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Edge detection is a fundamental task in many computer vision applications. In this paper, we propose a novel multiscale
edge detection approach based on the nonsubsampled contourlet transform (NSCT): a fully shift-invariant, multiscale, and
multidirection transform. Indeed, unlike traditional wavelets, contourlets have the ability to fully capture directional and other
geometrical features for images with edges. Firstly, compute the NSCT of the input image. Secondly, the 𝐾-means clustering
algorithm is applied to each level of the NSCT for distinguishing noises from edges. Thirdly, we select the edge point candidates
of the input image by identifying the NSCT modulus maximum at each scale. Finally, the edge tracking algorithm from coarser to
finer is proposed to improve robustness against spurious responses and accuracy in the location of the edges. Experimental results
show that the proposed method achieves better edge detection performance compared with the typical methods. Furthermore, the
proposed method also works well for noisy images.

1. Introduction

Edges are prominent features in images and their detection
and analysis are an essential task in computer vision and
image processing. However, edge detection is a very difficult
task, mainly because of the abstract nature of the edge
detection problem. For instance, there is no clear definition
of what an edge is. Typically, edges are defined as those
points of an image where the gradient is noticeably large
[1]. When viewing an image, humans can easily determine
the boundaries within that image without needing to do so
consciously. However, no single edge detection approach,
up to the present, has been devised which will successfully
determine every different type of edges.

The conventional edge detectors include different differ-
ential operators, such as Sobel operator [2], Prewitt operator
[3], and Robert operator [4]. These operators are easy to
implement and, however, sensitive to noise due to lack of
smoothing stage. They are inappropriate for the real images.
Canny [5] puts forward well known three criteria of edge
detectors. The criteria expressed by Canny are as follows
[5, 6].

(i) Gooddetection (C1): there should be a lowprobability
of failing to mark real edge points and low probability
of falsely marking nonedge points.

(ii) Good localization (C2): the points marked as edge
points by the operator should be as close as possible
to the center of the true edge.

(iii) Only one response to a single edge (C3): each edge in
the image should produce a single response.

Besides, Canny also proposed a scheme for combining the
outputs from different scales. His strategy is fine-to-coarse
and this method is called feature synthesis. It was observed
in [7, 8] that, at a single scale, the Canny edge detector is
equivalent to the detection of the local maxima of the wavelet
transform of an image, for some particular choices of the
analyzing wavelet. However, the edges are still obtained by
globally threshold processing. In this kind of approaches,
many edges are extracted accompanying noises when the
threshold value is too low; fewer significant edges remain
when the threshold value is too high [9]. A richer description
can be obtained by considering the response of the image to
a family of filters of different scales and orientations.
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Figure 1: (a) NSFB structure that implements the NSCT. (b) Idealised frequency partitioning obtained with NSFB structure.

In the past, many multiscale methods based on wavelets
have been successfully applied to the analysis and detection
of edges [7–12]. For instance, Mallat et al. [7, 8] have imple-
mented multiscale Canny edge detection with the discrete
wavelet transform and proved that the wavelet transform
modulus maxima detect all the singularities of a function.
Shih and Tseng [9] proposed a two-stage edge extraction
approach with contextual filter edge detector and multiscale
edge tracker for further analysis of computer vision. Heric
and Zazula [10] presented an edge detection algorithm using
Haarwavelet transformand signal registration. Brannock and
Weeks [11] have proposed an edge detection method based
on the discrete wavelet transform (DWT), which combines
DWT with other methods to achieve an optimal solution
to the edge detection problem. Jiang et al. [12] propose a
set of simplified version of Gabor wavelets and an efficient
algorithm for extracting the features for edge detection. For
one-dimensional (1D) piecewise smooth signals, wavelets
have provided an optimal representation for these signals in
a certain sense. However, natural images contain intrinsic
geometrical structures that are key features in visual infor-
mation. As a result of a separable extension from 1D bases,
wavelets in two-dimension (2D) are not very effective in
representing images containing distributed discontinuities
such as edges. In addition, separable wavelets have a limited
capability in dealing with directional information: an impor-
tant and unique feature of multidimensional signals. These
disappointing behaviors indicate that edge detection based on
wavelet methods cannot get satisfactory results.

In recent years, Do and Vetterli [13] proposed an efficient
directional multiresolution image representation method,
namely, contourlet transform. Indeed, unlike wavelet, the
contourlet transform has good direction sensitivity, the
anisotropy, and can catch accurately the image edge infor-
mation. Owing to the geometric information, the contourlet
transform achieves better results than wavelet transform in
image analysis applications such as enhancement and denois-
ing. Due to downsampling and upsampling, the contourlet
transform lacks shift-invariance, which is desirable in many
image applications such as edge detection, contour charac-
terization, and image enhancement [14]. da Cunha et al. [15]

propose an overcomplete transform called the nonsubsam-
pled contourlet transform, which is a fully shift-invariant,
multiscale, and multidirection expansion that has better
directional frequency localization and a fast implementation.

In this paper, a novel multiscale edge detection method
based on theNSCT is proposed.Our edge detection approach
has similarities with a number of other methods based on
curvelet, complex wavelet, and shearlet. By contrast, the
proposed approach is very competitive for detecting both the
location and orientation of edges and can effectively reduce
the noise influence and produce proper edges for images.

The rest of this paper is organized as follows. Section 2
introduces NSCT and 𝐾-means clustering algorithm. The
proposed algorithm is described in Section 3. Section 4 shows
the experimental results to demonstrate the effectiveness of
the proposed method. Section 5 concludes this paper.

2. NSCT and 𝐾-Means Clustering

In this section, we will briefly review the theory of the NSCT
and the 𝐾-means clustering, presented in [14, 15, 17] and in
[18, 19], respectively. They will be applied in the subsequent
sections.

2.1. NSCT. The NSCT is a shift-invariant version of the con-
tourlet transform. The contourlet transform employs Lapla-
cian pyramids (LPs) for multiscale decomposition and direc-
tional filter banks (DFBs) for directional decomposition
[20]. Due to downsamplers and upsamplers present in both
the LPs and DFBs, the contourlet transform is not shift-
invariant. To achieve the shift-invariance, the NSCT is built
upon nonsubsampled pyramids and nonsubsampled DFBs as
shown in Figure 1.

(1) Nonsubsampled Pyramid (NSP). The nonsubsampled
pyramid structure ensures the multiscale property of the
NSCT. The building block of the nonsubsampled pyramid
is two-channel nonsubsampled 2D filter banks. Figure 2(a)
illustrates the nonsubsampled pyramid decomposition with
𝐽 = 3 stages [15]. The perfect reconstruction condition is
given as

𝐻
0
(𝑧) 𝐺
0
(𝑧) + 𝐻

1
(𝑧) 𝐺
1
(𝑧) = 1, (1)
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Figure 2: Nonsubsampled pyramid. (a) Three-stage pyramid decomposition. (b) Frequency divisions of a nonsubsampled pyramid.

where 𝐻
0
(𝑧) is low pass decomposition filter, 𝐻

1
(𝑧) is high

pass decomposition filter, 𝐺
0
(𝑧) is low pass reconstruction

filter, and 𝐺
1
(𝑧) is high pass reconstruction filter.

The ideal frequency support of the lowpass filter at the 𝑗th
stage is the region [−𝜋/2

𝑗
, 𝜋/2
𝑗
]
2. Accordingly, the support

of the high pass filter is the complement of the low pass
support region on the [−𝜋/2𝑗−1, 𝜋/2𝑗−1]2\[−𝜋/2𝑗, 𝜋/2𝑗]2.The
equivalent filters of a 𝐽 level cascading NSPFB are given by

𝐻
𝑛
(𝑧) =

{{{{{

{{{{{

{

𝐻
1
(𝑧
2
𝑛−1

)

𝑛−2

∏

𝑗=0

𝐻
0
(𝑧
2
𝑗

) 1 ≤ 𝑛 < 2
𝑘

𝑛−1

∏

𝑗=0

𝐻
0
(𝑧
2
𝑗

) 𝑛 = 2
𝑘
,

(2)

where 𝐻
0
(𝑧) and 𝐻

1
(𝑧) denote the low pass filter and the

corresponding high pass filter at the first stage, respectively.
The ideal frequency response of the nonsubsampled pyramid
is given in Figure 2(b).

(2) Nonsubsampled Directional Filter Bank (NSDFB). The
nonsubsampled DFB structure gives varying directions. The
building block of the nonsubsampled DFB is also two-
channel nonsubsampled 2D filter banks. The NSDFB is con-
structed by eliminating the downsamplers and upsamplers
in the DFB [15]. To achieve multidirection decomposition,
the NSDFB is iteratively computed. Figure 3 illustrates a
four-channel directional decomposition with two-channel
fan filter banks. The equivalent filter in each channel is given
by

𝑈
𝑘
(𝑧) = 𝑈

𝑖
(𝑧) 𝑈
𝑗
(𝑧
𝑄
) . (3)

(3) Combining the Nonsubsampled Pyramid and Nonsub-
sampled Directional Filter Bank in the NSCT. The NSCT is
constructed by combining the NSP and the NSDFB as shown

in Figure 1(a). The NSP provides multiscale decomposition
and captures the point discontinuities. The NSDFB provides
directional decomposition and links point discontinuities
into linear structures [21].This scheme can be iterated repeat-
edly on the low pass subband outputs of nonsubsampled
pyramids.TheNSCT is very suitable for image edge detection
because it has such important properties as multiresolution,
localization, shift-invariance, and multidirection. In this
paper, the “maxflat” filters and the “dmaxflat7” filters are,
respectively, selected for NSPs and NSDFBs. The details of
design for filters are referred to [15].

2.2. 𝐾-Means Clustering. The 𝐾-means is a classical unsu-
pervised clustering algorithm [22]. As an unsupervised tech-
nique, 𝐾-means clustering is effective in producing clusters
for many practical applications such as image segmentation
and image compression and determining the boundaries of
the objects in an image.

The aim of𝐾-means algorithm is to divide𝑁 points in𝐷-
dimensional space into 𝐾 clusters so that the within-cluster
sum of squares is minimized and the between-cluster sum of
squares is maximized. Suppose we have a set of𝑁 data points
{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
| 𝑥
𝑛
∈ R𝐷}; {𝑐

𝑘
| 𝑘 = 1, 2, . . . , 𝐾} is cluster

centers. The measure of the distance is commonly chosen as
Euclidian distance to minimize the following mean square
error (MSE) cost function:

𝐶MSE =

𝑁

∑

𝑛=1

𝐾

∑

𝑘=1

𝑜
𝑛,𝑘

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑐
𝑘

󵄩󵄩󵄩󵄩

2
, (4)

where 𝑜
𝑛,𝑘

is a binary variable that indicates the cluster
assignment of the point; if 𝑥

𝑛
is assigned to cluster 𝑖 then

𝑜
𝑛,𝑖

= 1 and 𝑜
𝑛,𝑗

= 0, for 𝑗 ̸= 𝑖, 𝑗 = 1, 2, . . . , 𝐾. In order to
minimize (4) we need to find the set of cluster ownerships
{𝑜
𝑛,𝑘
} and the set of cluster centers {𝑐

𝑘
}. Starting from a

set of initial values of 𝑐
𝑘
, this can be accomplished through
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Figure 3: Four-channel NSDFB constructed with two-channel fan filter bank. (a) Filtering structure. (b) Corresponding frequency
partitioning.

an iterative procedure that interleaves between optimizing
with respect to the cluster ownerships, keeping the cluster
centers fixed, and optimizing with respect to the cluster
centerswhile keeping the ownerships fixed [18].The𝐾-means
algorithm can be summarized as follows.

Step 1. Generate the starting condition by defining the
number of clusters and randomly select the initial cluster
centers. For instance, select a set of 𝐾 candidate cluster
centers {𝑐

1
, 𝑐
2
, . . . , 𝑐

𝐾
}.

Step 2. Assign each 𝑥
𝑛
to its nearest cluster center 𝑐

𝑘
.

Step 3. Recalculate the cluster centers to the mean value of
the points in each cluster.

Step 4. Repeat Steps 2 and 3 until a distance convergence
criterion is met.

3. Research Methodology

In this section, the proposed multiscale edge detection
algorithmwill be described in detail.This includes the feature
classification using𝐾-means clustering algorithm, the NSCT
modulus maxima processing, and the edge tracking for
coarse-to-fine. A schematic representation of the proposed
method is shown in Figure 4.

3.1. Feature Classification Using 𝐾-Means Clustering. In this
section, we will first analyze and discuss the coefficients
distribution of the NSCT in different subbands at a fixed
level, for some typical locations. Then, we describe the
feature classification using𝐾-means clustering. As described

in Section 2.1, the NSCT is a fully shift-invariant, multi-
scale, and multidirection transform. It provides not only
multiresolution analysis, but also geometric and directional
representation [14]; thus the NSCT can efficiently capture
the geometrical structures in natural images. Since edges are
geometric structures, while noises are not, we can use the
NSCT to distinguish them.

The NSCT is shift-invariant, which leads to each pixel of
the transform subbands corresponding to that of the original
image in the same spatial location [15]. Therefore, we gather
the geometric information from the NSCT coefficients for
some typical spatial locations. Consider a simple image 𝜇

containing edges and smooth regions, like the one illustrated
in Figure 5(a), and let NSCT 𝜇[𝑗, 𝑘, 𝑛] be the NSCT of 𝜇,
where 𝑗 is the scale variable, 𝑘 is the direction variable, and
𝑛 is the location variable. We examine the behavior of the
NSCT 𝜇[𝑗, 𝑘, 𝑛], at a fixed scale 𝑗

0
, for some typical locations

𝑛
0
. As Figure 5 shows, we can classify pixels into three cate-

gories by analyzing the plot of 𝑑
𝑛
0

(𝑘) = |NSCT 𝜇(𝑗
0
, 𝑘, 𝑛
0
)|,

namely, strong edge points, weak edge (near edge) points,
and smooth (noise) points. For instance, at the point 𝑛

0
=

𝐴 on smooth edges and the junction point 𝑛
0

= 𝐶,
𝑑
𝑛
0

(𝑘) have the large magnitude coefficients in all subbands
(strong edge points); at the point 𝑛

0
= 𝐵, 𝑑

𝑛
0

(𝑘) has large
magnitude coefficients in some directional subbands and
small magnitude coefficients in other directional subbands
within the same scale (weak edge points); at the point 𝑛

0
=

𝐷, 𝑑
𝑛
0

(𝑘) has small magnitude coefficients in all subbands
(smooth points). The same behavior holds for more general
images, even in the presence of additive white Gaussian noise.

This suggests devising a strategy for classifying strong
edge points, weak edge points, and smooth points based on
the plot patterns of Figure 5(f). Let 𝑗

0
be a fixed (fine) scale.
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Figure 4: Schematic representation of the proposed method.

In this paper, we choose to use two statistical feature variables
(the energy and the maximum denoted by 𝐸 and Max, resp.)
of the coefficients for each pixel across directional subbands
at this level. The main reason is the magnitude of the NSCT
coefficients at the points along the boundaries (including
strong edges and weak edges) which is significantly larger
than at the other points. On the one hand, the 𝐸 value has
large difference to some boundary points and smooth (noise)
points; they can be easily separated by looking at the energy
function at 𝑛:

𝐸 (𝑛) = ∑

𝑘

󵄨󵄨󵄨󵄨NSCT 𝜇 (𝑗
0
, 𝑘, 𝑛)

󵄨󵄨󵄨󵄨

2

. (5)

On the other hand, the 𝐸 value is similar to other weak
edge points and smooth points but the Max with large
difference; they can also be easily separated by looking at the
maximum function at 𝑛:

Max (𝑛) = argmax
𝑘

󵄨󵄨󵄨󵄨NSCT 𝜇 (𝑗
0
, 𝑘, 𝑛)

󵄨󵄨󵄨󵄨 . (6)

Therefore, we construct a two-dimensional feature vector
(𝐸, Max) based on the energy value 𝐸 and themaximumMax
for each pixel as shown in Figure 6. Next, using the (𝐸, Max)
as the feature function, we apply the 𝐾-means clustering
algorithm, as described in Section 2.2, to cluster the image
points into three sets𝑋

1
,𝑋
2
, and𝑋

3
. Let 𝑆,𝑊, and𝑁 denote

the set of points𝑋
𝑖max

,𝑋
𝑖middle

, and𝑋
𝑖min

, respectively.This can
be defined by

𝑖max = argmax
𝑖

1

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨

∑

𝑛∈𝑋
𝑖

𝐸 (𝑛) ,

𝑖min = argmin
𝑖

1

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨

∑

𝑛∈𝑋
𝑖

𝐸 (𝑛) ,

(7)

where 𝑆 is the set of strong edge points and 𝑁 is the set of
smooth points. The remaining set𝑊 contains the weak edge

points. In order to obtain a complete edge, we reserve the sets
𝑆 and 𝑊, and the set 𝑁 is set to 0. We denote the original
edge map of an image 𝜇 as 𝑀(𝑗, 𝑛) = {𝐸(𝑛), 𝑛 ∈ 𝑆 ∪ 𝑊} for
𝑗 = 1, 2, . . . , 𝐽, where ∪ represents union. Figure 7 illustrates
the application of the feature classification using 𝐾-means
clustering algorithm to a test image.The results show that the
feature classification using𝐾-means clustering can effectively
distinguish nonedge points from edge points.

3.2. Identifying of the NSCT Modulus Maxima. In this sec-
tion, we will describe the modulus maxima processing in
NSCT domain. The theory of modulus maxima to edge
detection lies in the fact that modulus maxima carry a
significant degree of information about the position of edges.
Mallat andZhong [7] proved that thewavelet transformmod-
ulus maxima detect all the singularities of a function. They
calculated the local maxima of discrete wavelet transform at
each scale and formed a multiscale edge representation of an
image. In what follows, we apply the modulus maxima in the
NSCT domain.

The NSCT provides a multidirectional structure, which
can be used to efficiently obtain the edge direction for each
pixel point. Figure 8 illustrates an eight directions decompo-
sition of the NSCT. As in the wavelet method, we will select
the edge point candidates of an image 𝜇 by identifying the
localmaxima of the function𝑀(𝑗, 𝑛) at fine scales.TheNSCT
modulus maxima algorithm consists of the following steps.

Step 5. Input the raw edge subband𝑀(𝑗, 𝑛) at each scale.The
𝑀(𝑗, 𝑛) is obtained in Section 3.1.

Step 6. Estimate the edge direction 𝜙(𝑗, 𝑛) by

𝜙 (𝑗, 𝑛) = argmax
𝑘

󵄨󵄨󵄨󵄨NSCT 𝜇 (𝑗, 𝑘, 𝑛)
󵄨󵄨󵄨󵄨 . (8)
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Figure 5: The coefficients pattern for some typical locations across directional subbands at a fixed scale. (a) Representative points on the test
image. (b)–(e) NSCT pattern 𝑠(𝑘), as a function of 𝑘 for the points indicated in (a). (f) Representative points on the test image.
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Figure 7: Results of feature classification using 𝐾-means clustering. (a) Original image. (b) Low pass subband image of the NSCT. (c)–(f)
The results of feature classification of high pass subbands from coarser to finer.

In order to compare modulus values in any direction, we
use the interpolation method (in our case, linear interpola-
tion).

Step 7. At each edge point candidate, the magnitude of
𝑀(𝑗, 𝑛) is compared with the values of its neighbors along
the gradient direction (this is obtained from (8)). If the
magnitude is the largest, the point is kept. Otherwise, it is
discarded and𝑀(𝑗, 𝑛) is set to 0.

These produce a set of possible edge points denoted by
{𝐵(𝑗, 𝑛), 𝑗 = 1, 2, . . . , 𝐽}, where 𝐽 is the decomposition level
of the NSCT. The results of the NSCT modulus maxima
processing are shown in Figure 9. We can find that the NSCT
modulus maxima processing can effectively remove pseudo-
edge responses.

3.3. Edge Tracking. After modulus maxima processing, it is
still a challenging problem to extract accurately edge image
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Input: the set of edge images 𝐵 and the set of gradient orientation maps Φ.
Output: the final edge tracking map 𝐼.
Begin
Set 𝑗 = 𝐽, where 𝑗 is currently tracking scale variable and 𝐽 is decomposition level of the NSCT.
While 𝑗 > 1

(1) Remove isolated pixels for edge image 𝐵
𝑗
.

(2) Get gradient directionΦ
𝑗
(𝑛
1
, 𝑛
2
) for each pixel (𝑛

1
, 𝑛
2
) ∈ 𝐵
𝑗
, where 𝐵

𝑗
(𝑛
1
, 𝑛
2
) ̸= 0.

(3) Form the set of edge pixels 𝑃 = {𝐵
𝑗−1

(𝑥, 𝑦)} for each pixel (𝑛
1
, 𝑛
2
) ∈ 𝐵
𝑗−1

corresponds to 𝐵
𝑗
(𝑛
1
, 𝑛
2
) ̸= 0,

where 𝑃 are these pixels satisfying: the maximum displacement 𝑑 ((𝑥, 𝑦) , (𝑛
1
, 𝑛
2
)) ≤ 𝑇dist in direction

Φ
𝑗
(𝑛
1
, 𝑛
2
) and 𝐵

𝑗−1
(𝑥, 𝑦) ̸= 0. If 𝑃 ∉ ⌀, then 𝐵

𝑗
(𝑛
1
, 𝑛
2
) = 0 and 𝐵

𝑗−1
(𝑥, 𝑦) = 255.

(4) Generate a strong edge map 𝑆 and a weak edge map𝑊 for 𝐵
𝑗−1

(𝑛
1
, 𝑛
2
) = 255 and 𝐵

𝑗−1
(𝑛
1
, 𝑛
2
) = 1,

respectively. Then perform edge connector for 𝑆 and𝑊, as is described in Section 3.3, the
result is assigned to 𝐵

𝑗−1
.

(5) Perform the operation 𝑗 = 𝑗 − 1 and go back to (1).
End
𝐼 = 𝐵.
End

Algorithm 1
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Figure 8:Thegradientmapwith directional decomposition number
is 23.

from the multiscale edge images because very few works
propose techniques for combining multiscale information.
To this end, we propose to combine the edges appearing at
different scales by performing coarse-to-fine edge tracking.
This algorithm is used to extract the complete and true
edges and improve the robustness against noise. According
to the multiscale property of the NSCT, for an image 𝜇, it
provides scale space decomposition in the frequency domain.
In general, the fine scales tend to produce results with a
higher spatial accuracy, but also to be particularly sensitive to
noise. Alternatively, the coarse scales are more robust against
noise but tend to suffer from displacements of the edges from
their true positions [23]. As shown in Figure 9, we observe
that the nonedges disappear and the true edges progressively
move away from their true positions and eventually merge
or vanish when scale 𝑗 increases. Besides, we also found that
the displacements of the edges are along its gradient direction
and the distance 𝑑 = 1 commonly between two consecutive

scales.We choseChebyshev distance as ameasure of distance.
We can see that the finest scale edge image has the problem
of double edges and broken edges as shown in Figure 9(d).
Therefore, we replace the finest scale edge image with canny
edge image to obtain a complete and continuous edge image.
The following sections describe whole edge tracking algo-
rithm process in detail.

Let the decomposition level of the NSCT be 𝐽, and 𝐵 =

{𝐵
1
, 𝐵
2
, . . . , 𝐵

𝐽
} and Φ = {Φ

1
, Φ
2
, . . . , Φ

𝐽
} represent the set

of edge images and gradient orientation maps, respectively.
In our implementation, the tracking starts from the coarsest
scale, that is, the edge image 𝐵

𝐽
. In the first step, we remove

isolated pixels by morphological processing of the 𝐵
𝑗
, where

𝑗 is currently tracking scale variable.Then for each edge pixel
(𝑛
1
, 𝑛
2
) ∈ 𝐵

𝑗
, where 𝐵

𝑗
(𝑛
1
, 𝑛
2
) ̸= 0, we obtain the corre-

sponding gradient direction Φ
𝑗
(𝑛
1
, 𝑛
2
). Next, find the pixel

(𝑛
1
, 𝑛
2
) ∈ 𝐵

𝑗−1
, and search nonzero pixels 𝐵

𝑗−1
(𝑥, 𝑦) ̸= 0

in 𝐵
𝑗−1

, where (𝑥, 𝑦) are these pixels satisfying that the
maximumdisplacement 𝑑((𝑥, 𝑦), (𝑛

1
, 𝑛
2
)) ≤ 𝑇dist in direction

Φ
𝑗
(𝑛
1
, 𝑛
2
). If there are nonzero pixels in (𝑥, 𝑦), then𝐵

𝑗
(𝑛
1
, 𝑛
2
)

is set to 0 and these pixels satisfying 𝐵
𝑗−1

(𝑥, 𝑦) ̸= 0 are set to
255; namely,𝐵

𝑗
(𝑛
1
, 𝑛
2
) = 0 and𝐵

𝑗−1
(𝑥, 𝑦) = 255, respectively.

We get a strong edge map 𝑆 satisfying 𝐵
𝑗−1

(𝑛
1
, 𝑛
2
) = 255 and

a weak edge map𝑊 satisfying 𝐵
𝑗−1

(𝑛
1
, 𝑛
2
) = 1. Then, we put

𝑆 as a high threshold map and put𝑊 as a low threshold map,
and perform hysteresis algorithm [5]. Therefore, we obtain
an edge tracking map 𝐵

𝑗−1
, and the tracking starts from 𝐵

𝑗−1

until the finest scale.
We summarize our edge tracking algorithm as shown in

Algorithm 1.
The edge tracking results at each scale are shown in

Figures 10(a)–10(d). We can observe that spurious responses
are removed and produce edge results with a higher spatial
accuracy. Meanwhile, we can also find that some significant
edges are removed at finest scale but it is retained at subfinest
scale. Therefore, we integrate next the edges at finest scale
and the significant edges by removing small fragments at
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(a) (b) (c) (d)

Figure 9: (a)–(d) Results of the NSCT modulus maxima processing from coarser to finer.

(a) (b) (c) (d)

(e)

Figure 10: (a)–(d) The results of the edge tracking from coarser to finer. (e) The final edge map on original in Figure 7(a).

subfinest. To this end, the final edge map is obtained by the
edge subsequent processing (e.g., edge connector and thin-
ning processing). The final edge image using the proposed
approach is shown in Figure 10(e).

4. Experiments and Results

In this section, we intend to compare the performance of
the proposedmethod with some conventional edge detection
algorithms, including the Sobel edge detector [2], the LoG
edge detector [24], the Canny edge detector [5], and the M-
Sobel edge detector [23]. In the experiments we have used the
test set of the Berkeley segmentation dataset (BSDS) because
it has the advantage of providing multiple human labeled
segmentations per image as shown in Figure 11. Thus we use
them as ground truth for the quantification of the quality of

the edge detection results and these images have a resolution
of 481 × 321 pixels.

We first use different scale decomposition values of
the NSCT to generate the final edge images for testing
the proposed approach, which are [2, 3], [2, 2, 3], [2, 2, 2, 2],
[2, 2, 3, 3], and [2, 3, 3, 3]. The extracted edges using the
proposed approach are shown in Figure 12. We can observe
that the edge detector can reduce the noised influence
with the increase of the number of scale decomposition of
the NSCT, especially for noisy image as shown in Figures
12(f), 12(g), and 12(j). As previously described in Section 3.3,
with the NSCT scale changing from finer to coarser, the
nonedges disappear and the true edges progressively move
away from their true positions and eventually merge or
vanish. So the slight improvement comes at the cost of a
higher computational complexity with the increase of the
number of scale decomposition. In addition, we also found
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(a)

(b)

(c)

(d)

Figure 11: Berkeley segmentation data set [16]. Top to bottom: image and ground-truth segment boundaries hand drawn by three different
human subjects. The BSDS500 consists of 300 training and 200 test images, each with multiple ground-truth segmentations.

that, when the number of scale decomposition is the same,
the extracted edges are more complete in the case of 23
direction decomposition.The simulation results are shown in
Figures 12(c)–12(e) and Figures 12(h)–12(j).Therefore, we use
four scales of decomposition of the NSCT for the following
experiments, and the direction numbers of decomposition
are 2, 3, 3, 3 from coarser to finer, respectively.

Then we have compared the performances of the pro-
posed method with the Canny method, the LoG method,
the Sobel method, and the M-Sobel method. Figure 13(a)
is the original images, and the edge detection results using
different methods are shown in Figures 13(b)–13(f). We can
see that the Canny method and LoG method detect many
false edges when they try to obtain more real edges, which
can be seen in Figures 13(b) and 13(c). The Sobel method has
better edge detection results and less false edges.However, the
detected edges are usually incomplete which can be clearly
observed in Figure 13(d). Figure 13(f) shows the detection
results using the proposed method. It can be seen that our

method can remove the false edges and keep the real edges
as much as possible. In addition, we can also find that
the proposed method compared with the M-Sobel method
(Figure 13(e)) has similar or better edge detection results for
original images. Meanwhile, the edge detection results of our
method are more complete and continuous than the edge
images detected using the other three methods. These are
mainly because the NSCT has the ability to fully capture
directional and other geometrical features for images with
edges.

Next, experiments are tested to validate that the proposed
approach is efficient to the images with Gaussian white noise,
where the noise variance is 𝛿2

𝑛
= 0.001 in our experiments.

Figure 14(a) is the original images and the extracted results
using differentmethods for noisy images are shown in Figures
14(b)–14(f). We can find that the proposed approach has
better robustness against noise than the other four methods.
The main reasons are as follows: in general, fine scales of the
NSCT provide spatially accurate results but are particularly
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 12: (a)–(e) The extracted edges based on the scale decomposition of [2, 3], [2, 2, 3], [2, 2, 2, 2], [2, 2, 3, 3], and [2, 3, 3, 3] for original
images. (f)–(j) The extracted edges based on the scale decomposition of [2, 3], [2, 2, 3], [2, 2, 2, 2], [2, 2, 3, 3], and [2, 3, 3, 3] for noisy images.

sensitive to noise; meanwhile, coarse scales of the NSCT
have better robustness against noise but tend to suffer from
displacements of the edges from their actual position. Thus
we achieved better edge detection results by performing
coarse-to-fine edge tracking presented in this paper.

Finally, in order to objectively evaluate the edge detection
performances of the proposed approach and other methods,
we use the classification inspired methodology by Martin
et al. [25]. In essence, edge detection can be seen as a binary
classification problem.Therefore, it can be evaluated in terms
of success and fallout, comparing the candidate edge image
(generated by an edge detection method) with the ground
truth (generated by a human). According to the ground truth,
the pixels in the candidate edge image can be classified into
four different categories: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) [6]. In this
way, we also build a confusionmatrix as shown inTable 1 [23].

Table 1: Confusion matrix for the edge detection evaluation.

Reality Classification
Edge Nonedge

Edge TP FN
Nonedge FP TN

From the confusionmatrix we extract the precision and recall
evaluations, defined as

PREC =
TP

TP + FP
,

REC =
TP

TP + FN
.

(9)
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(a) (b) (c) (d) (e) (f)

Figure 13: Edge detection results using different methods for original images. (a) Original images. (b) Canny edge detector. (c) LoG edge
detector. (d) Sobel edge detector. (e) M-Sobel edge detector. (f) Our method.

(a) (b) (c) (d) (e) (f)

Figure 14: Edge detection results using different methods for noisy images. (a) Noisy images. (b) Canny edge detector. (c) LoG edge detector.
(d) Sobel edge detector. (e) M-Sobel edge detector. (f) Our method.

The precision and recall measures hold good stability
properties and illustrate specific aspects of the problem.
Therefore, we use the F-measure by Martin et al. [25] to
evaluation of the overall quality of an edge image, defined as

𝐹
𝛼
=

PREC ⋅ REC
𝛼PREC + (1 − 𝛼)REC

, (10)

where 𝛼 is a parameter weighing the relative impact of the
precision and recall evaluations. In addition, Pratt’s figure

of merit (PFoM) [26] is used for quantitative evaluation of
spatial accuracy, defined as

𝑃
𝑙
=

1

max (𝑛
𝑐
, 𝑛gt)

𝑛
𝑐

∑

𝑘=1

1

1 + 𝛽𝑑2 (𝑘)
, (11)

where 𝑛
𝑐
is the number of the candidate edges and 𝑛gt

is the number of the ground-truth edges. 𝑑(𝑘) denotes
the Euclidian distance from the 𝑘th candidate edge to the
corresponding ground-truth edge. 𝛽 is a constant, generally
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Table 2: The 𝐹
0.5

and 𝑃
𝑙
values, where the 1, 2, 3, and 4 denote top, middle top, middle bottom, and bottom original images in Figure 12(a),

respectively.

Original images Comparison to other methods
Canny LoG Sobel M-Sobel Our method

1 𝐹
0.5

0.4626 0.5626 0.8452 0.8588 0.9444
𝑃
𝑙

0.4064 0.4691 0.8193 0.8377 0.8351

2 𝐹
0.5

0.2672 0.3240 0.5829 0.6384 0.6271
𝑃
𝑙

0.2046 0.2726 0.5376 0.6243 0.5685

3 𝐹
0.5

0.4474 0.5038 0.6418 0.6560 0.6832
𝑃
𝑙

0.3716 0.5968 0.7227 0.7690 0.7310

4 𝐹
0.5

0.7468 0.7149 0.8484 0.8500 0.8740
𝑃
𝑙

0.6459 0.6839 0.8527 0.8807 0.7792

Table 3: The 𝐹
0.5

and 𝑃
𝑙
values, where the 1, 2, 3, and 4 denote top, middle top, middle bottom, and bottom noise images in Figure 13(a),

respectively.

Noise images Comparison to other methods
Canny LoG Sobel M-Sobel Our method

1 𝐹
0.5

0.1825 0.2004 0.8210 0.8406 0.9404
𝑃
𝑙

0.1561 0.1806 0.7916 0.8343 0.7918

2 𝐹
0.5

0.2002 0.3086 0.5582 0.5848 0.5944
𝑃
𝑙

0.1540 0.2617 0.5611 0.5458 0.5099

3 𝐹
0.5

0.4488 0.5028 0.5368 0.5491 0.6876
𝑃
𝑙

0.3903 0.5920 0.4068 0.5037 0.7349

4 𝐹
0.5

0.3402 0.6992 0.8078 0.8083 0.8686
𝑃
𝑙

0.2535 0.6756 0.8151 0.8405 0.7841

fixed at 1/9 for keeping the values in [0, 1]. A better approach
possesses larger 𝐹

𝛼
and 𝑃

𝑙
values.

In this work, we use a one-to-one pixel matching algo-
rithm tomap the edge pixels in the candidate edge image and
the ground truth. This matching allows for a certain spatial
tolerance (in our case, as much as 0.5% of the diagonal of the
image), so that an edge pixel can be slightly moved from its
true position, yet being considered as correctly classified. For
a given image, the result of each edge detection method is
compared with several ground-truth images, each one pro-
ducing a tuple of evaluations (𝐹

0.5
, 𝑃
𝑙
). Then, the comparison

producing the best quality assessment, in terms of 𝐹
0.5
, is

the one we select. Tables 2 and 3 show the results obtained
of each detector in Figures 13(a) and 14(a), respectively. The
results show that the proposed approach is quantitatively
better than all othermethods.More specifically, the proposed
method can achieve better results with the typical methods
for original images. In particular, it also works well for noisy
images and the advantages are obvious.

5. Conclusions

In this paper, we developed a multiscale edge detection
approach based on NSCT and edge tracking. This method is
able to distinguish the real edges from the noise and over-
come the shortcoming of the limited directions of wavelet
transform. In order to produce the final edge image, we
have proposed a coarse-to-fine edge tracking algorithm,

to improve the edge localization accuracy and yield better
edge detection results. Experimental results demonstrate
that the proposed approach achieves better edge detection
performance compared with the typical methods. In par-
ticular, it provides an accurate method for extracting the
information about edges and their locations even in presence
of noise. Nevertheless, the proposed method has a higher
computational complexity due to the NSCT.
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