21 research outputs found

    A Reconfigurable Buck, Boost, and Buck-Boost Converter: Unified Model and Robust Controller

    Get PDF
    The need for reconfigurable, high power density, and low-cost configurations of DC-DC power electronic converters (PEC) in areas such as the transport electrification and the use of renewable energy has spread out the requirement to incorporate in a single circuit several topologies, which generally result in an increment of complexity about the modeling, control, and stability analyses. In this paper, a reconfigurable topology is presented which can be applied in alterative/changing power conversion scenarios and consists of a reconfigurable Buck, Boost, and Buck-Boost DC-DC converter (RBBC). A unified averaged model of the RBBC is obtained, a robust controller is designed through a polytopic representation, and a Lyapunov based switched stability analysis of the closed-loop system is presented. The reported RBBC provides a wide range of voltage operation, theoretically from -∞ to ∞ volts with a single power source. Robust stability, even under arbitrarily fast (bounded) parameter variations and reconfiguration changes, is reported including numerical and experimental results. The main advantages of the converter and the robust controller proposed are simple design, robustness against abrupt changes in the parameters, and low cost

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF

    Multiple-output DC–DC converters: applications and solutions

    Get PDF
    Multiple-output DC–DC converters are essential in a multitude of applications where different DC output voltages are required. The interest and importance of this type of multiport configuration is also reflected in that many electronics manufacturers currently develop integrated solutions. Traditionally, the different output voltages required are obtained by means of a transformer with several windings, which are in addition to providing electrical isolation. However, the current trend in the development of multiple-output DC–DC converters follows general aspects, such as low losses, high-power density, and high efficiency, as well as the development of new architectures and control strategies. Certainly, simple structures with a reduced number of components and power switches will be one of the new trends, especially to reduce the size. In this sense, the incorporation of devices with a Wide Band Gap (WBG), particularly Gallium Nitride (GaN) and Silicon Carbide (SiC), will establish future trends, advantages, and disadvantages in the development and applications of multiple-output DC–DC converters. In this paper, we present a review of the most important topics related to multiple-output DC–DC converters based on their main topologies and configurations, applications, solutions, and trends. A wide variety of configurations and topologies of multiple-output DC–DC converters are shown (more than 30), isolated and non-isolated, single and multiple switches, and based on soft and hard switching techniques, which are used in many different applications and solutions.info:eu-repo/semantics/publishedVersio

    Technology for large space systems: A bibliography with indexes (supplement 22)

    Get PDF
    This bibliography lists 1077 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion

    Model predictive control for advanced multilevel power converters in smart-grid applications

    Get PDF
    In the coming decades, electrical energy networks will gradually change from a traditional passive network into an active bidirectional one using concepts such as these associated with the smart grid. Power electronics will play an important role in these changes. The inherent ability to control power flow and respond to highly dynamic network will be vital. Modular power electronics structures which can be reconfigured for a variety of applications promote economies of scale and technical advantages such as redundancy. The control of the energy flow through these converters has been much researched over the last 20 years. This thesis presents novel control concepts for such a structure, focusing mainly on the control of a Cascaded H-Bridge converter, configured to function as a solid state substation. The work considers the derivation and application of Dead Beat and Model Predictive controllers for this application and scrutinises the technical advantages and potential application issues of these methodologies. Moreover an improvement to the standard Model Predictive Control algorithm that include an intrinsic modulation scheme inside the controller and named Modulated Model Predictive Control is introduced. Detailed technical work is supported by Matlab/Simulink model based simulations and validated by experimental work on two converter platforms, considering both ideal and non-ideal electrical network conditions

    Model predictive control for advanced multilevel power converters in smart-grid applications

    Get PDF
    In the coming decades, electrical energy networks will gradually change from a traditional passive network into an active bidirectional one using concepts such as these associated with the smart grid. Power electronics will play an important role in these changes. The inherent ability to control power flow and respond to highly dynamic network will be vital. Modular power electronics structures which can be reconfigured for a variety of applications promote economies of scale and technical advantages such as redundancy. The control of the energy flow through these converters has been much researched over the last 20 years. This thesis presents novel control concepts for such a structure, focusing mainly on the control of a Cascaded H-Bridge converter, configured to function as a solid state substation. The work considers the derivation and application of Dead Beat and Model Predictive controllers for this application and scrutinises the technical advantages and potential application issues of these methodologies. Moreover an improvement to the standard Model Predictive Control algorithm that include an intrinsic modulation scheme inside the controller and named Modulated Model Predictive Control is introduced. Detailed technical work is supported by Matlab/Simulink model based simulations and validated by experimental work on two converter platforms, considering both ideal and non-ideal electrical network conditions

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Space station systems: A bibliography with indexes (supplement 10)

    Get PDF
    This bibliography lists 1,422 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included
    corecore