361 research outputs found

    Role of post mortem CT (PMCT) in high energy traumatic deaths

    Get PDF
    Background. Post Mortem Computed Tomography (PMCT) is being increasingly implemented in forensic field and could be an adjuvant to classic autopsies. In this study we evaluated the feasibility of complementation of conventional autopsy in trauma victims with PMCT. Materials and methods. A total of 21 subjects, who had sustained various types of blunt high-energy trauma, were selected from the casuistry of the Section of Legal Medicine at University of Pisa: before autopsy, a PMCT examination (Toshiba Aquilion 16 CT scanner) was performed, and after the acquisition of the raw images, MPR and VR reconstructions were performed with dedicated software. Results. PMCT is more sensitive than conventional autopsy in detecting skeletal injuries, whilst autopsy constitutes the method of choice for the detection of thoracic and abdominal visceral injuries. Conclusion. PMCT should be considered a useful tool in addition to conventional autopsy in evaluating trauma victims: it detects further bone fractures in body parts difficult to investigate during autopsy (i.e. posterior regions), facilitating the pathologist in the reconstruction of events and in determining the cause of death

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Multiphase contacting in PGM hydrometallurgy

    Get PDF
    This thesis describes hydrodynamic studies of the leach and solvent extraction stages of a Platinum Group Metal (PGM) hydrometallurgical flowsheet. The studies were motivated by the need to increase PGM throughput in Johnson Matthey’s PGM refining business. In the leach stage, key components in the feed are selectively dissolved using acids in a stirred tank before they are recovered by liquid-liquid (L-L) solvent extraction and finally purified. The work described in this thesis tackles four main areas: hydrodynamic studies of L-L PGM solvent extraction in both mixer and settler stages, whilst for the leach stage, studies of particle behaviour in gas evolving solid-liquid (S-L) reactions and gas-liquid-solid (GLS) characterisation by a novel Electrical Resistance Tomography (ERT) technique are performed. In the mixer-settler, the effects of impeller diameter, D, to vessel diameter, T, ratio (D/T), the phase flow ratio, cφ/dφ; (where cφis the continuous phase flow fraction and dφ is the dispersed phase flow fraction) and the specific power input,Tε, upon the droplet size distribution in a L-L system and their phase separation were investigated. Changing a smaller D/T impeller for a larger D/T impeller at constant P/V and cφ/dφincreased droplet size because the maximum shear rate decreased as a result of increasing ratio of impeller pumping capacity (Q) with tip speed (Utip). Changing a larger cφ/dφfor smaller cφ/dφat a fixed P/V and D/T impeller increased droplet size because turbulent dampening increased since the average density, ρ ∝ dφ. Meanwhile, Kolmogoroff-Hinze’s theory was shown to apply for the measured relationship between Tε and droplet size. A settler design criterion, which relates the dispersed phase concentration (Ca) in the dispersion band to the dispersed phase throughput (Qd/A) agreed with the model by Ryon et al. (1959). Ca was significantly dependent on P/V and Qd/A, whilst the effects of Qc/Qd (where Qc is the continuous phase flowrate and Qd is the dispersed phase flowrate) and D/T were minimal. Droplet size analysis of the sedimenting region of the dispersion band and dense packed layer revealed a transitional distribution of droplet sizes due to the counteracting effects of droplet sedimentation, hindered settling and droplet-droplet coalescence. Particle behaviour in gas evolving S-L systems were quantified using the Zwietering ‘just-suspended’ impeller speed (Njs) condition in a sponge nickel® and sodium hypochlorite system. The presence of gas caused Njs to increase, however a coherent relationship between Njs in an ungassed and gassed system 3 could not be easily ascertained. Further work with Positron Emission Particle Tracking (PEPT) was advised to quantify the relationship. A well-known electrical concept called skin effect, which describes how the effective resistance of an electrical conductor varies as the frequency of an alternating current (AC) increases and decreases, was used to investigate GLS behaviour via a novel ERT spectroscopic technique. The process relies on the change in effective resistance of conducting objects with changing AC frequency to selectively detect different phases. The concept was initially validated with static phantoms of a stainless steel and plume of gas before being applied to dispersible stainless steel particles and gas. ERT spectroscopy showed that two AC frequencies (0.3 kHz and 9.6 kHz) could successfully isolate and simultaneously detect the gas and solid phases at a fixed current. By subtracting solids and gas conductivity, the change in solids and gas holdup were obtained

    Evaluating the reliability of four-dimensional computed tomography scans of the wrist

    Get PDF
    Introduction: Four-dimensional CT (or 4D CT) scans are a novel approach to diagnosing musculoskeletal pathology. Although still in its infancy, there has been a surge of interest in identifying clinical applications for musculoskeletal 4D CT. The scapholunate joint has received the most attention thus far due to the complex articulations and challenges faced with prompt diagnosis of scapholunate injuries. The objective of this thesis is to review current literature on musculoskeletal 4D CT and to evaluate the inter- and intra-rater reliability of the assessment of scapholunate stability in 4D CT wrist scans. Methodology: 4D CT scans of thirteen healthy volunteers and four patients were prepared. Seven orthopaedic and plastic surgeons were recruited to qualitatively assess the stability of the scapholunate joint in the 4D CT scans. Statistical analysis included percent agreement, Fleiss’ kappa, and Gwet’s AC1 coefficient. Results: The percent agreement amongst all raters was 0.80392 (95% CI: 0.675 - 0.932). Fleiss’ Kappa was 0.54895 (95% CI: 0.252 - 0.846) and Gwet’s AC₁ was 0.54895 (95% CI: 0.391 - 0.915). The intraclass correlation coefficient (ICC) for intra-rater reliability was 0.71631 (95% CI: 0.5567 – 0.8423). Conclusion: Our pilot study suggests good inter- and intra-rater reliability for the qualitative assessment of scapholunate instability in 4D CT scans. Although further studies are required, this thesis highlights the vast potential of 4D CT as a non-invasive diagnostic technique of dynamic musculoskeletal injuries

    Plan dose evaluation of three dimensional conformal radiotherapy planning (3D-CRT) of nasopharyngeal carcinoma (NPC): experience of a tertiary care University Hospital in Pakistan

    Get PDF
    Background: Radiation therapy is the mainstay of treatment for nasopharyngeal carcinoma. Importance of tumor coverage and challenges posed by its unique and critical location are well evident. Therefore we aimed to evaluate our radiation treatment plan through dose volume histograms (DVHs) to find planning target volume (PTV) dose coverage and factors affecting it.MATERIALS AND Methods: This retrospective study covered 45 histologically proven nasopharyngeal cancer patients who were treated with definitive 3D-CRT and chemotherapy between Feb 2006 to March 2013 at the Department of Oncology, Section Radiation Oncology ,Aga Khan University Hospital, Karachi, Pakistan. DVH was evaluated to find numbers of shrinking field (phases), PTV volume in different phases and its coverage by the 95% isodose lines, along with influencing factors.Results: There were 36 males (80%) and 9 females (20%) in the age range of 12-84 years. Stage IVA (46.7%) was the most common stage followed by stage III (31.1). Eighty six point six-percent received induction, 95.5% received concurrent and 22.2% received adjuvant chemotherapy. The prescribed median radiation dose was 70Gy to primary, 60Gy to clinically positive neck nodes and 50Gy to clinically negative neck regions. Mean dose to spinal cord was 44.2Gy and to optic chiasma was 52Gy. Thirty seven point eight-percent patients completed their treatment in three phases while 62.2% required four to five phases. Mean volume for PTV3 was 247.8 cm3 (50-644.3), PTV4 173.8 cm3 (26.5-345.1) and PTV5 119.6 cm3 (18.9-246.1) and PTV volume coverage by 95% isodose lines were 74.4%, 85.7% and 100% respectively. Advanced T stage, intracranial extension and tumor volume \u3e200 cm3 were found to be important factors associated with decreased PTV coverage by 95% isodose line.CONCLUSIONS: 3D CRT results in adequate PTV dose coverage by 95% isodose line. However advanced T stage, intracranial extension and large target volume require more advanced techniques like IMRT for appropriate PTV coverage

    Novel MRI techniques in the diagnosis of musculoskeletal infection in children

    Get PDF
    Abstract Introduction: Musculoskeletal infections in children are common and if not adequately treated can result in poor prognoses. Early diagnosis and rapid treatment are crucial. The clinical and laboratory results are often non-conclusive or misleading. Radiology has always played a part in the diagnosis of Paediatric musculoskeletal infections. MRI is the most sophisticated MSK imaging tool and advanced MRI protocols with tailored techniques can improve the diagnostic yield of MRI in Paediatric MSK infection. Methods: 99 children with acute MSK pain and signs of infection were prospectively recruited. Each patient had a MRI scan on the first day of admission. A tailored MRI protocol was utilised, consisting of structural and biodynamic (DWI & SCE) sequences. Two consultant MSK radiologists independently analysed the scans and completed evaluation forms consisting of qualitative and semi-quantitative questions. The quantitative data from DWI and SCE sequences were separately analysed.Results: 103 MRI scans were performed. 3 scans were excluded due to incomplete protocols. 5 quantitative DWI and 3 SCE analyses were excluded due to irregularities of the values. The most common clinical diagnosis was infection. The feasibility of the protocol was excellent. The accuracy of the MRI protocol was good-excellent. The most accurate sequence was SCE. The diagnostic accuracy of the readers was good compared to an agreed gold standard. The most valued sequence by the readers for the diagnostic process was SCE. There were no relevant statistical thresholds for ADC and most of permeability values except for one regarding MSK infection. Conclusion: The tailored MRI protocol of the study is a feasible diagnostic tool with high level of diagnostic accuracy for paediatric MSK infections. The advanced MRI techniques in this study are the strengths of the protocol, which have demonstrated high accuracy and subjective diagnostic confidence. The quantitative values of the biodynamic sequences are promising parameters which need further evaluation in future studies.Open Acces
    corecore