform in tex-
ture retrieval. Their retrieval accuracy is plotted against number
of selected features larger or equal to five in Figs. 16 and 17

Fig. 17. Comparison of retrieval accuracy of the contourlet transform, the orig-
inal MDFB algorithms (OMDFB), fast algorithm 1 (FMDFB1), and fast algo-
rithm 2 (FMDFB2) at different number of selected features for decomposition
(4-4, 4, 3)/(4, 4, 3).

for decomposition (3-3, 3, 2)/(3, 3, 2) and (4-4, 4, 3)/(4, 4, 3),
respectively. The results show that the retrieval performance of
the MDFB algorithms is better than the contourlet transform if
more than seven features are selected. The maximum retrieval
accuracy for the contourlets, which is achieved when 26 features
are used, is 71.1% in the case of decomposition (4-4, 4, 3)/(4,
4, 3). However, the retrieval accuracy of fast algorithm 1 and
fast algorithm 2 is both higher than that by 1.8%, respectively,
for the same number of features. From the figure, we can also
find that the retrieval performance of the two fast algorithms is
close to that of the original MDFB algorithm. This is due to their
similarity in spectrum partitioning. However, the use of the new
algorithms benefits from lower complexity and also reduced re-
dundancy for the second algorithm.

VI. CONCLUSION

We have presented two fast algorithms for MDFB, in which
directional decomposition is performed prior to the scale de-
composition in the first two scales. In this way, directional de-
composition can be shared over the first two scales. This re-
sults in saving one directional decomposition. The first fast al-
gorithm decomposes the bandpass directional subbands using
lowpass filtering and subtraction. It permits different directional
decompositions in the two scales. The second scheme utilizes
wavelet-like decomposition. Although directional decomposi-
tion of the two scales is required to be the same in the second
scheme, it can generate subbands with the same redundancy as
the contourlet transform. Perfect reconstruction is possible if the
constituent filter banks do not introduce distortion.

Several aspects of the fast algorithms have been studied. We
have presented and discussed some possible FIR designs of both
proposed schemes based on aliasing and nonaliasing LPs. Com-
putational complexity of the proposed methods have been ana-
lyzed. Our results show that a reduction about 33%–37% can
be achieved when compared with the original scheme. Further-
more, we have conducted texture retrieval experiments and find
that the fast algorithms had nearly the same retrieval perfor-
mance as the original MDFB. Thus, the same multiscale and
multidirectional textural features are preserved using our two
proposed fast algorithms.
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The improved efficiency in the proposed fast algorithms
should broaden the applications of MDFB in image processing,
especially those require real time processing. The reduced
redundancy of the MDFB based on the wavelet-like transform
also gives great potential for image compression. Currently,
we use the splitting algorithms proposed in Section III to
implement the fast MDFB algorithms. We have shown in
Section IV that the algorithms can be used to generate an image
representation with finer scales as illustrated in Fig. 14(b).
Although the large number of subbands would complicate the
process of feature extraction, the effectiveness of this kind of
decomposition for image representation should improve if it
is associated with certain basis selection algorithms similar to
wavelet packet [22]. This will be our future direction on the
multiscale analysis using the DFBs.
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