132 research outputs found

    A Memetic Algorithm for a Bi-objective Bus Driver Rostering Problem

    Get PDF
    The Bus Driver Rostering Problem (DRP) consists of assigning bus drivers to daily duties during a planning period. The problem considers hard constraints imposed by institutional and legal requirements. Solutions should as much as possible satisfy soft constraints that qualify rosters according to either the company's or the drivers' interests. A bi-objective version of the DRP is considered and two models are presented. Due to the high computational complexity of DRP, this paper proposes the Strength Pareto Utopic Memetic Algorithm (SPUMA) a new heuristic algorithm specially devised to tackle the problem. SPUMA genetic component combines utopic elitism with a strength Pareto fitness evaluation and includes an improvement procedure. Computational results show that SPUMA outperforms an adaptation of one of the state-of-the-art most competitive multi-objective evolutionary algorithms, SPEA2

    Integrated Driver Rostering Problem in Public Bus Transit

    Get PDF
    AbstractThe driver rostering problem (DRP), arising in public bus transport companies, generates for each group of drivers a cyclic roster while management considerations, labor laws, and the preferences of drivers have to be satisfied. Optimal rosters are characterized by maximal satisfaction of drivers, minimal difference of overtime among all drivers, and minimal number of unassigned duties. The DRP is mostly solved sequentially due to its high complexity, namely firstly the rota scheduling problem, and secondly the duty sequencing problem. However, this method may generate sub-optimal rosters. In order to avoid a sub-optimal solution, the paper discusses an integrated DRP, which is solved for real-world instances and compared with the results of the sequential approach

    Solving Public Transit Scheduling Problems

    Get PDF
    Operational planning within public transit companies has been extensively tackled but still remains a challenging area for operations research models and techniques. This phase of the planning process comprises vehicle scheduling, crew scheduling and rostering problems. In this paper, a new integer mathematical formulation to describe the integrated vehicle-crew-rostering problem is presented. The method proposed to solve this multi-objective problem is a sequential algorithm considered within a preemptive goal programming framework that starts from the solution of an integrated vehicle and crew scheduling problem and ends with the solution of a driver rostering problem. Feasible solutions for the vehicle and crew scheduling problem are obtained by combining a column generation scheme with a branch-and-bound method. These solutions are the input of the rostering problem, which is tackled through a mixed binary linear programming approach. An application to real data of a Portuguese bus company is reported and shows the importance of integrating the three scheduling problems

    Bi-objective Evolutionary Heuristics for Bus Drivers

    Get PDF
    The Bus Driver Rostering Problem refers to the assignment of drivers to the daily schedules of the company's buses, during a planning period of a given duration. The drivers' schedules must comply with legal and institutional rules, namely the Labour Law, labour agreements and the company's specific regulations. This paper presents a bi-objective model for the problem and two evolutionary heuristics differing as to the strategies adopted to approach the Pareto frontier. The first one, the utopian strategy, extends elitism to include an unfeasible solution in the population, and the second one is an adapted version of the well known SPEA2 (Strength Pareto Evolutionary Algorithm). The heuristics' empirical performance is studied with computational tests on a set of instances generated from vehicle and crew schedules. This research shows that both methodologies are adequate to tackle the instances of the Bus Driver Rostering Problem. In fact, in short computing times, they provide the planning department, with several feasible solutions, rosters that are very difficult to obtain manually and, in addition, identify among them the efficient solutions of the bi-objective model

    Railway crew capacity planning problem with connectivity of schedules

    Get PDF
    We study a tactical level crew capacity planning problem in railways which determines the minimum required crew size in a region while both feasibility and connectivity of schedules are maintained. We present alternative mathematical formulations which depend on network representations of the problem. A path-based formulation in the form of a set-covering problem along with a column-and-row generation algorithm is proposed. An arc-based formulation of the problem is solved with a commercial linear programming solver. The computational study illustrates the effect of schedule connectivity on crew capacity decisions and shows that arc-based formulation is a viable approach

    Modeling and Solving of Railway Optimization Problems

    Get PDF
    The main aim of this work is to provide decision makers suitable approaches for solving two crucial planning problems in the railway industry: the locomotive assignment problem and the crew scheduling problem with attendance rates. On the one hand, the focus is on practical usability and the necessary integration and consideration of real-life requirements in the planning process. On the other hand, solution approaches are to be developed, which can provide solutions of sufficiently good quality within a reasonable time by taking all these requirements into account
    corecore