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Abstract

Breast cancer is one of the most prevalent types of carcinogenic diseases worldwide, meaning that
is a pathology very appealing to be explored in terms of cure and methods to help the diagnose
and treatment processes.

With the evolution of technology applied to science, much work has been developed in order
to find solutions to improve the treatments of pathologies like breast cancer. One of those, relates
to this dissertation work, where a strategy for personalized surgical treatment is being explored
in order to increase the quality of life for the patients who have to be submitted to oncoplastic
surgical procedures.

This dissertation work, focuses on the automatic segmentation of the Sternum and the Clav-
icles in Magnetic Resonance Imaging (MRI). The identification of these specific bones will be
used as reference to help a three dimensional reconstruction of patient digital model through their
individual MRI acquisition. To achieve this, is important to have body structures identified in
the acquisitions such as bones to serve as reference to create the individual radiological atlas and
multi-modal fusion.

The segmentation of this structures proposed is achieved using the gradient of the images
elliptically transformed, where the boundaries are emphasized. The minimum cost pixel path,
after an intensity modification, is estimated and corresponds to the object contours. Classification
approaches using Support Vector Machine and Random Forest models were also tested, using
different sets of features extracted.

The dataset used in this work had 14 MRI T1-weighted breast cancer patient acquisitions,
from their thoracic area. The classification methods for the sternum the clavicles achieved Dice
Similarity Coefficient (DSC) of 0.087 and 0.25. In the gradient based segmentation the DSC was
0.58 for the sternum and 0.36 for clavicles.

The developed method, based on image gradient to detect the objects after being transformed,
revealed to be a great disclosure to achieve the sternum and clavicles automated detection in MRI.
It is a promising starting point to develop a robust segmentation method for these bones.
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“Science works on the frontier between knowledge and ignorance.
We’re not afraid to admit what we don’t know.

There’s no shame in that.
The only shame is to pretend that we have all the answers.”

Neil deGrasse Tyson, Cosmos: A Spacetime Odyssey.
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Chapter 1

Introduction

1.1 Context

Breast cancer is one of the most common types of cancer worldwide. Among female population, is

the most prevalent cause of death as a non-skin type of cancer. The statistics from 2012 indicated

that there were about 1.60 million new diagnoses and 0.52 million deaths caused by this type of

cancer. Demographic changes related to the population growth and regional risks are indicated as

the main factors to the increasing of the disease burden (Figure 1.1) .

Figure 1.1: Global distribution estimated age-standardized of female breast cancer (a) and its
incidence worldwide (b) Imaging [2018].

Being the incidence higher in Western countries, the burden of the disease is major located

in East and Central Asia, with 41.5% of deaths and 36.3% of the cases. In Europe, the statistics

for diagnosis and deaths is about 25%. In general, though the years between 1994 and 2012

the incidence of the cancer has been increasing 0.6% per year between women at ages of 20 to

39. The mortality rate has been declining due to the combination of treatment improvements and

the early detection but still high: 21.52%. The risks of developing this cancer relies mainly on

the genetic predisposition and some habits like the alcohol consumption and unhealthy weight

[Imaging, 2018].
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2 Introduction

Cancer is characterized as being the presence of a malignant tumor, which is an abnormal

development of cells that creates a mass of tissue. There are a few treatments available nowadays

to try to eliminate that, being its early detection and treatment options largely studied. Many of

the treatments rely on chemical attack to the tumor, however some patients still need to fight it

physically, removing the tumor itself. In the case of breast surgery, it is removed part or the entire

breast where the tumor relies, in order to help to overcome the pathology.

The decisions to be made concerning the treatment are numerous, complex and differ from

patient to patient. They still rely almost exclusively on the perspective of the surgeon, concerning

the post-surgical aesthetic result.

1.2 Motivation

The fact that the breast cancer mortality rates have been decreasing, makes that many survivors

still have to deal with the consequences of the disease treatment for a considerable amount of their

lives. In particular, the breast surgery consequences usually are related with the psychological

recovery which can be compromised if the patient rejects or stays unsatisfied with the aesthetic

result.

Breast cancer conservative treatment (BCCT) came as an alternative to the traditional mastec-

tomy, having the main objective of locally control the tumor, having the same positive results of

the traditional surgery but taking in consideration a satisfactory aesthetic result.

Some decisions concerning the surgery remain on the physician’s perspective, leading some-

times to unsatisfactory outcomes due to the fact of being a quite subjective analysis due to the lack

of concrete visualization of the anatomical condition of the patient and the lack of methods to keep

the patient involved in the process.

An objective evaluation of the process and its results would improve these techniques, increas-

ing the objectivity, reproducibility and the communication between the physician and the patient.

Developing a three dimensional (3D) individual model of the breast area enables the achieve-

ment of a better perspective on the surgical options and their consequences, being an evident

alternative to the current methodology. It would allow a better surgery planning, giving the dig-

ital model of the body structures through a large number of angles. I would also provide a vol-

ume/volume deficit estimation and it would allow the patients to get more involved and understand

better the procedures and the possible results [Oliveira et al., 2014].

The conceptualization of this 3D model relies on the digital reconstitution of the patient body

structures based on their Magnetic Resonance (MR) images. Together with an external reconstitu-

tion, the inner parts of the body have to be connected with the external ones. To achieve that, it is

necessary an automatic identification of some keypoints in the MRI acquisitions to connect these

two reconstituted parts of the patient. With this kind of personalized model, it would provide tools

to perform the digital examination and surgery planning in a more objective and realist way.
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1.3 Objectives

This dissertation work was developed in line with the goals of the Portugal2020 BCCT.Plan

Project, where tools for clinical teams are being built and different strategies for personalized

surgical treatment for patients are being explored. This will allow to adjust and plan each surgery.

This project is inserted in a three years partnership between INESC TEC, the Champalimaud

Foundation and NEADVANCE.

It will take in consideration the MR images from each oncologic breast patients that were

subjected to an oncoplastic surgery. From this scan, there are many structures that can be detected

in those images. Some can be considered as references for the 3D reconstruction, working as key

points to guide the digital model creation.

In this dissertation, the human skeleton is the main part considered. In particular, the Clavicles

and the Sternum automatic detection is the main objective of this work. The detection of these

bones will help in the reconstitution of each 3D model, giving reference keypoints to provide the

precision of multi-modal registration tasks. As they are the most superficial bones, in this area,

they will support the connection of the most external reconstituted body parts with the internal

content.

1.4 Contributions

With this dissertation work, it is expected to develop a technique to automatically identify the

sternum and the clavicles in T1-weighted MR volumes which will constitute a new tool to help

achieve the main research line objectives of the project where this dissertation is inserted. The

automatic detection of this structures will provide the model in development key points to serve

as reference in the process of transformation the MRI acquisitions into a digital 3D model.

A scientific paper was also written, focusing on the sternum segmentation. This achievement

also has the potential to be a new approach in the biomedical imaging science field, since the most

common techniques for bone chest detection use X-Ray images. This method can become useful

for other applications where the detection of this bones in MRI is necessary or even to serve as

inspiration for other object detection in similar conditions.

1.5 Structure

The present document is a dissertation work. It is divided in the following chapters and topics:

The Chapter 2, has two main sections. The Background is where the main concepts that sup-

port the whole work are explained and described. In the section of the Segmentation Techniques

the algorithms already described in the literature, that are somehow related to this work, are pre-

sented and the ones that can be more relevant for the desired implementation are explained. At the

end of this chapter, a brief summary is made.



4 Introduction

In Chapter 3 it is made a short introduction to contextualize the implementation process. Clas-

sification methods applied during the dissertation work are exposed. The last section is the de-

scription of the gradient based method, which explains an algorithm developed to segment each

structure (sternum and clavicles) to achieve the intended objective.

In Chapter 4 an initial characterization of the dataset that was used to test the algorithms is

made. Then, the results are exposed through tables with statistical measures used to evaluate the

performance of the methods and some visual examples are also exposed. After that, the results are

explained and justified during the Discussion section.

In the final Chapter, 5, the conclusions of the work developed are made and the possible future

approaches and improvements are referred.



Chapter 2

Literature Review

2.1 Medical and Anatomical Background

It is important to understand the theoretical components of the topics that are going to be addressed

during this dissertation work to understand better its characteristics, the way the structures appear

in the images, their shape and constitution and the technique involved in their acquisition.

2.1.1 Bone Structure

Bone is a hard connective tissue with matrix (mineralized) and cells (living part). Its matrix con-

sists of collagen fibers, the organic portion, and hydroxyapatite, the inorganic portion containing

calcium and phosphate.

There are two types of bone structure: the compact and the cancellous one. The compact bone

is composed by osteons, it is hard and dense, making the outside surface and the shaft of long

bones. The spongy one has a thin and irregular shaped plate called trabeculae, arranged in a lattice

work, being less dense.

Bones have rich blood supply which provides them the capacity to repair themselves quicker

than other parts like cartilage [Rod Seeley and Philip Tate, 2003].

2.1.2 Skeletal System

The skeletal system is constituted by all of the bones and joints present in the whole body, being

the solid framework that supports, protects and anchors the rest of the body parts. It has two

distinctive portions: the axial and the appendicular skeleton, being the axial constituted by a total

of eighty bones. It includes the vertebral column, the rib cage and the skull. The appendicular has

a total of one hundred and twenty-six bones composed by the remaining ones.

The skeleton acts as a scaffold to provide support, it protects organs and the soft tissues that

surrounds, it is an attachment points provider for muscles allowing movement at the joints and

it also owns nerves and the production of new cells that occurs in the red marrow. It is located

inside of bones in their medulla cavities, transforming in yellow bone marrow through adulthood

5



6 Literature Review

and storing energy in lipidic forms. It also stores different type of essential elements like calcium,

iron and and hormones to help the growth and body repair.

The skeleton expands throughout childhood being the foundation for the other body parts to

grow along with. It begins to form in fetal development as a hyaline cartilage and dense irregular

connective tissue which makes the structure flexible being a soft framework and a placeholder

for the future replacement osseous tissue (calcification)[Rod Seeley and Philip Tate, 2003, Ken

Saladin, 2003].

2.1.3 Sternum

The sternum is a component of the thoracic cage region of the skeleton, as represented in the

Figure 2.3, articulating with the right and left clavicle and some ribs. It is a long, narrow flat bone

located at the anterior aspect of the thorax and the heart, lies in the mid-line of the chest and has a

shape roughly similar to a “T”. It is composed by three pieces: the manubrium, the body and the

xiphoid process (Figure 2.2).

In average, a sternum has about 15 to 20 centimeters length, and 2.5 centimeters wide and

thick, and it is a bone mainly spongious and highly vascularized due to the presence of red marrow

in its interior. The sternum is commonly known as the breastbone, since it serves as keystone for

the rib cage, connecting with it, and stabilizes the thoracic skeleton. It also gives protection for

several vital components located in the chest such as the heart, lungs, thymus gland, aorta and

vena cava. There are many muscles that allow movements of the arms, neck and head that derive

from the sternum.

Figure 2.1: Ken Saladin [2003] representation of Sternum
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The manubrium part has a superior concave shape, with a depression denominated as jugular

notch which articulates with the medial ends of the clavicles to form the sternoclavicular joints.

On the lateral edges of the manubrium, there is a facet that articulates with the costal cartilage of

the first rib and a demifacet to articulate with part of the costal cartilage of the second rib. In the

lowest part it forms the sternal angle to articulate with the body part of sternum.

The body is the longest part of the sternum and has an irregular rectangular shape. Some

costal cartilages of ribs, starting from the second one, connect there forming the bulk of the rib

cage. Also, in this part are slight indentations, the articular facets, to provide the attachment points

for the costal cartilages, preventing rib separation.

The xiphoid process is the smallest and the most inferior region of the sternum and it has a

variable shape and size. It is not always an ossified part of the body: in the early life stays as a

flexible hyaline cartilage region and ossifies throughout childhood and adulthood until around the

age of 40 when all its cartilage is replaced by bone. Regardless of its degree of ossification, serves

as an important point for attachment diaphragm tendons and of abdominal muscles such as rectus

abdominis, and transversus abdominis [Rod Seeley and Philip Tate, 2003, Ken Saladin, 2003].

2.1.4 Clavicle

The clavicle is a slender bone, as represented in the Figure 2.3, classified as a long bone having

a slightly “S” shape. It has three main functions: attachment, protection and force transmission.

Being convex in the medial aspect from the front view and concave from the lateral, it is crucial to

sustain the forces applied from the pectoralis muscles and can be divided in two ends (the sternal

and the acromial) and a shaft.

Figure 2.2: Ken Saladin [2003] representation of Clavicles

The sternal end contains a facet to articulate with the manubrium of the sternum in the ster-

noclavicular joint. It has a rough oval depression in the inferior surface for the costoclavicular

ligament. The acromial end has a small facet to articulate with acromion of the scapula and serves

as attachment for two ligaments: the conoid tubercle and the trapezoid line.

It is doubly present in a normal human body, being each clavicle (right and left) connected to

the sternum by their sternal ends [Ken Saladin, 2003, Rod Seeley and Philip Tate, 2003].
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Figure 2.3: Ken Saladin [2003] representation of the Thoracic Cage and Pectoral Girdle

2.1.5 Magnetic Resonance Imaging

Magnetic Resonance (MR) was firstly developed as a superior computed tomography (CT) scan-

ning technique, in 1970s, to visualize soft tissues.

By definition, magnetic resonance is a property of the elements that when submitted to a

magnetic strong field and excited by radio waves in a specific frequency (Lamor frequency), they

emit radio signal that can be captured by aerials or transformed into images.

Protons and neutrons have a property called spin or angular momentum which is a rotation

around their own axis, having the protons also a magnetic moment which allows them to behave

like a magnet. A magnetic moment, present in every proton, not only produces a magnetic field

but also reacts to any other exterior magnetic field, so protons can be excited by powerful magnets

producing a strong magnetic field changing the direction of the rotational axis.

Magnetic resonance imaging (MRI) uses a powerful magnetic field, radio frequency pulses

and a computer to produce three dimensional detailed anatomical images being used to help the

detection, diagnosis and monitoring of many conditions located in the chest, abdomen and pelvis.

It is a non-invasive exam, without any ionizing radiation being an advantage comparing to

other tools, and it can produce detailed images of every kind of body structures: organs, soft

tissues and bones.

To acquire this kind of exam, the patient lies inside a large cyllindrical magnet chamber and

has to remain still to avoid blurring the images (Figure 2.4). The environment creates a strong

magnet field (3000 to 6000 stronger than the field of the Earth). Often, an intravenous contrast

agent is given to the patient to increase the brightness in the resulting images.

When the radio waves reach the patient, the protons of hydrogen present in the body are

stimulated and spin out of their equilibrium, aligning with the magnetic field. Then, when the
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Figure 2.4: MRI acquisition representation [Reeve, 2018].

radio frequency is turned off, the sensors capture the energy released while the protons abruptly

realign. The time taken to align with the magnetic field, the amount of energy released, and time

spent to realign, called the relaxation time, depend on the environment and on chemical nature of

the molecules, allowing to differentiate tissues by their magnetic properties.

Since the hydrogen has only a single proton it has the ability to produce the largest radio signal.

It is an element very abundant in the human body, integrating the water molecule structure, it is

the most suitable for the magnetic resonance image capture where the signal is produced by its

magnetic moment after the realignment.

Tissues have different relaxation times, and the kind of acquisition is determined by the type

of relaxation that is captured: T1 is the longitudinal one and T2 the transverse. This is what creates

the images, being the relaxation times chosen the predominant source of contrast. T1-weighted

images are the ones created by the longitudinal relaxation time acquisitions. They were chosen to

be explored in this work since they are the most common technique used to chest MRI, providing

better anatomic detail. They are characterized by the high magnetization from the tissues that have

a lower relaxation time, being the brightest parts in the images. In this kind of acquisition, bones

appear as dark parts, muscles with gray tones, bone marrow equal or brighter than muscles, fat

with the brighter appearance and air is dark [Ken Saladin, 2003, Paul B, Adam M, 2007, Hage and

Iwasaki, 2009].

MRI is a current method used to visualize numerous pathological lesions in hard tissues, such
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as bones, showing complex structures which can lead to the presence of inadequate brightness and

poor contrast in boundaries between hard and soft types of tissues [Gandhamal et al., 2017].

In long bones, like clavicle, the cortical bone thins out closer to the joints depending on the

imaging process parameters, such as noise, bias fields and the partial volume effect. This makes the

boundaries with other kind of bone and tissues more prone to be blurred, leading to segmentation

issues and errors since none of the MR contrasts mode provide clear delineation (Figure 2.5) [Dam

et al., 2015].

Figure 2.5: MR image example from an axial cut.

2.2 Segmentation Techniques

Today, there are many techniques already developed to segment bone parts in MRI but to the best

of our knowledge, there are not techniques specifically to the bones of interest in this work: the

sternum and the clavicles and for this particular acquisition setup.

Despite that, it is important to acknowledge the work already done and published in this field

in order to understand which are the best candidate approaches to the achieve the aim of this

work. For that, it will be taken in consideration the techniques that have already shown to produce

relevant results.

2.2.1 MRI Bone Segmentation

There are some interesting approaches to general MRI bone segmentation, although not directly

applicable, they allow extracting concrete information or segmenting a specific bone or body struc-

ture.
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Hofmann et al. [2011] proposes a segmentation algorithm that combines image thresholds,

Dixon fat–water segmentation, and component analysis to detect the lungs, in MRI from the whole

body, acquired with patients with their arms up. The data preparation involves a low pass filter

using a Gaussian kernel and morphological operations to eliminate information from the regions

outside of the body of the patients. The segmentation itself includes a 5-class approach: air, lungs,

fat tissue, fat and non-fat mixture and water where is applied a intensity based thresholding. Air

and non-fat tissue were separated by thresholding the intensity-normalized in-phase images. Low

intensity voxels were set as air with the help of a close operation to avoid misclassification. Fat and

water voxels were separated based on Dixon images, being the fat characterized by having more

than the double of the intensity value comparing to the water ones. The lungs were detectable as

the largest connected group of low intensity voxels.

To segment bone parts present in MRI, Schmid et al. [2011], presented his approach which

involves the use of statistical shape models (SSM). The process involves the creation of the SSM

with a training set of shapes that resulted from images that were progressively segmented by

a deforming template mesh guided by a radiologist. The statistics were inferred by this process.

The initialization process attempts to find the best pair of rigid transform and shape parameters that

minimize a cost function and its evolution is based on forces that are applied to these particles. The

resulting discrete differential equations are solved by a stable Euler implicit numerical scheme.

The external image forces appeal to go towards the desired boundaries by using image features, in

order to isolate the desired objects.

To a semi-automatic approach, Ozdemir et al. [2017] described the use of the random forests

classifier to train the model and a random walker algorithm to segment bone regions. It extracts

statistical features from different orders using cubic patches of edge length centered at each voxel:

the mean, the variance, the skewness and the kurtosis making a total of 12 features dimension.

Also, the texture and curvature maps are extracted with the Gabor filters and anisotropic features

to pronounce different orientation structures, especially in cancellous and cortical bone and their

surrounding muscles. It is also referred the relevance of extracting context-integrating and lo-

cation features in the proximity of the humerus since the shoulder has a dense constitution of

muscles, tendons and fat. It incorporates contextual information of the spatial neighborhood and

spatial shifts at multiple scales of different image maps. They were previously smoothed with a

cubic kernel, to have relative orientation and distance-dependent information for each voxel that

will help to characterize this kind of areas. For the segmentation, the random walker algorithm

was chosen, being necessary to select the seed points and pairwise edge weights to perform the

labelling to each voxel.

2.2.2 MRI Leg Bones segmentation

The majority work developed in the MRI bone segmentation field targets leg bones, such as the

femur, the tibia and the patella.
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Given the diversity of approaches already developed and reported, it is interesting to explore

if any of those works use techniques that could be applied in the present work, or even if several

techniques may be combined to produce better results.

In a paper by Gandhamal et al. [2017], beyond presenting their own approach for knee bone

segmentation, a review on the existing techniques is made. This is shown in Table 2.1.

The main technique categories presented in the table are going to be explained and the ones

with the most interesting contents are going to be described.

2.2.2.1 Semi-Automatic Techniques

Although semi-automatic algorithms may not be directly the intended approach for this work,

they can contain some techniques that could be useful to understand the segmentation approaches

already done.

A semi-automatic method is intended as a method in which in some phase of the process they

require the use intervention. Usually, in this kind of approaches, the interaction occurs on the

initial segmentation stage, to be chosen the starting points (seeds) on the regions of interest to give

a reference for the segmentation initialization. This restriction leads to reliability issues, being

a limitation of the performance of the algorithms, making them unsuitable for many purposes

[Gandhamal et al., 2017].

Distribution and Texture-based active contours

From both methods presented in the compilation table the one proposed in Guo et al. [2011]

has reported the best performance, evaluated using Dice Similarity Coefficient (DSC).

They present a hybrid active contour model in order to compensate the individual limitations

of both methods that were fused: Geodesic active contours (GAC) model and histogram based

Bhattacharyya gradient flow. The GAC model is an energy active contours model based on the

classical snakes and uses the statistical overlap constrain to prevent method to the boundary’s leak-

age, improving the image segmentation performance. The use of Bhattacharyya distance relates to

the search for mismatched zones. It corresponds to boundaries between objects and background,

such that were the distance value is bigger the greater is the probability that functions are different

and correspond to a boundary.

Multiphase Chan-Vese model

In Jiang et al. [2008], an approach using the Chan-Vese model was proposed. It is a region-

based deformable method for active contours based on energy minimization. It can detect objects

whose boundaries are not necessarily well defined by the gradient but has the problem that can

only isolate two scales of intensity of the image. To fight that, the Chan-Vese is used as the basal

algorithm and then two improvements are performed. The multiphase Chan-Vese model is first

applied and divides the images into two intensity regions, then, based on the type of intensity

variance in the region, an area term is added to set the initial curves and regulate them. Finally,
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Table 2.1: Review on Segmentation techniques for MRI leg images [Gandhamal et al., 2017].

Type Key Segmentation Algorithms Author, Year Performance Metrics Dependability

Semi-automatic

Distribution and Texture-based active contours
[Guo et al., 2011] DSC- 0.94

Depends on users for seed or contour initialization

Lorigo et al., 1998 DSC- 0.89
Multi-phase Chan-Vese Model [Jiang et al., 2008] not specified

Thresholding and Adaptative Region Growing,
Bayesian Classification

[Dalvi et al., 2007]
(Femur) Sens.- 97.05, Spec.- 98.75
(Tibia) Sens.- 96.95, Spec.- 98.33

Lee et al., 2005 Not specified
Kapur et al., 1998 Not specified

Fully-automatic

Multi-atlas registration and voxel classification

Tamez-Pena et al., 2016
(Femur) DSC – 0.95
(Tibia) DSC – 0.95

Most algorithms depend on models, atlas designs and training dataset set for classification

[Dam et al., 2015] DSC – 0.97

[Lee et al., 2014]
(Femur) AvgD–0.63 mm, RMSD–1.05 mm
(Tibia) AvgD–0.53 mm, RMSD– 0.90 mm

Shan et al., 2014
(Femur)DSC – 0.96
(Tibia) DSC – 0.96

Graph Cut Algorithm [Ababneh et al., 2011] DSC – 0.95

Ray Casting technique Dodin et al., 2011
(Femur) DSC – 0.94
(Tibia) DSC – 0.92

Random and Semantic Context Forests Learning
[Balsiger et al., 2015] DSC– 0.92

Wang et al., 2013
(Femur) DSC – 0.94
(Tibia) DSC – 0.95
(Patella) DSC – 0.94

Active and Statistical Shape Models,
Appearance Models

[Neogi et al., 2013] Not specified

Bindernagel et al., 2011
(Femur) DSC – 0.94
(Tibia) DSC – 0.89

Seim et al., 2010

(Femur) AvgD – 1.02 mm,
RMSD– 1.54mm
(Tibia) AvgD – 0.84 mm,
RMSD – 1.24 mm

Williams et al., 2010
(Surface)Seg. Err. – 0.648
(Volume)Seg. Err. – 0.431

[Fripp et al., 2007]
(Femur) DSC – 0.96
(Tibia) DSC – 0.96

Phase information for texture and feature based classification [Bourgeat et al., 2007] [Bourgeat et al., 2006] DSC – 0.87

DSC - Dice Similarity Coefficient, Sens.- Sensitivity, Spec. – Specificity, AvgD. – Average Surface distance, RMSD – Root mean square distance, Seg.
Err. – Mean Segmentation Error.



14 Literature Review

the re-initialization is removed meaning that the evolving curves will stay stable and close to the

signed distance functions.

Thresholding, Adaptive Region Growing and Bayesian Classification
From the methods analyzed in this sector the work of Dalvi et al. [2007] is the most relevant,

since it uses images from the T1-weighted multi contrast acquisitions. Despite not being exactly

intended for this work, since in this acquisitions the bone structures have high intensities and it is

a semi-automatic method, it showed to have a good performance.

The semi-automatic method proposed in Dalvi et al. [2007] starts with a noise reduction by

using the curvature anisotropic diffusion filtering that prevents the edge information loss while

improves the other parts of each image. Then, a Canny filter is applied to set the edge pixels to

zero.

The segmentation starts with a rough threshold to separate high intensity pixels, where bone

is supposed to be, from the lower ones. The bone class is morphologically eroded to ensure

under segmentation and a seed must be manually added. The estimated area is then refined with a

Laplacian level set segmentation.

2.2.2.2 Fully-Automatic Techniques

Multi-Atlas Registration and Voxel Classification
In Dam et al. [2015] it is combined rigid multi-atlas registration with voxel classification in a

multi-structure setting, having the better result presented in this sector of techniques analyzed.

The registration step has the aim of producing a transformation from a given scan to a training

space center. This allows the determination of the region of interest (ROI) for each anatomical part

and transformation of scan features to a common feature space. This registration is a similarity

transformation. The optimization of the method is achieved in two steps with Gaussian blurring

of the scans firstly with a rough scale and then with a fine scale, as described in the Figure 2.6.

With the resulting similarity transformations, the conversion to a training space center was defined

as an element-wise median. When segmenting a new scan, it is registered to all training scans,

without initialization, resulting in similarly transformations. The compositions of the new scan

with the training space provide an estimation of the training space center via a training scan. Their

element-wise median defined a robust estimate of the final multi-atlas transformation. The ROI

is defined as the coordinate extrema encountered in the registered training scans giving a margin

of 5% of the scan size in each direction, so the structures with margin for feature filter support

are assuredly inside of the ROI. The features chosen for the voxel’s classification were Gaussian

derivatives up to order 3, nonlinear combinations of these such as the Hessian and structure tensor

eigenvectors and values, intensity and position. The position and the Gaussian derivative features

for a given scan were changed utilizing the similarity transform from voxels in a breadth-first man-

ner until a connected component was formed. The number of seed voxels is set to ensure that all

components of a suitable size are hit by a seed point applying sample-expand sparse classification
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for the structures to be segmented. For each seed, the one versus all k-NN classifier resulted in

classification strengths in the classified voxels and the ones not visited are set to -1 strength value.

The structure-wise strength maps were combined to give origin to a single map of class labels by

assigning each voxel to the structure with the highest strength.

Figure 2.6: Dam et al. [2015] algorithm scheme

There is also a relevant technique to highlight in this sector, in Lee et al. [2014], since it is

intended to be used in T1-weighted MRI despite having gradient echo and fat suppression.

So, Lee et al. [2014] proposed a segmentation based on three steps: multi-atlas building,

locally weighted vote application (LWV) and region adjustment.

The multi-atlas phase includes intensity stretching, to set the intensities range, Gaussian blur-

ring and after saving the similarity metric values the best matched atlases are selected.

LWV is used to merge the information from the obtained atlases and give origin to the ini-

tial segmentation result. Then, a Hessian matrix decomposition is applied to extract the unique

intensity structure at a given local volumetric neighborhood. Being an Eigen decomposition, it

produces three eigenvectors and eigenvalues to each voxel.

These eigenvectors represent the local orientation angles for each voxel and the eigenvalues

give the magnitudes of the second-order derivatives along the orientation directions determined by

the correspondent eigenvectors.

A Hessian-based analysis is also preformed using 3D Gaussian filtering which reduces noise

and enhances the continuity in the local intensity fields. Then, the probability of correspondence

between atlas voxels and the experimental ones and the correspondent LWV are calculated.

The statistical information, like means and standard deviation, allows to automatically deter-

mine seed points inside and outside bone regions for the graph-cut based method and the globally

optimal segmentation is achieved with the max-flow-min-cut algorithm.
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Graph Cut Algorithm
Ababneh et al. [2011] proposes a method that starts with image preprocessing, followed by a

training data collection, to be used as reference for the block-wise feature extraction. It is followed

by the application to classify images block to regions of interest (ROI) and background blocks.

The content of each block in the image is compared to representative training set constituted

by blocks of ROI and background. The features used are empirically selected after showing a

discrimination power. Then, a weight function is created combining sub-weights based on those

features. The set chosen was the Grey-Level Co-occurrence Matrix (GLCM) derived features

showing to be a good approach to separate bone from fat tissue. Once a new block is introduced

its relevant features are extracted and saved, then it is determined which are most likely to be a

ROI block trough high-likehood. The blocks that did not show high similarity are compared to the

blocks that were now selected as having high-likehood to the training ones. The aim is to verify if

the ones initially excluded as ROIs have similarities to the selected blocks, and if they have, they

are considered as possible ROIs.

The ROIs and background blocks discovered are then used as seed points for the initialization

of the graph construction. It is performed using a global cost function that uses regional and

boundary weights and then applied a graph minimum-cut (GC) algorithm to generate the minimum

cut mask image, a binary mask that represents all the segmented regions. This mask is subjected

to a refinement based on its content, where the objects classified as background are filtered. To

the remaining objects are applied morphological operations and leak detection to enhance the

segmentation outcome.

The GC algorithm requires the construction of a source and sink (s-k) graph where each pixel

is represented by a vertex in the graph and two terminal vertices are also added to the graph in

order to represent the ROI and background respectively. The graph can be constructed creating

an edge between each edge-pixel vertex and their four immediate neighbors being also an edge

created between each pixel vertex and the terminal (s and k) vertices. A non-negative weight value

is assigned to each edge and reflects the degree of the similarity between the two connected pixels.

Each t-edge weight value assigned reflects the pixel similarity to both ROI and background. After

the graph construction, the maximum-flow algorithm is applied to compute the GC that yields the

optimal segmentation.

A specific regional cost function is utilized to measure the distance between each pixel value

and the mean intensity of both ROI and background regions. The boundary cost function is ob-

tained by the similarity measure between two pixels being the cost value inversely proportional

to the dissimilarity between two pixels. A high penalty is paid in the GC when two very similar

pixels are assigned to different regions.

The next phase is the refinement based on the content of the output from the GC algorithm

since it does not always result in a clear segmentation. This happens due to the possibility of the

lack of an exclusive set of seed points and due to the limited discriminative power of the cost

function that defines the regional and boundary edges. This refinement includes the filtering out

of the background and on the segmentation mask that contains a mix of ROI and background
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segments. It is submitted to a Canny detector, since the edges are higher in fat tissues comparing

to bone. There is also a leak detection, starting with an image opening and followed by a threshold

segmentation to identify small elements that were segmented and are artifacts that do not belong

to the ROI. Big segmented fragments are evaluated in order to discover if they belong to the ROI

based on their edges content, intensity mean value and histogram distance. If the fragment is

considered to be connected to bone objects they are preserved, if not, they are removed.

Random and Semantic Context Forests Learning
In Balsiger et al. [2015] it is proposed the use of Random forest (RF) voting, consisting the

whole method in two main phases, as shown in Figure 2.7, the training and the segmentation.

Figure 2.7: Balsiger et al. [2015] algorithm scheme

The preprocessing involves the use of z-score normalization to equalize the intensities and to

remove noise a slice-wise Wiener filtering is applied, improving the signal-to-noise ratio (SNR)

and also a slice-wise median. The z-score normalization is characterized as being very efficient,

specially for Gaussian distributed data, but not very robust [Jain et al., 2005]. Then, the Wiener

filtering is used to remove noise while it is kept as much as possible the signal characteristic

features. To finish this phase, the application of a slice wise median filter improves the cohesion

of the regions, preventing the excessive smoothing deriving from the previous steps.

The training phase relies on the extraction of features from the previously processed images

followed by the RF classifier training with those images’ voxels and their respectively labels. The

set of of feature extracted is mainly statistical.

The first features are related to the spatial location, which is the relative position of each

pixel in each slice. The distances are normalized and give the information of the approximately

location to provide a standard measure. Then, volumetric features are calculated based on the 3D

surroundings: the volumetric mean, volumetric variance and volumetric entropy. The next features

are related to the data distribution, which implies the need of a sliding window, having the pixels

whose feature is being extracted in the center.

The skewness, which is a measure of data asymmetry, in this case, calculates the symmetry

that exists between the input pixel and it’s the local neighborhood. The kurtosis is related to the

tail of the data distribution. It measures the tail-heaviness, in this case, present in the local window.

They both use the mean and the standard deviation of the neighborhood [McNeese, 2016].
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Then, the Canny filter, an edge detector, is used in order to locate the edges in each slice,

giving as the output a binary image where the pixels established as edges are positive and the

others negative [Canny, 1986]. The last set of features extracted are the Hessian coefficients,

calculated per slice.

The training itself is made using only 5% of the voxels labeled as bone and 5% labeled as non-

bone by the ground-truth. The RF algorithm was built by bagging 20 decision trees to classify the

pixels that were not in the training set.

The RF algorithm is a fusion of tree predictors, in the way that each tree depends on the values

present in a random vector independently sampled in order to have the same distribution for all

trees. The forests consist of using randomly selected combinations of inputs at each node to grow

each tree to increase the result.

The bagging method choice is associated to the random feature selection. Each training set is

designed, with replacement, from the original training set having the number of bags in account

to the random feature selection. The use of bagging is taken as an enhancer of the accuracy when

random features are used and it can be used to give progressing estimates of the error derived from

the combined ensemble of trees [Breiman, 2001].

The post-processing step consists on morphological operations on classification previous re-

sults. Firstly, the binary image is eroded and it is extracted its largest connected volume. Then the

holes are filled within areas and dilated in order to smooth the contour and eliminate artifacts that

might be present at the borders of the segmented objects.

Active, Statistical and Appearance Shape Models
Neogi et al. [2013] published a method to segment the knee in MRI based on the shape pre-

diction. With a set of training knees, it is applied active appearance models (AAMs): statistical

shape model forms that learn from the objects in training sets based on their variation in shape and

texture and encode them as principal components. Then, they are able to segment automatically

MR images from the bones of interest using the matching of the characteristics that acquired from

the training with the new images searching for the least squares sum of residuals. A second train-

ing set was used to identify vectors within shape space, able to discriminate the classes trough a

linear discriminant analysis (LDA). This is a supervised form of learning that identifies a multidi-

mensional function that separates the best the two classes reducing the shape dimensionality into

a single scalar value representing the distance to the LDA vector for each portion of bone seg-

mented. To train the LDA vectors, the images were searched using the AAMs and for each one,

the values for the principal components were saved for each kind of bone knee (femur, tibia and

patella). Then, they were combined and the LDA was performed with the principal components

for each bone as input, with the examples already labeled. The dimension reduction is made, the

bone shapes can be represented as principal components and projected in the LDA vector. The

distance is then recorded and normalized.

The Fripp et al. [2007] approach uses a point distribution model (PDM) with the aim of rep-

resenting the shape of bones and the variability among the database is modeled by 3D statistical
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shape models. Then, a hybrid segmentation scheme based on 3D active shape model (ASM) is

used to segment bones. This method reveled a high performance.

The individual statistics shape models (SSM) of each bone structure was obtained and they

were combined using landmarks. Each structure gives origin to the whole knee SSM, providing

the spatial relationship information.

The segmentation itself consists in SSM and matching criteria being performed in two steps.

The deformation, where the position of each point is moved in 3D to best nearby match, and the

shape restriction, where the pose and the shape parameters are estimated with the SSM help. The

matching criteria is calculated finding the strongest gradient in the profile, satisfying the internal

bone tissue constraint.

The segmentation is initialized through atlas and registration. The surface associated with the

atlas propagates using an affine transform from registering the atlas to the image, SSM is used to

estimate the pose and shape parameters of the surface in propagation being then utilized in the seg-

mentation trough ASM. This method uses three-level multi-resolution Gaussian pyramid for the

combined knee SSM and each image in the pyramid is smoothed along the sagittal plane with a

median filter. The segmentation procedure is obtained using the Otsu method for an initial thresh-

olding. Then, the bone intensity properties are estimated by their Gaussian distribution. Finally,

the segmentation using the ASM method is applied, followed by a relaxation to the boundaries.

It is achieved by a Laplacian operator and Humphrey’s classes algorithm. After each iteration,

the tissues previous parameters are updated using samples from the points with higher matching

probability.

Phase information for feature and texture
Textural analysis has become a common way to perform segmentation of anatomical struc-

tures. One possible way to achieve to extract textural information is to submit images to different

frequency subbands with different scales and then apply a filter and the features are extracted after

those filter responses. In Bourgeat et al. [2007, 2006] it is proposed an automatic bone segmenta-

tion based on this textural information.

In this approach, the planes the images are considered in their coronal and sagittal plane where

is expected that this kind of images have more textural information, especially in the sagittal plane.

The preprocessing step, the images are decomposed in their magnitude and phase components.

The magnitude images are normalized in order to remain with a zero mean and a standard deviation

of one, which is the effect of application of the z-score normalization [Jain et al., 2005].

Then, a bank of non-symmetric 2D Gabor filters is created with five different scales and six

orientations as shown in the Image 2.8.

In the sagittal plane, where is expected to extract more textural information, the five scales of

the Gabor filters were applied, but in the coronal plane only the first three scales where utilized,

were it is expect to have less high frequency contents.

So, after the phase and magnitude extraction from the two planes, those images are subjected

to the different Gabor filters. After that, to the magnitude of those responses it is applied a 3D
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Figure 2.8: Bourgeat et al. [2006] representation of the Gabor bank filter.

Gaussian filter in order to smooth them. Then, the magnitude of those responses is summed across

the slices to preserve the rotation invariance.

Applying the same bank of Gabor filters is expected to produce different results in phase and

magnitude images and in their different planes, giving a large set of different features.

To the classification step, the authors used the Support Vector Machine (SVM) classifier with

a Radial Basis Function (RBF) kernel [Suykens and Vandewalle, 1999].

Phase revealed to be a good discriminator between bones and surroundings, but not from

the background. The magnitude revealed to be a good characteristic to separate bones from the

background, but not from the other tissues. The combination of both sets of features produced the

desired segmentation of bones from both kind of structures.

Distance Regularized Level Set Evolution

Lastly, the authors of Gandhamal et al. [2017] also present their own approach to the problem.

To provide better tissue contrast and to normalize the brightness present in knee MRI regions,

a gray-level S-curve transformation is applied, which improves the gradient image magnitude,

sharpening the edges between soft and hard tissues. Then, the contour initialization locations, that

will be the seed points, are located through a 3D multi-edge overlapping technique. These will be

used on the next step, the bone region extraction, by the distance regularized level set evolution

(DRLSE). The region is expanded in the image, from the centered MR slice, what is considered

as bone gives origin to a new centroid that is going to be used in the following slices. Then, the

seed points are updated in each slice where the bone region is segmented.

For the post processing, the final regions extracted by the DRLSE algorithm are redefined in

order to eliminate the outliers from the surrounding tissues in the regions due to over segmentation.

The boundary displacement is identified by the point-to-point Euclidean distance between the

region contours and the two consecutive slices and if it exceeds a certain threshold it is considered

as leakage and it is adjusted. The boundaries are then smoothed by the Newton-Cotes method.
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2.2.3 Chest Components Segmentation

Other works in the field of the chest components segmentation might give some glimpse on alter-

native approaches to segment the desired parts, since they consider the anatomical environment

where the sternum and the clavicles are placed in the human body and all that surrounds them.

The aim in the work presented in Lu et al. [2006] is not for bone structure segmentation,

although it is centered in the chest region MRI with the aim of isolating the breast, which is

located in front of the sternum. The relevance of this work comes from the usage of the sternum

as a pilot point to guide the breast segmentation, as shown in Figures 2.9.

Figure 2.9: Lu et al. [2006] algorithm iteration demonstration from a) to e)

First, the breast-air boundary is located through region growing, using the Bernstein spline as

the initial curve to the active contour model. Then, to locate the breast-chest boundary is used the

previously obtained curve to identify the left and the right axilla. They are used as end points of

the curve, being the mid-sternum the lowest point in the center of the curve. The three connected

points make the initial boundary. Then, the muscle structure is searched through its gradient

values, since it has lower densities, reflecting negative gradient in the upper border and positive in

the lower one. The lower border points are refined into a smooth Bernstein spline and then with

an active contour model.

Applied to breast images, Oliveira et al. [2012] detects breast contour and peak points. Despite

working with images that contain depth information, which is the distance of each object to the

camera, giving more information about its anatomical shape and relative position, the algorithm

uses a threshold based on that depth information in order to exclude the background. After that,

the contour detection phase begins. Since the breast boundary manifests as an accentuated gray-

level intensity transition, between the breast itself and the rest of the body or background it gives

origin to edges. In this way, if the image is interpreted as a graph in which every pixel is a node

and edges connecting the adjacent pixels, applying an appropriate weight function, the contour
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corresponds to a low-cost path through edge pixels. Being the breasts roughly circular shaped,

the low-cost path is more easily achieved using polar coordinates. So, in the correspondent polar

image each column represents the gradient during each radial line in the original image.

To get the intended minimum cost path, it is necessary to have a correspondent gradient polar

image, which is the used as a weighted graph where pixels are considered as nodes and the edges

are the connection between the neighborhood. Each pixel arc neighborhood consists on a weight

calculated by an exponential law using the gradient of each two incident pixels. The minimum cost

set of gradient pixels corresponds to the intended object, in this case the breast, contour (Figure

2.10).

Figure 2.10: Oliveira et al. [2012] algorithm demonstration comparing the ground truth (solid red
line) and the detected contour (dashed white line), zoomed on the right.

In Teixeira and Oliveira [2017] it is presented a detection algorithm to apply in T1-weight MR

images using a minimum path approach using four main steps: thresholding for object selection,

Region Growing segmentation over an entropy map, Convex Hull calculation to hone the previous

results and to finish a minimum path algorithm is applied to achieve the intended result.

Initially, a first segmentation is made based on the intensity’s histogram. This allows the

elimination of the objects outside the profiles obtained through the algorithm iterations.

Then, the Region Growing is applied, based on an algorithm adaptation, requiring three inputs

such as seed points, a 3D map, and inclusion criteria. The seed points were given by the previous

step, being the objects eroded and thinned in a light way in order to generate contours. The 3D map

was obtained using the probability of a voxel to belong to the object rather than the background

based on its intensity. For the inclusion criteria, an eight-neighborhood connectivity and the mean

and standard deviation of the intensities from the seed points are used.

The next step is the calculation of the Convex Hull, to refine the previous results due to the

prevalent convex shape in artifacts located in the shoulder area.

The minimum path step is inspired in the Oliveira et al. [2014] but suffered some adaptations

to this concrete application. The polar minimum path is described as behaving poorly with objects

with small dimensions. The solution to overcome this problem was to bi-part the original process-

ing, alternating between the sagittal to the axial plane in top slices and centroid of the previous

slice segmentation serves as center to the new slice.
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2.3 Summary

The techniques described have an important role in comprehending which approaches have already

been applied in the field and their success.

It is evident that to the best of our knowledge there no examples of implementations for the

intended objective in this thesis. Despite that, it is essential to learn what already had produced

relevant results for solving segmentation problems in MR images even if they were created to

segment other bones with different surrounding characteristics.

Most of the works described were made to be applied in leg bones which have different repre-

sentation in MRI. This could mean that the implementation of these algorithms in the dissertation

dataset may have to be adjusted to produce relevant results for the intended purpose.

The algorithms applied to segment chest components despite not having the same purpose, can

be essential tools to achieve the intended objective, since they already are adjusted to the type of

MRI acquisitions used in this work and deal with the components present in them.
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Chapter 3

Methodology

3.1 Introduction

During this work, several approaches were tested in the available dataset in order to understand

which one would lead the most satisfactory result. The implementation of the algorithms has been

reproduced and developed in MATLAB which is the software chosen to execute the whole project,

where this dissertation is inserted.

To achieve the main objective, the segmentation of sternum and clavicles structures in MRI,

a few algorithms that worked in other conditions were tested in this context. It is expected, since

we were exploring techniques used with another purpose, that they would not preform exactly in

the same way in our work conditions and do not achieve the same results. Also, some adaptations

or adjustments might be required. To start it is essential to recreate exactly how algorithms are

described in the respectively literature, forming the baseline of the work.

Despite the large number of techniques mentioned in the Section 2.2.2 most of them did not

seem appropriate for this work purpose, due to the type of MRI acquisitions used or even the type

of approach they use to reach their aims. The approaches that seemed more relevant to initially

reproduce used classification techniques were the Bourgeat et al. [2007] and the Balsiger et al.

[2015], both use feature extraction, meaning that different set of features and types of classification

methods were tried. In addition, another algorithm, inspired in Oliveira et al. [2012] and Teixeira

and Oliveira [2017] was developed. Firstly, it is defined the ROI, where the objects are estimated

to be in, then the slices are elliptical transformed and the gradient of each image is weighted in

order to set the low cost pixel path as the object contours.

In the following Sections the pipelines of the algorithms above mentioned will be given in

detail, starting with the classification methods and then to the gradient based segmentation, where

the approaches for the sternum and clavicles are individualized and will be properly explained.

25
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3.2 Feature Extraction and Classification Based Methods

The classification methods based on feature extractions demand an initial definition of sets, the

training and the test set, in order to develop a model that fits properly the data given as positive.

The aim is to identify as object of interest and discard data given as being of no interest. To achieve

that, the training set has to be annotated, to identify the pixels of interest, and just after that the

preprocessing and features extraction is performed. It allows to take into consideration both kinds

of data, to cross validate and train the model properly with both kinds of examples (Figure 3.1).

Figure 3.1: General Feature extraction and Classification methods pipeline.

Having a model adjusted to the training set, it is possible to classify the new pixels, from the

test set, after they are being preprocessed in the same way and then extract their features. The

model evaluates the features belonging to each pixel and then classifies it as object of interest or

not.

In this case, two different classification methods were applied to two different set of features,

providing from different algorithms. Their performance was evaluated in order to realize if any of

them could constitute the desired solution for the bone identification problem.

Textural features method
Firstly, the Bourgeat et al. [2007] algorithm, which was designed in order to obtain segmen-

tation results in knee MR raw images, achieves it extracting textural information from the sagittal

and coronal planes, as explained in the previous chapter in Section 2.2.2.2, with good performance

measure and quite applicable to the chest imaging context.

This method uses the magnitude and the phase components of each image which are charac-

terized by the following relation with the original image (I) (equation 3.1):

I(x,y,z) = A(x,y,z)× e jϕ(x,y,z) (3.1)

Where A(x,y,z) is the magnitude and ejf(x,y,z) is the phase portion, representing different

information about image intensities transitions. The magnitude quantifies those transitions and the

phase represents their direction (Figures 3.2a, 3.2b).
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(a) (b)

Figure 3.2: Magnitude (a) and phase (b) representations of chest MRI in axial cut.

The preprocessing step consists on the intensity’s normalization of the magnitude, using the

z-score method [Jain et al., 2005] which is calculated using the arithmetic mean (m) and standard

deviation (s) of the data. In this case the intensities of pixels (Equation 3.2):

sk′=
sk−µ

σ
(3.2)

The output (sk’) is obtained based on the input (sk) distribution. The resultant set of magnitude

and phase images extracted from sagittal and coronal planes are subjected to different Gabor filters

which frequencies and scale influence its effect on images. The results of every filtering frequency

rotation are summed across the acquisitions slices in order to produce features dependent on fre-

quency cycles but rotation invariant. The five pixel frequency scales and six rotations, from the

original algorithm, were maintained in a first approach and then also smaller cycles scales were

also used to produce different Gabor filters, in order to evaluate if the results would increase the

final results.

The resultant features per MRI slice are:

• Magnitude;

• Magnitude after Gabor filtering in every rotation and summed all the responses (one per

scale);

• Magnitude after 3D Gaussian filtering the previous Gabor filtering (one per scale);

• Phase;

• Phase after Gabor filtering on every rotation and summed all the responses (one per scale).

The correspondent features of each randomly sampled pixel are passed to the modeling and

cross-validation step, serving as guiding examples for the classification model adjustment. Several

sample sizes were tried in order to optimize the method, maintaining the number of objects of in-

terest and non-interest pixels extracted equal and homogeneously distributed per object containing

slice.
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The classifier originally used was the SVM, with a RBF kernel [Suykens and Vandewalle,

1999]. The cross validation was performed with different fold values, in order to optimize the

parameters to the segmentation contexts.

The RF classifier [Breiman, 2001] was also applied to the same features, with the purpose of

testing another approach, in this case, a classification that combines groups of the given features

and analyses which shows to be the best sub-set of features to learn the object characteristics.

Varying the number of bags and the cross-validation folds, this method was also optimized.

Statistical, location and edge features

The Random Forest classifier was applied to the previous described features and being the

classification method used in one of the previously described algorithms in Chapter 2 as successful

in leg bone segmentation, the Balsiger et al. [2015] was followed and its feature approach was

used, setting another possible solution for this work.

For the preprocessing phase, Balsiger et al. [2015] uses the z-score normalization, previously

described, as the first step, relying on the mean and standard deviation [Jain et al., 2005].

The second step is to apply the Wiener filtering. It uses the minimum mean squared error

(MSE), assuming the input images as two components, the free-noise image plus the additive

Gaussian noise, to obtain the estimation of the free-noise image, the desired output. It works

in optimal conditions when the input (free-noise image and its noise) are stationary Gaussian

processes. The method has in consideration the local values of mean and standard deviation,

smoothing less where the variance is higher which contributes to preserve important characteristics

of the original image [Jin et al., 2003].

The last preprocessing step is the application of a slice wise median filter consolidating the

previous ones, resulting in images as the one represented in Figure 3.3.

Figure 3.3: Balsiger et al. [2015] preprocessing on MRI chest acquisitions.
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Then, the feature extraction begins, using some volumetric and slice information. They are

statistcal, edges and location based features.

The volumetric mean (m) , volumetric variance (s) and volumetric entropy (E) have in consid-

eration the input pixel (n) and its location in each axis (i, j, k):

µ =
1
N

I
2

∑
i=−I

2

J
2

∑
j=−J

2

K
2
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k=−K

2

(υi, j,k) (3.3)
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2

p(υi, j,k) log(p(υi, j,k)) (3.5)

The statistical slice measures, skewness (s) and kurtosis (k) use the mean and the standard

deviation, but in this case in the slice neighborhood:

s =
E(υ−µ)3

σ3 (3.6)

k =
E(υ−µ)4

σ4 (3.7)

The last features are also related to each slice and are the Canny filter [Canny, 1986] applica-

tion and the Hessian matrix (M):

M =

 δ 2I
δx2

δ 2I
δxδy

δ 2I
δyδx

δ 2I
δy2

 (3.8)

To summarize, the new set of features extracted are the following ones:

• Normalized spatial location (x,y,z);

• Volumetric mean;

• Volumetric variance;

• Volumetric entropy;

• Skewness;

• Kurtosis;

• Canny filter distance;

• Hessian matrix coefficients.
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The RF classification was tried and optimized the number of bags and cross-validation folds.

Also the SVM classifier applied to this new set of features in order to evaluate its performance and

if any of them constituted a valid solution for the main problem.

3.3 Gradient Based Segmentation

A completely different approach was developed based on Oliveira et al. [2012] and Teixeira and

Oliveira [2017], algorithms that produced relevant results in more similar contexts: breast contour

detection and MRI T1-weighted artifact detection on chest acquisitions respectively.

Being the edges of these objects often differentiated from the surroundings, but not their in-

terior, the object contour detection as a first output must be another perspective to consider as

possible manner to accomplish the desired solutions.

In Figure 3.4 it is outlined the main steps taken to reach the object segmentation, from the

MRI acquisition volumes as the input, to the object contours which are the algorithm main output.

Figure 3.4: Gradient based segmentation method pipeline.

The first step is to restrict the segmentation to an area were the objects are certainly contained

in, discarding the other parts of the acquisitions, defining in that way a ROI.

Having the sternum and the clavicles an approximately elliptical and round rough shapes, seen

by the axial plane in MRI, the image transformation of the images is a step to take in the process

to empower the next step. Transforming each slice ROI in order to open the object contour and

highlight it is the main objective of this stage. Being elliptically modified, the transformed images

provide the path calculation from one margin to another, once the object was opened and stretched.

Through the minimum cost path calculation, applying the Oliveira et al. [2012], Teixeira and

Oliveira [2017] approach to identify the object contours, based on the gradient transformed im-

ages, the final step is achieved.

In order to overcome some possible sternum segmentation problems, a post-processing phase

follows the previous mentioned steps. It also provides the estimation of the clavicle content num-

ber of slices in each acquisition.

Minimum Path approach
The minimum path algorithm, to reach object contours, follows the main explanation explicit

in Chapter 2 from Oliveira et al. [2012]. It requires the calculation of the desired minimum path

through gradient images in which gray-level transitions are accentuated and quantified in magni-

tude gradient representations.

The sternum and clavicle contours are darker than the surroundings, being highlighted in those

kind of representations, to be identified by this method.
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The gradient images are treated as a graph, having the pixels as nodes and edges connecting to

the adjacent pixels. The aim is to evaluate which pixel combination gives origin to the path with

minimum cost. In this case, it will be the bone contours.

The path cost (f) weight of each eight-neighbor gradient pixel arc (g) takes into account the

exponential law described in the Equation 3.9.

f (g) = fl + ( fh− fl)
exp(β (max−g)) −1

exp(β max)−1
where fl, fh, β , max ∈ R (3.9)

Being fl=2, fh=126 and b=0.025 fixed constant values, set to optimized the minimum cost

calculation in MR images in Teixeira and Oliveira [2017], and having the input scaled to [0,255].

The path stated as minimum is the group of successive pixels whose weight is the lowest, meaning

their crossing represents the smaller cost.

The following sections will describe the higher details of each method stated. The detailed

pipelines for sternum and clavicles segmentations are presented in Figures 3.5 and 3.6. The main

differences are in the ROI definition, since there are two clavicles, two ROIs need to be stab-

lished, one right and one left. The identification of the objects, following the ROI detection, varies

between the two types of objects. In sternum an intensity threshold method is used, unlike in

clavicles which an edge detector is applied.

Figure 3.5: Sternum segmentation detailed pipeline.

The steps taken in each one of the cases are going to be disclosed in the following sections.

3.3.0.1 ROI Definition

It is important to identify the central part of the slices, discarding the background and other types

of tissues, specially breast fat tissue which is widely present in central slices. The rejection of

the surrounding irrelevant parts allows to sharpen the area of interest. As mentioned before, the

sternum is a single bone unlike the clavicles. This implies the establishment of two ROIs, one for

the right and other for the left side. Therefore, this stage has differences between the two types of

bones and they will be presented individually.
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Figure 3.6: Clavicles detection detailed pipeline.

Sternum
The sternum, when visualized in a T1-weight MRI chest acquisitions, typically sectioned in

the axial cut, it is one of the central components of the acquisition slices (Figure 3.7).

Figure 3.7: MR slice in the axial cut.

The rejection of the unwanted areas is firstly achieved using a 2D snake [Caselles et al., 1997]

in the upper and lower slices, where the breasts are not the most anterior parts. Being the back-

ground constituted by very low intensities, mainly zero values, there is an accentuated gray-level

transition. The edges between the patient body and the background itself are easily separated.
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Applying a Otsu threshold [Otsu, 1979], to the original acquisition, it is possible to roughly

distinguish sternum limits and also locate the breast adipose tissue in the anterior chest area, as

shown in Figure 3.8.

Figure 3.8: Otsu threshold with sternum roughly defined limits in the center axial view.

Considering that the sternum is contained between the two breast peaks, since it is located in

the middle of the chest, their identification serves as lateral reference to the ROI limitation.

With this rough Otsu mask, dividing it equally into right and left side, it is possible to identify

the two most anterior high intensity transitions. They are identified as the breast peaks and both

ROI lateral limits are established.

The sagittal view of the anterior portion of the acquisitions is the next content to be explored

(Figure 3.9a). The sternum is the middle-intensity object limited by the high to low intensities

transition in the anterior area. Calculating two vertical minimum paths, using the method previ-

ously described, in this most anterior chest area (guided by the high intensities transitions which

empower the low cost for the intended limits) it is possible to get an estimated position of the

sternum anterior and posterior limits in each slice.
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(a) (b)

Figure 3.9: Sagittal view of the sternum (a) and its correspondent gradient image (b).

Firstly, the most anterior limits are the target, which are the easiest to be detected due to the

high intensity fat tissue proximity. Identifying the abrupt fat tissue-sternum intensity transition,

using the central 10% profiles allows the establishment of two starting points for minimum cost

paths (Figure 3.10). The resultant paths correspond to the upper and lower anterior sagittal sternum

limits.

Figure 3.10: Initial point definition based on central profiles representation.

The posterior limits are estimated after excluding the anterior portion previously detected. In

the same way as the anterior path was obtained, the two posterior paths give origin to the estimation

of the sternum sagittal posterior boundaries.
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Having the anterior and posterior detected limits of the intended object and a lateral restriction

it is important to carry out a reduction of the image information in order to focus the procedures

on the region of interest to hone the desired segmentation (Figure 3.11).

Being the sternum a bone in a curved shape, seen in the sagittal plane (as shown in Figure 3.9a),

not only its shape changes along the slices, but also its relative position in the image across slices.

To avoid that and in order to improve the reproducibility of the algorithm procedures, an alignment

is preformed taking in consideration the anterior positions detected through the acquisition.

The maximum difference between correspondent anterior and posterior positions, considering

the irregular shapes and size of the sternum representation on each slice, is taken as a posterior

limit to shape the ROI. This is done to avoid the elimination of any relevant part of the image for

the intended segmentation.

Figure 3.11: ROI limits representation.

Figure 3.12: ROI example.

Having the ROI defined (Figures 3.11, 3.12) it is possible now to proceed to the next main step

in this gradient based method for the sternum detection.

Clavicles

The clavicles articulate on upper part of the sternum manubrium (Figure 3.13). This provides

the possibility of using the identified sternum upper slices ROIs as reference.
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Figure 3.13: MR image containing clavicles.

The method to achieve the ROI was maintained, since the clavicles are also close to the sternum

but the lateral limits, referenced by the breast peaks, were slightly increased. This was made to

ensure that there were not discarded objects, despite the clavicles not being most of the times

totally represented in the MRI chest acquisitions. The anterior tolerance has also to be increased,

as the clavicles are in a slightly more anterior position. A tolerance of 10% was chosen for both

cases.

This new main ROI is divided taking the sternum middle as reference and next process steps

are doubled in order to identify the clavicles in the two image sets: the left and the right side

clavicle ROIs (Figures 3.14a, 3.14b).

(a) (b)

Figure 3.14: ROI clavicles examples from left (a) and (b) right side.

Having the clavicles ROIs also defined, it is possible to carry out the next main step: the

elliptical transformation.
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3.3.0.2 Elliptical Transformation

Sternum shape detection

Applying another Otsu threshold based mask, but now created in new ROI images and knowing

the sternum relative anterior and posterior position, rough shape masks are created (Figures 3.15a,

3.15b).

(a) (b)

Figure 3.15: Sternum shapes detected after object selection (a) and the correspondent content (b).

Based on the segmentation and the object selection is made using the estimated position, con-

tained between the previously estimated anterior and posterior limits.

The detected shape of the sternum in each slice is now represented in masks, which will allow

the adapted elliptical transformation.

Clavicles shape detection

Differently than on the sternum shape identification process, this step uses a Canny filter

[Canny, 1986]. The purpose is to obtain an initial segmentation on the ROIs highlighting the

possible boundaries of the clavicles (Figures 3.16a and 3.16b). Having more than the intended

contours identified, it is necessary to select the objects whose contours were identified in order to

remain only with the relevant ones. After filling the closed detected edges, their area and centroid

were the properties chosen to be used as a selection criteria. Relating the previously identified

anterior and posterior limits, as the clavicles articulate and surround the sternum.

The object resultant from the Canny edge identification is selected by its centroid smallest

distance to the sternum and having the biggest area, being stated as a clavicle rough mask (Figures

3.17a and 3.17b). This will provide the estimation of the elliptical transformation parameters to

be adjusted.
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(a) (b)

Figure 3.16: ROI clavicle representation (a) and the correspondent Canny filter application (b).

(a) (b)

Figure 3.17: Detected objects after Canny edges filling (a) and correspondent clavicle selection
(b).

Elliptical parameters estimation

With this new and more restricted binary images, it is possible to estimate the object elliptical

parameters. To execute the image transformations, adapted to each slice content characteristics.

This allows the correspondent gradient image to provide a better response to the minimum path

search.

As previously referred, the segmentation through the Otsu threshold and the Canny detection

are not very precise and the intensities vary between slices. It depends on the sternum intensities

present in each slice and what surrounds it. It is expected that not every slice will contain an object

after the threshold segmentation and object selection.

Firstly, where there is an object, it is estimated for each slice object the correspondent elliptical

parameters. It is achieved by the best elliptical fit, given the object points. In this case the shape

mask, evaluated by the Least square, which is the minimization of the squared fitting residuals

sum [Hendel, 2008, Suykens and Vandewalle, 1999].
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Taking the quadratic curve of an ellipse as the fitting objective (Equation 3.10):

ax2 + 2bxy + cy2 + 2dx + 2 f y + g = 0 (3.10)

It is necessary to find the constant values a, b, c, d, f, g, that best minimize the residuals in the

least square sense, but the elliptical description can be simplified into:

(x− x0)
2

a2 +
(y− y0)

2

b2 = 1 (3.11)

Where

x = acos(ψ) (3.12)

y = bsin(ψ) (3.13)

To illustrate this elliptical description, in Figure 3.18 it is represented the importance of each

parameter to be estimate. It demonstrates where each elliptical variable is going to be applied in

the image transformation.

Figure 3.18: Ellipse representation [Therézio et al., 2017].

For each image it is necessary to obtain the following estimations:

• Semi-major axis (a)

• Semi-minor axis (b)

• Center coordinate in xx axis (X0)

• Center coordinate in yy axis (Y0)

• Angle of rotation (y)
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The transformation of each pixel (x,y) can be performed based on these values [Hendel, 2008,

Weisstein, 2018, Therézio et al., 2017].

Following this estimation parameters criteria, the slices in which the sternum was not identified

in the primary threshold, have to be estimated to perform the image transformation.

For those missing slices which are in between already estimated slices, their parameters can

be interpolated. This is achieved considering the upper and lower neighbors, weighting their

parameters according to the distance to the slice to be interpolated, giving more importance to the

near ones which are expected to be more alike.

The weight given to each previously estimated parameters, that surround the missing one, has

in consideration the relative position of the slices used to interpolate, following the Equation 3.14:

weight =
n

N +1
(3.14)

Where n is the distance to the slice to be interpolated and N is the number of missing parame-

ters between the slices with parameters already estimated (gap).

For the boundary slices, meaning the missing shape masks in the upper and lowest acquisition

slices, their parameters must be extrapolated. It is achieved based on the closest ones whose

parameters are known. This calculation is also weighted according to the distance to the missing

parameters slice. The already extrapolated ones serve as reference to the following, until the

limiting upper or lowest slice have their own parameters.

Following the same strategy, the parameters are being estimated from the inside out in order

to follow the guidance of the values already established, weighting them gradually according to

the distance between the slices.

Having every slice elliptical parameters estimated, the ROIs, that were in Cartesian coordi-

nates (x,y) are transformed into elliptical (xe,ye) (Equations 3.15 and 3.16), following the previous

presented Equations 3.11 to 3.13:

xe = X0 + xcos(ψ) − ysin(ψ); (3.15)

ye = Y0 + xsin(ψ) + ycos(ψ); (3.16)

This transformation is performed in every slice and will provide the accomplishment of the

following main step. Two examples of the coordinate transformation are represented in Figures

3.19a - 3.20b.
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(a) (b)

Figure 3.19: Two different sternum ROI examples.

(a)

(b)

Figure 3.20: Correspondent two elliptical transformation examples.

3.3.1 Minimum path calculation

After the elliptical transformation, from the last pipeline step, the gradient magnitude of each

image is fundamental to achieve the desired results. In this kind of images, the edges of the objects

are empathized since they represent high intensity level transitions, and having the object contours

darker than the surroundings. They are identified by those representations. The transformation

by the exponential law previously mentioned (Equation 3.9), makes the predominant edges to get

values close to zero, meaning that the minimum path should correspond to the intended contours.

Not having a specific starting and ending point every possible path cost is evaluated from one

margin to the other in the gradient elliptical image. When reverted to the Cartesian coordinates

there is the possibility of not corresponding to a closed contour, starting and ending in the same

point. So, to overcome this, the two resultant start and ending points from this first iteration

are considered to be the staring and the ending point in other two minimum path cost iterations

(Figure 3.21). Also, the original gradient image is rotated in 180o to ensure that the margin-to-

margin iteration points, corresponding to the minimum cost, are the same. If they are not, two new

point-to-point iterations will be made, being those points the start and ending reference (Figure

3.21).
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Figure 3.21: Minimum paths pipeline.

Having four possible paths to be the object desired contour, the criteria must be maintained,

and the four global costs are compared and the path with lowest cost is the selected as the object

contour.

The minimum cost path should correspond to the objects limits in the original ROI image,

being necessary to undo the coordinates transformation, which will lead to the contour in the

Cartesian coordinates system.

3.3.2 Post-processing

As the elliptical transformation parameters is estimated for every slice, means that a correspondent

minimum cost path is obtained. So, even in the images that the bones are not present there is a

contour limiting something.

To overcome this expected over-segmentation, the sternum profile is evaluated, in order to

identify which slices are more prone to contain the desires objects. This is achieved using a Region

growing [Mehnert and Jackway, 1997] (RG) based algorithm applied to the coronal compressed

view of the sternum (Figure 3.22), where the number of slices in the acquisition is the number of

width pixels .

Figure 3.22: Sternum compressed coronal view.
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The required seed points to implement the algorithm are estimated based on the sternum in-

tensities profile. The sternum is an irregular shaped bone having, most of the times, an abrupt

transition between the manubrium and the body components (Figure 3.22). To overcome this

recurrent event, it is required to properly estimate seed points, through the identification of the

components transition area. An intensity profile is made along the central area (10%), to evaluate

if there is a relevant derivative transition along this profile. If present, two central seed point are

given to the RG in order to properly identify the upper and lower sternum slices, as represented in

Figure 3.23.

Figure 3.23: RG coronal mask to identify the sternum content slices.

The same central area serves as reference to the identification of the sternum content relevant

slices, providing the segmentation refinement.

This identification process is also used for the clavicle identification. The number of slices

where they can be present directly depends on the upper sternum limit. If the sternum is detected

to appear in the initial slices, less clavicles content slices will be present. If instead, the sternum is

only detected in lower slices, clavicles should be widely represented. Therefore, considering the

possibility of sternum and clavicles coexistence in some slices, as they articulate, the upper limit

detected of the sternum is considered as clavicle content and also the immediately lower slice.

Having identified the contours of the object in proper slices, this segmentation process is taken

as finished after the filling of the contour limited area, creating binary slices where the intended

bones are identified.
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Chapter 4

Results and Discussion

4.1 Dataset

The dataset consisted in 14 (fourteen) MRI acquisitions from different breast cancer patients, in

the initial phase of the treatment, collected with patients with their arms up. Each acquisition has a

set of 60 (sixty) images corresponding to axial slices of the chest patient area. Usually it captures

the shoulder area, from the clavicles, until the middle of the ribs (after the end of sternum).

Firstly, the dataset was divided into a set of training and test groups, in order to obtain and

statistically compare each method results as most of them required training for the classification

of images.

From the 14 acquisitions with correspondent annotations, 10 (ten) were randomly set for train-

ing and 4 (four) as test.

The annotation consists in the creation of a mask for each acquisition where the pixels of the

sternum or the clavicles are identified as positives and the rest, the parts of the images that are not

of interest, are stated as zeros. This produces logical acquisitions masks indicating which pixels

should be classified as sternum or clavicles.

To achieve that, each one of the slices has to be evaluated as a single one but also in the

context, related with the slices above and below in order to make a consistent annotation and not

compromise the results.

The annotations in the training phase are used as ground truth to the classifiers modeling. In

the test phase, they provide the comparison of the results from the algorithm tested and the results

that were desired (the annotation). Ideally, they would be the same.

4.2 Results

This section contains the statistical results from the previously detailed algorithms that were ap-

plied to the referred dataset.

The methods used to statistically evaluate the performance of the algorithms used to solve the

main problem were: Accuracy, Precision, Recall and DSC.
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This metrics are calculated based on four types of pixel classification. The True Positives (TP)

and False Positives (FP) are the number of correct and incorrect classified as pixels of interest,

and the True Negatives (TN) and False Negatives (FN) are the number of correct and incorrect

pixels stated as non-interest. The sum of the four groups of pixels is N and corresponds to the total

number of pixels present in the image.

The Accuracy is the proportion of correct classified pixels relatively to the total number of

pixels (Equation 4.1):

Accuracy =
T P + T N

N
(4.1)

The Precision reflects the proportion of predicted positive pixels which are in fact real positives

cases 4.2:

Precision =
T P

T P + FP
(4.2)

Recall, also known as Sensitivity, denotes the proportion of real positive pixels which are

correctly stated as positive, measuring the coverage of the realistic positive cases 4.3:

Recall =
T P

T P + FN
(4.3)

The Dice Score Coefficient, also known as F-measure, F-score or even F1-score, appears in

order to combine this last two measures which, despite relating the positive examples and pre-

dictions, do not reflect the false classifications, considered as errors, or even the well discarded

pixels. It is the Harmonic mean of the two metrics, taking both false positives and false negatives

into account (Equation 4.4):

DSC = 2
Recall ·Precision

Precision + Recall
(4.4)

It quantifies the true positive area in ground truths relating it to incorrectly covered or missed.

From all four performance measures, the DSC provides more balance in the pixel classification

relationship, in the way that it is a weighted measure making it the most important value when each

solution and optimization were being sought in this work [Yang and Liu, 1999, Powers, 2011].

4.2.1 Classification Methods

The classification based methods parameters were optimized in order to be adapted and empow-

ered their results. The SVM based algorithm parameters, applied to both set of features involved

the addition of lower cycle frequencies in order to expand the set of Gabor filters, the addition of

location and intensity features and the evaluation of the impact of each new set of features on the

results. The tested set of cycles was [0.001-2], the location was the x,y,z relative position in the

image and intensity the normalized pixel values. Also, the number of folds in cross-validation was

optimized, tested from 3 until 20 folds.
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In the RF based algorithm the optimizations were made in the number of bagging trees used

in the modeling phase, from 5 to 30. Also, the cross-validation folds were tested from the 3 to 20.

4.2.1.1 Sternum

Textural features
The results from the implementation of the proposed classification method in Bourgeat et al.

[2007] to this MRI chest implementation and the best results obtained with the same features

fundamentals are explicit in the following Table 4.1.

Table 4.1: Bourgeat et al. [2007] methodology implementation results for sternum identification.

Original classification (SVM) SVM adaptation RF adaptation
Accuracy 0.758 0.856 0.805

Precision 0.054 0.074 0.050

Recall 0.194 0.107 0.098

DSC 0.081 0.083 0.065

The reproduction of the original classification algorithm did not pass the DSC of 0,08, its

optimized adaptation had a DSC of 0.083 and the RF application a DSC of 0.065.

The SVM adaption was reached using the same frequencies for Gabor filtering and combining

them with smaller frequencies [0.04; 0.033; 0.02; 0.01; 0.005; 0.0025]. The same k-fold value for

cross-validation, 5, was used. In the RF optimization, the number of bagging trees used was 20

with a 10-fold cross-validation, with the original set of features.

Statistical, edge and location features
From the application of the proposed method in Balsiger et al. [2015] and the application of

the same features varying parameters and the method of classification, the best results obtained

were the followings presented in the Table 4.2

Table 4.2: Balsiger et al. [2015] methodology implementation results for sternum segmentation.

Original classification (RF) RF adaptation SVM adaptation
Accuracy 0.741 0.739 0.783

Precision 0.035 0.035 0.048

Recall 0.078 0.083 0.247

DSC 0.048 0.048 0.087

The RF original algorithm reproduction, in this context, only achieved a DSC of 0.048. The

method optimization had a DSC of 0.048 and the SVM adaptation using this set of features a DSC

of 0.087.
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The optimized adaptation of the RF model was achieved using 10 bagging trees and the SVM

with a 15-fold cross-validation.

4.2.1.2 Clavicles

Textural features
The results from the directly application of the proposed method in Bourgeat et al. [2007] and

the posterior optimizations using the same set of extracted features are explicit in the following

Table 4.3.

Table 4.3: Bourgeat et al. [2007] methodology implementation results for clavicle identification.

Original classification (SVM) SVM adaptation RF adaptation
Accuracy 0.609 0.586 0.755

Precision 0.163 0.158 0.181

Recall 0.421 0.440 0.206

DSC 0.233 0.235 0.190

The DSC for the original algorithm is 0.233, its optimization 0.235 and the RF performance

was 0.192. The optimization using the same classification method, SVM, was achieved with the

modification of the fold value in cross-validation, setting it to 7. The best result achieved using the

RF classifier was accomplished with the same set of features and setting the number of bagging

trees to 20.

Statistical, edge and location features
The implementation of the Balsiger et al. [2015] algorithm to identify the Clavicles and the

optimized results using the same set of features modifying the parameters and the classification

method is present in the following Table 4.4.

Table 4.4: Balsiger et al. [2015] methodology implementation results for Clavicles identification.

Original classification (RF) RF adaptation SVM adaptation
Accuracy 0.746 0.699 0.620

Precision 0,194 0.177 0.150

Recall 0.252 0.307 0.732

DSC 0.216 0.222 0.246

The optimization maintaining the RF classification method was accomplished changing the

number of bagging trees to 5. The same set of features but classified with SVM achieved the best

result with a 5-fold cross-validation.
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4.2.2 Gradient Based Segmentation

In the following sections, the final results from the gradient based algorithm implementation are

presented. This approach does not require a training set to adjust a classification model. However,

in order to be provide an equal comparison to the previous methods, the results were optimized in

the training dataset and tested in the test dataset, being presented separately.

4.2.2.1 Sternum

Some examples from the minimum path cost estimation are presented on Sternum ROIs in the

following images (Figures 4.1 to 4.3).

Figure 4.1: Minimum path result for sternum contour fisrt example.

Figure 4.2: Minimum path result for sternum contour second example.
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Figure 4.3: Minimum path result for sternum contour third example.

The results from the gradient minimum cost pixels path based algorithm applied to the sternum

identification are explicit in the following Table 4.5.

Table 4.5: Gradient based sternum segmentation results.

Training Set Test Set
Accuracy 0.887 0.877

Precision 0.459 0.515

Recall 0.487 0.654

DSC 0.450 0.575

The developed algorithm performance in the 10 training set acquisitions, the DSC was 0.450

increasing to 0.575 when applied to the 4 acquisitions test set.

4.2.2.2 Clavicles

Some examples from the minimum path algorithm in clavicles ROIs are presented in the following

images (Figures 4.4 to 4.6).

Figure 4.4: Minimum path result for clavicle contour first example.
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Figure 4.5: Minimum path result for clavicle contour second example.

Figure 4.6: Minimum path result for clavicle contour thrid example.

The results from the gradient based minimum path algorithm are shown in the following Table

4.6. The minimum path approach performance DSC was of 0.185 for the training set. In the test

set it increased to a DSC of 0.359.

Table 4.6: Minimum path result for clavicle contour example.

Training Set Test Set
Accuracy 0.766 0.838

Precision 0.122 0.3112

Recall 0.384 0.424

DSC 0.185 0.359
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4.3 Discussion

The obtained results, explicit in the previous Section 4.2 must be compared and discussed in

order to realize the differences between the methods and the algorithms responses to the MRI

acquisitions. The SVM classification reproduced method, in its original study achieved a DSC of

0.87. The RF based method a DSC of 0.92.

In the Gradient based segmentation, the method was not a truly reproduction of any described

algorithms, only inspired in Oliveira et al. [2012], Teixeira and Oliveira [2017] and adapted to the

type of images and objects to be segmented. The only comparison possible is with the classifica-

tion based methods.

4.3.1 Classification Methods

The Classification methods, despite having tried several set of features and two distinct learn-

ing models, did not achieve results that can be considered solutions for the object identification

problems.

In Figures 4.7 and 4.8 a compilation of example results for sternum and clavicles are shown.

The SMV based approach achieved a low DSC of about 0.08 and the RF did not pass 0.07, which

is considerably below the described results, 0.87 and 0.92 respectively, in the original applications.

The low performance of both classifiers can be related to the object’s characteristics and their

surroundings, which are very alike in some slices and can compromised the learning processes of

the classifiers. The heterogeneity of the objects to be identified, specially the sternum, may also

compromises the learning training phase.

Figure 4.7: SVM and RF classification methods in Bourgeat et al. [2007] and Balsiger et al. [2015]
features results in sternum compared to the ground truth.
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Figure 4.8: SVM and RF classification methods in Bourgeat et al. [2007] and Balsiger et al. [2015]
features results in clavicles compared to the ground truth.

4.3.2 Gradient Based Segmentation

The solution here presented was the algorithm with best performance of the experiments. Al-

though the DSC does not pass 0.6, in sternum segmentation, and 0.36 in clavicle, it representsa

considerable improvement concerning the results of the previous experiments. On the other hand,

despite the Accuracy values being high (about 0.9), relating them with the other metric values re-

flects an over-segmentation, meaning that many False Positives are being highly detected (Figures

4.9 to 4.10).

The large number of steps taken to reach the segmentation results can boost multiple sources

of procedure errors. The step that precedes the elliptical parameters estimation is made based

on rough masks, whose object identification often fails. This leads to the necessity of inter and

extrapolated the parameters, for those missing slices. If many slices fail the initial threshold, or

even if it is not the adequate identification, the error will be propagated to the other elliptical

parameter’s estimation and consequently to the image’s transformation.

This segmentation method takes many steps to be accomplished. Each step taken is a potential

error propagation source, from the ROI estimation to the minimum path determination or even

the reversion of the elliptical deformation, causing a change in the object contours identification.

Every step that leads to the desired aim can also compromise the object segmentation.
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Figure 4.9: Minimum paths missing sternum contours.

Figure 4.10: Minimum paths missing clavicle contours.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, a method using gradient based minimum path calculation for sternum and

clavicles detection in MRI is proposed. This method achieves the desired bone contours, in T1-

weighted acquisitions without needing the user intervention. Its performance was evaluated by

calculating Accuracy, Precision, Recall and DSC. The algorithm developed represents a relevant

improvement for the sternum and clavicles segmentation in MRI. Despite having over and under

segmentation, especially in clavicle detection, their main purpose, to serve as keypoint for the 3D

modeling, is possible. Other methods, such as based on classification were experimented, though

these did not amount to significant results.

The bone shapes and the dual presence of clavicles constituted major differences about the

structures. The clavicles, unlike the sternum that shows up uniquely and in most of the MRI

slices, only appear in the upper images.

The fact that this method automatically identifies the ROI, it sharpens the object identification

area, limiting where the it should be identified. Meaning that, even the false detected pixels are

reasonably close the intended objects.

The essential objective of the work is the bones detected can serve as keypoints for the 3D

modeling.

The outcomes should be interpreted within the context of study limitations. Firstly, the dataset

used was quite small to state unequivocally that the presented solution is a robust MRI segmenta-

tion method.

Then, the heterogeneity of the objects in the acquisitions used, across slices and between

different patients, perhaps prevented the classification models to properly adjust to the manifold

examples given during the training phase.

Another limitation for the method robustness is the diversity of clavicle appearances, differing

sometimes in shape and position between each side in the same slice. The presence of the sternum

also varies in the number of slices per acquisition from patient to patient.
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Finally, a big limitation for the progress of this project was the unavailability of the reproduced

classification methods, specially the texture based algorithm, whose descriptions on the publica-

tions were quite ambiguous in some steps. Linked to the time restriction of this kind of studies,

this was one of the biggest obstacles during this course.

Despite the limitations mentioned above, this work achievements were a novelty in the biomed-

ical imaging field, contributing for the MRI bone segmentation studies. It could inspire other im-

age scientists to launch themselves in this area. In addition, it can be a good starting point for

others who want to study this segmentation techniques or MRI bone chest detection.

5.2 Future Work

Future studies should explore the subjects previously referred as limitations. Evaluating the results

in a larger MRI dataset will enrich the study of this solution as viable for these purposes.

Furthermore, the sternum and clavicles MRI identification in the proposed method can be

empowered with the reduction of steps to achieve the elliptical transformation. Even with the use

of a more refined method to primarily identify the objects shape, before the elliptical parameters’

estimation, would probably enhance the results.

Additionally, other classification methods could be tried using the same features tested in the

present work.

Based on the described methods for leg segmentation, the design of statistical shape models

should be an approach to consider for posterior bone segmentation in this MRI context or even

completely different approaches from the ones mentioned.
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