

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

The Train Driver Recovery Problem - Solution Method and Decision Support System
Framework

Rezanova, Natalia Jurjevna; Clausen, Jens

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rezanova, N. J., & Clausen, J. (2009). The Train Driver Recovery Problem - Solution Method and Decision
Support System Framework. (DTU Management PhD thesis; No. 4.2009).

http://orbit.dtu.dk/en/publications/the-train-driver-recovery-problem--solution-method-and-decision-support-system-framework(d7a26710-80ab-4998-91b5-0b0ac83c792a).html

The Train Driver Recovery Problem –
Solution Method and Decision Support

System Framework

Natalia J. Rezanova

Kgs. Lyngby, Denmark, 2009

DTU Management Engineering
Department of Management Engineering
Technical University of Denmark

Produktionstorvet, building 424
DK-2800 Kgs. Lyngby, Denmark
Phone +45 45 25 48 00, Fax +45 45 25 48 05
www.man.dtu.dk

Preface

This thesis is prepared at DTU Management Engineering Department, the
Technical University of Denmark, in partial fulfillment of the requirements
for acquiring the Degree of Doctor of Philosophy (Ph.D.) in Engineering
Science.

The main focus of this thesis is on state-of-the-art Operations Research meth-
ods applied within the area of disruption management in public railway in-
dustry, particular within the train driver recovery. An optimization solution
method to the train driver recovery problem is proposed, and a prototype for
train driver dispatchers decision support system is developed. The project is
carried out in a cooperation with a Danish passenger railway operator DSB
S-tog A/S.

The Ph.D. project is supervised by professor Jens Clausen, who is also a part-
time chief analyst at DSB S-tog A/S. A substantial scientific contribution to
this project is provided by the supervision of professor David M. Ryan, De-
partment of Engineering Science, The University of Auckland, New Zealand,
who is also a visiting professor at the Technical University of Denmark.

Kgs. Lyngby, Denmark, May 2009

Natalia J. Rezanova

ii

Abstract

In this thesis we consider the train driver recovery problem (TDRP). The
problem occurs when the daily train driver schedule becomes infeasible due
to irregular operations on the railway network. Unforeseen disruptions such
as signalling problems or rolling stock failures prevent the train drivers from
following the originally scheduled sequence of activities in their duties. The
real-time re-scheduling of the disrupted train driver duties is currently per-
formed manually by the train driver dispatchers. If the disruption is severe
and many train driver duties are disturbed, this is a very complicated task
to carry out. The interest of the passenger railway operator DSB S-tog A/S
in introducing automated decision support for the train driver dispatchers is
a key motivation for this project.

We propose an optimization-based solution method for solving the TDRP
and develop a prototype for the decision support system. The framework
is based on solving restricted TDRP instances with a rolling time horizon,
aiming at modifying the original duty schedule as little as possible. We for-
mulate TDRP as a set partitioning model, where variables represent train
driver recovery duties, and describe why the proposed model and solution
method is suitable for solving in real-time. Recovery duties are generated as
resource constrained paths in duty networks, and the set partitioning prob-
lem is solved with a linear programming based branch-and-price algorithm.
Dynamic column generation and problem space expansion at each node of
the branch-and-price tree together with a constraint branching strategy con-

iv

tribute to the solution method.

Real-life operational data is provided by DSB S-tog A/S in order to test
the implemented solution method. Based on the computational experiments
presented in this thesis, we conclude that the proposed approach is indeed
applicable for implementation in a decision support system for train driver
dispatchers in practice. DSB S-tog A/S is working on using the research re-
sults obtained during this thesis and the programming code of the prototype
to develop and implement the train driver decision support system in their
operational environment.

Besides solving a particular optimization problem, this thesis contributes
with a description of the railway planning process, tactical crew schedul-
ing and the real-time dispatching solutions, taking a starting point in DSB
S-tog’s operations. Furthermore, we present comprehensive reviews of op-
erations research applications within railway crew scheduling, rolling stock
re-scheduling, railway crew re-scheduling, and airline crew recovery. In addi-
tion, the project has resulted in the three scientific publications listed below.

1. Rezanova NJ, Ryan DM. The train driver recovery problem–A set par-
titioning based model and solution method. Computers and Operations
Research, in press, 2009. doi: 10.1016/j.cor.2009.03.023.

2. Clausen J, Larsen A, Larsen J, Rezanova NJ. Disruption management
in the airline industry–Concepts, models and methods. Computers and
Operations Research, in press, 2009. doi: 10.1016/j.cor.2009.03.027.

3. Rezanova NJ, Ryan DM. The train driver recovery problem–A set par-
titioning based model and solution method. IMM-Technical Report-
2006-24. Informatics and Mathematical Modelling, Technical Univer-
sity of Denmark, 2006. Available at http://www2.imm.dtu.dk/pubdb/p.php?5157.

Resumé

Hovedformålet med denne afhandling er at anvende state-of-the-art opera-
tionsanalytiske metoder inden for realtidsdisponering ifm. jernbanedrift. Ar-
bejdet er udført i samarbejde med DSB S-tog A/S og omhandler problemet
med genopretning af tjenesteplaner for lokomotivførere (the train driver re-
covery problem, TDRP). Problemet opst̊ar, n̊ar den daglige tjenesteplan for
lokomotivførere ikke længere kan opretholdes p̊a grund af uregelmæssigheder
p̊a jernbanenetværket. Uventede driftsforstyrrelser s̊asom signalfejl eller ned-
brud af tog forhindrer lokomotivførere i at følge deres oprindelige tjenester.
Realtidsdisponering og genopretning af de afbrudte tjenester udføres p̊a nu-
værende tidspunkt manuelt af personaledisponenter. Omfættende drifts-
forstyrrelser p̊avirker mange tjenester, og genopretning af lokomotivførerplanen
bliver kompliceret og uoverskuelig. Hovedmotivationen for dette projekt er
DSB S-togs interesse for at udvikle et automatisk beslutningsstøttesystem til
personaledisponenterne er .

Vi designer en optimeringsbaseret løsningsmetode til TDRP og udvikler en
prototype til beslutningsstøttesystemet. Fremgangsmåden er at løse små
TDRP instanser over en rullende tidshorisont. Hver TDRP er rettet mod at
bygge genopretningstjenester samtidig med at ændre den oprindelige tjen-
esteplan s̊a lidt som muligt. Vi formulerer TDRP som et set partition-
ing problem, hvor beslutningsvariablene repræsenterer genopretningstjen-
ester. Vi beskriver, hvorfor den forsl̊aede model og løsningsmetoden er veleg-
net til realtidsdisponering. Genopretningstjenesterne genereres som korteste

vi

veje med ressourcebegrænsninger i et specielt byggede tjenestenetværk. Set
partitioning problemet løses med en branch-and-price metode. Dynamisk
søjlegenerering og dynamisk udvidelse af løsningsrummet sammen med con-
straint branching som forgreningsstrategi bidrager til løsningsmetodens ef-
fektivitet.

DSB S-tog A/S har leveret operationelt datagrundlag til at teste den imple-
menterede løsningsmetode. Baseret p̊a de gennemførte eksperimenter, kon-
kluderer vi, at løsnings-metoden i høj grad er egnet til beslutningsstøtte i
praksis. DSB S-tog A/S arbejder p̊a at bruge de videnskabsmæssige resul-
tater og programkoden fra den udviklede prototype til udvikling af beslut-
ningsstøtte i det operationelle miljø.

Udover at løse et bestemt optimeringsproblem, giver denne afhandling med
udgangs-punkt i DSB S-togs drift en beskrivelse af planlægningsprocesser
i jernbanedrift, mandskabsplanlægning p̊a det taktiske niveau og realtids
disponeringsstrategier. Ydermere præsenterer vi omfattende redegørelser for
operationsanalytiske anvendelser med referencer inden for mandskabsplan-
lægning ifm. jernbanedrift, materieldisponering, og mandskabsdisponering
inden for jernbane og luftfart. Afhandling har desuden resulteret i følgende
tre publikationer:

1. Rezanova NJ, Ryan DM. The train driver recovery problem–A set par-
titioning based model and solution method. Computers and Operations
Research, in press, 2009. doi: 10.1016/j.cor.2009.03.023.

2. Clausen J, Larsen A, Larsen J, Rezanova NJ. Disruption management
in the airline industry–Concepts, models and methods. Computers and
Operations Research, in press, 2009. doi: 10.1016/j.cor.2009.03.027.

3. Rezanova NJ, Ryan DM. The train driver recovery problem–A set par-
titioning based model and solution method. IMM-Technical Report-
2006-24. Informatics and Mathematical Modelling, Technical Univer-
sity of Denmark, 2006. Available at http://www2.imm.dtu.dk/pubdb/p.php?5157.

Acknowledgements

This research project would not have been possible without efforts of several
people. I would like to thank my supervisor professor Jens Clausen for giving
me an opportunity to write this thesis, for the professional advice and per-
sonal support throughout the project. A very special word of gratitude goes
to professor David Ryan for providing the fundamental idea to the solution
method implemented in this thesis and for supervising my work during and
after my stay at The University of Auckland, New Zealand. It has been a
great honour and a great pleasure working with you, David.

I would like to thank DSB S-tog A/S for providing part of the financial
support for this research project, and particulary Steen Larsen, the former
Head of the Production Planning department, for starting up this project
and for being a visionary manager. I warmly thank all my former colleagues
at the Production Planning at S-tog, and particulary the Analysis Group, for
being fantastic colleagues, for answering my questions and contributing to
my knowledge about the railway operations on the S-train network in general
and the train driver scheduling at S-tog in particular. A special thanks goes
to Eva Ryom, a train driver dispatcher at DSB S-tog A/S, for introducing
me to the current real-time dispatch practice and for the helpful comments
on recovery solutions produced by my program.

I would like to thank developers at Mosek ApS for an outstanding and prompt
customer support regarding the linear programming solver with a .NET Ap-

viii

plication Programming Interface, for a comprehensive user manual, and for
providing a free-of-charge software license for graduate students.

To all my friends and colleagues at DTU, thank you for creating a wonderful
working and social environment, for our fruitful discussions, and for always
being ready to help and support. A special acknowledgement to Wen Min
and Ma Guilin, with whom I shared many late working hours and many
delicious meals prepared by Min, and to Richard Lusby, for proof-reading
parts of my thesis and for the valuable comments.

A personal gratitude to my husband Jesper Larsen, for your endless moral
support, for always being there for me, for taking care of our children and
keeping our family running when I was too busy or too frustrated. This
thesis would not have reached its existence without your presence.

Natalia J. Rezanova

Contents

Preface i

Abstract iii

Resumé v

Acknowledgements vii

1 Introduction to Railway Optimization 1

1.1 Passenger Railway Planning Process 2

1.2 Railway Crew Scheduling . 4

1.2.1 Crew Planning Models 6

1.2.2 Railway Crew Scheduling Applications 9

1.2.3 Concluding Remarks 19

x CONTENTS

1.3 DSB S-tog A/S and the S-train Network 20

1.4 Tactical Train Driver Planning at S-tog 25

1.4.1 Train Driver Schedule 25

1.4.2 Yearly Planning Process 31

1.4.3 Use of Computer-Aided Systems 33

2 Railway Disruption Management 35

2.1 Disruption Management on S-train Network 36

2.1.1 Disruptions Classification 36

2.1.2 Punctuality and Reliability Measures 37

2.1.3 Actors Involved in Dispatch and Recovery 38

2.2 Train Timetable Recovery . 39

2.2.1 Train Conflict Resolution 39

2.2.2 Recovery Strategies on S-train Network 41

2.3 Rolling Stock Schedule Recovery 43

2.3.1 Rolling Stock Re-Scheduling at S-tog 43

2.3.2 Operations Research in Rolling Stock Recovery 44

2.4 Train Driver Schedule Recovery 46

2.4.1 Train Driver Schedule Recovery at S-tog 46

2.4.2 Operations Research in Railway Crew Recovery 50

CONTENTS xi

2.4.3 Airline Crew Recovery 53

3 Solution Framework 55

3.1 Recovery Objectives . 56

3.2 Key Concepts of the Framework 57

3.2.1 Disruption Neighbourhood 57

3.2.2 Expansion of Disruption Neighbourhood 60

3.2.3 Rolling Time Horizon Recovery 61

3.3 Decision Support System Prototype 63

3.3.1 Data Input to TDR–DSS 63

3.3.2 Information Flow Diagram 67

3.3.3 Visual Representation of the Prototype 69

3.3.4 Implementation Remarks 73

4 Model and Network 75

4.1 Integer Programming Model 76

4.1.1 Set Partitioning Problem Formulation 76

4.1.2 Integer Properties of the Model 77

4.2 Modelling Recovery Duties . 82

4.2.1 Recovery Duty Feasibility Conditions 83

xii CONTENTS

4.2.2 Duty Graph Generation 86

4.2.3 Feasible Recovery Duty on a Graph 90

4.2.4 Recovery Duty Cost 92

5 Solution Approach 97

5.1 Choosing the Solution Method 98

5.2 Branch-and-Price Framework 99

5.3 Linear Programming Relaxation of TDRP 101

5.3.1 Solving the Restricted Master Problem 102

5.3.2 Solving the Pricing Problem 103

5.4 Recovery Duty Generation Algorithm 104

5.4.1 Components of the Algorithm 105

5.4.2 Enumeration of Feasible Recovery Duties 107

5.4.3 Ressource Constrained Shortest Path 108

5.5 Initial Set of Columns . 110

5.6 Pricing Strategies . 112

5.7 Implementing Expansion of Disruption Neighbourhood 114

5.7.1 Extending Recovery Period and Duty Length 114

5.7.2 Adding Train Drivers 115

5.7.3 Implementation Details 116

CONTENTS xiii

5.8 Finding Integer Solutions . 117

5.8.1 Choosing Constraint Pair for Branching 118

5.8.2 Implementing Constraint Branching 120

6 Computational Experiments 125

6.1 Test Data . 126

6.2 Testing the Solution Method 129

6.2.1 Generation of Test Instances 129

6.2.2 Generation of Initial Set of Columns 132

6.2.3 Effectiveness of Pricing Strategies 135

6.2.4 Early Termination of Branch-and-Price 137

6.2.5 Test Conclusions . 138

6.3 Rolling Time Horizon Cases 143

7 Future Research and Conclusion 149

7.1 Future Research . 149

7.1.1 Alternative Objective of Train Driver Recovery 149

7.1.2 Integrated Approach 150

7.1.3 General Strategy for Initial Disruption Neighbourhood 151

7.1.4 Exploration of Disruption Neighbourhood 152

xiv

7.1.5 Refining the Limited Subsequences Strategy 152

7.2 Conclusion . 154

A Airline Crew Recovery Review 159

B Timetable Data Representation 169

C Train Driver Duty Data Representations 171

D Station Names and Codes 173

E Test Results for Initial Set of Columns Generation 175

F Test Results for Pricing Strategies 181

List of Figures

1.1 Passenger railway transportation planning process. 2

1.2 Operators on the Danish railway network. 20

1.3 S-train at Flintholm station. Photo: Lasse Mølholm. 21

1.4 Schematic view of the S-train network. 22

1.5 The S-train network. 24

1.6 A two-blocks duty with merging lines in timetable-2007. . . . 26

1.7 A circular rail duty in timetable-2007. 29

1.8 A København H depot duty in timetable-2007. 29

1.9 A Køge depot duty in timetable-2007. 29

1.10 Train driver schedule planning steps at S-tog. 31

2.1 S-tog performance measures from August 2007 to July 2008. . 38

xvi LIST OF FIGURES

2.2 Train unit Litra SE, length 42.58 meters 43

2.3 Train unit Litra SA, length 83.78 meters 43

2.4 Train driver recovery process at S-tog. 47

2.5 Before the disruption. 48

2.6 Disruption example. 48

2.7 First step in recovery: passengering task. 50

2.8 Recovery from the disruption. 50

3.1 Initial disruption neighbourhood. 59

3.2 Recovery period expansion for Duty 2. 61

3.3 Adding a reserve driver to the disruption neighbourhood. . . . 61

3.4 The rolling time horizon recovery process. 63

3.5 Train driver recovery decision support system information flow. 68

3.6 Graphical user interface: disrupted schedule. 70

3.7 Graphical user interface: recovered schedule. 71

4.1 Example of a constraint matrix structure of the TDRP. 78

4.2 Driver k = 1 submatrix A1 of A. 79

4.3 All m× l submatrices of A1 with l = 3, 4. 80

4.4 All l × l submatrices of A1
3 with l = 3. 80

xvii

4.5 Intersection graph G1
I associated with A1. 81

4.6 Train tasks in disruption neighbourhood example. 86

4.7 Feasible subsequence with a long break. 87

4.8 Feasible subsequence with a passengering task. 87

4.9 Example of a duty graph G. 88

4.10 Duty graphs induced from G. 89

4.11 A feasible recovery duty path o2 → v1 → d2 in G2. 91

5.1 Solving the TDRP–LP to optimality with column generation. 102

5.2 Labels in the total enumeration of feasible recovery duties on
G2. 108

5.3 Feasible recovery duty generated with η2 = 1. 111

5.4 Example of a totally unimodular constraint matrix of TDRP. . 112

xviii

List of Tables

1.1 Components of technical connection times at S-tog, 2007. . . . 28

2.1 Disruptions on the S-train network. 37

3.1 Example of a stopping pattern. 64

3.2 A train driver duty representation. 65

3.3 Disruption data types. 66

3.4 Description of disruption neighbourhood and solutions in the
GUI example. 72

4.1 Abbreviations of activities in the train driver schedule at S-tog. 84

4.2 Minimum connection times between subsequent tasks in duties. 84

4.3 Arc types used in duty graph examples. 90

4.4 Arc descriptions. 94

xx LIST OF TABLES

5.1 Pricing strategies. 112

6.1 Disruption data representation. 127

6.2 Arc costs for test purposes. 128

6.3 Test instances. 131

6.4 Testing the value of ηpart. 134

6.5 Testing pricing strategies. 136

6.6 Comparing optimal and feasible integer solutions. 139

6.7 Solutions details for test instances. 142

6.8 Rolling time horizon test results with the recovery period of 2
hours. 146

6.9 Rolling time horizon test results with the recovery period of
2.5 hours. 147

6.10 Rolling time horizon test results with recovery period of 3 hours.148

B.1 The stopping pattern of the train nr.10100 of line A. 169

C.1 Train driver duty representation, type I. 171

C.2 Train driver duty representation, type II. 172

D.1 Stations on the S-train network which appear on the passenger
timetable. 173

E.1 Testing the value of ηpart = 1. 176

xxi

E.2 Testing the value of ηpart = 5. 177

E.3 Testing the value of ηpart = 10. 178

E.4 Testing the value of ηpart = 15. 179

E.5 Testing the value of ηpart = 20. 180

F.1 Testing the multiple pricing strategy MP. 182

F.2 Testing the limited subsequences pricing strategy SP. 183

F.3 Testing the partial pricing strategy PP. 184

F.4 Testing the full pricing strategy FP. 185

xxii

Chapter 1

Introduction to Railway
Optimization

This chapter provides a general introduction to the planning process in the
passenger railway transportation with references to models and applications
within railway optimization. The tactical railway crew planning optimization
models and operations research applications are reviewed in order to intro-
duce the reader to the field of train driver scheduling. A general introduction
to operations of DSB S-tog A/S is presented. The train driver planning pro-
cess at DSB S-tog A/S is described in detail, and different components of
the train driver schedule are presented.

2 Introduction to Railway Optimization

1.1 Passenger Railway Planning Process

The European railway transportation has been suffering a decline since the
1970’s (source: www.ec.europa.eu/transport/rail). Strong competitiveness
from the road freight transport has been the main reason for a drastic decline
in the freight railway transportation, while the expansion of the low cost
airlines has shown an effect on the passenger railway transportation. In
order to reverse the decline, the European Commission focuses on supporting
targeted railway research projects, while many European railway operators
start to invest in extensive computer-aided decision support in all areas of
the planning process.

The planning processes in the passenger railway transportation, organized
by the time horizon of the planning steps, are illustrated on Figure 1.1.
Huisman et al. [2005] also distinguish between central and local impacts of
the planning problems on different steps of the planning process.

Figure 1.1: Passenger railway transportation planning process.

Operations research methods are applied in all areas of the planning pro-
cess of the railway transportation industry. Assad [1980] and Assad [1981]
present the first surveys of optimization-based models applied within the rail-
way environment. Haghani [1987] gives an overview on optimization methods
within the freight railway transportation, while Bussieck et al. [1997], Huis-
man et al. [2005], Caprara et al. [2007] review operations research methods

1.1 Passenger Railway Planning Process 3

within the passenger railway industry.

Strategic Level

Network planning decisions involve expansions and modifications to the ex-
isting railway network. These are conducted by the national rail authorities
in a cooperation with infrastructure managers. Due to the impact of the in-
frastructure modifications on the transportation system and the high level of
investments, such decisions are only made when considered to be absolutely
necessary for improving the national transportation system. Review of the
line planning models can be found in e.g. Goossens [2004].

From the train operator point of view, strategic decisions involve planning of
the train line pattern in a cooperation with the infrastructure manager, which
implies decisions for changing the capacity of the rolling stock and the num-
ber of crew. If a train operator estimates that the current timetable does not
correspond to the passenger demand or other parameters, a new timetable
can be generated. Successful implementation of completely new timetables in
Berlin Underground and the Netherlands Railways are reported by Liebchen
[2008] and Kroon et al. [2009], respectively. The latter implementation was
awarded with the 2008 Franz Edelman Award for Achievement in Opera-
tions Research and the Management Sciences. Folkmann et al. [2007] present
a capacity assignment model for the rolling stock, which can be used on a
strategic level to decide the optimal fleet capacity for a given timetable and
a passenger demand according to different objectives, and a manpower plan-
ning model, which can be used to estimate the number of drivers necessary
for covering a daily timetable.

Tactical Level

The tactical level involves decisions about the assignment of company’s re-
sources on a yearly basis. Every year, a “new” timetable is generated. The
timetable is only a slight modification from the one of the previous year.
Peeters [2003] and Liebchen [2006] provide exhaustive overviews of mod-
els, methods and publications within periodic (cyclic) timetabling. When
a timetable is presented, the rolling stock schedule and the crew schedules
for train drivers and conductors are generated, often by adopting the pre-
vious schedules to the new operations. The assignment of the rolling stock

4 Introduction to Railway Optimization

and railway crew on the tactical level is to a certain extend covered in the
operations research literature, and many train operators use optimization
methods for resource planning. Cordeau et al. [1998] present models for the
train routing and scheduling. A review of the latest publications regarding
the rolling stock planning can be found in e.g. Maróti [2006] and Jespersen
Groth [2008a]. Caprara et al. [1997] focus on the algorithms for the railway
crew management. A more contemporary overview of railway crew planning
applications on the tactical level is presented in Section 1.2 of this thesis.

Operational Level

Operational level of the planning process can be divided in two parts: re-
scheduling and recovery. Re-scheduling involves adjustments to the schedules
due to e.g. maintenance work on the railway network. Recovery takes place
on the day of operation in real-time as a consequence of disruptions on the
network. Jespersen Groth et al. [2007] provides a review and applications
within disruption management in the public railway transportation. A thor-
ough review of crew recovery applications within the railway and the airline
industries, as well as some references to other disruption management issues
of the railways can be found in Chapter 2 of this thesis.

1.2 Railway Crew Scheduling

The railway crew workforce consists of train drivers, conductors and shunt-
ing personnel and accounts for one of the most important resources for any
railway operator. The railway company has to ensure a certain number of
railway crew members present for every train departure at any time during
the operation. Railway crew management covers all planning levels: strate-
gic, tactical and operational.

Strategic crew management deals with strategic issues related to the long
term capacity planning of train drivers, conductors and shunting personnel.
Capacity issues include decisions about hiring or firing crew, training and
education of crew to reach flexibility in covered tasks, opening or closing
crew depots, re-allocating crew among depots in order to achieve a balanced

1.2 Railway Crew Scheduling 5

crew composition with respect to age, gender and skills. Strategic issues are
dealt with continuously and take time to implement.

Railway crew management on a tactical planning level is focused on allocation
of existing manpower resources, e.g. train drivers and conductors, to train
tasks (trips) in the planned train timetable. The railway crew works in shifts.
A work shift contains a duty, which is a sequence of train tasks, meal breaks
and other activities. Traditionally, the manpower planning is divided into
two sequentially solved problems. The crew scheduling problem is aimed at
finding a minimum cost set of duties which covers one operational period,
i.e. one day or one week, dependent on the size of the schedule. All train
tasks in the given period must be covered, and the duty schedule must satisfy
train driver union rules, such as meal break lengths, duty lengths etc. and
operational requirements, such as minimum connection times from one task
to another. In the crew rostering problem the duties generated and selected
during the crew scheduling process are put together into sequences to form
rosters. A roster is a set of duties with rest periods in between. Many
passenger railway operators plan with cyclic rosters. The duty sequence of
a cyclic roster is performed by n drivers corresponding to the number of
weeks in the roster. Each driver performs the same sequence of duties and
the sequences are shifted with a one week interval. In other words, during
the first calendar week driver 1 performs week 1 of the roster, while driver 2
performs week 2 of the roster, ..., and driver n performs week n of the roster;
during the second calendar week driver 1 performs week 2 of the roster, driver
2 performs week 3 of the roster, ..., and driver n performs week 1 of the
roster, and so forth. On the calendar week n+1 the roster cycle starts again.
The crew rostering problem is usually solved separately for each crew depot.
One or more rosters are associated with every crew depot. The planning
horizon is between six months and one year, and scheduling and rostering is
performed for every new timetable. Every roster has to comply with the train
driver union contracts and operational regulations of the railway operator,
and many people are involved in the tactical crew planning.

The operational or short-term planning is focused on re-scheduling the orig-
inally planned crew schedules as a consequence of e.g. planned track mainte-
nances, special adjustments during public holidays or other events influencing
the standard crew schedule. The operational planning is focused on feasi-
bility issues rather than on the minimum cost planning. Crew re-scheduling

6 Introduction to Railway Optimization

can be performed several times during a year and small changes to the daily
duty schedule is often performed the day before operation.

The real-time dispatching or recovery is performed on the day of operations
in order to react on unpredicted changes in the timetable as a consequence
of disruptions on the train network. The goal of the recovery is to repair
those duties that become infeasible because of disruptions. In a recovery
situation many scheduling rules are relaxed and the main focus is again on
the schedule feasibility, i.e. on ensuring crew availability for as many train
departures as possible.

1.2.1 Crew Planning Models

The major part of the operations research applications within railway crew
management is focused on the tactical planning issues. Crew scheduling and
rostering problems have historically been solved sequentially since they are
often too large to be solved simultaneously, and due to the fact that rostering
is usually performed separately for each crew depot. The first survey on
crew scheduling and rostering models in the railway industry is presented
in Caprara et al. [1997] and later extended in a section on crew planning
in Caprara et al. [2007]. An annotated bibliography of scheduling within
railways can be found in Ernst et al. [2004].

The manpower scheduling in the railway industry is similar to other pub-
lic transportation industries, i.e. airlines and bus, tram, and metro compa-
nies. Operations research methods have been widely applied within the crew
management in the airline industry and to some extent in the mass-transit
systems. For a comprehensive overview of the models and solution meth-
ods of the airline crew scheduling we refer to Barnhart et al. [2003]. Crew
management applications in mass-transit are covered in e.g. Wilson [1999].

1.2 Railway Crew Scheduling 7

The Crew Scheduling Problem

The railway crew scheduling problem can be formulated as a set covering
problem with side constraints. We here present a generalized problem for-
mulation presented by e.g. Kroon and Fischetti [2000] and Abbink et al.
[2005]. Let T represent the train trips to be covered, D be the set of poten-
tial driver duties and R represent the additional constraints, which cannot be
explicitly covered in the driver duty generation. A binary decision variable
xd equals one if duty d ∈ D is selected in the optimal solution and equals
zero otherwise.

Minimise
∑
d∈D

cdxd (1.1)

Subject to
∑
d∈D

at
dxd ≥ n ∀t ∈ T, (1.2)∑

d∈D

br
dxd ≤ ur ∀r ∈ R, (1.3)

xd ∈ {1, 0} ∀d ∈ D. (1.4)

Each duty has a cost cd. Duty costs can represent e.g. penalties for pas-
sengering tasks or too much idle time in the duty. Violations of different
soft constraints according to the train driver labor union rules can also be
expressed through the duty cost. The objective function (1.1) minimizes
the total cost of the schedule. If costs cd are equal for all duties in D, the
objective function minimizes the number of duties in the schedule.

A binary parameter at
d is used to define whether or not the trip t ∈ T is cov-

ered by the duty d ∈ D. The set covering constraints (1.2) force each train
trip to be covered by at least n duties, where n is the required number of per-
sonnel for covering each trip. If a trip is covered by more than the required of
number of personnel in the optimal solution, the excess drivers or conductors
are assigned to a passengering task (deadheading) on that train trip. The
set of resource constraints (1.3) is used to cover additional requirements not
related to individual duties, but to certain forced or forbidden combinations
of duties. These requirements are usually expressed on a depot level, like the

8 Introduction to Railway Optimization

maximum average length of the duties per depot or the maximum number of
duties per depot. Fair allocation of different workloads can also be expressed
through the resource constraints. If ur is the availability of a certain resource
r ∈ R, then the binary parameter br

d describes the amount of the resource r
used by the duty d.

The Crew Rostering Problem

The railway crew rostering problem can be formulated as a network flow
problem with side constraints on a complete directed graph G = (V, A),
where the set of vertices V represent train driver duties and arcs in A rep-
resent the consecutive sequencing of duty pairs within a roster. A circuit in
graph G represents a feasible roster. Let δ+(i) and δ−(i) represent the set of
arcs leaving and entering node i ∈ V , respectively. Let P be a family of arc
sets P , containing arcs in A, which are infeasible to cover for a crew for some
operational reason. In order to formulate the problem as a linear integer
problem, a binary variable xij is introduced for each arc (i, j) ∈ A, xij = 1
if the sequence of duties (i, j) is in the solution and xij = 0 otherwise. The
following problem formulation is due to Caprara et al. [1997] and Caprara
et al. [2007].

Minimise
∑

(i,j)∈A

cijxij (1.5)

Subject to
∑

(i,j)∈δ+(i)

xij −
∑

(i,j)∈δ−(i)

xij = 0 ∀i ∈ V, (1.6)

∑
(i,j)∈δ+(i)

xij = 1 ∀i ∈ V, (1.7)

∑
(i,j)∈P

xij ≤ |P | − 1 ∀P ⊂ P, (1.8)

xij ∈ {1, 0} ∀(i, j) ∈ A. (1.9)

The problem finds a feasible set of rosters, covering all the duties and min-
imising the overall length of the rosters. The first two sets of constraints

1.2 Railway Crew Scheduling 9

ensure that each node in the graph is covered by exactly one circuit. The set
of constraints (1.8) forbid the choice of those arc sequences, which cannot
be covered by the same crew due to operational constraints. According to
Caprara et al. [2007], the network flow formulation is more suitable for the
railway crew rostering than the generalized set partitioning formulation used
for e.g. airline crew rostering (Ryan [1992], Gamache et al. [1999], Kohl and
Karisch [2004], among others) due to the difficulties in using column gen-
eration techniques, “probably due to the combination of the relatively large
number of duties in a roster and the very complicated operational constraints
imposed on a roster”.

1.2.2 Railway Crew Scheduling Applications

The purpose of this section is to highlight operations research applications
within tactical railway crew scheduling and rostering. The literature within
the railway crew planing spans from descriptions of models and solution
methods to prototypes and implementations of decision support systems in
railway companies. Most publications concern implementations exclusively
for one particular railway operator, whereas a few crew scheduling systems
were successfully implemented in more than one railway company, as well as
within airline and mass-transit industries. On the other hand, some train
operators use systems developed by different research groups and software
vendors. Therefore, this tactical railway crew planning review is structured
by describing publications either for a particular software package or for a
particular railway company, or both.

TRACS II

TRACS II, which is an acronym for Techniques for Running Automatic Crew
Scheduling, is a driver scheduling system developed at the University of
Leeds, Great Britain. TRACS II originated from a bus driver scheduling
system IMPACS, which was successfully implemented in large bus compa-
nies in UK (see Wren and Kwan [1999] and Meilton [2001]). A pilot project
in a collaboration with the Operational Research Unit of British Rail has

10 Introduction to Railway Optimization

shown a big advantage of using TRACS II for the train driver scheduling
(see Parker et al. [1995], Wren et al. [1994]). Since then the system has been
employed by several bus, train and metro companies. The historical devel-
opment of the system can be followed in Kwan et al. [1996], Kwan et al.
[1999a], Kwan et al. [2004] and Wren [2004].

The overall approach to solving the crew scheduling problem in TRACS II
is to generate a large number of potential driver duties using several pre-
processing techniques (see, for example, Kwan et al. [1999a] or Smith et al.
[2001]), reduce the size of the generated set if necessary and select a subset
of duties which covers the train tasks in the timetable according to prede-
fined objectives, like cost minimisation. The solution method applied in the
system is described in Fores et al. [1999], Fores et al. [2001], Fores et al.
[2002], Wren et al. [2003]. The selection of duties is performed by solving a
set covering crew scheduling problem. The optimisation module is originally
based on a set partitioning problem solver ZIP developed by Ryan [1980].
The solver was further developed by Smith and Wren [1988] and Wren and
Smith [1988] for IMPACS. Recent development and advances of this compo-
nent are described in details in Fores et al. [1999]. A linear programming
relaxation of the crew scheduling set covering model is solved using a col-
umn generation strategy developed by Fores [1996]. A branch-and-bound
procedure by Smith and Wren [1988] is used to find integer solutions. An al-
ternative dual approach for solving the crew scheduling problem is described
in Willers [1995] and Willers et al. [1995]. Kwan et al. [1999b], Kwan et al.
[2000], Kwan et al. [2001] describe alternative approaches, where genetic al-
gorithm heuristics are used to reduce the problem size of the crew scheduling
problem, and where the information of the linear programming relaxation of
the set covering problem is exploited.

The Italian Railway Company

In 1994 and 1995 the Italian Railway Company (Ferrovie dello Stato S.p.A.)
promoted two competitions in a cooperation with the Italian Operational
Research Society. The first competition was to design and implement an
effective algorithm for the set covering problem used to formulate and solve
large scale crew scheduling problems. The second competition concerned

1.2 Railway Crew Scheduling 11

the rostering optimization problem. The winners of both competitions came
from the Dipartmimento di Elettronica, Informatica e Sistemistica of the
University of Bologna. Caprara et al. [1999a] describe the crew planning
problem at Italian Railway Company and how it is solved by the methods
developed by the winners of the two competitions.

Details of the crew scheduling problem solution method implemented by the
winners to the first competition, Caprara et al. [1999b], are presented in the
next section. The winner of the second competition, Caprara et al. [1998b]
describe in details the model and solution method for the railways crew
rostering problem. The crew rostering problem is formulated as a network
flow problem with side constraints. A circuit in the network corresponds
to a roster. The side constraints forbid combinations of arcs which define
infeasible rosters. The problem finds a feasible set of rosters, covering all the
duties and minimizing the total number of weeks in the rosters. A relaxation
of the integer problem formulation of the crew rostering problem is solved.
Constraints which forbid certain rosters are removed and the side constraints
which cover additional requirements to the amount of rest periods in a roster
are relaxed in a Lagrangian way. A heuristic approach is used to build rosters,
using the lower bound computations obtained by solving the Lagrangian dual
problem. The rosters are built in a sequential way. The choice of the next
duty to be added to a roster is based on a score, where the lower bound
value of the solution after adding the duty is taken into account and some
other penalties are used. If the roster is feasible after assigning a duty, it
becomes a candidate to be chosen as the current best roster. The procedure
is iterated until no better roster than the current best can be constructed.
When the roster is chosen, all duties included in the roster are removed from
the problem. The process is iterated until all duties have been sequenced. A
refining procedure can be used to improve the solution. Applied to the crew
rostering problem of the Italian Railway Company, the heuristic produced
very good results, and the algorithm was implemented in the decision support
system of the company.

A combination of constraint logic programming (CLP) and operations re-
search methods applied to the crew rostering problem of the Italian Railway
Company is reported in Caprara et al. [1998a]. CLP is a combination of logic
programming and constraint solving. Recent advances in CLP can be found
in e.g. Azevedo et al. [2007]. The authors use CLP to obtain a heuristic

12 Introduction to Railway Optimization

solution for the crew rostering problem. The lower bound of the problem,
expressed as the number of weeks in the roster, is found with the OR so-
lution method proposed in Caprara et al. [1998b]. Several strategies are
used in order to limit the search space. The obtained solution is improved
in a post-optimization procedure by applying local changes to the feasible
solution. The authors stress that compared to the pure OR method, the
proposed solution procedure is much easier to model and program. Experi-
ments show that the solution quality and the running times of the pure OR
and the CLP/OR methods are comparable. The post-optimization proce-
dure significantly improves the initial solution, but requires about half of the
computational time and therefore needs to be refined.

Caprara et al. [2001] point out that it has been evident through the previous
research that a feedback between the crew scheduling phase and the crew
rostering phase may significantly improve the quality of the final solution.
The authors present a new crew pairing generator developed within the EU
Project TRIO, as well as techniques for integrating the scheduling and roster-
ing optimization. In the integrated approach the duty selection in the crew
scheduling phase is driven by the objective function of the crew rostering
problem, i.e. every time a new candidate set of subsequent duties is found,
it is checked whether this candidate leads to a set of rosters better than the
incumbent one.

TURNI and Crew Scheduling at the Netherlands Railways

An automatic crew scheduling software TURNI has been developed by an
Italian company Double-Click s.a.s. The optimization module in TURNI
is based on an effective heuristic method for the set covering problem by
Caprara et al. [1999b], developed for the crew scheduling competition of the
Italian Railway Company described above. The heuristic is based on the
Lagrangian relaxation, where the Lagrangian multipliers are found with a
subgradient optimization and a heuristic procedure is applied to generate
several near-optimal multiplier vectors, which are used to find the best set
covering incumbent solution. The incumbent is further improved by column
fixing. The implementation of TURNI at DSB S-tog A/S is described in
Section 1.4.3.

1.2 Railway Crew Scheduling 13

TURNI has also been successfully implemented at NS Reizigers, the pas-
senger division of the Netherlands Railways. Kroon and Fischetti [2000] and
Kroon and Fischetti [2001] introduce the first implementation of TURNI, de-
scribe the set covering formulation of the crew scheduling problem and briefly
account for the solution method. The scheduling module of TURNI consists
of a duty generation part and a duty selection (optimization) part. Since
the number of potential feasible duties is very large, they are not generated
a priori, but “on the fly” during the optimization, using dynamic column
generation based on Lagrangian dual information. Many company-related
constraints and requirements can be included and easily changed in the duty
generation process through a simple user interface. TURNI has been used
at Netherlands Railways since 2000 (see Fischetti and Kroon [2001]) and has
been contributing to estimated savings of $4.8 million per year according
to Abbink et al. [2005] due to the improved crew scheduling. The usage of
TURNI has been further developed by the operations researchers at Nether-
lands Railways by applying iterative partitioning of the large crew scheduling
problem. Partitioning methods and results are presented in Abbink et al.
[2007] and Abbink et al. [2008]. A success of the crew scheduling improve-
ment has contributed to a successful implementation of the new timetable
at Netherlands Railways, the 2008 Franz Edelman Award winner project
described in Kroon et al. [2009].

Harmony CDR and Crew Rostering at the Netherlands Railways

A decision support system Harmony CDR (Crew Duty Rostering) for crew
planning is developed by ORTEC Consultants, the Netherlands. The system
is originally designed to create and maintain rosters for airline crew, and
later developed for the railway crew scheduling and rostering. The problems
are formulated as generalized set partitioning problems, which are solved
with LP-relaxation and branch-and-price. Freling et al. [2004] report in-
sights into the implementation of the branch-and-price algorithm, including
efficient data structures, column management and different heuristic strate-
gies for speeding up the computation times. Practical issues of implement-
ing the system in the Netherlands Railways and in a European airline are
reported as well. The general framework of the system allows incorporat-
ing duty feasibility constraints without interfering with the structure of the

14 Introduction to Railway Optimization

algorithm. A special version of the branch-and-price algorithm applied to
the crew scheduling of guards in the Netherlands Railways is presented in
Freling et al. [2001]. The authors focus on the duty generation procedure
and acceleration techniques of the algorithm.

The crew rostering solution for the catering crews of the High Speed Train
is presented in Lentink et al. [2002]. For this particular application a dif-
ferent algorithm than the branch-and-price solution to the set partitioning
problem was developed in Harmony CDR. The algorithm is based on suc-
cessively solving linear assignment problems of assigning duties to crew, and
the solution process resembles the manual planning process of the company.

The cyclic crew rostering problem of the Netherlands Railways is described
in Hartog et al. [2008]. The authors present the complicated set of labor
rules, which have to be taken into account when generating rosters for each
crew member. The problem is solved in two stages. First, roster patterns
are designed, assigning an early, late or night duty, a rest period or a reserve
duty to each day in the roster. Second, specific duties are assigned to fit into
the roster patterns. The experiments for rostering one of the largest crew
base in the Netherlands are presented. Results are very satisfactory with
respect to both the solution quality and computational times.

Hong Kong Light Rail

Chu and Chan [1998] report a network based heuristic method to solve the
crew scheduling problem in a decision support system of Hong Kong Light
Rail Transit, a passenger railway operator, which is a part of Kowloon-Canton
Railway Cooperation. Train tasks are first combined into pieces of work,
which can be performed by a driver without rest. Feasible pieces of work are
found with shortest path calculations in a network, where relief times/places
are represented by nodes and edges represent train tasks. A matching prob-
lem is solved to form driver duties, which contain one or two pieces of work.
A similar method is reported by e.g. Ball et al. [1983]. Several local search
heuristics are used to improve the solution. Only a slight improvement in
productivity rate of the train drivers is achieved compared to the manual
solution, but the decision support system can save a lot of work and effort

1.2 Railway Crew Scheduling 15

of the schedule planners.

Australian National Rail

A simulated annealing heuristic method for solving the train crew rostering
problem of National Rail, the Australian freight train system, is presented
by Ernst et al. [1998]. The sparseness of the freight rail network in Aus-
tralia allows to enumerate the full set of all feasible crew roundtrips (duties).
Given the weekly schedule that repeats itself, cyclic rosters can be developed
directly from train trips. A set partitioning problem formulation of the crew
rostering problem is presented in Ernst et al. [1999]. The large-scale integer
program is solved with column generation and cutting planes.

Ernst et al. [2001a] present problem formulations and solution methods to
the crew scheduling and the crew rostering problems. The crew scheduling
problem formulation includes more sophisticated constraints than the tradi-
tional crew scheduling model described in Section 1.2.1, since the sparseness
of the train network allows to solve a larger integer programming problem.
Solution approaches to finding cyclic and non-cyclic rosters are presented. A
similar problem formulation is used by Ernst et al. [2001b] for dealing with a
strategic integrated crew scheduling and rostering problem, where the total
number of crew and their distribution on the train network is optimized.

Carmen Systems

Resource Management Solution - Rail Crew, abbreviated RMS-R Crew, is an
optimization software for railway crew scheduling and rostering developed by
Carmen Systems (now owned by Jeppesen, a Boeing subsidiary). The system
is implemented in Deutsche Bahn, the German state railways, in the Swedish
State Railways and in Green Cargo, a Swedish-based cargo railway operator.
Some implementation results at Deutsche Bahn are reported by Kohl [2003].
The rail crew scheduling (pairing) problem is solved as a set partitioning
version of the set covering formulation of the problem, with additional hard
and soft constraints (see Bengtsson et al. [2004] for the detailed model for-

16 Introduction to Railway Optimization

mulation). The problem is solved with a dynamic column generation, where
both LP-relaxation and Lagrangian relaxation approaches are used to ob-
tain dual values. Several techniques are used to generate columns, including
the k-shortest paths routine and label merging when generating constrained
paths in the pricing network. Integer solutions are provided by a dual-ascent
heuristic devised by Wedelin [1995]. The integer strategy is further improved
by fixing connections between some tasks and early branching. For details
please refer to Bengtsson et al. [2004] and Hjorring [2004].

CREWS

The crew scheduling decision support system CREWS is developed by a
Portuguese company SISCOG (Morgado and Martins [1998b]). Among other
railway companies, CREWS is installed in the Portuguese Railways under the
name ESCALAS (Morgado and Martins [1992] and Morgado and Martins
[1993]), in the Netherlands Railways under the name CREWS NS (Morgado
and Martins [1998a]), in the Norwegian State Railways (Martins et al. [2003])
and at S-tog under the name PDS. The system can schedule train drivers and
other crew members, e.g. guards. The system has a user-friendly interface
and can be used in manual, semi-automatic and automatic modes.

According to Morgado and Martins [1998a], the automatic mode of the sys-
tem is based on the artificial intelligence method. A modified version of A*
algorithm with heuristics to limit the search space is used to build a crew
schedule by successively inserting one trip after another. At each stage, can-
didate tasks are chosen to be added to the part of the schedule generated
during previous stages. The choices are guided by an evaluation function,
which aims at minimizing the total cost of the schedule. The evaluation func-
tion is user-modifiable. Kroon and Fischetti [2000] describe implementation
of CREWS in the Netherlands Railways. It is pointed out that even with
heuristic methods for limiting the search space, computational times and the
required amount of memory are very large, even for moderately sized in-
stances. Due to the fact that CREWS produced scheduling solutions, which
were not always satisfactory for the planners, the Netherlands Railways and
S-tog have supplemented CREWS with the aforementioned automatic crew
scheduling system TURNI.

1.2 Railway Crew Scheduling 17

Taiwan Railway Administration

Lee and Chen [2003] and Lee [2004] present two approaches for solving the
train driver scheduling and rostering problem for one crew depot of Taiwan
Railway Administration. The first solution approach uses a set covering
problem to solve the crew scheduling problem. The problem is solved with
an a priori heuristically generated set of duties. If a feasible solution is not
achieved, more duties are generated with modified duty generation rules.
When a satisfactory duty schedule is built, the rostering problem is solved
as a constrained asymmetric travelling salesman problem, minimizing the
roster lengths. An IP formulation of the problem without subtour elimina-
tion constraints is solved using a commercial optimization software package
LINDO (www.lindo.com). Subtours are dealt with heuristically afterwards.
The generated duty schedule was more efficient than the manually built one,
but the rostering solution was not satisfactory for practical purposes. The
second approach is based on solving the scheduling and the rostering prob-
lem both sequentially and as an integrated model using a genetic algorithm,
which provides a general framework to deal with hard and soft scheduling
and rostering constraints. A gene in the algorithm represents a roster, while
each number in a gene represents the choice and the sequence of a duty in
the roster. Different selection and crossover rules are used in the algorithm.
Real-life data is used to fit the parameters of the genetic algorithm. This
approach was suitable for solving the problem and gave fair results to the
integrated scheduling and rostering problem.

North American Railroad

Vaidyanathan et al. [2007] present a multicommodity network flow approach
to the crew scheduling problem for North American railroads. North Ameri-
can railroad networks are much more sparse compared to the European ones,
and the crew stays on the same train for much longer time. Another difference
is that there is no fixed crew schedule. The crew receives their assignment a
few hours before the train departs. The authors ague that column generation
approaches to solving the set partitioning/set covering formulations of crew
pairing and rostering are not applicable to North American railroads for two

18 Introduction to Railway Optimization

reasons. First, the column generation approach is needlessly complex, since
most of the pairings would consist of at most two trains. Second, the solution
must be fast enough to be used in a real-time environment due to the oper-
ational approach to assigning crew, while the duty rules are very complex,
and the subproblem in the column generation scheme would not be as easy
to solve as for the European crew scheduling.

In the suggested approach sets of crews governed by the same rules repre-
sent commodities, and the flow in a space-time network of individual crew
members represent their assignments. The problem is formulated as an inte-
ger multicommodity flow model with extra constraints, which ensure the
so-called FIFO requirement to crew assignments imposed by the Federal
Railway Administration governing North American railroads. The FIFO
(first-in-first-out) rule requires that crews should be called on duty in the
order they become qualified (ready) for the next assignment at a location.
The problem with relaxed FIFO constraints is solved using the MIP solver
of ILOG CPLEX 9.0 (www.ilog.com). Two solution approaches for han-
dling FIFO constraints are introduced: a successive constraint generation
algorithm (SCG), which iteratively prunes crew assignments that violate the
FIFO constraints and a quadratic cost perturbation algorithm (QCP), which
penalizes the FIFO violation in a solution. The algorithms are compared
with the exact integer programming solution method applied to the orig-
inal problem formulation. The authors conclude that the QCP algorithm
outperforms the other two methods.

London Underground

Sodhi and Norris [2004] present a solution approach to the rostering problem
at London Underground. The rostering problem is decomposed into two se-
quentially solved problems. First, a rest-day pattern of the roster is created,
where each day in a roster is represented by either early, late or night duty or
a rest day. Second, specific duties are assigned to the pattern obtained in the
first stage. The objective of the rest-day pattern generation is to maximize
the weighted sum of different types of consecutive days-off, while satisfying
union regulations and operational constraints. The rest-day pattern is mod-
elled on a directed graph, where each node represents a weekly pattern of

1.2 Railway Crew Scheduling 19

the roster and the arcs represent legal transitions between patterns. A linear
integer problem finds the number of times each pattern (node) should be in-
cluded in the optimal rest-day pattern by maximizing the preference weights
on arcs and nodes. The problem is solved in the commercial solver ILOG
CPLEX (www.ilog.com). A final roster pattern is created manually using
a depth-first search of the solution to the linear integer problem. The duty
assignment to the roster pattern is solved as an assignment problem with
side constraints.

1.2.3 Concluding Remarks

The railway industry is not yet such a widely used field of operations research
applications as the airline industry, where OR methods have been applied
to the crew scheduling problems for several decades and lead to a signifi-
cant number of scientific publications (Barnhart et al. [2003]). Some railway
crew scheduling software packages evolved directly from the crew scheduling
solution methods originally developed for the airlines (e.g. Harmony CDR,
CREWS or Carmen scheduling solutions) or for bus companies (TRACS II),
while others were specifically developed for a particular railway operator (e.g.
for the Italian Railway Company or the Australian National Rail). Some crew
scheduling applications in the railway industry are more successful than oth-
ers with respect to implementation in different railway companies, and the
solution approaches vary from simple heuristics to more complicated exact
and hybrid methods. However, they all contribute to operational cost savings
of railway operators due to better crew scheduling solutions or due to the
fact that decision support systems improve the daily work of the planners.
Moreover, from the operations research point of view, novel approaches to the
large-scale optimization problems have been developed by researchers work-
ing on solution methods for solving railway crew planning problems. The
need for improving services by the railway operators has increased since the
railway infrastructure management has been separated from the operation
in order to promote an open market and a free competition on the Euro-
pean railway transportation market. Therefore, the demand for operations
research applications in the railway industry is far from being fully satisfied,
and there is rum for more research and development.

20 Introduction to Railway Optimization

1.3 DSB S-tog A/S and the S-train Network

The Danish railway network shown on Figure 1.2 is operated by the govern-
mentally owned infrastructure manager Banedanmark. Banedanmark was
established in 1997 as a consequence of separating the Danish State Rail-
ways DSB into two independent companies, the infrastructure manager un-
der the Danish Ministry of Transport and the passenger train operator DSB.
The establishment of an independent infrastructure manager took place in
order to promote free competition on the Danish railway network. Banedan-
mark maintains and renews the infrastructure of the network, i.e. tracks,
signals, stations, security systems etc., and is responsible for the traffic
surveillance and the assignment of the network capacity to the train op-
erators. At the present time there are 16 train operators on the Danish
railway network, and 10 of them operate within the passenger traffic (source:
www.banedanmark.dk, March 2009).

Figure 1.2: Operators on the Danish railway network.

1.3 DSB S-tog A/S and the S-train Network 21

DSB S-tog A/S (hereinafter referred to as S-tog) is a subsidiary of DSB.
S-tog operates on the passenger railway network, which covers the Greater
Copenhagen area. Its geographical position is accentuated on the map on
Figure 1.2 (source: www.banedanmark.dk) and illustrated as a separate net-
work in the upper right corner of the figure. The network is referred to as the
S-train network and the trains operated by S-tog are referred to as S-trains
(see Figure 1.3). The first S-train line opened in 1934. Since then, the in-
frastructure has expanded into 432 km tracks, where the operational part is
covered by 171 km double-tracks almost everywhere except for a 500 meter
segment between Værløse and Farum stations. The latter is covered by a
single track due to the geographical condition of the segment. The S-train
network contains 84 passenger stations. S-tog is the only operator on the
S-train network. The train operator is responsible for planning and imple-
menting timetables for the S-trains, maintenance of the rolling stock and crew
planning. The operations on the S-train network are very important for the
public transportation in the Greater Copenhagen area. S-trains connect to
busses, metro, several small train networks, regional and international trains.
S-tog transports approximately 300.000 people on a daily basis, counting the
2/3 of all DSB passengers (source: www.dsb.dk, September 2008).

Figure 1.3: S-train at Flintholm station. Photo: Lasse Mølholm.

A schematic view of the S-train network is shown in Figure 1.4. The central
part of the network from Dybbølsbro in the southern part of Copenhagen
to Svanemøllen in the northern part of Copenhagen is called “the pipe”
and includes the Copenhagen Central Station, København H. Six fingers of

22 Introduction to Railway Optimization

the network stretch from the central part to Klampenborg, Hillerød, Farum,
Frederikssund, Høje Taastrup and Køge. A circular rail between Ny Elleberg
and Hellerup is the only segment, which does not cross the central part of
the network. The schematic view presented in Figure 1.4 does not follow
the geographical positions of the stations on the S-train network, but rather
emphasises the two directions which are used by planners and dispatchers to
describe train movements on the S-train network. By convention, direction
“north” is represented by Klampenborg, Hillerød, Farum and Hellerup (as a
terminal stations of the circular rail), while direction “south” is represented
by Frederikssund, Høje Taastrup, Køge and Ny Elleberg stations.

Figure 1.4: Schematic view of the S-train network.

Each segment of the S-train network is covered by at least one train line. A
line is indicated by a colour and a capital letter, either alone or with a “+”
or an “x” after the letter. Each train of a line runs back and forth from
north to south between two terminal stations. All trains except the trains
of the circular rail pass the central segment of the network. Until the end of
September 2007 the S-train network was covered by 11 train lines as shown
in Figure 2.1(a) on page 24. Throughout this thesis this train timetable is
referred to as the timetable-2007. Each train line of the timetable-2007 had
a cyclic schedule of 20 minutes, i.e. a frequency of 3 trains per hour in each
direction. A line was either a main line, running from approximately 5 am

1.3 DSB S-tog A/S and the S-train Network 23

to 1 am next morning, or an extra line indicated by a “+” operating during
the daytime hours, from about 6 am to 7 pm, or an extra line indicated by
an “x”, operating during morning and afternoon peak hours. A combination
of main lines and extra lines at each segment of the network allowed a higher
departure frequency than 20 minutes at almost every station of the network
during the daytime hours.

In September 2007 the line pattern of the S-train network was changed to the
one shown in Figure 2.1(b). We refer to the new schedule as the timetable-
2008. Besides from the change in the train line pattern, the number of train
lines was reduced to 7, and all “+”-lines were removed. On the other hand,
almost every train line of the new schedule has now a cyclic schedule of
10 minutes, i.e. a frequency of 6 trains per hour in each direction during
the daytime hours. The new schedule is more stable and is built to enhance
passenger satisfaction, since the travel time for passengers travelling on longer
distances have decreased, while passengers travelling on short distances can
travel with a higher frequency. In the central segment of the network there
is a train in each direction every 2nd minute during peak hours.

For the scheduling purposes the planners at S-tog partition the timetable
into trains, each train having a unique 5-digits number. The first three digits
in the train number represent the train line, the stopping pattern (main or
extra line) and the direction of the train (“north” or “south”), while the
last two digits represent the arrival time interval at København H. A more
detailed explanation of S-tog’s train numbers can be found in e.g. Jespersen
Groth et al. [2006]. A train gets a new number when it starts at a terminal
station, e.g. Hillerød station. The number is kept while passing København
H until the train reaches the opposite terminal station, e.g. Køge station.
When the train turns back, a new number is assigned to it. On weekdays
there are 1,303 trains on the network, while there are 963 and 763 trains on
Saturdays and Sundays, respectively.

24 Introduction to Railway Optimization

(a) Line pattern of timetable-2007. (b) Line pattern of timetable-2008.

Figure 1.5: The S-train network.

1.4 Tactical Train Driver Planning at S-tog 25

1.4 Tactical Train Driver Planning at S-tog

1.4.1 Train Driver Schedule

At the present time (year 2008) there are approximately 530 train drivers
employed by S-tog. A daily S-tog timetable is covered by 256 train drivers on
weekdays, 192 train drivers on Saturdays and 160 train drivers on Sundays,
excluding scheduled reserve drivers. The remaining part of the workforce
is counted for being on vacations, leaves, assigned to rest periods between
duties and being on education. Each train driver is able to operate all types
of rolling stock owned by S-tog and only one driver is required to operate a
train.

Train Driver Duty

A train driver’s duty is a sequence of tasks (activities), i.e. train drives, meal
breaks, riding as a passenger on a train, taxi transfers or stand-by time at
the crew depot. The length of a daily duty is usually between 6 and 8 hours
with a maximum length of 9 hours. When the duties are generated, the
planners aim to build duties of approximately 7 hours, except for weekend
duties which can be slightly longer for the sake of free days allocation. A
night duty length is at most 8 hours. A night duty is a duty containing
working time between 1:30 and 4:30 in the morning. The earliest duty starts
at 3:30 in the morning and the latest duty finishes at 2:30 in the following
morning. Morning duties are very popular among drivers. There are also
noon duties, afternoon duties and evening duties.

A duty starts with a 15 minutes check-in and ends with a 10 minutes check-
out activity at one of the depots. A duty must start and finish at the same
crew depot, which is a station with rest facilities. Check-in and check-out
activities can take place at the four out of five crew depots on the S-train
network. The major depot is located at København H and the three smaller
check-in depots are situated at Hillerød station in the north of the S-train
network, Køge station in the south and at Høje Taastrup station, which was

26 Introduction to Railway Optimization

opened recently.

Figure 1.6: A two-blocks duty with merging lines in timetable-2007.

A duty contains either one long break, as in the duty shown in Figure 1.6 or
two short breaks between train tasks, like in the duty shown in Figure 1.8.
The length of a long break is 30 minutes. If the break is split into two short
breaks, each break must last at least 20 minutes and the total length of the
two short breaks in a duty must sum up to 45 minutes. This means that
it is feasible to have 20 and 25 minutes or 21 and 24 minutes or 22 and 23
minutes short breaks in the duty. Even though breaks of a longer duration
are allowed in practice, any time in excess of the required break length is
considered to be a buffer time in the driver duty. A break is held at one of
the two crew depots with rest and meal facilities. The largest one is situated
at København H and the smallest one is placed at Hellerup station, where
drivers assigned to the circular rail segment are scheduled to have their meal
breaks. A driver is entitled to a break after at most 3 hours of train driving,
with the 3 hours and 30 minutes exception for drivers assigned to lines H and
H+ of the timetable-2007, where a return drive between terminal stations
Farum and Frederikssund has a total duration of 3 hours and 20 minutes.

A train task in a train driver schedule is a train drive between a terminal
station and København H or between the two terminal stations of the circular
rail. Please notice that the definition of a train task in this project is different
from the standard definition of a train at S-tog, described in Section 1.3.
The same train can be divided into two parts, one from a terminal station to
København H and another part from København H to the opposite terminal
station of the line, and assigned to two different duties. It is a customary at
S-tog to plan the train tasks in a duty in blocks with meal breaks in between.
There are either two or three blocks in a duty. A block contains one or
more trips, which are sets of train tasks on one line. A full trip is a return
train drive from a terminal station on the same train line. For example,
a full trip of line H in the timetable-2007 is a sequence of four train tasks
København H–Frederikssund, Frederikssund–København H, København H–

1.4 Tactical Train Driver Planning at S-tog 27

Farum, Farum–København H. This trip composes the first block of the duty
shown in Figure 1.6. A half trip is a non-complete trip, and can contain
either one, two or three train tasks. As an example, the last block of the
duty shown in Figure 1.9 contains only one train task København H–Køge
of line E. A duty block can contain two “merging” train lines. Two train
lines merge, if the train number changes to the number of another line at a
terminal station, instead of changing to the subsequent train number of the
same line. As an example, lines B and B+ are merging, as illustrated in the
second block of the duty in Figure 1.6.

Due to the block structure of duties in the general train driver schedule,
the drivers very seldom hand over the train to other drivers at any other
stations than crew depots, where the arriving driver either goes on a break,
to a reserve task or to a check-out after finishing a trip, while the driver
taking over the train comes from a break, a reserve or a check-in activity.
This is done to avoid situations, where a train driver is not able to take
over another train due to a delay of his/her previous train task, thereby to
increase the robustness of the driver schedule. However, during disruptions
a driver might be assigned to change to a train task on another train unit at
any terminal station or at a rolling stock depot along the train line or even
at one of intermediate stations if required from a recovery point of view.

An essential rule for sequencing train tasks in a duty requires that a sub-
sequent train task starts at the station of arrival of the previous train task,
and the time between arrival/departure is long enough to allow for a safe
connection according to the company regulations and union agreements. For
example, a driver change from a train to a meal break at København H must
be have a minimum connection time of 5 minutes: 1 minute for handing
over the train to another driver and 4 minutes for walking to a depot from
the platform. Components of technical connection times with corresponding
abbreviation codes are listed in Table 1.1.

It is allowed to schedule deadheading tasks in the duties, either as a passen-
gering task on timetabled trains or in a taxi. Deadheading tasks are usually
used for positioning drivers at non-depot terminal stations at the beginning
and at the end of the day in order to cover earliest train departures and
latest train arrivals or whenever it is otherwise necessary for the schedule
feasibility. As an example, the driver duty shown in Figure 1.7 contains a

28 Introduction to Railway Optimization

Table 1.1: Components of technical connection times at S-tog, 2007.

Abbr. Task Description Station Minutes
BEV Walking between a depot

facility and a platform.
Køge 8 min

Frederikssund 5 min
Other stations 4 min

KLG Getting the train ready for
the first drive of the day.

5 min

PIF Handing over a train to an-
other driver.

1 min

PIT Taking over a train from an-
other driver.

1 min

SPD Walking to the opposite end
of the train at terminal sta-
tions.

4 min

taxi deadheading from København H crew depot to Klampenborg station in
order to position the driver for the circular rail duty in the beginning of the
duty. The duty also contains a passengering task on a train of line B from
Hellerup to the crew depot at the end of the duty.

The regular duties are constructed such that each driver has a high variety
in tasks during the day in order to distribute the short and the long train
tasks between drivers. As a general rule, a driver is not allowed to drive
back and forth between two terminal stations during the whole duty period.
Rather, train tasks of different lines must be assigned to each driver dur-
ing the day, except for duties covering lines F and F+ of the circular rail
due to the isolated location of the segment. An example of an unattractive
duty containing many train tasks on the circular rail is shown in Figure 1.7.
Unattractive circular rail duties are distributed among rosters.

There are different variety levels for different duty types and for different duty
schedules. For example, when scheduling general weekday duties allocated to
the København H depot, trips on the same train line must not be scheduled
in more than one duty block. An example of such a duty is shown in Figure
1.8, where all three duty blocks contain trips on different train lines.

1.4 Tactical Train Driver Planning at S-tog 29

Figure 1.7: A circular rail duty in timetable-2007.

Figure 1.8: A København H depot duty in timetable-2007.

In duties allocated to other depots it is not allowed to schedule trips of the
same train line in two consecutive blocks. This rule often forces to schedule
Hillerød, Køge and Høje Taastrup depot duties in three blocks with two short
breaks in between, since a driver must often use the same train line in order
to get back to the depot for the check-out, and driving the same line in two
consecutive blocks is not allowed. Figure 1.9 shows an example of a feasible
duty belonging to Køge depot.

Figure 1.9: A Køge depot duty in timetable-2007.

In special plans for the days with track maintenance the variety rules are
relaxed for covering train lines on network segments directly influenced by
the maintenance work. Variation in duty tasks implies that many drivers are
assigned to each line during the day. As an example, 88 train drivers are
assigned to a main train line E during a weekday of the planned timetable-
2007 and 55 drivers are assigned to the extra line A+. A high variations in
duties makes it impossible to partition the train driver schedule according
to the network segments. This implies that if due to the track maintenance
a specific segment of the network is closed, the train driver re-scheduling is
not an easy task to perform, since many train driver duties are involved.

30 Introduction to Railway Optimization

Train Driver Roster

S-tog plans with cyclic rosters. A roster at S-tog spans for an even number
weeks, since the day off rules are defined for every second week of a roster
according to the agreement with the train driver union. There are currently
25 rosters at S-tog. A roster contains a set of duties characterised by some
common parameters. For example, a roster can contain all duties with check-
in and check-out at the same depot or all early morning duties. There is
one roster for each check-in depot (Hillerød, Køge and Høje Taastrup) and
22 rosters assigned to the main crew depot at København H. The smallest
roster is covered by eight train drivers (the roster containing early morning
duties), the largest rosters are covered by 42 train drivers (e.g. a Hillerød
depot roster).

A roster must comply with many requirements. A driver can work for at most
75 hours during every 14 days from Monday to Sunday. A train driver must
not work more than seven consecutive days without a rest period. There
must be at least one day off every second week of a roster and at least
three days off every other second week of a roster including a mandatory free
weekend. Hence, a driver always has a free weekend every second week. The
days off can for example be scheduled on a Wednesday, a Saturday and a
Sunday in one week and on a Thursday next week. There is however a so-
called “3–3” roster, where 3 workdays alternate with 3 days off, resulting in
longer duties and more days off. Each train driver is entitled to at least 50%
evening rest time, i.e. the time between 17:00 in the afternoon and 7:00 in the
morning. The evening rest time is calculated as an average for a roster and
for a calendar month for reserve drivers. Average working time in a roster
must also be satisfied. As a goal, the train drivers have to work 25 hours on
average during a roster week. For example, 42 train drivers assigned to the
Hillerød depot roster produce 1.050 working hours, which gives 25 hours per
roster week on average.

1.4 Tactical Train Driver Planning at S-tog 31

1.4.2 Yearly Planning Process

The yearly train driver planning at S-tog contains five major steps shown in
Figure 1.10.

Figure 1.10: Train driver schedule planning steps at S-tog.

At the end of May a new S-tog train timetable valid from January the fol-
lowing year is finished and approved. Every train departure in the timetable
must be covered by a driver duty. The scheduling process for the train driver
schedule starts at least seven months before the launch of the new timetable.
During the first month of the scheduling process a scheduling committee dis-
cusses if there are any duty rules that need to be adjusted. An example of
such an adjustment could be extending the scheduled walking time from a
depot to a platform at one of the stations from 2 to 3 minutes. Agreements
to adjustments to train driver duty rules are usually reached at the end of
June.

During the following month the duty schedule is generated using the auto-
matic scheduling system TURNI (see Section 1.4.3). Three general train
driver schedules are developed (normal plan in Danish): for weekdays, for
Saturdays and for Sundays. Deviations from the planned timetable, for in-
stance due to line maintenance or holidays are not taken into account in the
general train driver schedules. At the beginning of August the new train
driver schedule is sent for approval to the Train Driver Personnel Regional
Group for S-tog (Lokomotivpersonalets Omr̊adegruppe (LPO) S-tog in Dan-

32 Introduction to Railway Optimization

ish) of the Danish Railway Union (Dansk Jernbaneforbund in Danish), which
represents train drivers of the S-train network. During the next two-three
months the union representatives check the proposed schedule, negotiating
closely with the schedulers at S-tog until reaching the final approval of the
duty schedule.

When the general duty schedule is approved, the rostering process begins.
In the beginning/middle of October the primary assignment of duties to ros-
ters takes place. Six train driver representatives gather together “around
the table” for three days to negotiate the distribution of all scheduled du-
ties into six pools, where each pool contains several rosters. At the end of
October, 25 train driver representatives (one for each roster) gather together
for a two-days seminar in order to make the final assignment of duties to
rosters. Representatives of each roster pool try to reach feasibility within
each particular pool by exchanging duties between rosters in the pool, if it
is necessary. If an overall feasibility cannot be reached, some duties might
be exchanged between the pools of rosters. The next 8–10 days are used for
the finishing touches of the rosters and the anonymous roster set is entered
into the scheduling system PDS (see Section 1.4.3), where all scheduling and
rostering rules are checked. In the middle of November the new train driver
schedule is published and official roster plans are sent to the train drivers.

Over the next three weeks every train driver makes a priority list of all 25
rosters and submit the list to the union representatives. The assignment of
drivers to rosters is based on strict seniority. The drivers are listed in decreas-
ing order of length of service at S-tog, and every train driver is assigned to
the roster of his/her highest available priority. The staff allocation to rosters
is registered in PDS, and in the middle of December the final assignment of
train drivers to rosters is finished. The new train driver schedule is launched
during the first weekend of January in the following calender year.

Apart from the general schedules, several special plans (sær planer in Danish)
are often necessary in order to take care of the known deviations in the
timetable. For example, a special plan is required for the Christmas Eve
or for the periods with planned track maintenances on the S-train network.
Special plans are not built from scratch. Instead, the general schedules are
re-scheduled, taking care of deviations in the timetable caused by planned
deviations. In a special plan the start and end time of a duty can only be

1.4 Tactical Train Driver Planning at S-tog 33

moved up to 10 minutes each and at most 10 minutes in total. The content
of the duties in the special plan can be changed without notifying the driver
up to 72 hours before the start of the day of operations.

On the day before operations the short term re-scheduling takes place. Last-
minute changes, like sudden sickness of crew and small adjustments in the
duties are registered in the system. The short term re-scheduling can be
done up to 12 hours before the start of operations. On the day of operation
it is often necessary to make adjustments to the daily train driver schedule
due to unpredicted disruptions. The real-time re-scheduling at the S-train
network is described in details in Section 2.1.

1.4.3 Use of Computer-Aided Systems

In September 2001 S-tog and the Portuguese company SISCOG signed a 3-
years contract for implementing a crew scheduling system PDS (Personale
Disponerings System in Danish), which is a customized version of SISCOG’s
scheduling system CREWS (Morgado and Martins [1993]). The system
should contain four main modules: a long-term scheduling module, a long-
term rostering module, a short-term scheduling module (for re-scheduling
purposes) and a real-time dispatching module. Manual, semi-automatic and
fully automatic functions are to be present in the system.

The system is not yet fully installed, even though the main part of the con-
tract is delivered. The long term planning modules are only used in manual
mode, despite the availability of the semi-automatic and the fully automatic
functions. The short term scheduling module is only manual. The delivery
of the manual mode of the real time dispatching module is due at the end
of the year 2008. According to the project plan, the semi-automatic and the
automatic modules of the real time dispatch will be delivered at the end of
year 2009.

At present PDS at S-tog is used as a data management system. There is a di-
rect information flow between PDS and the personnel data storage system at
S-tog. Duty and roster rules are controlled in the Long-Term Data Manager
module of PDS as a part of the long term planning. The Staff Allocator com-

34 Introduction to Railway Optimization

ponent of PDS is used to manually update information about which roster is
assigned to each train driver during the roster planning process. The Short-
Term Data Manager is used to update the train driver information about
the realized daily work, absences, unplanned duties and over-time work in
the the short-term re-scheduling (a day before the day of operations) by a
schedule planner and for the dispatching purposes (on the day of operations)
by a train driver dispatcher while the real-time dispatching module is not
available.

The automatic scheduling system TURNI (Caprara et al. [1999b]) developed
by the Italian company DoubleClick s.a.s. has been used for the automatic
generation of the train driver duties at S-tog since 2002. TURNI is used for
generating and optimizing the general duty schedules in the tactical planning
as well as for strategic analysis purposes. There is an ongoing project in the
planning department aimed at using TURNI for special plans during the
short-term re-scheduling. Another project includes a performance study of
an extended version of TURNI, called weekTURNI, which optimizes a weekly
schedule instead of a general daily schedule. Unfortunately, there is no direct
interface between PDS and TURNI. The train driver duty schedules produced
in TURNI are transferred to PDS by means of the software developed at S-
tog.

An Analysis Group of seven operations researchers at S-tog’s Planning De-
partment is constantly working on projects regarding possible implementa-
tions and analysis of new computer-aided decision support systems on all
levels of the planning process (Hofman et al. [2006], Jespersen Groth [2006],
Jespersen Groth et al. [2006], Nielsen et al. [2006], Rezanova and Ryan [2009],
Nielsen and Christensen [2006], Folkmann et al. [2007], Jespersen Groth et al.
[2007], Jespersen Groth [2008b]). Many projects employ Operations Research
methods, and several Bachelor (Andersen et al. [2006]), Master (Hofman and
Madsen [2005], Villumsen [2006], Føns [2006], Nielsen [2006]) and Ph.D. stu-
dents (Jespersen Groth [2008a] and this thesis) at leading universities in
Denmark are engaged in analysis and prototypes for the decision support at
S-tog.

Chapter 2

Railway Disruption
Management

The focus in railway disruption management is on repairing operations on
the railway network when the planned operations need to be adjusted due
to disruptions. A disruption on a railway network is an event or series of
events that cause either some or all operational schedules to deviate from
the planned. Railway disruption management concerns modifications to the
railway timetable and train routes, as well as to the rolling stock and the
crew schedules (including train drivers, conductors and shunting personnel)
during and after the disruption. Disruption management decisions are taken
on a real-time basis and are referred to as dispatching or recovery decisions.
Dispatching, however, is also the process of monitoring the daily operations,
no matter if disruptions occur or not.

In this chapter we present the railway disruption management based on the
current practice on the S-train network: timetable, rolling stock and train
driver recovery. Some references are given to the publications concerning
real-life recovery of trains on the network. An extensive review focused on
the crew recovery within the railway and airline industries is presented.

36 Railway Disruption Management

2.1 Disruption Management on S-train Net-

work

2.1.1 Disruptions Classification

The daily operations of S-tog are disturbed by unexpected events almost
every day. Primal disruption incidents are those which start the disruption
in operations. Secondary disruption incidents occur as a consequence of
primal disruptions. A knock-on effect is a propagation of delays over the
railway network.

From S-tog’s point of view, disruptions on the S-train network can be classi-
fied by their source and type. We call the source internal if the disturbance
is directly caused or can be influenced by S-tog, and external otherwise. The
type of disruption is accidental if it happens suddenly and unpredictably,
while a disruption is of a planning impact type if it is or could be discovered,
influenced or even prevented in advance, for instance during the planning
stages of operations. Some disruption causes classified by the the source and
the type are given in Table 2.1.

Some disruptions have stronger effect on the operations than others. For
instance, a broken signal, which is not repaired for several hours, influences
many trains and spreads delays throughout the whole network for many
hours. On the other hand, a passenger train departing a couple of minutes
later than scheduled from a terminal station of the S-train network can use
the buffer time incorporated in the timetable and regain the delay by the
time the train reaches the central part of the network.

2.1 Disruption Management on S-train Network 37

Table 2.1: Disruptions on the S-train network.

Disruption Source
External Internal

D
is

ru
p
ti

o
n

T
y
p
e

A
cc

id
en

ta
l • Passenger boarding delays

• Signalling problems

• Weather conditions

• Accidents

• Obstacles on tracks

• Rolling stock failures

• Crew lateness

• Dispatchers’ mistakes or de-
layed solutions

• Crew mistakes in opera-
tions

P
la

n
n
in

g
Im

p
ac

t • Track maintenance

• Seasonal or rush hour
changes in demand

• Temporary speed limita-
tions, announced in ad-
vance

• Lack of rolling stock capac-
ity due to maintenance or
minimum cost scheduling

• Lack of crew capacity due
to tight scheduling

• High interdependency be-
tween train lines in the
timetable

2.1.2 Punctuality and Reliability Measures

No matter what caused the disruption, S-tog performance is measured by
two service measures defined in the contract between S-tog and the Danish
Ministry of Transport. These are the punctuality and the reliability of ser-
vices. The punctuality is measured by a percentage of the trains arriving on
time. An on-time train is a train which is not delayed for more than 2 min-
utes and 29 seconds compared to the scheduled arrival at any station of the
train line. At present in 2008 the aim is to have 95% of all arrivals on-time
every month. The reliability of S-tog services is measured by the number of
scheduled departures which actually take place. At present in 2008 S-tog’
target with respect to reliability is 97,5%. Departure cancellations in the
special plans for e.g. track maintenance are not counted in the reliability
measure, if the special plan is announced at least 72 hours before the start

38 Railway Disruption Management

of operations. At www.dsb.dk it is possible to follow how the measures are
fulfilled for the last 12 months. As an example, Figure 2.1 shows the level of
services provided by S-tog between August 2007 and July 2008.

(a) Punctuality (b) Reliability

Figure 2.1: S-tog performance measures from August 2007 to July 2008.

2.1.3 Actors Involved in Dispatch and Recovery

There are three main actors in the dispatching and disruption recovery pro-
cess on the S-train network: a network traffic controller employed by the
infrastructure manager Banedanmark, a rolling stock dispatcher and a train
driver dispatcher, both employed by S-tog.

Network traffic controllers (fjerncontrol leder in Danish) are employed at
Banedanmark. Even though S-tog is presently the only operator on the S-
train network, it is Banedanmark that is responsible for the train surveillance
and recovery from disruptions on the S-train network, since the infrastruc-
ture may be shared by more than one operator in the future. The traffic
controllers monitor all train movements on the network using a surveillance
system in the network traffic control center. A new network traffic control
center DIC-S (Drifts- og Informationscenter S-tog in Danish) was opened in
2007. The S-train network is divided into five segments: South (16 stations),
West (28 station), City (København H and Dybbølsbro stations), East (27
stations) and North (14 stations), and one traffic controller is responsible
for monitoring each segment. Traffic controllers can interfere in the work
of switches and signals manually through the signalling system called Speed
Control & Train Stop (HastighedsKontrol & Togstop, HKT, in Danish). The

2.2 Train Timetable Recovery 39

network traffic control supervisor (togleder in Danish) is the person who is
in charge of the overall dispatching decisions on the S-train network.

When a disruption occurs, the recovery process starts with adjusting the
timetable by delaying, re-routing or cancelling trains. Recovery strategies on
the S-train network are described in more details in Section 2.2.2. As a rule,
the recovery decisions are taken in a collaboration with S-tog dispatchers
responsible for the rolling stock schedule and the train driver schedule. A
rolling stock dispatcher is situated in the same room as the traffic controllers
at DIC-S and is responsible for recovering the rolling stock owned by S-
tog. A train driver dispatcher is responsible for recovering the train driver
duties when they become infeasible. The train driver dispatcher is situated
at the main crew depot at København H. Information about disruptions
and recovery decisions made by the network traffic controllers is received
by the train driver dispatcher by a telephone from DIC-S. The train driver
dispatcher can also receive information about disruptions directly from train
drivers by a telephone or personally when the drivers arrive at the crew depot.
The train driver dispatcher is strategically placed at the crew depot instead
of being situated at DIC-S, since many re-scheduling decisions have to be
negotiated with train drivers available at the crew depot. The rolling stock
and the train driver recovery methods at S-tog are described in Sections 2.3.1
and 2.4.1, respectively.

2.2 Train Timetable Recovery

2.2.1 Train Conflict Resolution

In an undisturbed timetable, each train has a predetermined route, i.e. an
itinerary (or a path) through the train network with specified departure and
arrival times. A section of tracks between two signals in the train network is
called a block section. In any feasible timetable, there can only be assigned
one train to every block section of the network at any given time in order
to avoid train collisions. A significant amount of research is done within
the area of strategic, tactical and operational train scheduling, routing and

40 Railway Disruption Management

timetabling on different types of railway networks. An exhaustive review of
problems and solution methods related to allocating track sections to trains
can be found in Lusby [2008], while a broader overview of railway traffic man-
agement, including the real-time dispatch is presented in D’Ariano [2008].

Disruptions on a railway network cause conflicts between train routes. A
conflict occurs whenever two or more trains require the same block section
at the same time. The objective of the conflict resolution problem is to find
a conflict-free schedule with as little total delay as possible. This is achieved
through delaying, re-routing and cancelling trains. The conflict resolution
problem in the real-time environment is similar to the scheduling problem
(i.e. allocating block sections to trains over time), but the solution methods
must be sufficient for producing high quality recovery solutions quickly. The
scheduling and re-scheduling of trains in the railway industry is often for-
mulated as a job-shop scheduling problem, where track sections correspond
to machines and trains correspond to jobs. The model is initially proposed
by Szpigel [1973]. A train route corresponds to a sequence of job operations
on several machines. A feasible train schedule on a railway network contains
a set of train routes such that any track section (machine) is claimed by at
most one train (job) at any given time.

Publications presenting models, solution methods and decision support sys-
tems for the real-time disruption management of trains on the network in-
clude but are not limited to local search heuristic approaches, where conflicts
are resolved as they appear according to some local criteria (Cai et al. [1998],
Şahin [1999], Jacobs [2004]), metaheuristics or other approaches exploring
a wider neighbourhood of solutions (Adenso-Dı́az et al. [1999], Ping et al.
[2001], Wegele and Schnieder [2005], Törnquist and Persson [2005], Törnquist
[2007]), exact or semi-exact approaches, where an optimal or near optimal
solutions for minimizing delays are found (D’Ariano et al. [2007], Törnquist
and Persson [2007]), constraint programming approaches (Rodriguez [2007])
and others.

Two other research areas connected to the railway timetable disruption man-
agement are relevant to mention. Robust planning is a pro-active method
to deal with disruptions. It is focused on methods for generating schedules
which can either be able to absorb disruptions or be suitable for a quick recov-
ery with few modifications. For details and references to robust timetabling

2.2 Train Timetable Recovery 41

and train routing please refer to e.g. Caimi et al. [2005], Vromans [2005],
Liebchen and S.Stiller [2006], Herrman [2006] or Kroon et al. [2007], among
others. Delay management is focused on on re-timing departures of con-
nected trains such that the overall passenger delays are minimized. If a
passenger wants to change from the delayed train i to another train j, but
misses the connection due to the delay, he/she may have to wait a long time
before the next train going toward the required destination arrives. By delay-
ing the departure of the train j, the waiting time for the passenger would be
reduced. Delay management can be applied on all levels of the railway plan-
ning process, including operational. For details pleased refer to e.g. Schbel
[2007], Ginkel and Schbel [2007] or Heilporn et al. [2008], among others.

2.2.2 Recovery Strategies on S-train Network

Network traffic controllers at Banedanmark use different strategies for recov-
ering disrupted operation on the S-train network. These strategies are with
various levels of details described in Hofman and Madsen [2005], Hofman
et al. [2006] and Jespersen Groth et al. [2007]. They can be classified in
three main groups by the severity of the disrupted situation.

Using Timetable Slack

This strategy usually deals with minor disturbances, for instance delays
caused by passenger boarding. The network traffic controllers would try to
restore order on the network by using extra time margins (slack time) built
into the S-tog timetable. The timetable slack can either be built in as the
running time supplements or the buffer times. A running time supplement is
the difference between the scheduled running time and the technically mini-
mum running time of a train. A buffer time is the surplus to the turnaround
time at terminal stations between train rides. The following actions can be
used for this strategy type: delaying trains, reducing running times, reducing
headways, reducing dwell times at terminal stations.

42 Railway Disruption Management

Extensive Re-Scheduling

If a disrupted situation is severe, more radical measures have to be taken.
Extensive re-scheduling involves re-routing and/or cancelling trains. A train
can be re-routed by turning the train before it reaches a terminal station, by
overtaking a delayed train at stations with available tracks, by changing the
stopping patterns of the trains by skipping stations or swapping the identity
of the trains running on the same network segment by turning a fast line
into a slow line and vice versa, or by inserting replacement trains at train
depots to cover the route of a delayed train and then taking out the delayed
train at the same depot. In order to increase the residual capacity on the
network even further, certain train tasks between two terminal stations can
be cancelled. During the daytime hours, when all network segments are
covered by more than one train line, a whole train line or several train lines
can be cancelled for a certain period of time or until the rest of the day.
Train units assigned to the cancelled trains are shunted to the rolling stock
depots along the lines, with the largest depot being at København H.

Emergency Plans

There are approximately 110 emergency plans, which are specially developed
to use in different severe disrupted situations at different sections of the S-
train network. As an example, a disrupted situation in form of a blockage of a
large track segment as a consequence of a broken switch or a suicide accident
can be recovered in the same way as other blockages on the same part of
the network, by delaying, re-routing or cancelling specific trains. Emergency
plans are very useful for the network traffic controllers. Jespersen Groth et al.
[2007] give an example of an emergency plan in the timetable-2007 applied
to a disruption, where the track section between Dysseg̊ard and Buddinge
stations is completely blocked in both directions. The plan involves the
description of how the trains of three involved train lines are re-routed and
cancelled, and the necessary turnaround times for remaining trains and the
required number of train units for implementing the emergency plan.

2.3 Rolling Stock Schedule Recovery 43

2.3 Rolling Stock Schedule Recovery

2.3.1 Rolling Stock Re-Scheduling at S-tog

S-tog operates with self-propelled electrical train units. A train unit is a
module of several passenger carriages with a passage through all carriages.
There is a train driver cabin in both ends of a train unit, so the train unit can
move in both directions. S-tog rolling stock contains 31 Litra SE train units
(4 carriages in the module, shown in Figure 2.2) and 104 Litra SA train units
(8 carriages in the module, shown in Figure 2.3). Train unites can be coupled
and uncoupled to form trains of different lengths, called train compositions,
with the longest composition of either two SA units or two SE and one SA
units due to the platform length limitations on the S-train network.

Figure 2.2: Train unit Litra SE, length 42.58 meters

Figure 2.3: Train unit Litra SA, length 83.78 meters

Every train unit in a train composition is assigned a line of work (a route)
which starts and finishes at a specific depot and covers a set of train tasks
during the day of operation. The position of the train unit in a train com-
position is significant for train units routing, since uncoupling and coupling
of units at S-tog’s depot stations can only happen from one end of the train.
The planned rolling stock schedule has to be balanced, i.e. it has to be ensured
that the rolling stock inventory at the end of the day at every train depot is
sufficient to cover the required rolling stock inventory at the beginning of the
next day. Moreover, the operational maintenance requirements are incorpo-
rated in the rolling stock schedule. Each train unit at S-tog has to undergo
a routine maintenance control every 20.000 km or every 60 days, whichever
occurs first. It has to be ensured that each particular train unit is available at

44 Railway Disruption Management

the maintenance depot near T̊astrup station in due time for the maintenance
check. The rolling stock schedulers and dispatchers use the rolling stock
scheduling system MSS (Materiel Skedulering System in Danish), developed
at S-tog, for monitoring and scheduling of the train units.

The planned rolling stock schedule often needs to be adjusted due to e.g.
track maintenance work on different parts of the S-train network, predictable
seasonal changes in the passenger demand or special events, like a football
match. Moreover, during the day of operation disrupted situations can make
the rolling stock schedule infeasible. The rolling stock dispatcher then re-
schedules routes of involved train units in order to reach the overall feasibility
of the rolling stock schedule. The the passenger demand on train lines needs
to be covered by sufficient number of train units, and the inventory level at
the rolling stock depots at the end of the day needs to be balanced. MSS
is used for manual adjustments in the rolling stock schedule, but there is
no automatic decision support system available yet. For more information
about the rolling stock recovery at S-tog see Jespersen Groth [2008a].

2.3.2 Operations Research in Rolling Stock Recovery

There is a very limited number of operations research publications related to
the rolling stock re-scheduling and recovery. The first two reviewed papers
present research conducted for NS, the passenger division of the Netherlands
Railways, while the two last papers are from DSB S-tog A/S.

Budai et al. [2007] deals with a Rolling Stock Balancing Problem (RSBP),
which is concerned with eliminating deviations from the desired rolling stock
inventory (called the off-balances) at certain stations in the otherwise feasible
rolling stock schedule. The off-balances can occur when train units end up
at other stations than planned due to minor changes in the timetable caused
by e.g. track maintenance work or by disruptions on the train network. Two
proposed iterative heuristic approaches, which minimize the number of off-
balances, perform well even for large instances and can be used both for the
re-scheduling and the recovery of the rolling stock off-balances.

The winner of the 2008 INFORMS Railway Applications Section Student

2.3 Rolling Stock Schedule Recovery 45

Paper Contest Nielsen [2008] propose an abstract framework for the oper-
ational rolling stock recovery decision support system. The rolling stock
recovery problem (RSRP) occurs when the current rolling stock schedule is
infeasible due to e.g. disruptions or other changes in the timetable. The
problem is defined for a certain time period and can be solved with the
rolling time horizon, updating information about changes in the timetable
every certain time interval. RSRP is formulated as a mixed integer program-
ming model from Fioole et al. [2006], defined over a ceratin limited time
horizon and taking disruptions into account, and is solved with CPLEX 10.1
(www.ilog.com) using parts of the timetable and the rolling stock schedule
of NS. The short running times (from a few seconds up to one minute) make
the solution approach usable in the real-time environment.

Jespersen Groth et al. [2006] present a mixed integer model for re-insertion of
a cancelled train line back to operation. The re-insertion problem is specific
for the irregular operations of S-tog and occurs when all train departures of
one or more train lines are cancelled for a certain time period as a consequence
of a recovery strategy on the S-train network described in Section 2.2.2. The
problem deals with inserting previously withdrawn train units from several
depots back into operation such that all train departures which follow the
start of the re-insertion process are covered. The model is implemented in
GAMS (www.gams.com), and optimal solutions to all possible re-insertion
scenarios are calculated. Solutions are incorporated in a user interface, which
is used by S-tog rolling stock dispatchers in the real-time environment.

Jespersen Groth [2008b] presents a decomposition approach to the rolling
stock recovery problem at S-tog. The RSRP is decomposed into a compo-
sition part and a routing part. The composition part is modelled with the
Train Unit Position Model, a mixed integer program which finds the optimal
number of train units of different types (Litra SA or Litra SE) and their po-
sitions in the train for each train task in the recovery problem with respect
to minimizing a weighted sum of following objectives: the seat shortage, the
number of composition changes (coupling or uncoupling of train units), the
cost of covering train tasks with train units and the difference to the origi-
nally scheduled depot capacity. The routing part is expressed by two models.
The Train Sequence Model is an assignment model with side constraints. It
solves a pre-assignment of those train units which are sufficient for covering
an entire train sequence (a route) alone. Since it is not necessary to take

46 Railway Disruption Management

care of composition changes in the Sequence Model, the problem is relatively
easy to solve. The Train Routing Model assigns the train units which are not
assigned to train tasks in the previous model. All three models are imple-
mented in C# and solved with CPLEX 10.0 Concert Technology. Extensive
experiments for defining and validating the weights in the Position Model
and testing how the presence of the Sequence Model affect the performance
of the Routing Model are presented. The average solution times are some-
what high for the real-time implementations, and further refinement of the
models and solution methods is required.

2.4 Train Driver Schedule Recovery

2.4.1 Train Driver Schedule Recovery at S-tog

Figure 2.4 shows the current process associated to the train driver schedule
recovery at S-tog. As described in Section 2.1.3, all communication with
the network traffic control center and train drivers is conducted over the
telephone. The short-term data manager of the crew scheduling system PDS
is used by the train driver dispatcher to monitor the train driver schedule.
The system has good drag-and-drop functions, and the dispatcher is able to
view and alter the train driver schedule by removing or adding train tasks in
the duties. One of the disadvantages with using the short-term data manager
module of PDS for the dispatching purposes is that it is not intended for the
real-time dispatch and recovery. The time for uploading every duty change to
the system is therefore simply too long, and the train driver dispatcher often
implement recovery solutions to operations without updating the system.
Then, at the end of the day or when the situation on the S-train network does
not require dispatcher’s constant attention, the changes to duties are entered
into the system. It is important to upload changes to the train driver duties in
order to register evt. overtime and absences. The train driver dispatcher can
also use PDS for trying out different recovery scenarios without updating
the system. It is planned to install the real-time dispatching module of
the system and use it for dispatching purposes instead of the short-term
scheduling module from year 2009. PDS is neither interconnected with the

2.4 Train Driver Schedule Recovery 47

network traffic control system at DIC-S nor with the rolling stock scheduling
system MSS, which is used for monitoring the train units.

Figure 2.4: Train driver recovery process at S-tog.

When a train driver dispatcher receives a message from the network traffic
control supervisor or a train driver about a certain disruption and/or a cer-
tain timetable recovery strategy, he or she has to find out what impact the
particular disruption has on the train driver schedule. An experienced train
driver dispatcher can immediately identify the duties affected by delays, re-
routings or cancellations of trains. A train driver schedule is disrupted when
at least one connection in at least one train driver duty is broken, and, as a
consequence, the driver is not able to perform the subsequent task scheduled
in the duty. Consider a small example of a disruption. Figure 2.5 shows a
part of the timetable-2007 with three scheduled train driver duties.

Let us assume that at 4 p.m. the train driver dispatcher receives following

48 Railway Disruption Management

Figure 2.5: Before the disruption.

information: the train of line H arriving to Farum station (abbreviated FM)
is 15 minutes delayed. The network traffic controller reduces the dwell time
of the train at FM in order to recover the subsequent departure of line H, and
the train can depart from Farum station with only 3 minutes delay compared
to the scheduled departure. In order to increase the residual capacity on the
S-train network, the network traffic controller cancels line H+, which runs
on the same segment of the network as line H. Hence, the train departure
of line H+ from FM to København H (abbreviated KH) is cancelled. This
disrupted situation is shown in Figure 2.6.

Figure 2.6: Disruption example.

When a train driver is not able to cover a particular train task in the duty,
the train driver dispatcher tries to find another driver to cover the train
task. Most often it is a reserve driver who is on stand-by at a crew depot.
Sometimes it is necessary to make swaps between train tasks within two or

2.4 Train Driver Schedule Recovery 49

three driver duties. These actions require concentration and experience from
the dispatcher. An experienced dispatcher can most often quickly solve the
puzzle of recovering the train driver schedule. However, in some situations
the impact of disruptions on the train driver schedule is so severe, that it is
simply not possible to find a train driver for all non-covered train departures.
In those cases trains have to be delayed or cancelled.

The work of the train driver dispatcher often requires a lot of self-control,
persuasion abilities and a good relationship to the train drivers, since it is
sometimes necessary to ask a particular train driver to cover a task which
slightly violates the duty rules. Recovery decisions are based on previous ex-
perience, and the quality of each recovery schedule depends on the particular
train driver dispatcher. Re-scheduling decisions have to be made quickly un-
der tremendous pressure and a lot of time is used for communicating decisions
to the drivers.

In the given example the train driver dispatcher can see that Duty 1 is not
yet disturbed to an extent where it has to be recovered, since it is feasible
for the train driver to make a connection between the arrival of line H to
Farum and the subsequent departure of the line. Duty 2 is on the other hand
disrupted, since the driver cannot return to KH with the scheduled train
task of line H+ due to the cancellation of the line. The dispatcher contacts
the train driver assigned to Duty 2 and asks her/him to ride as a passenger
on the train of line H back to KH, where the driver has to take a break
according to his/her duty schedule. This part of a duty recovery is shown in
Figure 2.7.

Duty 2 is however not fully recovered yet. The passengering train driver will
be 13 minutes delayed for the meal break. Since the driver is entitled to a 20
minutes break according to the duty schedule, the driver will not be able to
cover the next train task on line B from KH to Holte station (abbreviated
HOT). In some situations it is possible to shorten the scheduled short break
of the driver, if the second short break can be prolonged and the overall
break rules described in Section 1.4.1 are satisfied in the duty. However, in
the present situation the driver has already held a 25 minutes break, hence
the time of the second break in the duty cannot be shortened. In order to
recover the situation, the train driver dispatcher assigns a half-trip on line
B from KH to HOT and back to KH to another driver assigned to Duty 3,

50 Railway Disruption Management

Figure 2.7: First step in recovery: passengering task.

who is on stand-by at that moment. Taking the half-trip to HOT will not
make the duty of the reserve driver infeasible, since the driver can be present
for the scheduled check-out at KH crew depot in due time. The particular
disrupted situation is recovered in two and a half hours. Given that no other
disruption occurs, all three train drivers return to their original duties at the
end of the recovery.

Figure 2.8: Recovery from the disruption.

2.4.2 Operations Research in Railway Crew Recovery

Crew disruption management within the railway industry has not been given
much attention by operations researchers yet. Apart from the publications

2.4 Train Driver Schedule Recovery 51

related to this thesis (Rezanova and Ryan [2006], Rezanova and Ryan [2009]),
only three applications within the railway industry related to the present
research have appeared in the literature.

An integer programming approach to a simultaneous train timetable and
crew roster recovery problem is presented in Walker et al. [2005]. Starting
with an integrated train and driver scheduling model, the authors develop
an approach for disruption recovery in real-time. The objective of the model
is to minimize the deviation from the existing schedule, while minimizing
the cost of the adjusted crew shifts. Limiting the time period for which the
schedule is resolved, the problem size is kept small enough to produce opti-
mal solutions fast. The problem is modelled as a set partitioning problem
with additional constraints, which ensure the time consistency of the pieces
of work within driver shifts and the maximum duration of shifts. The prob-
lem is solved with a branch-and-bound algorithm with column and constraint
generation. The linear programming relaxation of the problem is solved us-
ing the primal revised simplex method. Hot-starting from a solution, which
was feasible prior to the disruption, the optimization starts with pricing out
variables, which represent pieces of work and idle times for train tasks. When
the train variables are priced out, the driver shift variables are considered,
constructing columns from initially constructed potential driver shifts, in-
serting a meal break into each shift. Fractions are resolved using constraint
branching. Illegal train crossings and overtakes of trains are resolved by
adding constraints as these are needed. The model is tested on a one day
timetable for the Wellington Metro line in New Zealand, covered by 36 trains.
The train services were split into 564 pieces of work at possible relief points.
Delays of different duration were introduced on 3 trains in order to disrupt
the schedule. Optimal solutions were produced in reasonable time, ranging
from about 26 seconds to under 2 minutes on Pentium 200 MHz computer
with 64 MB RAM.

Huisman [2007] presents a solution to the Crew Re-Scheduling Problem for
train driver duties disrupted due to the maintenance work on train tracks.
Data from NS Reizigers is used to test the model. The model is formulated as
a set covering problem, allowing each train task to be covered more than once,
representing the deadheading of the crew. For each original duty, a large
set of “look-alike” duties is generated, replacing parts of the original duties
with different pieces of work. The Lagrangian relaxation of the model is

52 Railway Disruption Management

solved with column generation, pricing out “look-alike” duties with negative
reduced cost. If the set of “look-alike” duties is not sufficient to find the
optimal (or near optimal) solution, other duties with negative reduced cost
are generated as simple shortest paths on the directed graph, where each
vertex represents a piece of work, i.e. the sequence of train tasks on the
same rolling stock. The problem is solved to integrality using the heuristic
approach for the set covering problem of Caprara et al. [1999b] implemented
in the crew scheduling package TURNI (www.turni.it). Test results from two
real-life cases are presented. The first case with 586 duties and 5,683 train
tasks generates 8,767 “look-alike” and 18,4420 other duties. The problem
is solved within 9 CPU hours on Pentium IV computer (3 GHz, 512 MB
RAM). The second case with 773 duties and 7,740 train tasks generated
16,9974 “look-alike” and 20,3961 other duties. The problem is solved within
16 CPU hours. While the solution method is applicable for a short term re-
scheduling and is successfully employed at NS Reizigers, the solution times
are too long from the operational recovery decision support system point of
view.

Potthoff et al. [2008] consider the operational train driver rescheduling prob-
lem at NS. Given a disrupted timetable, the objective is to find a new crew
schedule that covers as many train tasks as possible. A core problem is de-
fined with a limited number of train drivers included in the problem, and
the solution is aimed to be achieved within a certain recovery period. The
problem is a set covering formulation of the crew scheduling problem with
additional variables, which explicitly determine if a certain train task is can-
celled or not. The set covering problem is solved using a Lagrangian heuristic
similar to the one proposed in Huisman [2007], improving the heuristic with
partial pricing, early termination and column fixing. First, an initial solution
to the core problem is computed. If some train tasks are still uncovered, a
neighbourhood exploration is performed by adding other drivers and train
tasks assigned to their duties. A driver is added to the set of candidate
drivers, if he/she can possibly cover the uncovered tasks. Moreover, a set of
replacement drivers which can possibly swap tasks with the candidate drivers
are also added to the problem. The solution is implemented in C++. Exper-
iments are run on an Intel Pentium D processor (3.4 GHz, 2 GB RAM). Ten
test scenarios are based on adjusted historical disruption events, with the 3
hours recovery periods, where between 15 and 59 driver duties are affected.
Three sets of experiments are based on different initial core problems, one

2.4 Train Driver Schedule Recovery 53

without reserve drivers, and two with 46 and 20 reserve drivers, respectively,
resulting in 30 test instances. Initial core problems contain from 31 to 117
drivers without including reserve and between 186 and 658 train tasks. The
computational times for solving the initial core problems span from 7 to 181
seconds. Further experiments were made with expanding the core problems
of those 8 out of 20 instances, where some tasks were not covered (at most 2
tasks were left uncovered). Neighbourhood explorations reduced the number
of uncovered tasks, but not in all instances. A neighbourhood exploration
run took between 6 and 392 second, dependent on the instance and the size
of the neighbourhood.

2.4.3 Airline Crew Recovery

Due to a very limited operations research literature on the train driver re-
covery and re-scheduling solutions, it is inevitable to expand the background
search to other transportation industries where similar workforce recovery
problems occur. The airline crew recovery has been a subject of research
since the mid 1990’s. The research within airline disruption management
started in the mid 1980’s, focusing on the aircraft recovery. For a resent
review of disruption management in the airlines, including aircraft, crew,
passenger and integrated recovery, please refer to Clausen et al. [2009]. We
present a compact literature review of the published work within the airline
crew re-scheduling and recovery in Appendix A.

A common assumption in the majority of the research within the airline crew
recovery is that the flight schedule and aircraft rotations are recovered before
the crew re-scheduling decisions are made (Wei et al. [1997], Stojković et al.
[1998], Guo [2005a], Nissen and Haase [2006], Medard and Sawhney [2007]).
This view is supported by the hierarchical recovery process, which is followed
in the airline operations control centers. However, a decision for cancelling a
flight are not taken unless it is ensured that there is an aircraft and a crew
available for covering the consecutive flights. When the flight schedule is
fixed, the crew recovery problem can be formulated as a tactical crew pairing
or rostering problem. Other authors extend the classical crew scheduling
formulation of the recovery problem by adding a set of decision variables,
which allow to cancel flight legs (Johnson et al. [1994], Lettovsky et al. [2000],

54 Railway Disruption Management

Yu et al. [2003]). Finally, problem formulations of the crew recovery problem,
which explicitly account for departure delays, are reported in Stojković and
Soumis [2001], Abdelghany et al. [2004], Stojković and Soumis [2005] and
Zhao et al. [2007]. Each minute of departure delay is given a cost in the
objective function, while the flight precedences and delay limitations are
ensured by constraints in the models.

All researchers agree that airline and the railway crew schedules are far too
large to re-optimize globally in real-time, hence only a shapshot of the entire
system within a certain time window is re-scheduled. Another important
feature of the recovery problems compared to the planning problems is that
feasible solutions are more important than optimal solutions because the
real costs of modified duties are difficult to estimate when the crew members
are payed fixed monthly salaries. However, it is important to consider the
additional costs for deadheading, overtime payments etc.

Airline crew recovery problems have typically a different time horizon than
the railway crew recovery problems on dense networks with the focus on the
passenger transportation during the daytime, such as the S-train network or
the Dutch railway network (Potthoff et al. [2008]). An airline crew pairing
usually lasts a few days and therefore includes one or more overnight. Rest
time requirements for pairings are often complex and very strict, and they
have to be considered in the airline recovery solutions. The situation is
different when the daily duties are re-scheduled. As an example, duty rules
regarding the time spent away from the base are not necessary to consider
when re-scheduling the train drivers on the S-train network. Apart from
the pairing requirements, the individual rostering constraints are considered
in some airline recovery problems (e.g. Medard and Sawhney [2007]). This
complicates the recovery problem even further.

The solution space for the crew recovery problem is often limited to resolving
the most urgent conflicts in the schedule. Along with the increasing computer
power, solution methods applied to the crew recovery problem has evolved
during the last two decades from simple heuristic methods to more complex
optimization approaches. However, since the solution space of the recovery
problem is limited to a certain part of the schedule, the overall solution to the
recovery is not proven to be optimal, even when exact optimization methods
are applied.

Chapter 3

Solution Framework

A framework for the train driver recovery problem (TDRP) is presented in
this chapter. We solve TDRP instances on a rolling time horizon, while
keeping the problem space of TDRP as small as possible, only expanding
it when necessary. The key concepts of the framework are: the disruption
neighbourhood, the recovery duty, the recovery period, and the disruption
neighbourhood expansion. The solution framework is generic and can, with
minor modifications, be used in the operation of any passenger train operator.
The framework is also applicable in combination with solution approaches to
crew recovery problems different from that which is presented in this thesis.

A prototype for a train driver recovery decision support system (TDR–DSS)
is presented in this chapter. The required data input to the TDR–DSS is
described, and the current data format used in the prototype to the TDR–
DSS is presented. We also propose an information flow between the system
and other actors involved in the recovery process at the S-train network.
Finally, the graphical user interface of the prototype is presented.

56 Solution Framework

3.1 Recovery Objectives

An ambitions operations researcher would claim that the objective of the
TDRP is to return to the original train driver schedule as soon as
possible by robust and minimum cost re-scheduling of the train
driver duties. However, a realistic train driver dispatcher’s primary objec-
tive for a recovery is to have a driver present at as many departures
as possible by any means.

As described in previous chapters, the recovery decision making at S-tog has a
hierarchical structure, and the train driver schedule is often the last resource
that is altered once recovery measures for the timetable and the rolling stock
plan have been taken. For this project we therefore focus on recovering the
train driver schedule as a stand-alone application without making an attempt
to recover the whole operation in one integrated manner.

The cost of the recovery is not determined by a physical cost of the driver
schedule (the drivers are already paid to be at work), but rather by the
fictitious cost which expresses how unattractive each recovery duty is. The
optimality of the solution is hence not as important as the feasibility of
the solution. Furthermore, it is more important to ensure feasibility of the
schedule in the very near future than to re-schedule driver duties several
hours ahead, since other disruptions are likely to occur over such a time
horizon.

Another objective is to modify the train driver schedule as little as possible.
Moreover, S-tog train driver dispatchers aim at disturbing as few train driver
duties as possible, i.e. two disturbed connections in one driver’s duty is more
preferable than one disturbed connection in each of two drivers’ duties. The
central part of the S-train network contains the busiest stations in the whole
network, where even a small departure delay can cause a knock-on effect
to the subsequently arriving trains. The train driver dispatchers therefore
prefer to avoid train driver changes from train to train at København H.

In the general sense, the word recovery means to regain or retake the posses-
sion of or to return something back to its original state. In order to justify
the train driver recovery problem name as opposed to the train driver re-

3.2 Key Concepts of the Framework 57

scheduling, the goal of the train driver recovery is to return to the original
train driver schedule as fast as possible after a disruption occurs. An impor-
tant condition for satisfying this objective is that the train timetable and the
rolling stock schedule are back to the original state at the end of the train
driver recovery. This is unlikely for large disruptions. However, the solution
method relies on a continuous recovery with a rolling horizon, as explained
further in this chapter. This allows the train driver schedule to be modified
again and again until the operation on the S-train network gets back to the
normal state or the day of operation ends.

3.2 Key Concepts of the Framework

3.2.1 Disruption Neighbourhood

When a disruption occurs, it does not instantly affect the whole timetable or
the whole train driver schedule. In the beginning of a disruption only a few
driver duties are disturbed. As time progresses, more and more train tasks,
and hence more and more train driver duties, can be affected by the same
disruption.

For a particular disrupted situation we identify a disruption neighbourhood,
which contains a number of train drivers and a number of train tasks. The
number of train drivers and train tasks within the disruption neighbourhood
is relatively small compared to the daily train driver schedule. Every train
driver within the disruption neighbourhood is to be assigned a recovery duty,
which is a sequence of activities assigned to a train driver as a substitute
of part of his/her original duty. A recovery duty contains either a subset
of train tasks within the disruption neighbourhood or does not contain any
train tasks, corresponding to the driver spending the time in reserve.

For each train driver in the disruption neighbourhood a commencing and a
terminating task are determined, defined by the length of the recovery period
as explained further. The recovery period is the time span between the
recovery start time and the recovery end time. The duration of the recovery

58 Solution Framework

period determines the size of the disruption neighbourhood, i.e. the longer
the recovery period, the larger the number of train tasks and train drivers
included in the disruption neighbourhood. A commencing task is the last
task assigned to the train driver in the original duty immediately before the
recovery start time or the first task of the driver’s original duty, if the duty
starts within the recovery period. The train driver has either just finished
or is still performing the commencing task at the beginning of the recovery
period. A terminating task is the task that follows the last task of the driver’s
recovery duty, if the original duty continues after the end of the recovery
period, or the last task in the recovery duty, if the original duty ends within
the recovery period. The commencing task of a reserve driver is a stand-by
task which ends at the recovery start time. The terminating task of a reserve
driver is always the check-out task of the original duty. All train drivers
in the disruption neighbourhood are required to return to their terminating
tasks at the end of the recovery duties. Computational experiments show
that the best recovery solutions are achieved if terminating tasks of train
drivers are limited to the tasks which begin at crew depots. However, in
order to demonstrate the disruption neighbourhood and different expansion
strategies, the train driver recovery duties in the presented examples can
finish at any terminal station.

The initial disruption neighbourhood for a given disruption is generated in
the following way: First, a set of train tasks which are disrupted within the
recovery period is collected. A train task is disrupted if it is delayed, can-
celled, re-routed or uncovered, i.e. assigned to a driver who is unavailable
for the departure. The collection of disrupted train tasks is based on the
available information about the disruption. The information can contain the
knowledge about actual and expected events which are the consequence of
the disruption. Information about either already delayed trains or the trains
which are expected to be delayed is available from the network control center.
Re-routings and cancellations of trains are usually determined for some time
in the future, when decisions about recovering operations on the S-train net-
work are made by the network traffic controllers. Information about acutely
absent drivers is reported directly to the train driver dispatcher. Second,
when the disrupted train task are determined, all train drivers assigned to
these tasks in the original train driver schedule are included in the initial dis-
ruption neighbourhood. For each driver the commencing and the terminating
train tasks are determined. Finally, all train tasks from the original driver

3.2 Key Concepts of the Framework 59

duties between the commencing and the terminating train tasks are included
in the train task set of the disruption neighbourhood. If any meal breaks
are scheduled in the drivers’ original duties between the commencing and
the terminating tasks, the start times and the lengths of the breaks are col-
lected. As an example, the initial disruption neighbourhood to the disrupted
situation described in Section 2.4.1 is presented in Figure 3.1. The disrup-
tion neighbourhood is defined for a recovery period of two hours and contains
two train drivers, assigned to Duty 1 and Duty 2, who are immediately af-
fected by the disruption, and three train tasks, line H (Farum–København
H, København H–Frederikssund) and line B (København H–Holte). When
a feasible recovery solution is found within the initial disruption neighbour-
hood, the objective of disturbing as few train driver duties as possible in the
recovery is achieved, since all initially involved driver duties are affected by
disruption, and hence need to be modified.

Figure 3.1: Initial disruption neighbourhood.

The length of the recovery period is important for the quality of the recovery
solution. The longer the recovery period, the larger the time span between
the commencing and the terminating task of each driver and the larger the
number of disrupted and non-disrupted train tasks that are included in the
disruption neighbourhood. Hence, more possible recovery duties can be gen-
erated within the disruption neighbourhood, and there is a better chance for
achieving a feasible solution. If the recovery period is too short and only
a very limited part of each disturbed driver duty is considered, it can be
impossible to find a feasible recovery solution within the initial disruption
neighbourhood. On the other hand, the computational time for a finding
recovery solution increases with the number of possible recovery duties to be

60 Solution Framework

considered in the optimization. Very long recovery periods are therefore not
appropriate, since the short response time is important when a decision has
to be made. A natural trade-off between the quality of the solution and the
computation times therefore occur in some problem instances. In any case,
there is little reason to find a recovery solution for the train driver schedule
several hours ahead. The scheduling solution at the end of the long recovery
period will most probably be useless as the exact information about disrup-
tions further in time is not available, and more disruptions are likely to occur
in the meantime.

3.2.2 Expansion of Disruption Neighbourhood

If a feasible solution to the train driver recovery cannot be found within the
initial disruption neighbourhood, the disruption neighbourhood is expanded
by either adding more drivers and/or extending the recovery period. Con-
sider the disruption neighbourhood example in Figure 3.1. The train driver
assigned to Duty 2 has to be available at Holte station (HOT) at the end of
the given two-hour recovery period. The same situation is described in the
manual recovery example in Section 2.4.1. Even if the driver is not assigned
to any train tasks within the initial disruption neighbourhood, no feasible
recovery duty could be generated for the driver. There is simply not enough
time to travel from the arrival station of the commencing task, Farum station
(FM), to the crew depot at København H (KH) to hold the scheduled meal
break, and then to travel to the departure station of the terminating task.
In a situation where a feasible recovery duty cannot be generated for at least
one train driver in the disruption neighbourhood, the recovery period for the
affected driver is expanded with a certain period of time, e.g. 30 minutes.
The recovery period expansion is illustrated in Figure 3.2.

After the recovery period expansion for the train driver assigned to Duty 2
the disruption neighbourhood contains two train drivers and four train tasks,
the newly added task being the train of line B from HOT to KH. Due to the
meal break constraint of the driver assigned to Duty 2 it is still not possible
go generate a feasible recovery solution. The driver assigned to Duty 1 can
cover the half-trip of line B after driving the train from FM to KH, but then
the train task of line H from KH to Frederikssund station (FS) is not covered.

3.2 Key Concepts of the Framework 61

Figure 3.2: Recovery period expansion for Duty 2.

In this situation it is necessary to expand the disruption neighbourhood by
adding train drivers to the problem. The obvious choice here is to add one
or more reserve drivers. The disruption neighbourhood expansion by adding
one reserve driver is shown in Figure 3.3. In Section 5.7 it is explained how
the disruption neighbourhood expansion is handled in the solution process.

Figure 3.3: Adding a reserve driver to the disruption neighbourhood.

3.2.3 Rolling Time Horizon Recovery

A few minutes after the solution to a particular instance of the TDRP is
found, a new disruption may occur or new information about the impact of
the current disruption may become available. It is therefore very important

62 Solution Framework

that the decision support system for the train driver recovery is constantly
updated with new disruption information and the TDRP instances are gen-
erated and solved sequentially with a rolling time horizon during the day
of operation. In other words, we attempt to solve the dynamic problem by
solving a sequence of static train driver recovery problem instances generated
with a rolling time horizon.

We define a monitoring interval as the period of time, which is considered
to be suitable for how often the recovery solutions are generated. The moni-
toring interval can, for instance, be set to 20–30 minutes. Regardless of how
much disruption information is available, it can be used for generating the
initial disruption neighbourhood. If no disruption information is available at
the time of the system update, no changes are applied to the train driver
schedule. The length of the monitoring interval must not be too long, since
it is important to evaluate the status of the situation as often as possible.

The continuous recovery process on a rolling time horizon is illustrated in
Figure 3.4. The changes to the train schedule caused by the first disruption
are applied to the undisturbed schedule, and the first disruption neighbour-
hood is defined (Part I of Figure 3.4). If the solution to the first TDRP over
the initial disruption neighbourhood is infeasible, the disruption neighbour-
hood is expanded by for example adding other drivers as shown in Part II
of Figure 3.4. When a feasible solution is achieved and accepted by a train
driver dispatcher, the driver schedule is modified according to that solution.
If another disruption occurs, the changes caused by the second disruption
are applied to the “new” schedule, which contains the solution to the pre-
vious TDRP (Part III of Figure 3.4). The new disruption neighbourhood
may or may not include some or all drivers from the previous instance. The
new instance of the TDRP is resolved over a new disruption neighbourhood
and the train driver schedule is modified accordingly. The recovery process
continues as illustrated on Part IV and Part V of Figure 3.4.

In each TDRP iteration, the term original schedule refers to the train driver
schedule obtained by solving the previous instance of the TDRP or, in case of
the first daily disruption, to the planned schedule employed at the beginning
of the day. Likewise, the original duty of a driver is the duty generated for
the driver in the previous instance of the TDRP or the unchanged duty from
the undisturbed schedule.

3.3 Decision Support System Prototype 63

Figure 3.4: The rolling time horizon recovery process.

3.3 Decision Support System Prototype

3.3.1 Data Input to TDR–DSS

The following input data is necessary for generating and solving an instance
of TDRP in the current version of the prototype for the train driver recov-
ery decision support system (TDR–DSS) developed during this project: the
scheduled daily timetable, the scheduled daily train driver schedule, and the
disruption data, which includes changes to the timetable expressed through
train delays, re-routings and cancellations, and information about driver de-
lays or absences. Data representations currently used in the prototype are
described further in this section. Apart from this information, the train
driver duty rules components have to be present in the system. In a real-life
implementation of the TDR–DSS it is advisable to include the daily rolling
stock schedule and lists of changes to the scheduled train unit routes as a
consequence of recovery solutions made by the rolling stock dispatcher.

The Timetable

The scheduled timetable is presented by a set of trains, each train having a
unique train number and a stopping pattern, which is a sequence of stations

64 Solution Framework

with the scheduled departure and arrival times. An example of the stop-
ping pattern for a train number 10100 of line A from Hundige to Hillerød
station in timetable-2007 is presented in Table 3.1. The complete stopping
pattern of this train can be found in Appendix B. An empty entry in the
third column means that the train passes the corresponding station without
stopping, e.g. train 10100 does not stop at Virum or Sorgenfri stations. The
timetable is given in a hh:mm& format. An ampersand (&) indicates that
the arrival/departure time takes place later than hh:mm:30, e.g. 23:51& in
the timetable stands for 23:51:40, the scheduled arrival of the train at Ishøj
station. The official timetable for the passengers includes departure times
for the stopping stations only, given in a hh:mm format.

Table 3.1: Example of a stopping pattern.

Station Abbr. Arr/Stop Time Dep/Pass Time
Hundige UND 23:49

Ishøj IH 23:51& 23:52
Vallensbœk VLB 23:54& 23:54&

...
...

...
...

København H KH 00:14:00 00:15:00
...

...
...

...
Lyngby LY 00:33& 00:33&
Sorgenfri SFT 00:35&
Virum VIR 00:37
Holte HOT 00:38 00:38&

Birkerød BI 00:42 00:42&
Allerød LI 00:47 00:47&
Hillerød HI 00:54

The Train Driver Schedule

The daily train driver schedule is a set of train driver duties. Each train driver
duty is a set tasks performed in a sequence, and the undisturbed train driver
schedule covers all train tasks in the daily timetable of S-tog. The prototype
to the TDR–DSS reads two schedule data representations that are shown

3.3 Decision Support System Prototype 65

in Appendix C. An overview of the stations on the S-train network with
the corresponding abbreviations used by the planners at S-tog is presented
in Appendix D. Abbreviations of activities are presented in Section 4.2.1,
while the technical connection times are described in Section 1.4.1. To give
an example, a part of the duty 209 is shown in Figure 3.2. Briefly, the
driver assigned to the duty 209 checks in at København H depot at 11:53,
drives a full trip on the train of line H (København H–Farum–København
H–Frederikssund–København H), has a long break which is scheduled for 30
minutes, but with the slack in the duty it lasts for 35 minutes from 15:37 to
16:42, and continues with the duty until 18:41, when the checks-out finishes.

Table 3.2: A train driver duty representation.

DutyNr TrainNr Task Abbr. StartTime EndTime DepStation ArrStation
209 CIN 11:53 12:08 KH KH
209 BEV 12:08 12:12 KH KH
209 50136 PIT 12:12 12:13 KH KH
209 50136 TFF 12:13 12:52 KH FM
209 SPD 12:52 12:56 FM FM
209 50241 TFF 13:08 13:47 FM KH
209 50241 TFF 13:48 14:32 KH FS
209 SPD 14:32 14:36 FS FS
209 50146 TFF 14:46 15:32 FS KH
209 50146 PIF 15:32 15:33 KH KH
209 BEV 15:33 15:37 KH KH
209 PAU 15:42 16:12 KH KH
209 BEV 16:12 16:16 KH KH
...

...
...

...
...

...
...

209 BEV 18:27 18:31 KH KH
209 CUD 18:31 18:41 KH KH

Disruption Data

Disruption data is preprocessed into a list of deviations from the scheduled
train stopping pattern and a list of train driver delays and absences, which
are independent on deviations to the timetable (e.g. driver delay to a duty
check-in or an acute illness). Table 3.3 presents the four disruption data types
with the required data entry fields. The four data types are used to express

66 Solution Framework

changes to the timetable and the train driver schedule. The same train task in
the schedule can be affected by several disruption data types. For example,
a delayed train which is turned before the terminal station is reached for
the timetable recovery purposes is described as a combination of departure
delays, arrival delays and a partial train task cancellation. Disruption data
input can be actual or expected based on the information received during
the last monitoring interval, as described in Section 3.2.3. Disruption data
representation used for computational experiments is described in Section
6.1, where Table 6.1 presents an example of a disrupted train.

Table 3.3: Disruption data types.

Departure Train Delay
[TrainNr,

DepStation,

NewDepTime]

A departure delay larger than a certain
predefined minimum delay time (e.g. 1
or 2 minutes).

Arrival Train Delay
[TrainNr,

ArrStation,

NewArrTime]

An arrival delay larger than a certain pre-
defined minimum delay time (e.g. 1 or 2
minutes).

Train Task Cancellation
[TrainNr,

FromStation,

ToStation]

A cancelled train task or a part of a train
task. A part of a cancelled train task is
usually connected to a train re-routing,
for instance when a train is turned before
reaching the terminal station.

Driver Unavailability
[DutyNr, FromTime,

FromStation,

ToTime, ToStation]

A train driver delay for a train task in
the duty due to other reasons than the
delay of the driver’s previous train task.
A train driver absence from the duty or a
part of the duty.

3.3 Decision Support System Prototype 67

3.3.2 Information Flow Diagram

An overview of a possible information flow between the train driver recovery
decision support system and other actors and systems at S-tog is shown in
Figure 3.5. Compared to the current recovery information flow shown in Fig-
ure 2.4, the presence of TDR–DSS makes the train driver recovery process
automatized to a higher degree than the current process. The information
flow scenario presented here is only one of the possible configurations. It re-
quires either a direct communication or an interface between TDR–DSS and
the network traffic control system DIC-S, the crew scheduling system PDS,
and the rolling stock scheduling system MSS. Furthermore, the suggested
scenario allows a direct communication from TDR–DSS to the train drivers
via, for example, personal digital assistants (PDA’s). However, due to the
current safety requirements it is not allowed to communicate vital informa-
tion to the train drivers using electronic equipment only, e.g., by sending a
text message to the train driver’s mobile phone. The train driver dispatcher
is required to speak to the train driver personally in order to make sure that
the message is received correctly and the driver confirms to act accordingly.
Therefore, information about changes in train driver duties is sent through
two communication channels in the suggested scenario.

On the night before the day of operation the timetable and the train driver
schedule are transferred to TDR–DSS from the crew scheduling system PDS,
and the rolling stock schedule is transferred from the rolling stock scheduling
system MSS. The short-term re-scheduling adjustments to the rolling stock
and crew schedules are uploaded to the scheduling systems no later than 12
hours prior the start of operations, i.e. at approximately 3:30 p.m. on the
afternoon before the day of operation. Therefore, the schedules due for the
next day of operation can be transferred to TDR–DSS immediately after this
deadline or, preferably, after the end of the daily operations at approximately
2:30 a.m. the following morning.

During the day of operations the timetable disruption data is supplied from
the network traffic control system DIC-S, including train delays, re-routings
and cancellations. Information about acute absences or delays of train drivers
is received by the train driver dispatcher, who manually adjusts TDR–DSS.
If disruption events make the current train driver schedule infeasible, the

68 Solution Framework

Figure 3.5: Train driver recovery decision support system information flow.

system solves the train driver recovery problem, e.g. with the solution method
presented in this thesis or otherwise. The train driver dispatcher chooses one
of the suggested solutions if more than one solution is generated and makes
adjustments to the solution if necessary. Changes to the train driver duties
are reported to the train drivers. If the train driver schedule cannot be
repaired, the system alerts the network traffic control system.

When a daily operation is over at approximately 2:30 a.m. the following
morning, all changes to the driver duties registered during the operational
period are transferred to the crew scheduling system. PDS has an interface
to the personnel database (SAP), where overtime work and absences of the
train drivers are registered.

3.3 Decision Support System Prototype 69

3.3.3 Visual Representation of the Prototype

During this project it has become apparent that implementation of a graph-
ical user interface (GUI) is a necessity for presenting the recovery solutions
generated by the developed prototype to the planners and dispatchers at S-
tog. Even though it was not originally planned, the graphical user interface
became the starting point of a better understanding and a fruitful cooper-
ation between the Operations and the Research. The colour scheme and
the visual appearance of the GUI resembles that of the short-term sched-
uler of PDS, which is currently used for dispatching purposes. This way the
potential end-users of the system did not have to adjust to the new pro-
gram appearance. Every train driver duty appears as a line of work on a
black background. Train tasks, passengering tasks, taxi drives, meal breaks,
stand-by tasks, check-ins and check-outs are shown with certain colours and
graphical layouts. As an example, a green line represents a train task and
three white stars represent a 30 minutes break. The GUI has not been de-
veloped for the purpose of user interaction with the system, and only a few
other functions besides the train driver schedule graphical representation are
employed.

We present an example in order to illustrate the appearance of the GUI. We
consider a disruption neighbourhood within a recovery period of 12:00–13:45.
The disruption neighbourhood contains 20 train drivers. Among these, 16
train drivers are included because their duties are possibly affected by disrup-
tions. At least one train task in the affected driver duties within the chosen
recovery period is disrupted, i.e. delayed, re-routed or cancelled. Moreover,
we include 4 reserve train drivers in the disruption neighbourhood. Figure
3.6 shows a disrupted train driver schedule, and Figure 3.7 shows the recov-
ery solution. Table 3.4 gives explanations to the GUI example. For each
train driver we describe the part of the original duty within the disruption
neighbourhood, where the first and the last task are the commencing and the
terminating tasks, respectively. Notice that the terminating tasks of some
train drivers departs after 13:45. The difference in recovery periods of the
train drivers is caused by the restriction which does not allow the terminat-
ing tasks to start at other station than a train driver depot, as explained
in Section 3.2.1. Disruptions and their effect on the train driver duties are
described in the subsequent columns of the table. The last column in Table

70 Solution Framework

3.4 presents the recovery duties found by solving the TDRP.

Figure 3.6: Graphical user interface: disrupted schedule.

3.3 Decision Support System Prototype 71

Figure 3.7: Graphical user interface: recovered schedule.

72 Solution Framework
T
ab

le
3.4:

D
escrip

tion
of

d
isru

p
tion

n
eigh

b
ou

rh
o
o
d

an
d

solu
tion

s
in

th
e

G
U

I
ex

am
p
le.

N
r

O
rig

in
a
l
D

u
ty

D
isru

p
tio

n
D

isru
p
t.

E
ff
ect

R
eco

v
ery

D
u
ty

4
3

9
2
7
-9

2
9

a
rr.

d
ela

y
9
2
7

a
t

K
J

n
o
n
e

9
2
7
-9

2
9

4
7

7
1
4
-7

1
5
-7

1
6

a
rr.

d
ela

y
7
1
4

a
t

H
I

n
o
n
e

7
1
4
-7

1
5
-7

1
6

5
0

1
1
8
5
-P

A
D

-1
1
8
-P

A
D

a
rr.

d
ela

y
1
1
8
5

a
t

K
H

b
ro

k
en

co
n
n
ec-

tio
n

1
1
8
5
-P

A
D

1
1
8
5
-P

A
D

-1
4
0
-P

A
S
-P

A
D

5
2

1
3
8
-P

A
D

-1
4
0
-1

4
1
-1

4
2

a
rr.

d
ela

y
1
3
8

a
t

K
H

;
re-

ro
u
tin

g
d
ep

.
1
4
1

fro
m

H
T

Å
to

G
L

b
ro

k
en

co
n
n
ec-

tio
n

1
4
0
-1

4
1

1
3
8
-P

A
D

-P
A

S
-1

4
1
-1

4
2

5
6

C
IN

-2
1
6
2
-P

A
D

re-ro
u
tin

g
d
ep

.
2
1
6
2

fro
m

K
J

to
N

H
T

;
a
rr.

d
ela

y
2
1
6
2

a
t

K
H

b
ro

k
en

co
n
n
ec-

tio
n

C
IN

-2
0
6
2
-

P
A

D

C
IN

-T
A

X
I-P

A
D

8
1

3
2
0
4
-P

A
D

-3
2
0
6
-3

2
0
7
-3

2
0
8
-3

2
0
9
-P

A
D

re-ro
u
tin

g
d
ep

.
3
2
0
7

fro
m

H
T

Å
to

G
L
;

ca
n
cel.

3
2
0
8

fro
m

K
H

to
H

O
T

;
ca

n
cel.

3
2
0
9

fro
m

H
O

T
to

K
H

b
ro

k
en

co
n
n
ec-

tio
n

3
2
0
6
-3

2
0
7
-

P
A

D

3
2
0
4
-P

A
D

-3
2
0
6
-1

0
3
1
-R

D
G

-P
A

D

8
2

1
0
8
6
-1

0
8
7
-1

0
8
8
-1

0
8
9
-P

A
D

a
rr.

d
ela

y
1
0
8
6

a
t

K
H

b
ro

k
en

co
n
n
ec-

tio
n

1
0
8
6
-1

0
8
7

1
0
8
6
-R

D
G

-P
A

D

1
7
0

2
9
8
8
-2

9
8
9
-2

9
9
0
-P

A
D

a
rr.

d
ela

y
2
9
8
8

a
t

K
H

b
ro

k
en

co
n
n
ec-

tio
n

2
9
8
8
-2

9
8
9

2
9
8
8
-R

D
G

-P
A

D

1
7
1

2
5
8
-2

5
9
-P

A
D

-2
6
1

a
rr.

d
ela

y
2
5
8

a
t

H
O

T
n
o
n
e

2
5
8
-2

5
9
-P

A
D

-2
6
1

1
7
4

3
0
8
6
-3

0
8
7
-P

A
U

-3
0
8
9

a
rr.

d
ela

y
3
0
8
6

a
t

H
I

n
o
n
e

3
0
8
6
-3

0
8
7
-P

A
U

-3
0
8
9

1
7
5

2
3
6
6
-2

3
6
7
-P

A
D

-2
3
6
9

a
rr.

d
ela

y
2
3
6
6

a
t

H
O

T
n
o
n
e

2
3
6
6
-2

3
6
7
-P

A
D

-2
3
6
9

1
8
2

1
6
1
3
-1

6
1
4
-1

6
1
5
-1

6
1
6

a
rr.

d
ela

y
1
6
1
3

a
t

H
I

n
o
n
e

1
6
1
3
-1

6
1
4
-1

6
1
5
-1

6
1
6

1
9
0

1
6
1
-1

6
2
-P

A
D

a
rr.

d
ela

y
1
6
1

a
t

H
I

n
o
n
e

1
6
1
-1

6
2
-P

A
D

1
9
1

1
0
2
8
-1

0
2
9
-1

0
3
0
-1

0
3
1
-P

A
U

a
rr.

d
ela

y
1
0
2
8

a
t

H
O

T
;
d
ep

.
d
ela

y
1
0
3
0

fro
m

K
H

;
re-

ro
u
tin

g
a
rr.

1
0
3
0

fro
m

H
T

Å
to

G
L

b
ro

k
en

co
n
-

n
ectio

n
1
0
2
8
-

1
0
2
9
;1

0
3
0
-1

0
3
1

1
0
2
8
-1

0
2
9
-1

0
3
0
-1

0
3
1
-P

A
U

1
9
3

1
8
6
6
-1

8
6
7
-1

8
6
8

a
rr.

d
ela

y
1
8
6
6

a
t

K
J

n
o
n
e

1
8
6
6
-1

8
6
7
-1

8
6
8

1
9
4

2
0
2
6
-2

0
2
7
-2

0
2
8
-2

0
2
9
-P

A
U

d
ep

.
d
ela

y
2
0
2
8

fro
m

K
H

;
re-

ro
u
tin

g
a
rr.

2
0
2
8

fro
m

B
A

to
H

E
R

;
ca

n
cel.

2
0
2
9

fro
m

B
A

to
K

H

b
ro

k
en

co
n
n
ec-

tio
n

2
0
2
8
-P

A
U

2
0
2
6
-2

0
2
7
-R

D
G

-P
A

U

3
0
3

R
D

G
n
o
n
e

n
o
n
e

R
D

G
-2

9
8
9
-2

9
9
0
-P

A
U

-R
D

G
3
0
4

R
D

G
n
o
n
e

n
o
n
e

R
D

G
-1

1
8
7
-1

1
8
8
-P

A
U

-R
D

G
3
0
5

R
D

G
n
o
n
e

n
o
n
e

R
D

G
-2

0
2
8
-P

A
S
-P

A
U

-R
D

G
1
5
0
7

C
IN

-R
D

G
n
o
n
e

n
o
n
e

C
IN

-1
0
8
7
-1

0
8
8
-1

0
8
9
-P

A
S
-2

1
6
2
-P

A
U

-R
D

G

3.3 Decision Support System Prototype 73

3.3.4 Implementation Remarks

During irregular operations the train driver dispatcher is often in possession
of information which is not yet available in the system or which is difficult to
express through e.g. costs of recovery duties in order to influence the recovery
solution. It is therefore very important that the train driver recovery decision
support system is semi-automatic in a way that it allows human interference
with the solution to TDRP.

The end-users of TDR–DSS must be able to e.g. fix {driver, train} and
{train i, train j} pairs manually during the generation of recovery duties, i.e.
to assign particular train tasks to particular drivers and force a particular
train task j to be assigned to the same duty immediately after the train task
i. Fixing a {driver, train} pair, i.e. forcing a particular train driver to cover
a particular train task is already implemented in the solution method (see
Section 5.8.2). Fixing a {train i, train j} pair can be implemented by merging
vertices corresponding to train i and train j in duty graphs. Duty graph
generation is described in Section 4.2.2. Merging vertices can be implemented
by removing all outgoing arcs from the vertex corresponding to train i except
from the arc to train j, and at the same time removing all incoming arcs to
train j except from the arc from train i. The train driver dispatcher must also
be able to generate and adjust disruption neighbourhoods, i.e. to add and
remove train drivers and train tasks manually from TDRP problem instances.

Several recovery objectives can be considered to be implemented as standard
features of the system, so that a train driver dispatcher could be able to
choose a recovery objective according to the particular disrupted situation
on the S-train network. At present the objectives of recovery are expressed
through the cost of arcs in duty graphs, as described in Section 4.2.4. As
an example, by setting higher costs to passengering tasks and deadheading
in a taxi, the recovery objective is aimed at minimizing the physical cost of
duties, i.e. the cost of taxi rides and the costs of having train drivers engaged
in activities which do not involve driving a train. As another example, the
recovery objective is aimed at the robustness of the solution by setting high
costs on tight connections between train tasks.

We suggest that the TDR–DSS must be developed in tight cooperation with

74 Solution Framework

the end-users, i.e. the train driver dispatchers at S-tog. There are at least
two reasons for that. Firstly, constant communication with the end-users
is essential for the quality and the speed of the system development and
implementation. The train driver dispatchers have operational knowledge,
which is incomparable to the knowledge about S-tog operations any software
developer can obtain in a short period of time. Secondly, if the end-users
are consulted with respect to e.g. the visual appearance and some program
features, there will exist an initial acceptance of the system. Introduction of
new information technology systems always requires time and efforts from
the end-users for learning and growing accustomed to the new system. This
transition time will be shortened if many end-users are initially involved in
the system development.

Chapter 4

Model and Network

A set partitioning problem formulation of the train driver recovery problem
is presented in this chapter. We show that the linear programming (LP)
relaxation of the problem formulation has strong integer properties due to
the structure of the constraint matrix. This explains why solutions to the
LP relaxation of the problem are integral in the majority of test cases.

The construction of the network used for recovery duty generation is also
presented in this chapter. We show that a resource constrained path from
the source vertex to the sink vertex of the generated network satisfies all
requirements for recovery duty feasibility.

76 Model and Network

4.1 Integer Programming Model

4.1.1 Set Partitioning Problem Formulation

We formulate the train driver recovery problem (TDRP) as a set partitioning
problem. Let K be the set of train drivers and N be the set of train tasks
that need to be covered within the chosen disruption neighbourhood. Let
Rk be the set of feasible recovery duties for a driver k ∈ K. Recovery duty
feasibility is discussed in Section 4.2.1.

The cost ck
r reflects the unattractiveness of the recovery duty r ∈ Rk for the

driver k ∈ K in the recovery schedule. A binary decision variable xk
r equals

1 if the duty r ∈ Rk for the driver k ∈ K is included in the recovery solution
and equals 0 otherwise. A binary parameter ak

ir is used to define whether or
not the task i ∈ N is covered by the duty r ∈ Rk.

(TDRP) Minimize
∑
k∈K

∑
r∈Rk

ck
rx

k
r (4.1)

Subject to
∑
r∈Rk

xk
r = 1 ∀k ∈ K, (4.2)∑

k∈K

∑
r∈Rk

ak
irx

k
r = 1 ∀i ∈ N, (4.3)

xk
r ∈ {1, 0} ∀r ∈ Rk, ∀k ∈ K. (4.4)

The train driver recovery problem (4.1) – (4.4) aims at finding a minimum
cost set of feasible train driver recovery duties for train drivers within the
disruption neighbourhood, such that all train tasks within the recovery period
are covered. Even though the TDRP can be viewed as a feasibility problem,
it is important to reflect the stability (or robustness) of the recovery solution
by minimizing the number of modifications from the original schedule. This
can be achieved by using a disruption neighbourhood which is as small as
possible and by setting high costs in the objective function (4.1) to highly
modified recovery duties.

4.1 Integer Programming Model 77

The train driver constraints (4.2) ensure that each train driver is assigned
to exactly one recovery duty in the recovery schedule. The train driver
constraints have a generalised upper bound (GUB) structure, since the con-
straints are disjoint and each column contributes to exactly one driver con-
straint. The train task constraints (4.3) have a set partitioning structure and
ensure that each train task in the recovery schedule is covered exactly once.
Constraints (4.4) are the integer constraints of the model. Since the model
represents a recovery problem, all “global” constraints, which are usually
relevant for a train driver scheduling problem, are not relevant here. For ex-
ample, the maximum number of long duties in the schedule or the number of
drivers starting at a certain depot is not important for the schedule recovery.

The TDRP model (4.1)–(4.4) has the pure set partitioning problem structure
of a crew rostering problem. The generalised set partitioning formulation of
the crew rostering problem is used in real-life applications within the air-
line industry for e.g. Air New Zealand Butchers et al. [2001] and Air France
Gamache et al. [1999]. We should draw attention to particular properties
of the TDRP model. First, the column structure of the matrix specified by
(4.3) satisfies many implicit constraints which govern the feasibility of recov-
ery duties. These constraints are therefore not explicitly added to the model.
Second, as observed in Ryan and Falkner [1988], the linear programming re-
laxation of the set partitioning formulation of the crew rostering problem
possesses strong integer properties due to the existence of the generalised
upper bound crew constraints, which give the perfect structure of the sub-
matrix, corresponding to each crew member. The structure of the constraint
matrix A of the train driver recovery problem has a structure similar to the
set partitioning formulation of the crew rostering problem. It implies that
the linear programming relaxation of the train driver recovery problem also
possesses strong integer properties. We discuss this relationship to perfect
matrix theory (Padberg [1974]) in the next section.

4.1.2 Integer Properties of the Model

Four classes of matrices are known to have the integral property : totally uni-
modular matrices (Hoffman and Kruskal [1956]), balanced matrices (Berge
[1972]), perfect matrices (Padberg [1974]) and ideal matrices (Lehman [1979],

78 Model and Network

Padberg [1993]). A survey of some results on perfect, ideal and balanced ma-
trices is presented by Conforti et al. [2001]. Having a set partitioning problem
with the constraint matrix that has the integral property implies that the fea-
sible region of the LP-relaxation of the problem has extreme points that are
all integral. Having a feasible region with only integral extreme points means
that one only needs to solve the LP-relaxation to obtain the optimal integer
solution to a set partitioning problem. Note that when multiple optimal so-
lutions exist, fractional solutions with an equivalent objective function value
also exist. Ryan and Falkner [1988] describe characteristics of scheduling set
partitioning models which can be used in order to exploit the unimodular,
balanced and perfect structure of the constraint matrices.

The constraint matrix of the train driver recovery problem has a block struc-
ture, where every block of columns corresponding to recovery duties for one
train driver is represented by a perfect matrix. This is demonstrated in the
following example. Let A be a zero–one matrix corresponding to the con-
straints (4.2)–(4.3) of the TDRP. A is an m×n matrix, where m = |K|+ |N |
is the number of rows in the problem and n =

∑
k∈K |Rk| is the number of

columns. Let Ak be a submatrix of A corresponding to columns belonging
to the driver k. Ak is an m × nk matrix, where nk = |Rk| is the number of
columns in the problem belonging to the same driver k and m is the number
of rows in A. An example of a matrix A for a disruption neighbourhood
involving |K| = 4 drivers who are to be assigned to |N | = 3 train tasks is
shown on Figure 4.1.

Figure 4.1: Example of a constraint matrix structure of the TDRP.

According to Theorem 3.16 by Padberg [1974], an m×n matrix A is perfect
if and only if it does not contain any m× l submatrices Al, where 3 ≤ l ≤ n,

4.1 Integer Programming Model 79

with the following property denoted πβ,l: Al contains an l × l nonsingular
submatrix Bl with row and column sums all equal to β ≥ 2, while each row
of Al, which is not in Bl, is either componentwise equal to a row in Bl or
has a row sum strictly less than β. Padberg refers to submatrices with such
a property as to “forbidden submatrices”.

In order to illustrate the theorem, let us examine the 4 × 4 matrix A1 on
Figure 4.2. A1 is the submatrix of A from Figure 4.1, which belongs to
the driver k = 1. Rows with only zero entries are neglected. All m × l
submatrices of A1 for 3 ≤ l ≤ 4 are shown in Figure 4.3. According to the
theorem, in order for A1 to be perfect, the five matrices shown in Figure 4.3
must not contain any l × l nonsingular submatrices with the πβ,l property,
where β ≥ 2 and 3 ≤ l ≤ 4. As an example, let us generate all nonsingular
l×l submatrices Bl for l = 3 from the 4×3 submatrix A1

3. The four generated
3× 3 submatrices are shown on Figure 4.4. All matrices are nonsingular.

The only one matrix among the four B3 matrices with equal sums of rows
and columns is B3

3 with β = 2. The only row of A1
3, which is not in B3

3 , is row
1, which is the train driver constraint represented by a vector (1, 1, 1). The
row sum of this row is 3 > β. Hence, A1

3 does not contain any submatrices
with the πβ,l property. The procedure of generating l×l nonsingular matrices
with l = 3, 4 and equal sums of rows and columns is applied to A2

3, A
3
3 and

A1
4. None of the matrices contains any submatrices with the πβ,l property.

Hence, the matrix A1 is perfect. According to Padberg [1974], an m × n
zero–one matrix A is perfect if the polytope P = {x ∈ Rn : Ax ≤ ẽ, xj ≥
0, j = 1, ..., n}, where ẽT = (1, ..., 1) with m components, has only integral
vertices, i.e. if P = PI = conv{x ∈ P : xj = 0 or 1, j = 1, ..., n}.

Figure 4.2: Driver k = 1 submatrix A1 of A.

Every submatrix Ak of A has a row corresponding to the train driver GUB

80 Model and Network

Figure 4.3: All m× l submatrices of A1 with l = 3, 4.

Figure 4.4: All l × l submatrices of A1
3 with l = 3.

constraint (4.2). As observed by Ryan and Falkner [1988], the GUB crew con-
straint in the SPP formulation of the crew rostering problem is a “dominant”
row in the submatrix of the crew member k, which prevents the existence of
the πβ,l property and ensures that each Ak is perfect. Indeed, none of the
m× l submatrices Al where 3 ≤ l ≤ n can contain a nonsingular submatrix
Bl with the row sum strictly larger than the dominant row corresponding to
(4.2). Therefore, due to the existence of the dominant train driver constraint,
every driver submatrix Ak of A is perfect according to Padberg [1974].

The perfectness of a submatrix Ak or any other matrix with a GUB constraint
can also be shown using graph theory. Let Gk

I be the intersection graph
associated with a driver submatrix Ak. The nodes of the intersection graph
Gk

I correspond to columns of Ak and every pair of nodes is connected by an
edge in Gk

I if and only if the two corresponding columns in Ak have a common
1-entry in some row. An example of the intersection graph G1

I associated with
the driver matrix A1 of driver k = 1 is shown in Figure 4.5. Note that graph
G1

I is complete.

A graph is perfect if for every induced subgraph, the chromatic number is

4.1 Integer Programming Model 81

Figure 4.5: Intersection graph G1
I associated with A1.

equal to the cardinality of the maximal complete subgraph (i.e. the maxi-
mal clique) (see Lovász [1972], re-printed in Lovász [2006]). The chromatic
number is the number of different colours necessary to colour all nodes in
the graph such that adjacent nodes have different colours. Every subgraph
induced from any intersection graph Gk

I of the driver submatrix Ak of TDRP
is complete, since the GUB constraint ensures that all nodes in the graph
are connected. The chromatic number of a complete graph equals the num-
ber of nodes in the graph. A maximal complete subgraph (i.e. a maximal
clique) of a complete graph is the graph itself with the cardinality equal to
the number of nodes in the graph. Hence, in any induced subgraph of an
intersection graph Gk

I of any driver submatrix the chromatic number equals
to the maximum size of the complete subgraph. Therefore, Gk

I is perfect for
any choice of k.

According to Padberg [1974], a necessary condition for a zero–one matrix
to be perfect is that it contains the incidence vectors of all maximal cliques
of the associated intersection graph. A zero–one matrix, whose columns are
indexed by the nodes of the associated intersection graph GI and for which
every row is the incidence vector of a maximal clique of GI is called a clique-
matrix. Padberg [1974] states that a clique-matrix is perfect if and only if the
associated intersection graph is perfect. As an example, the clique-matrix of
G1

I is the GUB row of matrix A1, i.e. the train driver constraint (4.2) of the
driver k = 1. Since Gk

I is perfect for any k ∈ K, then the clique-matrix of
any Gk

I is perfect. Since each matrix Ak contains the incidence vector of the
maximal clique of Gk

I , i.e. the GUB row, any driver submatrix Ak is perfect.
All other rows in Ak are not essential for explaining why the matrix is perfect,
as long as Ak contains a GUB row.

82 Model and Network

Since every submatrix representing one driver’s block of columns is perfect,
fractional solutions will never appear within one driver’s block of recovery du-
ties. Any fractions in an optimal solution to the LP-relaxation of the TDRP
can therefore only occur between blocks of columns belonging to different
drivers. In other words, if a fractional solution occurs, it means that two or
more drivers compete for one or more train tasks in their recovery duties.
Two drivers can only compete for the same train task, if both drivers are
available at the departure station prior the time of the train departure. As
mentioned in Section 1.4.1, in the standard S-tog’s train driver schedule, the
train tasks arriving at terminal stations have unique subsequent tasks due
to the geographical position of the stations and the train line pattern in the
S-train network. Hence the number of train tasks each driver can compete
for with other drivers in the planned S-tog schedule is very limited. The
situation can be different in recovery situations, where train driver duties
can be constructed in a less restrictive way, and “unnecessary” deadheading
tasks, which are usually not allowed in the planned schedules, can contribute
to more competition for particular train tasks among the drivers. However,
since only a limited number of train drivers and train tasks are included in
the disruption neighbourhood, even for recovery problems there is a high
probability that optimal solutions to the LP-relaxations of many problems
are integral. This is confirmed by the computational experiences described
in Chapter 6.

4.2 Modelling Recovery Duties

The TDRP model (4.1)–(4.4) is characterized by a potentially large num-
ber of columns, corresponding to the number of feasible recovery duties for
all drivers within the disruption neighbourhood, even for a relatively small
number of rows given by the number of train drivers and the number of train
tasks within the disruption neighbourhood. Efficient methods for recovery
duty generation are therefore an important issue in the solution process. Du-
ties for the crew scheduling and re-scheduling are often generated from the
time-line networks, connection networks, time-band networks (see Clausen
et al. [2009] for an overview) or duty-period-based networks (Nissen and Haase
[2006]). It is important to choose an efficient network structure for TDRP,

4.2 Modelling Recovery Duties 83

since the network is built for every disrupted situation and updated when the
disruption neighbourhood is expanded. There is a computational trade-off
between the network generation and the duty generation. The more informa-
tion expressed through the network, the faster the duties can be generated,
since fewer constraints have to be taken care of in the duty generation pro-
cess. During this project, the network representation as well as the overall
data structure has been constantly modified and updated in order to adjust
to the new information about changes in the duty rules and to accommodate
different timetables, train driver schedule representations and test scenarios.

4.2.1 Recovery Duty Feasibility Conditions

A recovery duty is feasible, if the three following conditions are satisfied:

Condition 1: Task subsequences feasibility

At the completion of every train task or other activity in a feasible recovery
duty of a train driver we can identify a set of activities, which can subse-
quently be assigned to the driver. These activities are either alternative train
tasks, meal breaks, passengering tasks or check-out tasks. We refer to a par-
ticular subsequent activity in a train driver duty as a subsequence of a task.
Planners at S-tog use an abbreviation for every activity in the train driver
schedule. These are presented in Table 4.1.

A sequence of two activities (i, j) must satisfy following constraints: the
arrival station of i must coincide with the departure station of j and the
start/departure time of j must occur later than the finishing/arrival time of
i plus a certain minimum technical connection time. Technical connection
times components are presented in Table 1.1. Minimum technical connection
times used in this project are presented in Table 4.2. Note that a passengering
task (PAS) from i to j requires that there is a train departing from the arrival
station of i, which stops at the departure station of j.

84 Model and Network

Table 4.1: Abbreviations of activities in the train driver schedule at S-tog.

Abbr. Task Description
TFF Train task.
PAS Passengering task on a train.
TAXI Deadheading in a taxi.
RDG Stand-by activity.
PAU Long meal break (30 minutes).
PAD Short meal break (20–25 minutes).
CIN Check-in activity (15 minutes).
CUD Check-out activity (10 minutes).

Table 4.2: Minimum connection times between subsequent tasks in duties.

Activity i Minimum Connection Time Activity j
PAD/PAU/CIN BEV+PIT TFF

TFF PIF+BEV PAD/PAU/CUD
CIN BEV PAS
PAS BEV CUD
TFF SPD PAS
PAS SPD TFF
TFF SPD TFF
PAS SPD PAS

Condition 2: Recovery duty length feasibility

A recovery duty must not begin before the driver is available after finishing
the last task he/she is performing according to the original schedule prior
the disruption. If the original duty finishes within the recovery period, the
recovery duty must not exceed the original duty length unless a duty length
extension is explicitly allowed. For this project it is only allowed to shift
the start time of the check-out activity in a recovery duty, when a delayed
train in the disruption neighbourhood is the only possibility for the driver to
be transferred to the crew depot station for the check-out (either by being
assigned to the train task or as a passenger on the train). If the original
duty finishes after the end of the recovery period, the driver is required to be
present to cover his/her original duty after the recovery end time. Therefore,

4.2 Modelling Recovery Duties 85

the duty length is identified by both the times and the stations, at which the
train driver begins the recovery duty and where the driver must be available
at the end of his recovery duty.

It should be mentioned here that the view of recovery adopted in this thesis
is strict, requiring all drivers to be back to their original duties at the end of
the recovery period. If a driver cannot get back to the original duty at the
end of the recovery period, the recovery period for that driver is extended
by a certain time period until the feasibility of the duty is established (see
Section 3.2.2). An alternative view of recovery is to relax the requirement
that drivers be back to their original duty at the end of a recovery duty. As
long as duty feasibility is achieved at the beginning of the recovery period,
dispatch decisions may be implemented immediately leaving the infeasibilities
at the ends of recovery duties to be resolved by subsequent optimizations as
the recovery process proceeds.

Condition 3: Meal break feasibility

The recovery period is very likely to cover one or two originally scheduled
meal breaks for drivers in K. According to the trade union agreement, drivers
are entitled to a meal break after driving a train for at most 3. However, in
most of the planned duties, the driving time between breaks is less than 3
hours. The train drivers usually prefer two half-breaks (at least 45 minutes
in total) in the duty instead of one full break (at least 30 minutes in total).
It is therefore considered a reduction in the duty quality, if in a disrupted
situation a three-block duty is transformed into a two-block duty.

In order to account for meal break requirements and keep the duty qual-
ity as high as possible, a feasible recovery duty must satisfy the following:
all originally scheduled driver’s breaks within the recovery period are held,
each break starts within a certain time interval, e.g. +/- 10 minutes, of the
originally scheduled break start, and the type of break corresponds to that
originally scheduled (either a full break or one of the two half-breaks without
violating the total break time). It is feasible to hold longer breaks, but as
mentioned previously any time in excess of the required break duration is
considered to be a buffer time between two train tasks. The break can be
held at either of the two crew depots, no matter which crew depot the driver
is originally assigned to.

86 Model and Network

4.2.2 Duty Graph Generation

A directed acyclic duty graph Gk = (V k, Ak) is constructed for every driver
k ∈ K, where V k is the set of vertices and Ak is the set of arcs in the graph.
V k contains a source vertex ok, a sink vertex dk, and a set of train task
vertices Nk within the disruption neighbourhood. The source vertex ok ∈ V k

represents the commencing task in the duty of driver k, while the sink vertex
dk ∈ V k represents the corresponding terminating task. Figure 4.6 shows the
train tasks in the expanded disruption neighbourhood presented in Figure
3.2 on page 61.

Figure 4.6: Train tasks in disruption neighbourhood example.

The set of arcs Ak represents feasible connections between tasks in V k. A
task w is a feasible subsequence of a task v if the departure time of w is
later than or equal to the ready time tready(v, w) and if the departure station
of w coincides either with the arrival station of v or the arrival station of
the deadheading task assigned to the driver from the arrival station of v to
the departure station of w. The ready time tready(v, w) is calculated as the
arrival time of v plus a certain time span, which is necessary for the driver to
conduct intermediate actions after finishing the task v in order to begin the
task w. The actions might only include the minimum technical connection
times between two activities, as described in Section 4.2.1, or also include
other activities, such as meal breaks or passengering tasks or both.

As an example shown in Figure 4.7, if the driver holds a full break between
the train task v and the train task w and the arrival station of v is the same
as the departure station of w, a time for handing the train over to another
driver (PIF), walking from the platform to the crew depot (BEV), holding

4.2 Modelling Recovery Duties 87

the long break (PAU), walking from the crew depot back to the platform
(BEV) and taking over the train from another driver (PIT) is added to the
arrival time of the train task v in order to calculate tready(v, w).

Figure 4.7: Feasible subsequence with a long break.

The example in Figure 4.8 shows the ready time tready(v, w) of the check-in
task v, where the subsequent train task w departs from a different station
than the check-in depot station of v, and w is the earliest morning task of
the particular train unit. The driver needs to walk from the depot to the
platform of the passengering train task (BEV), ride as a passenger on a train
to the departure station of w (PAS), walk to the departure platform (BEV)
and make the train ready for driving (KLG). Since platforms at some stations
are situated further away from the depot and other platforms, the minimum
required duration of BEV is station-dependent. Durations of all technical
connection times in the S-tog train driver schedule are shown in Table 1.1 in
Section 1.4.1.

Figure 4.8: Feasible subsequence with a passengering task.

Three general arc types can be identified: break opportunity arcs, where at
least one break type (a full break or a half-break) can be held between the
train tasks, deadheading arcs, where either a passengering task or a taxi
ride is required for covering the sequence of tasks represented by the two
connected vertices and train connection arcs, including all other connections

88 Model and Network

from and/or to train tasks, where meal breaks are not possible and dead-
headings are not required.

A graph generation process can be time consuming. Particulary, passengering
arcs are timewise costly to generate, since it is necessary to identify if there
are other trains available for deadheading the driver from one station to
another. At most two train tasks are searched for when passengering arcs
are generated. This increases the chance of finding a passengering possibility
from e.g. a terminal station of one train line to a terminal station of another
train line. In a real-life disrupted situation, passengering of a driver can take
place from one intermediate station to another, but this possibility is not
often utilised by the train driver dispatchers due to the complexity of the
duty swap combinations.

Some arcs in Gk are identical for several choices of train driver k ∈ K, since
more than one train driver is usually able to cover the same sequence of train
tasks within the recovery period. In order to reduce the computational time
for the graph generation at every instance of TDRP, we generate a common
driver graph G = (V, A), where the set of vertices V contains all source
vertices ok,∀k ∈ K, all sink vertices dk,∀k ∈ K and all train tasks N in
the disruption neighbourhood. As an example, a common duty graph G,
shown on Figure 4.9, is generated for the disruption neighbourhood shown
on Figure 4.6. Table 4.3 provides the description of the arc types with the
corresponding ready times, which are used for generating G.

Figure 4.9: Example of a duty graph G.

4.2 Modelling Recovery Duties 89

After the common driver graph G is generated, duty graphs Gk,∀k ∈ K
are induced from G by copying a part of the data structure from G. For
every train driver k we identify the set of train tasks Nk. Vertex v ∈ N is
only included in the set Nk of the duty graph Gk, if the corresponding train
task can potentially be covered by the driver k within his or her recovery
duty without considering the meal break requirements of the duty. The
adjacency list data structure of the graph allows transferring the outgoing
directed arcs directly from A to Ak, when the set of vertices Nk is collected.
The process of inducing Gk from G for every k is computationally more
efficient than generating each Gk due to the computationally expensive arc
generation process. Duty graphs G1 and G2 induced from the common graph
G shown on Figure 4.9 are illustrated in Figure 4.10. It should be mentioned
that generation of “personal” duty graphs Gk corresponds to preprocessing
techniques similar to the one presented in Aneja et al. [1983] and Dumitrescu
and Boland [2001] in the context of the label setting algorithm for the resource
constrained shortest path on an acyclic graph, which is used for recovery duty
generation (see Section 5.4.3).

(a) Duty graph G1 ⊂ G. (b) Duty graph G2 ⊂ G.

Figure 4.10: Duty graphs induced from G.

90 Model and Network

Table 4.3: Arc types used in duty graph examples.

Arc Type Arc Description Ready Time tready(v, w)
Connects two train tasks of
the same line following the
same direction.

tarr(v)

Connects two train tasks,
where a platform walk is re-
quired.

tarr(v) + SPD

A passengering arc; requires
the existence of one train task
on which a passengering task
can be performed.

tarr(v) + SPD + PAS(v, w)
+ SPD

A double passengering arc; re-
quires the existence of two
train tasks on which passen-
gering tasks to and from the
central station København H
can be performed.

tarr(v) + SPD + PAS(v,KH)
+ SPD + PAS(KH,w) +
SPD

A break opportunity arc; re-
quires that the arrival station
of v is a crew depot.

tarr(v) + PIF + BEV(v) +
20 min + BEV(v) + PIT

A combined passengering and
break opportunity arc.

tarr(v) + SPD + PAS(v, w)
+ BEV(w) + 20 min +
BEV(w) + PIT

4.2.3 Feasible Recovery Duty on a Graph

Any directed path from the source vertex ok to the sink vertex dk in the
duty graph Gk represents a sequence of vertices, starting at the driver k’s
commencing task in the duty and ending at the terminating task after the
end of the recovery period. Any directed path from ok to dk satisfies the first
two recovery duty feasibility conditions described in Section 4.2.1. Condition
1, the task subsequences feasibility, is satisfied since arcs in the duty graphs
represent feasible connections between tasks. Condition 2, the recovery duty
length feasibility, is satisfied implicitly by the source vertex ok and the sink

4.2 Modelling Recovery Duties 91

vertex dk for each driver k in G.

A resource constrained directed path p from ok to dk in Gk represents a feasible
recovery duty r ∈ Rk, if the path satisfies the following resource constraint:
for every originally scheduled meal break within the recovery period the path
must contain at least one arc with a break opportunity, which begins within
a certain time interval from the originally scheduled start of the break (e.g.
+/- 20 minutes), and for which the total length of the break opportunity
arcs in the path corresponds to at least the length of the total break time
originally scheduled within the recovery period. Such a resource constrained
path also satisfies Condition 3, the meal break feasibility of the recovery duty.
As an example, Figure 4.11 shows a resource constrained path on the duty
graph G2, which represents a feasible recovery duty for the driver assigned
to Duty 2.

Figure 4.11: A feasible recovery duty path o2 → v1 → d2 in G2.

The cost c(p) of the resource constrained path p = ok → v1 → v2 → ... →
vh → dk in Gk is a sum of arc costs and vertex costs. Let c(v, w) be the
cost of arc (v, w) and c(v) be the cost of vertex v. Then the cost of path is
expressed in equation (4.5), where h is the number of intermediate train task
vertices on the path p between the source ok and the sink dk.

c(p) = [c(ok, v1)+
h−1∑
i=1

c(vi, vi+1)+c(vh, d
k)]+[c(ok)+

h∑
i=1

c(vi)+c(dk)]. (4.5)

92 Model and Network

4.2.4 Recovery Duty Cost

In practice it is very difficult to determine the actual cost of a recovery duty
r ∈ Rk for a train driver k ∈ K. In order to keep the recovery duty cost
calculations simple and fast, the recovery duty cost ck

r in the set partitioning
formulation of TDRP is linear and is represented by the sum of costs of
activity sequences assigned to the duty, i.e. by the sum of arc costs of the
path p = ok → v1 → v2 → ... → vh → dk, which represents the recovery duty
r:

ck
r = c(ok, v1) +

h−1∑
i=1

c(vi, vi+1) + c(vh, d
k). (4.6)

The arc cost c(v, w) of an arc (v, w) in Gk reflects the unattractiveness of
the connection from v to w for the train driver k ∈ K. The objective of the
recovery can be expressed by setting higher costs on arcs which contradict
with the objective. In order to minimize the number of modifications in the
recovery duties from the original schedule, a sequence of tasks is assigned
a zero cost if it appears in the original duty of the driver k, i.e., if both
activities v and w belong to the original driver duty. Slightly less preferable
is an arc (v, w), where the train task v is not in the original duty of the
driver, but the task w is originally scheduled in the duty of the driver. Such
arcs are preferable since there is a chance that the driver continues with his
original duty after completion of the task w. These arcs are assigned only a
little cost.

Deadheading is in general not preferable unless no other option is available,
since the deadheading train driver is not engaged in a working task. Un-
scheduled deadheading in a taxi is more costly than passengering on another
train, since the taxi expenses have to be covered.

The difference between the departure time tdep(w) and the ready time tready(v, w)
of the arc (v, w) is the buffer time or the idle time tidle(v, w), dependent on
how long the time period is. A feasible subsequence without any buffer time
is very tight and non-robust with respect to even small delays. On the other
hand, a very long idle time is not attractive either, particularly at termi-
nal stations without crew facilities. In order to control the tightness of the

4.2 Modelling Recovery Duties 93

schedule and the unwanted idle time, a minimum required buffer time τmin
buffer

and a maximum allowed idle time τmax
idle are defined and used when setting

the cost of the arcs. Furthermore, we also define a minimum reserve time
τmin
reserve as the time which is necessary for being able to cover at least one other

train task between tready(v, w) and tdep(w). If the idle time of an arc exceeds
τmin
reserve and the departure station of w is a crew depot, the train driver can

potentially stay in reserve, and such arc must not be penalized as much as
connections where a driver can only inactively wait for the next train task.

As a suggestion, the intervals can be defined with τmin
buffer = 2 min, τmax

idle = 15
min, and τmin

reserve = 1 hour. Then connections with the buffer time of less
than 2 min are given a high cost in order to promote the robustness of the
schedule. Arcs with the buffer time between 2 and 15 min are acceptable
for connections during disruptions. Train connections at non-depot stations
with the idle time longer than 15 min are given a high cost, while arcs at
depot stations with a reserve possibility is not penalized just as much.

Connections without changing the rolling stock are preferred in disruption
situations as well as during the schedule planning. Even with the rolling stock
change, sequences of train tasks on the same train line are preferable. When-
ever possible, train driver changes at København H (KH) must be avoided in
order to avoid bottleneck effects due to driver delays. Arcs representing train
changes at the central station are therefore given a large cost. Description
of the majority of arc types implemented in duty graphs are listed in Table
4.4. All other arcs are combinations of that presented in the table, e.g. a
TaxiBreak arc.

The same arc type can be useful for one train driver and unnecessary for
another. As an example, break opportunity arcs in Gk are useful if the train
driver k is originally assigned a meal break in the duty, and it is not either
too late or too early to assign a break at a particular break opportunity arc.
In this case the break opportunity arc must be given a little cost. On the
other hand, if the original break is scheduled outside the recovery period
of a particular driver k′, the same break opportunity arc in the duty graph
Gk′ represents an unnecessary idle time. In this case the arc with a break
opportunity must be changed to a train change arc with a high cost.

A more sophisticated way of setting costs on recovery duties is preferable in

94 Model and Network

Table 4.4: Arc descriptions.

Arc type Description
Original Represents a sequence of tasks which are present in the

original duty of the train driver.
InDuty Leads to a task which is present in the original driver

duty.
InDutyPas Leads to a task which is present in the original driver

duty, requires one or two passengering tasks.
Immediate Represents a sequence of train tasks with the same train

number or a sequence of tasks (v, w), where w represents
the first train of the same line which departs from a
terminal station immediately after v.

Break Break opportunity arc. Minimum length of the break
opportunity is 20 min.

BreakPas Break opportunity arc, which requires a passengering
task.

Reserve An arc at a crew depot with tidle(v, w) > τmin
reserve.

TrainKH Train change at KH without break or reserve.
Taxi Deadheading in a taxi.
Pas Contents one or two passengering tasks. The arc does

not contain break opportunities.
TrainTight Train change at other stations than KH with

tidle(v, w) ≤ τmin
buffer.

TrainChange Train change with τmin
buffer < tidle(v, w) ≤ τmax

idle .
TrainIdle Train change with τmax

idle < tidle(v, w) ≤ τmin
reserve.

Relief Relief opportunity arc (v, w), where w is a terminating
task in Gk, corresponding to a check-out task. With
tidle(v, w) ≤ τmax

idle .
ReliefIdle Relief arc with τmax

idle < tidle(v, w) < τmin
reserve.

4.2 Modelling Recovery Duties 95

the train driver recovery decision support system, since the duty cost is not
necessarily linear in the cost of train task subsequences within the recovery
duty. A more sophisticated cost scheme is the subject of future research.
The cost of recovery duty is often a subject to dispatcher’s evaluation of
the disrupted situation and eventually the specific train driver’s wishes and
agreements between the train driver and the dispatcher in the disrupted
situation. It is therefore important for the recovery solution quality of the
decision support that the train driver dispatcher is given an opportunity to
manually apply penalties on arc costs of the duty graphs.

96

Chapter 5

Solution Approach

In this chapter a solution method to the set partitioning based model of the
train driver recovery problem is presented. The problem is solved using a
branch-and-price framework, where the linear programming (LP) relaxation
of TDRP (4.1) – (4.4), abbreviated TDRP–LP, is solved with column gener-
ation and dynamic expansion of the disruption neighbourhood. We propose
several pricing strategies for the branch-and-price algorithm, a heuristic so-
lution method based on limited subsequences strategy for solving TDRP–LP
and a method for expanding the disruption neighbourhood. Integer solutions
are found using constraint branching combined with a depth-first search of
the branch-and-bound tree.

98 Solution Approach

5.1 Choosing the Solution Method

When solving the train driver recovery problem, only the part of the train
driver schedule within the disruption neighbourhood is altered. The parts of
the original duties of the involved train drivers outside the recovery period,
as well as original duties of train drivers not included in the disruption neigh-
bourhood remain unchanged. This is consistent with the main objective of
the recovery problem, which is to minimize the number of modifications from
the original schedule. It is only if the solution with the considered disrup-
tion neighbourhood is infeasible, e.g. contains one or more non-covered train
tasks, that the disruption neighbourhood is expanded.

The recovery duties represented by columns in the set partitioning problem
can be generated a priori for all drivers within the disruption neighbourhood.
However, the a priori duty generation can be a costly procedure in an opera-
tional environment even for a relatively limited number of drivers and train
tasks. We therefore implement a framework for a dynamic column genera-
tion. Being able to generate columns “on the fly” is particulary efficient in
the expansion of the disruption neighbourhood.

Feasible recovery duties for train drivers can be constructed under the restric-
tion that the number of choices for performing different tasks after finishing
a task in the duty is limited, even though many possibilities (i.e. many sub-
sequences) might exist. Ryan [1992] describe the use of limited subsequence
filtering when generating duties for the crew rostering problem of Air New
Zealand, which is formulated as a set partitioning problem. The idea is based
on the premise that every crew member should be allocated to the next task
as soon as possible after completion of the previous task and the mandatory
rest. By limiting the number of subsequences, the number of variables in
the set partitioning problem is reduced, and the structure of the constraint
matrix becomes more balanced, as explained by Ryan and Falkner [1988].
We use the idea of limited subsequences in two ways: to generate the initial
set of feasible recovery duties for the branch-and-price algorithm and as an
efficient column generation pricing strategy.

As shown in Section 4.1.2, the linear programming relaxation of the set par-
titioning problem with GUB constraints has strong integer properties. The

5.2 Branch-and-Price Framework 99

fractions in the optimal solution to the TDRP–LP can only occur if two
or more train drivers compete for one or more train tasks in their recov-
ery duties. This knowledge is exploited by employing a constraint branch-
ing strategy where at every branch some train drivers are either forced re-
spectively forbidden to be assigned to particular train tasks. The approach
to solve integer programming problems with the linear programming relax-
ation and column generation at every node of the branch-and-bound tree is a
widely used methodology and is known as branch-and-price (Barnhart et al.
[1998b]). The branch-and-price framework is programmed in C#.NET. The
C#.NET Application Programming Interface (API) of MOSEK Optimiza-
tion Software, versions 4.0 and 5.0 (www.mosek.com) is used to solve linear
programming problems.

5.2 Branch-and-Price Framework

A branch-and-price algorithm is a method for solving zero–one integer pro-
gramming problems using a linear programming relaxation and column gen-
eration at each node of a branch-and-bound tree. For a methodology re-
view and applications the reader is referred to e.g. Desrosiers et al. [1995] or
Barnhart et al. [1998b]. For reviews of column generation applied to inte-
ger programming problems see for example Wilhelm [2001] or Lübbecke and
Desrosiers [2005]. Dynamic column generation is a useful tool for solving LP
problems with a large number of columns compared to the number of rows.
The idea with the column generation approach for solving LP problems is
to avoid generating all variables, since only a few of them will comprise the
optimal basis. The column generation method decomposes the LP problem
into a restricted master problem and a subproblem. The restricted master
problem (RMP) contains only a subset of the variables from the LP prob-
lem and is solved with the revised simplex method. The subproblem is the
pricing problem that generates new columns to enter the basis. The dual
variables of the optimal solution to the RMP are used to calculate the re-
duced costs of the non-basic variables. Only non-basic variables with negative
reduced costs can enter the basis and improve the objective function value of
a minimization linear programming problem. Therefore, for a minimization
problem, the solution is optimal when no negative reduced cost columns can

100 Solution Approach

be generated by the pricing problem.

If the solution to the RMP is integer, then the optimal solution to the zero–
one IP problem is found. If, on the other hand, the optimal LP solution
does not satisfy the integrality constraints, the integer solution is obtained
by the widely employed branch-and-bound technique. A general description
of the methodology for solving integer programs using branch-and-bound can
be found in Wolsey [1998]. The branch-and-bound technique is an implicit
enumeration of all feasible solutions. The feasible region of the problem is
partitioned into smaller subproblems according to a certain branching strat-
egy. Subproblems are stored in a branch-and-bound tree. In the LP-based
branch-and-bound the linear programming relaxations of the subproblems
are solved at each node of the tree. The algorithm terminates when all nodes
in the tree are either branched or pruned. For a minimization problem, lower
bounds at the nodes of the branch-and-bound tree are provided by optimal
solutions to the LP-relaxations, while upper bounds are provided by feasible
(integer) solutions. A node in the branch-and-bound tree is pruned by bound
if the value of the optimal solution to the LP-relaxation at this node is larger
than or equal to the global upper bound of the problem. The global upper
bound is the best known integer solution. A node is pruned by infeasibility if
the solution to the LP-relaxation at the node is infeasible. A node is pruned
by feasibility if the optimal solution to the RMP of this node is integer, i.e.
when the lower bound of the subproblem equals its upper bound. If the so-
lution is integer and the objective value of the problem is equal to the global
lower bound of the problem, the node represents the optimal solution to the
IP. In all other cases the branching of nodes continues, unless an early termi-
nation of the algorithm is chosen, i.e. when the difference between the global
bounds is less than a certain threshold. There is an important difference be-
tween the LP-based branch-and-bound and the branch-and-price algorithm.
At any node of the branch-and-price tree, the presence of all non-basic vari-
ables in the restricted master problem cannot be ensured. Therefore, column
generation is implemented at every node of the branch-and-price tree while
respecting any restrictions imposed on the pricing problem by the branching
strategy.

5.3 Linear Programming Relaxation of TDRP 101

5.3 Linear Programming Relaxation of TDRP

The linear programming relaxation of the train driver recovery problem is
formulated in (5.1)–(5.6). The problem formulation of TDRP (4.1)–(4.4)
is extended with two sets of artificial variables. One artificial variable fi is
added for each train task i ∈ N and one variable ek for each driver k ∈ K. By
adding artificial variables we ensure feasibility of TDRP–LP. A big-M cost
is assigned to the artificial variables in the objective function, which ensures
that fi,∀i ∈ N and ek,∀k ∈ K are only included in the optimal solution of
the TDRP–LP if their presence is necessary for the problem feasibility. The
artificial variables are used to detect which constraints would otherwise not
be covered in the set partitioning problem, and hence determine the way in
which the disruption neighbourhood can be expanded.

(TDRP–LP) Minimize
∑
k∈K

∑
r∈Rk

ck
rx

k
r +

∑
k∈K

Mek +
∑
i∈N

Mfi (5.1)

Subject to
∑
r∈Rk

xk
r + ek = 1 ∀k ∈ K, (5.2)∑

k∈K

∑
r∈Rk

ak
irx

k
r + fi = 1 ∀i ∈ N, (5.3)

xk
r ≥ 0 ∀r ∈ Rk, ∀k ∈ K, (5.4)

ek ≥ 0 ∀k ∈ K, (5.5)

fi ≥ 0 ∀i ∈ N. (5.6)

The column generation solution method for solving the TDRP–LP is illus-
trated in Figure 5.1. The process begins in generating an initial set of columns
for a given disruption neighbourhood, as explained in Section 5.5. The re-
stricted master problem and the subproblem are solved iteratively, using the
values of dual variables corresponding to to train driver constraints (5.2) and
train task constraints (5.3) to calculate the reduced costs of recovery duties.
If no negative reduced cost columns can be generated by the pricing prob-
lem and no artificial variables are present in the solution to the RMP, the
optimal solution to the TDRP–LP restricted by the current disruption neigh-
bourhood has been found. If at least one artificial variable is present in the

102 Solution Approach

solution, the disruption neighbourhood can be expanded by extending the
recovery period for one or more train drivers or by adding other train drivers
to the disruption neighbourhood. Disruption neighbourhood expansion cor-
responds to adding train driver and train task constraints to the problem, as
described in Section 5.7.

Figure 5.1: Solving the TDRP–LP to optimality with column generation.

5.3.1 Solving the Restricted Master Problem

The RMP is solved using the revised simplex method of MOSEK optimizer
for linear programming problems. The simplex method was developed by
George Dantzig in the 1940’s and has been successfully implemented in a

5.3 Linear Programming Relaxation of TDRP 103

large number of commercial LP solvers since then. In short, the optimal
solution to a minimization linear program by the primal simplex method is
found by searching through the extreme points of the feasible region of the
problem, moving from one extreme point to another along the edges of the
polyhedron, which defines the feasible region, in a way such that the objective
function does not increase. For more information about the simplex method
or the linear programming in general see e.g. Hillier and Lieberman [1995].

The performance of MOSEK optimizer is customized to this particular ap-
plication by tuning available parameters. Different preprocessing steps are
applied to the linear programming problem by default prior to the simplex
algorithm (see MOSEK .NET API Manual, Ver.5, 2008). Preprocessing re-
duces the size of the LP by removing redundant constraints, eliminating free
variables, removing linear dependencies. Since the problem sizes of TDRP–
LP are relatively small and the optimizer is used in a “hot-start” mode during
column generation, we choose to switch off the problem reduction preproces-
sor. Computational experiments show that by doing so a decrease of ap-
proximately 10%–12% in the running times is achieved for many problem
instances. Experimenting with manual adjustments of other preprocessing
parameters have not shown any computational advantage. Therefore, the
default settings of the simplex optimizer are used otherwise (e.g., the default
pricing strategy etc.).

5.3.2 Solving the Pricing Problem

The values of the dual variables corresponding to the train driver constraints
(5.2) and the train task constraints (5.3) are used to calculate the reduced
costs of recovery duties in the pricing problem of the column generation al-
gorithm in the following way. Let λk be the dual variable corresponding to
the k’th train driver constraint (5.2) and let πi be the dual variable corre-
sponding to the i’th train task constraint (5.3) in the RMP. The reduced cost
c̄k
r of the variable xk

r is:

c̄k
r = ck

r − λk −
∑
i∈N

ak
irπi, (5.7)

104 Solution Approach

where ck
r is the cost of a feasible recovery duty r ∈ Rk of the driver k ∈ K.

The recovery duty cost ck
r is defined in (4.6), Section 4.2.4.

The negative of value of the dual variable λk for k ∈ K is set as the cost
of the source vertex ok in Gk: c(ok) = −λk. Values of dual variables πi for
i ∈ Nk, with opposite signs, are set as costs on train task vertices in Gk:
c(vi) = −πi for each vertex vi ∈ Nk. The cost of the sink vertex dk remains
zero: c(dk) = 0. Let a resource constrained path p = ok → v1 → v2 → ... →
vh → dk in Gk represent a feasible recovery duty r ∈ Rk for driver k ∈ K, as
described in Section 4.2.3. Let Np = {v1, v2, ..., vh} be the set of train task
vertices in p. The cost of path c(p) is defined in (4.5) as a sum of vertex costs
and arc costs. Using (4.5) and (4.6) we can express the reduced cost of the
recovery duty r through the cost of path c(p):

c̄k
r = ck

r − λk − (
∑
i∈NP

1 · πi +
∑

i∈Nk\Np

0 · πi)

= ck
r − λk −

∑
i∈Np

πi − 0

= c(p). (5.8)

Hence, the reduced cost of the variable representing a recovery duty for a
driver k is the cost of the resource constrained path p generated on the
duty graph Gk that has vertex costs equal to the negative of the relevant
dual variables. The pricing problem identifies variables in the TDRP–LP
with c̄k

r < 0 by collecting resource constrained paths in duty graphs with
c(p) < 0.

5.4 Recovery Duty Generation Algorithm

Resource constrained paths in Gk are generated with a duty generation al-
gorithm based on dynamic programming, where a label setting procedure
is used. Variations of the algorithm are used for generating the initial set

5.4 Recovery Duty Generation Algorithm 105

of columns for the TDRP–LP and in the pricing problem of the column
generation algorithm. For a detailed description of label setting algorithms
the reader is referred to Ahuja et al. [1993], while efficient label setting al-
gorithms for resource constrained shortest path problems can be found in
e.g. Aneja et al. [1983], Desrochers and Soumis [1988] and Dumitrescu and
Boland [2001].

5.4.1 Components of the Algorithm

Basic components of the recovery duty generation algorithm are presented in
this section. Let p be a resource constrained path in the duty graph Gk, which
represents a feasible recovery duty r ∈ Rk for a driver k ∈ K. A subpath p(v)
is a part of p from the source vertex ok to vertex v ∈ {Nk∪dk}. A subpath is
feasible, if it satisfies the break feasibility condition within the time interval
[tarr(o

k); tarr(v)], where tarr(v) is the time of arrival of a train task v. A
label l(w)j

i is generated for every feasible subpath p(w), w ∈ {Nk ∪ dk}. The
subscript i of the label refers to the number of the predecessor label l(v)i

h, v ∈
{ok ∪ Nk}. Label l(v)i

h is the predecessor label of l(w)j
i if the subpath p(v)

is extended along the arc (v, w): p(w) = p(v) + (v, w). By storing references
to predecessor labels it is possible to quickly trace any subpath p(w) back
to the source vertex ok. Label l(w)j

i also stores the information about the
accumulated cost of the subpath p(w), the length of the break time left to
be held in the recovery duty after finishing the part of the duty represented
by p(w), and the earliest and the latest start times of the next break. Every
label l(dk)j

i of the sink vertex dk stores a feasible resource constrained path p
from ok to dk, i.e. a feasible recovery duty for the driver k in the disruption
neighbourhood of the problem.

The recovery duty generation label setting algorithm consists of an initial-
isation step, a label selection step and a label treatment step. During the
initialisation step, an initial label l(ok)0, a list of labels L and a list of la-
bels L(v) are generated. All generated labels are stored in L, while L(v)
only contains labels generated for vertex v. The label selection and the label
treatment steps are performed iteratively until the the algorithm terminates.
The algorithm terminates either when all labels in L are treated or when a
required number of paths is collected. During the selection step, a label in

106 Solution Approach

L is chosen to be treated. The labels in L can be lexicographically sorted by
the cost of the corresponding subpaths or other resources, e.g. the break time
left to be held within the recovery duty. Then the lexicographically cheap-
est label is chosen for treatment. However, computational experiments with
the recovery duty generation algorithm have shown that the simple first-in-
first-out label selection works better for the problem instances tested in this
project. During the label treatment step, a feasibility check and a dominance
check are applied. The label treatment is aimed at extending the subpath of
the treated label to the adjacent vertices and thereby generate new labels.

During the feasibility check of a label l(v)i
h it is determined if the subpath

p(v) can be extended along all outgoing arcs (v, w), i.e. if any subpath p(w)
is feasible with respect to the break feasibility condition. A simplified break
feasibility condition check is described in Algorithm 5.1. Only if IsFeas =
true, a new label l(w)j

i is generated. If IsHeld = true then the length of
the break time left to be held in the recovery duty is updated by subtracting
the length of the largest possible break duration on arc (v, w), and updating
the earliest and the latest start times of the next break. Note that since the
break resource can only be updated on break opportunity arcs, these arcs
can also be called replenishment arcs, using the terminology of Boland et al.
[2000].

Algorithm 5.1 Break feasibility condition check

IsHeld = false, IsFeas = false.
if a break is not required after tarr(v) then
IsFeas = true.

else
if the required break can be held on (v, w) then

if it is not too late to hold the break then
if it is not too early to hold the break then
IsFeas = true, IsHeld = true.

else
if it is not too late to hold the break after tarr(w) then
IsFeas = true.

else
if it is not too late to hold the break after tarr(w) then
IsFeas = true.

5.4 Recovery Duty Generation Algorithm 107

A dominance check is applied to the labels belonging to the same vertex in
order to reduce the number of labels to be considered in the duty generation
algorithm. Label l(v)i

h dominates label l(v)a
b if the break time left associated

with the label l(v)i
h is less than or equal to the break time left associated

with the label l(v)a
b and if the cost of the subpath p(v) associated with the

label l(v)i
h is less than or equal to that of l(v)a

b . A label is only generated
and stored if no other label in L(v) dominates it. Every time a new label
is generated, it is also checked, if it dominates any other labels in L(v). All
labels dominated by the newly generated label are removed from the set.

As described in Section 5.3.2, the cost of a generated resource constrained
path c(p) corresponds to the reduced cost c̄k

r of the corresponding variable
in TDRP–LP. When the recovery duty generation algorithm is used in the
pricing problem, only paths with c(p) < 0 are returned to the restricted
master problem.

5.4.2 Enumeration of Feasible Recovery Duties

The recovery duty generation algorithm can be used for a total enumeration
or for a restricted enumeration of feasible recovery duties of the train drivers
in K. When duties are enumerated, the dominance check is omitted from
the algorithm. The algorithm terminates when all or a number of resource
constrained paths on the duty graph is collected. The total enumeration of
feasible recovery duties is presented in Algorithm 5.2, while the restricted
enumeration of duties by limited subsequences is described in Section 5.5.

Following the small example from previous chapters, we illustrate the total
enumeration of the feasible recovery duties for the train driver assigned to
Duty 2. Figure 5.2 shows all labels in the duty generation algorithm nec-
essary to enumerate the two resource constrained paths on the duty graph
G2. According to the original schedule (see Figure 2.5, page 48) the driver
assigned to Duty 2 is entitled to a 20 minutes break, which must begin no
later than 17:20. The initial label l(o2)0 is therefore not extended along the
arcs (o2, v3) and (o2, v4), since the break feasibility condition check returns
IsFeas = false. For the same reason the label l(v1)

1
0 is not extended along

the arcs (v1, v3) and (v1, v4). Hence, the only feasible recovery duties for the

108 Solution Approach

Algorithm 5.2 Total enumeration of feasible recovery duties on Gk

Initialisation Step:
Initialise l(ok) and L.
while all labels in L are non-treated do

Label Selection Step:
Select a non-treated label l(v) from L.
Label Treatment Step:
for all arcs (v, w) do

Perform feasibility check of l(w), described in Algorithm 5.1.
if l(w) is feasible then

Add l(w) to L.
if w = dk then

Backtrace p from l(dk).
Mark l(dk) as treated.

Mark l(v) as treated.

driver are represented by paths o2 → v1 → d2 and o2 → d2.

Figure 5.2: Labels in the total enumeration of feasible recovery duties on G2.

5.4.3 Ressource Constrained Shortest Path

The resource constrained shortest path algorithm is presented in Algorithm
5.3. Due to the dominance check described in Section 5.4.1, only one label
l(dk) is left in L at the termination of the algorithm. The path which is

5.4 Recovery Duty Generation Algorithm 109

stored in the label is the ressource constrained shortest path in Gk. In the
context of the pricing problem iteration, the generated path corresponds to
the non-basic variable with the most negative reduced cost among all non-
basic columns in the submatrix Ak corresponding to the train driver k. When
the dominance criteria is strong, i.e. if many labels can be eliminated from
every L(v) in the dominance check of the label setting algorithm, then the
label setting algorithm is very efficient for solving the resource constrained
shortest path problem.

Algorithm 5.3 Resource constrained shortest path on Gk

Initialisation Step:
Initialise l(ok), L and L(v) for each v ∈ {Nk ∪ dk}.
while all labels in L are non-treated do

Label Selection Step:
Select a non-treated label l(v) from L.
Label Treatment Step:
for all arcs (v, w) do

Perform feasibility check of l(w), described in Algorithm 5.1.
if l(w) is feasible then

if l(w) is not dominated by any other labels in L(w) then
Add l(w) to L and L(w).

if l(w) dominates any other labels in L(w) then
Remove dominated labels from L(w) and L.

if w = dk then
Mark l(dk) as treated.

Mark l(v) as treated.
Backtrace p from l(dk).

110 Solution Approach

5.5 Initial Set of Columns

The initial set of columns for the root node of the branch-and-bound tree
could be limited to the set of artificial variables, corresponding to the unit
matrix I|K+N |. However, the information from the dual variables of the
optimal solution to the RMP with such a set of columns is not very useful. In
order to generate better quality dual vectors from the initial set of columns,
a number of feasible recovery duties for all drivers in K is generated.

A limited subsequences enumeration is performed in order to generate a small
number of attractive recovery duties fast for the initial set of columns. For ev-
ery train task vertex v ∈ V k in a duty graph Gk the set of possible subsequent
tasks within the disruption neighbourhood is represented by outgoing arcs
of the vertex. The restricted enumeration of the feasible recovery duties in
Gk by limited subsequences enumeration is therefore implemented by apply-
ing the following adjustment to the Algorithm 5.2: At every label treatment
step of the algorithm a feasibility check is only applied to a limited number
of outgoing arcs of a vertex v. The number of outgoing arcs is limited to
ηk, which is a small number compared to the number of outgoing arcs from
v. The number ηk is calculated individually for every duty graph Gk, since
the number of outgoing arcs from vertices of different graphs differs within
the same disruption neighbourhood. The outgoing arcs for a feasibility check
can be chosen at random, but we prefer to force the attractive recovery du-
ties to be included to the optimization problem at an early stage of column
generation. Outgoing arcs of every vertex v ∈ V k are therefore sorted in
an ascending order of their costs during the generation of duty graphs, de-
scribed in Section 4.2.2. Hence, at most ηk cheapest outgoing arcs of every
vertex are checked. The restricted enumeration with limited subsequences
does, however, not ensure that the cheapest recovery duties are collected.

Limited subsequences enumeration with η2 = 1 for the train driver assigned
to Duty 2 is illustrated on Figure 5.3. For comparison, the total enumeration
of feasible recovery duties on the same duty graph G2 is illustrated on Figure
5.2. Compared to the total enumeration, the number of generated labels is
decreased from four to three and the number of paths is decreased from two
to one, the only generated path being o2 → v1 → d2.

5.5 Initial Set of Columns 111

Figure 5.3: Feasible recovery duty generated with η2 = 1.

Note that the limited subsequences enumeration with ηk = 1 generates a set
of columns for every train driver k ∈ K, which composes a totally unimodular
matrix Ak. Ryan and Falkner [1988] define a sufficient condition for the
structure of a constraint matrix A, which ensures the totally unimodularity
of the matrix: “if a zero–one matrix A has unique subsequence or precedence,
then A is totally unimodular”. A zero–one matrix A has unique subsequence
if the rows of A can be ordered in a way that all columns with a 1 in any
row i have a subsequent 1, if it exist, in a unique row j. For more details
on unique subsequence please refer to Ryan and Foster [1981] and Ryan and
Falkner [1988]. When columns are generated with ηk = 1,∀k ∈ K, every row
in Ak has a unique subsequence, since every vertex in the feasible duty path
has a unique subsequent vertex, limited by the “ηk = 1”–condition in the
duty enumeration algorithm. An example of a zero–one totally unimodular
matrix with unique subsequences is shown on Figure 5.4. The number of the
subsequent row j is shown next to every row i of the matrix. The matrix
represents a constraint matrix of TDRP with the disruption neighbourhood
of two train drivers (rows 1 and 2) and five train tasks (rows 3 – 7). In fact,
this is a special case, where not only submatrices Ak, k = 1, 2 are totally
unimodular, but the overall matrix A of TDRP–LP is totally unimodular.

112 Solution Approach

Figure 5.4: Example of a totally unimodular constraint matrix of TDRP.

5.6 Pricing Strategies

The pricing strategies implemented within the column generation framework
for solving the TDRP–LP are summarized in Table 5.1. All strategies employ
the resource constrained shortest path algorithm, 5.3, described in Section
5.4.3.

Table 5.1: Pricing strategies.

Abbr. Strategy Max.Col.
FP Full pricing of all potential columns. 1
PP Partial pricing of one duty graph at a time. 1
MP Multiple pricing. |K|
SP Limited subsequences strategy pricing. |K|

Full pricing is the classical approach to solve the pricing problem in the
context of column generation methods for solving LP problems. The full
pricing strategy corresponds to the Dantzig rule (see e.g. Dantzig [1963]) of
finding the entering variable in the primal simplex method, where all non-
basic variables are scanned, and the one with the best reduced cost is chosen.
Every iteration of the full pricing strategy FP returns the column with the
minimum negative reduced cost, if one exists.

The full pricing strategy can be computationally expensive for the problems

5.6 Pricing Strategies 113

with many columns. Instead, only a subset of the non-basic columns can be
scanned, and the best candidate for the entering variable can be chosen. This
type of the pricing strategy is called partial pricing. Partial pricing is static,
when the same partition of columns is used, and dynamic, when the partition
of columns is dynamically redefined during the solution process. We employ
a static version of the partial pricing. The columns are partitioned by k ∈ K,
i.e. every partition of columns contains the submatrix Ak for the train driver
k. At every iteration of the partial pricing PP the minimum cost resource
constrained path is found in one duty graph Gk, is such a path exists. If no
negative reduced cost columns can be generated for a particular train driver,
the next subset of columns is priced, which corresponds to recovery duties of
the next train driver in the sequence.

Another alternative is multiple pricing. At each pricing iteration of the col-
umn generation algorithm, several candidate columns are generated. In the
context of the simplex method, the pricing iteration is called a major iter-
ation. When the candidate columns are added, several minor iterations are
performed in order to optimize the current basis over the set of candidate
columns. A more detailed description of different pricing strategies in the
simplex algorithm can be found in e.g. Orchard-Hays [1968] and Chvátal
[1983].

In the multiple pricing strategy MP a major iteration is performed by ap-
plying the resource constrained shortest path algorithm to all duty graphs
in order to collect a set of columns with negative reduced costs, at most one
column from each graph. The columns are returned to the RMP, and some
minor iterations are performed by the LP-solver in order to update the basis.
The limited subsequences pricing strategy SP is also a multiple pricing strat-
egy, where each pricing iteration returns at most |K| columns, as in MP.
However, the duty paths are generated with a restriction: the limited sub-
sequence filter ηk is used to reduce the number of arcs investigated at every
label treatment step of Algorithm 5.3, exactly in the manner the initial set
of columns is collected using a restricted enumeration algorithm, 5.2. The
value of ηk is increased with a certain margin ∆ηk at every major iteration.
Hence, every major iteration of the pricing strategy generates recovery duties
with ηk = ηk + ∆ηk, thereby allowing driver k to perform a larger number
of subsequent tasks after finishing a task in the recovery duty. We call this
increase of ηk the deepening of limited subsequences. The value of ∆ηk is

114 Solution Approach

calculated separately for every duty graph Gk. Let δ+(v) be the set of arcs
leaving vertex v ∈ V k in Gk. Then ∆ηk is calculated as follows:

∆ηk = dmaxv∈V k |δ+(v)|
ηpart

e, (5.9)

where ηpart is a predefined number to partition the maximum number of
outgoing arcs. The initial set of columns is generated with ηk = ηk

start, which
in the current implementation is equal to ∆ηk. The value of ηk is increased
until all outgoing arcs in the duty graph are opened for investigation, i.e.
when ηk = maxv∈V k |δ+(v)|. When the value of ηk has reached its maximum
size, the limited subsequences pricing strategy corresponds to MP. If the
initial disruption neighbourhood is expanded by adding a new train driver
k′, the pricing of the duty graph Gk′ begins with ηk′

start, and then gradually
increases as the pricing continues.

5.7 Implementing Expansion of Disruption Neigh-

bourhood

Since one attempts to keep the disruption neighbourhood as small as pos-
sible, optimal solutions to some problem instances of TDRP restricted by
the current disruption neighbourhood still contain non-covered train tasks or
train drivers not assigned to any recovery duty. Note that when a train driver
is not assigned any feasible recovery duty, it means that not even a stand-by
task can be assigned to the driver in the recovery solution for the reasons
described below. The presence of artificial variables ek and fi in TDRP–
LP (see Section 5.3) makes it is easy to control the source of infeasibility of
TDRP restricted by a given disruption neighbourhood.

5.7.1 Extending Recovery Period and Duty Length

If an artificial variable ek is present in an optimal solution to TDRP–LP
restricted by disruption neighbourhood, it implies that no feasible recovery

5.7 Implementing Expansion of Disruption Neighbourhood 115

duty could be generated for the driver k within the recovery period, and the
variable ek is the only one that covers the k’th GUB row (5.2). There are
two reasons why it is not possible to generate a feasible recovery duty for the
driver k in the duty graph Gk. Firstly, there may be no direct path from the
commencing task vertex ok to the terminating task vertex dk. Due to the
disruption there is simply not enough time to travel from the arrival station
of ok to the departure station of dk, not even by taxi. Secondly, a direct
path exits; however, the path does not satisfy the break resource constraint.
This is because either there are no arcs on the path that contain a break
opportunity or the break opportunity time is too short.

If no feasible recovery duty is generated for a particular train driver k, and
the terminating task vertex dk in the driver’s duty graph Gk is represented
by a check-out activity, then extending the recovery period would not resolve
the infeasibility. The train driver’s check-out activity start time is therefore
delayed with a fixed number of minutes, e.g. 10-15 minutes. The shift in
the check-out activity corresponds to extending the duty length. The train
driver k is then paid for the registered overtime work. If dk is not represented
by a check-out activity, the recovery period for the driver is extended with a
certain time interval. This is illustrated on an example presented in Section
3.2.2. When the recovery period is extended for driver k, the train driver is
assigned a new terminating task, determined by the extended end recovery
time. Any train tasks in the original duty of k, which take place before the
new terminating task, are added to the set of train tasks N in the disruption
neighbourhood if these train tasks are not yet included in N . All duty graphs
are updated in order to ensure that a vertex representing each of the newly
added train tasks is included in the vertex sets V k of Gk,∀k ∈ K. Finally,
the TDRP–LP is updated by adding train task constraints (5.3) and the
corresponding artificial variables f ′

i for all i′ ∈ N ′, where N ′ is the set of
newly added train tasks.

5.7.2 Adding Train Drivers

If an artificial variable fi remains present in the optimal solution to the re-
stricted TDRP–LP, it means that no one of the drivers within the disruption
neighbourhood is able to cover the train task i. In this situation there are

116 Solution Approach

two possibilities. One option is to add a new train driver or a set of new
train drivers to the disruption neighbourhood. Alternatively, the train task
i can be left non-covered. An obvious choice is to add a train driver who is
currently in reserve and who has sufficient time to cover at least one train
task. Another alternative is to add a driver who is currently assigned to
other train tasks and may potentially be able to cover one of the non-covered
train tasks.

When the disruption neighbourhood is expanded by adding a set of train
drivers K ′ to K, all train tasks between the commencing and the terminating
tasks of every k ∈ K ′ are added to the problem. Introducing a new driver k′

to the disruption neighbourhood corresponds to adding an artificial variable
ek′ and a train driver constraint (5.2) for k = k′ to the TDRP–LP. Duty
graphs are generated for all train drivers in K ′. If a set of new train tasks
N ′ is added to N in the disruption neighbourhood, all existing duty graphs
are updated in order to ensure that vertices corresponding to the trains in
N ′ are included. A set of train task constraints (5.3) and the corresponding
artificial variables f ′

i for all train tasks i ∈ N ′ are added to TDRP–LP.

5.7.3 Implementation Details

In the current implementation of the prototype to the TDR–DSS the disrup-
tion neighbourhood is expanded only in order to restore feasibility. Following
actions are allowed during disruption neighbourhood expansion if it is nec-
essary for the solution feasibility:

• Shifting the start time of the check-out task by 15 minutes.

• Extending the recovery period of train drivers one hour at a time.

• Adding reserve train drivers.

There is a natural order in which the disruption neighbourhood is expanded,
dictated by common sense and computational experiments. First, we re-
solve the problem infeasibility caused by not being able to generate recovery

5.8 Finding Integer Solutions 117

duties. Second, the infeasibility cased by non-covered train tasks in the so-
lution is dealt with. Computational experiments have shown that the most
frequently occurring infeasibility can only be resolved by shifting the start
time of the check-out task in the drivers’ duties. Since no other action can
be taken, it makes sense to resolve this type of infeasibility first. Next we re-
solve the infeasibility which requires extension of the train drivers’ recovery
periods. Extending recovery periods for some train drivers might in some
situations help covering the non-covered train tasks, if such train tasks exist.
At last, if at least one train task remains not covered in the recovery solu-
tion, reserve drivers are added to the problem. Computational experiments
show that when all available reserve train drivers are added to the disruption
neighbourhood in one iteration, the computational time spent on generating
graph data structures for the newly added train drivers is less than the com-
putational time required for adding one train driver per iteration. Adding
all available reserve drivers does however not mean that all of them will be
involved in the recovery.

The disruption neighbourhood is expanded at least until all train drivers in
K have at least one feasible recovery duty each. If for some reason the dis-
ruption neighbourhood is chosen not to bo expanded further, while at least
one artificial variable fi is still present in the solution, the the optimal so-
lution to the TDRP–LP, restricted by the chosen disruption neighbourhood,
contains non-covered train tasks.

5.8 Finding Integer Solutions

As shown in Section 4.1.2, the fractions in the optimal solution to TDRP–LP
can only occur across train drivers blocks of columns. Hence, if driver k and
driver k′ compete for the same train task i in the optimal fractional solution,
it makes sense to check if the optimal integer solution could be achieved by
either forcing or forbidding one of the drivers to cover i. This observation is
used to choose a branching strategy for finding optimal solutions to TDRP,
namely constraint branching.

Constraint branching was originally proposed by Ryan and Foster [1981]

118 Solution Approach

for the set partitioning formulations of scheduling problems. Formally, let
J(s, t) be the set of variables in the optimal fractional solution, where each
variable covers constraints s and t simultaneously. Let the sum of fractions
Π(s, t) =

∑
j∈J(s,t) xj be the sum of solution values of the variables in the

set J(s, t). As shown by Ryan and Foster [1981], any optimal fractional
solution contains at least one constraint pair {s, t}, for which Π(s, t) lies
strictly between zero and one (see Barnhart et al. [1998b] for a proof):

0 <
∑

j∈J(s,t)

xj < 1. (5.10)

In constraint branching, the 1-branch forces both constraints s and t to be
covered by the same variable, which is expressed through (5.11). The 0-
branch is expressed through (5.12) and implies that constraint s must not be
covered by the same variable as constraint t.

∑
j∈J(s,t)

xj = 1. (5.11)

∑
j∈J(s,t)

xj = 0. (5.12)

Variations of the constraint branching strategy are broadly used in the con-
text of scheduling and routing problems. As an example, branching on follow-
ons is used in the aircraft routing problem (see Barnhart et al. [1998a]), where
on the 1-branch it is required that a sequence of flights (i, j) must be covered
by the same variable, i.e. flight j must follow flight i in the optimal integer
solution, while on the 0-branch flight j is not allowed to follow flight i. For
other references to applications of constraint branching strategies please see
e.g. Barnhart et al. [1998b].

5.8.1 Choosing Constraint Pair for Branching

In the context of TDRP, the constraint pair {s, t} is chosen such that s is
the train driver constraint (4.2) and t is a train task constraint (4.3). The

5.8 Finding Integer Solutions 119

1-branch forces the train driver corresponding to s to cover the train task
corresponding to t, while the 0-branch forbids the train driver corresponding
to s to have the train task corresponding to t in his/her recovery duty. The
next question is how to identify a {driver, train} constraint pair for branching
at a particular node of the branch-and-price tree.

In the context of the airline crew pairing problem, Ryan [1992] suggests that
if the constraint pair {s, t}, where s is a crew member constraint and t is a
trip constraint, with the largest (i.e., closest to 1) sum of fractions Π(s, t)
is chosen, and a depth-first search of 1-branches of the branch-and-bound
tree is implemented, then the 0-branches can be left unfathomed, since every
1-branch reflects the preference of crew member s for the trip t is implied by
the optimal yet fractional LP solution.

The same idea is applicable to the train driver recovery problem. The larger
the sum of fractions for the constraint pair {s, t}, the stronger the likelihood
that the optimal solution to the RMP will assign the driver s to the train task
corresponding to t. We therefore compute all sums of fractions of a fractional
solution to the RMP and then choose to branch on the constraint pair with
the largest sum of fractions : {s, t} = arg max(s,t) Π(s, t), where Π(s, t) < 1.

Using the largest sum of fractions for choosing the constraint pair for branch-
ing does, however, not make much sense from the mathematical point of view
in situations where all sums of fractions in Π(s, t) are equal to 0.5. In these
situations the LP has no preferences towards assigning any specific train task
to any particular train driver. Choosing an arbitrary {driver, train} con-
straint pair in J(s, t) for branching and continue with the depth-first search
is one alternative. Another alternative is to switch to the best-first search of
the tree as soon as the first integer solution is found by the depth-first search.
This might be helpful in situations where the optimal integer solution is the
part of the right side (the 0-branches) of the tree, so choosing the branch
with best lower bound can lead to the optimal integer solution quicker than
the depth-first search.

Unfortunately, none of the alternative ways to choose a constraint pair for
branching has shown any definite positive trends, performing randomly when
applied to different test instances. Computational experiments show that
only a very few test instances produce fractional solutions in the root node

120 Solution Approach

of the branch-and-price tree, and optimal integer solutions are often achieved
within a very few iterations of the branch-and-price algorithm. Implementa-
tion of more sophisticated branching rules has therefore shown to be super-
fluous.

5.8.2 Implementing Constraint Branching

In the Restricted Master Problem

Branching constraints (5.11) and (5.12) are not explicitly added to the RMP.
Instead, in any 1-branch node, the variables in the RMP which cover either
the driver constraint s or the train constraint t, but not both, are removed
from the minimization LP problem by setting the upper bounds of the vari-
ables to zero. In any 0-branch node, the upper bounds of all variables which
cover both constraints s and t simultaneously are set to zero. When no extra
constraints are added to the RMP, the number of dual variables remains the
same, and the pricing problem is not destroyed in any node of the branch-
and-price tree.

In the Subproblem

The branching restrictions must also be applied to the column generator of
the pricing problem. The implemented branching strategy involves forcing
and forbidding some train tasks to be present in the recovery duties of some
train drivers. We therefore generate a set Nk

force of forced train tasks and a
set Nk

forbid of forbidden train tasks for every driver k ∈ K. Both sets are
updated at each node of the branch-and-price tree, and the sets are inherited
from parent nodes to child nodes. On any 1-branch, a train task i is added
to the set Nk

force for a driver k, if i and k correspond to the constraint pair
{s, t} chosen for branching. At the same time, the train task i is added to
the set Nk′

forbid for all other drivers k′ ∈ K. On any 0-branch node, a train
task i is added to the set Nk

forbid for a driver k, if i and k correspond to the
constraint pair {s, t}. Note that as the branching continues, the same train

5.8 Finding Integer Solutions 121

driver k might have more than one train task in both sets, but not the same
task in both sets.

In order to ensure that the subproblem only generates columns, which satisfy
branching constraints, a few adjustments are made to Algorithms 5.2 and 5.3,
described in Section 5.4. The adjustments are only applied in the pricing
problems of the child nodes in the branch-and-price tree, since Nk

forbid = ∅
and Nk

force = ∅ for all k ∈ K in the root node of the tree.

It is a straight forward task to ensure that any train task i ∈ Nk
forbid must

not appear in any feasible duty of the train driver k. The forbidding check
ensures that during the label treatment step of any label l(v) in the duty
generation algorithm applied to the duty graph Gk, a outgoing arc (v, w)
of the vertex v is only examined if the train task represented by the vertex
w does not belong to the set of forbidden train tasks Nk

forbid for the driver
k. This requirement ensures that all ingoing and outgoing arcs of vertices
represented by train tasks in Nk

forbid are not considered in the duty generation
algorithm.

The other branching restriction, which requires that all train tasks in Nk
force

must appear in every feasible recovery duty of driver k, is computationally
more expensive. We express this restriction by adding an extra requirement
to the resource constrained paths, which represent feasible recovery duties of
the driver k. Train tasks in Nk

force are sorted by ascending departure times
and added to every label in the recovery duty generation algorithm on Gk.
Let i, i′, i′′, ..., ih be the train tasks in Nk

force, sorted in an ascending order of
departure times. Let IsCover(i)a=true if the subpath p(v) corresponding
to the label l(v)a contains vertex i, and IsCover(i)a=false otherwise. The
following dominance criteria can ensure that only feasible recovery duties
containing all train tasks in Nk

force are returned to the RMP after pricing
graph Gk: Label l(v)a dominates by branching label l(v)b, if and only if
the sequence {IsCover(i)a, IsCover(i′)a, ..., IsCover(ih)a} is lexicographi-
cally larger than the sequence {IsCover(i)b, IsCover(i′)b, ..., IsCover(ih)b},
i.e., {IsCover(i)a > IsCover(i)b} OR {IsCover(i)a = IsCover(i)b AND
IsCover(i′)a > IsCover(i′)b} OR ... OR {IsCover(ih−1)a = IsCover(ih−1)b

AND IsCover(ih)a > IsCover(ih)b}. At least one feasible recovery duty
rk which contains all train tasks in Nk

force is already present in the basis of
the RMP, hence there exists at least one feasible duty path in Gk, which

122 Solution Approach

contains vertices corresponding to all train tasks in Nk
force, i.e. for which

IsCover(i)=true for all i ∈ Nk
force. The total enumeration and the shortest

path algorithms adjusted to be used in the subproblem of other nodes in the
branch-and-pricing tree than the root node are presented in Algorithms 5.4
and 5.5.

Algorithm 5.4 Enumeration of feasible recovery duties with c̄k
r on Gk.

Initialization Step:
Initialize l(ok) and L.
while all labels in L are non-treated do

Label Selection Step:
Select a non-treated label l(v) from L.
Label Treatment Step:
for all arcs (v, w) do

if w /∈ Nk
forbid then

Perform feasibility check of l(w), described in Algorithm 5.1.
if l(w) is feasible then

if l(w) is not dominated by branching by any other labels in L(w)
then

Add l(w) to L.
if l(w) dominates by branching any other labels in L(w) then

Remove dominated by branching labels from L(w) and L.
if w = dk then

Backtrace p from l(dk) if c(p) < 0.
Mark l(dk) as treated.

Mark l(v) as treated.

5.8 Finding Integer Solutions 123

Algorithm 5.5 Resource constrained shortest path on Gk used in the pricing
problem.

Initialization Step:
Initialize l(ok), L and L(v) for each v ∈ {Nk ∪ dk}.
while all labels in L are non-treated do

Label Selection Step:
Select a non-treated label l(v) from L.
Label Treatment Step:
for all arcs (v, w) do

if w /∈ Nk
forbid then

Perform feasibility check of l(w), described in Algorithm 5.1.
if l(w) is feasible then

if l(w) is not dominated by branching by any other labels in L(w)
then

if l(w) is not dominated by any other labels in L(w) then
Add l(w) to L and L(w).
if l(w) dominates by branching any other labels in L(w)
then

Remove dominated by branching labels from L(w) and L.
if l(w) dominates any other labels in L(w) then

Remove dominated labels from L(w) and L.
if w = dk then

Mark l(dk) as treated.
Mark l(v) as treated.

Backtrace p from l(dk) if c(p) < 0.

124 Solution Approach

Chapter 6

Computational Experiments

This chapter presents computational results of the recent test experiments
with the TDR–DSS prototype. Test data stems from the real-life opera-
tions of S-tog. Preliminary test results can be found in Rezanova and Ryan
[2006] (schedule from year 2005 and simulated train line cancellations) and
Rezanova and Ryan [2009] (schedule from year 2007 and real-life timetable
disruptions) and are therefore not described in this chapter.

We present disruptions which occurred during one day of S-tog’s operations
as a consequence of a failure in a railroad switch on the S-train network.
Using the real-life data, we generate 42 test instances with different sizes of
disruption neighbourhoods. These instances are used to test the efficiency
of the solution method with respect to the computational times. The most
efficient solution strategy is used to solve the rolling time horizon test scenar-
ios, which show how S-tog’s train driver schedule disturbed by the particular
disrupted situation can be recovered.

126 Computational Experiments

6.1 Test Data

Like in the majority of scientific projects engaged with developing prototypes
for real-life applications, a significant amount of time during this thesis was
spent on data processing and bringing the system as close as possible to
S-tog’s operations. As described in Section 3.3, the data necessary for solv-
ing TDRP consists of three parts: the train driver schedule, the timetable
and the disruption records. Historical data from S-tog’s operations from 23
January 2007 is used to generate all test scenarios presented in this chap-
ter. During that particular day the operations on the S-train network were
severely disrupted as a consequence of a dysfunction of a railroad switch
at København H junction. According to S-tog’s records, the defect in the
switch occurred around noon, and caused many train delays. Even though
the switch was repaired within the following two hours, the train delays cased
by the dysfunction propagated throughout the network, and the operations
were more or less disrupted until the rest of the day.

The available disruption records contain information about the changes in
the timetable caused by the disruption. Data contains the scheduled, the
actual and the cancelled departures and arrivals of all trains at all stations of
the S-train network during the day. Table 6.1 shows the disruption records
for the train number 20149 of line B from Høje T̊astrup station (HTÅ) to
Holte station (HOT). Column “Arr/Dep” specifies if the times in the third
and the forth columns are given for the arrival (“Ankomst”) or the departure
of the train (“Afgang”). The third and the forth columns of the table present
the scheduled and the actual departure/arrival times, respectively. According
to these records, the train departed with a 5 minutes delay from HTÅ. The
departure delay from the terminal station resulted in a 17 minutes arrival
delay at the central station København H (KH). The last column of the table
shows that all departures between Lyngby station (LY) and Holte (HOT)
were cancelled. It means that the train was re-routed by turning back at LY
before it reached the terminal station HOT on the northern part of the line.
Premature turning is one of a commonly used timetable recovery strategies
at the S-train network described in Section 2.2.2. A train can be turned
at a station, where there is a possibility for an unscheduled train to occupy
a supplementary platform without disturbing the incoming and outgoing
traffic. In the recovery schedule of the TDR–DSS prototype the train nr.

6.1 Test Data 127

20149 is represented by two train tasks: a train task from HTÅ to KH, and a
train task from KH to LY. The two train tasks are registered as being delayed
and re-routed, respectively.

Table 6.1: Disruption data representation.

TrainNr Station SchedTime ActualTime Arr/Dep CancDep
20149 HTÅ 16:00:00 16:05:13 Afgang
20149 TÅ 16:02:10 16:07:23 Ankomst
20149 ALB 16:05:10 16:10:08 Ankomst
20149 GL 16:08:10 16:13:01 Ankomst
20149 BØT 16:10:40 16:15:57 Ankomst
20149 RDO 16:12:40 16:17:37 Ankomst
20149 HIT 16:14:40 16:19:11 Ankomst
20149 DAH 16:16:10 16:21:08 Ankomst
20149 VAL 16:18:40 16:23:52 Ankomst
20149 AV 16:20:50 16:26:19 Ankomst
20149 DBT 16:23:20 16:30:45 Ankomst
20149 KH 16:26:00 16:32:32 Ankomst
20149 VPT 16:28:10 16:36:00 Ankomst
20149 KN 16:30:00 16:37:43 Ankomst
20149 KK 16:33:00 16:49:44 Ankomst
20149 NHT 16:35:20 16:51:53 Ankomst
20149 SAM 16:37:10 16:53:48 Ankomst
20149 VAL 16:40:00 16:56:01 Ankomst
20149 BFT 16:42:20 16:59:07 Ankomst
20149 GJ 16:44:20 17:00:33 Ankomst
20149 JÆT 16:46:10 17:02:50 Ankomst
20149 LY 16:48:10 16:48:10 Ankomst J
20149 SFT 16:50:50 16:50:50 Ankomst J
20149 VIR 16:52:50 16:52:50 Ankomst J
20149 HOT 16:55:00 16:55:00 Ankomst J

Unfortunately, we did not manage to obtain the actual train driver schedule
from the particular day of S-tog’s operations. Only the planned train driver
schedule was available for testing, without the registered changes applied to
the train driver duties as a result of recovery from disruptions. It means that
we cannot compare the recovery solutions employed by the train driver dis-
patchers during that day of operations to the solutions which can be achieved

128 Computational Experiments

by the implemented prototype to TDR–DSS. Note that even if the actual
train driver schedule was available, it would not have been possible to re-
store the exact sequence of events for the purpose of comparison. In order to
see how the train driver duties were changing as a consequence of recovery
decisions made by the train driver dispatcher, it is also necessary to know
exactly how much information about disrupted trains was available to the
dispatcher at any given time during the day. This information also includes
train driver absences and delays for reasons other than train arrival delays,
if there were any. As described in Section 3.3.1, we have implemented driver
delays and absences as a part of the prototype for TDR–DSS. These disrup-
tions to the train driver schedule were only tested on simulated disruptions
during preliminary tests, before the real-life disruption data was obtained.

Table 6.2: Arc costs for test purposes.

Arc type Cost Arc type Cost
Original 0.00 Taxi 300.00
InDuty 1.00 Pas 80.00
InDutyPas 50.00 TrainTight 20.00
Immediate 5.00 TrainChange 20.00
Break 10.00 TrainIdle 20.00
BreakPas 80.00 Relief 15.00
Reserve 10.00 ReliefIdle 15.00
TrainKH 100.00

As described in Section 4.2.4, the cost of each recovery duty is the sum of
arc costs of the corresponding resource constrained path in the duty graph
Gk, and the recovery objectives can therefore be expressed through the costs
of arcs. Table 6.2 shows an overview of arc costs used for computational
experiments. The description of arc types is presented in Table 4.4 in Section
4.2.4.

6.2 Testing the Solution Method 129

6.2 Testing the Solution Method

6.2.1 Generation of Test Instances

The set of instances for testing the prototype is generated in a following
way: We collect a set of trains ND, which run during the time interval of 5
minutes from the recovery start time. We assume the train driver dispatcher
has only limited information available. It is assumed that the actual delay
information is only available for the train tasks in ND. This assumption
is restricted compared to the real-life operations, since the dispatchers are
able to predict delay propagations in the network to some extent. Duties of
train drivers assigned to the disrupted (i.e. delayed, re-routed or cancelled)
trains in ND are included in the initial set of duties K of the disruption
neighbourhood. It is furthermore assumed that the information about re-
routings and cancellations of train tasks is available in TDR–DSS for the
rest of the chosen recovery period, if and only if at least one of the trains in
ND is re-routed or cancelled. In this case the duties of drivers assigned to re-
routed and/or cancelled train tasks are also included in the initial disruption
neighbourhood, even if the commencing train tasks of these drivers are not
disrupted. This assumption is close to the real-life information availability,
where decisions for re-routings and cancellations are made by the network
traffic controllers for some time in the future. Train tasks assigned to the
duties in K within the recovery period represent the set of train tasks N of
the initial disruption neighbourhood. No other train drivers or train tasks
are included in the initial disruption neighbourhood.

Test scenarios shown in Table 6.3 are generated for six recovery period dura-
tions: 1, 1.5, 2, 2.5, 3 and 3.5 hours. The earliest recovery start time is chosen
to be 12:00, which is approximately the time when the disruption occurred.
Since the longest train task in the S-tog timetable lasts approximately 50
minutes, recovery periods of less than 1 hour are not appropriate. On the
other hand, recovery periods of more than 3 hours do not make sense in the
proposed framework, since the train driver recovery problem must be solved
with a rolling time horizon. Every test instance is, however, not generated
with a rolling horizon, but is independent of the previous recovery solutions.
Hence it is assumed that nothing in the train driver schedule was changed

130 Computational Experiments

prior to every problem instance generation. Such independent scenarios are
more difficult to recover when the disruption propagates. We choose these
instances in order to test the prototype on scenarios of different severity. In
the real-life such situations are unlikely to occur, since the train driver dis-
patcher starts to recover the schedule as soon as the information about the
disrupted duties becomes available. Following notation is used to provide
details about the test instances in Table 6.3:

• RecovPer is the recovery period of the test instance,

• Dur is the duration of the recovery period,

• #Del is the number of delayed train tasks in the initial disruption
neighbourhood,

• #Turn is the number of re-routed train tasks in the initial disruption
neighbourhood,

• #Can is the number of cancelled train tasks in the initial disruption
neighbourhood,

• Init|K| is the number of train drivers in the initial disruption neigh-
bourhood,

• Init|N | is the number of train tasks in the initial disruption neighbour-
hood,

• Time is the computational time in seconds for generating the test
instance, including generation of duty graphs and other data represen-
tations. Computational times indicate amounts of time the associated
function in the C# program spends utilizing the CPU of a Pentium 4
PC, 3.40 GHz with 1 GB RAM.

6.2 Testing the Solution Method 131

Table 6.3: Test instances.
ID RecovPer Dur #Del #Turn #Can Init|K| Init|N | Time
S11 12:00–13:00 01:00 12 0 0 12 8 0.11
S12 12:00–13:30 01:30 12 0 0 12 12 0.11
S13 12:00–14:00 02:00 12 0 0 12 20 0.17
S14 12:00–14:30 02:30 12 0 0 12 28 0.25
S15 12:00–15:00 03:00 12 0 0 12 35 0.33
S16 12:00–15:30 03:30 12 0 0 12 41 0.41
S21 12:15–13:15 01:00 17 0 0 17 13 0.17
S22 12:15–13:45 01:30 17 0 0 17 21 0.25
S23 12:15–14:15 02:00 17 0 0 17 29 0.34
S24 12:15–14:45 02:30 17 0 0 17 38 0.45
S25 12:15–15:15 03:00 17 0 0 17 40 0.50
S26 12:15–15:45 03:30 17 0 0 17 46 0.59
S31 12:30–13:30 01:00 22 2 3 22 11 0.17
S32 12:30–14:00 01:30 23 9 5 26 30 0.44
S33 12:30–14:30 02:00 23 13 18 35 54 1.13
S34 12:30–15:00 02:30 23 19 39 45 81 2.36
S35 12:30–15:30 03:00 23 27 56 55 120 5.11
S36 12:30–16:00 03:30 23 29 67 60 151 8.13
S41 12:45–13:45 01:00 28 6 4 30 17 0.30
S42 12:45–14:15 01:30 30 12 10 34 36 0.67
S43 12:45–14:45 02:00 30 15 31 44 58 1.45
S44 12:45–15:15 02:30 30 24 51 57 94 3.52
S45 12:45–15:45 03:00 30 29 63 64 131 6.67
S46 12:45–16:15 03:30 30 32 74 69 169 10.94
S51 13:00–14:00 01:00 24 8 5 30 14 0.25
S52 13:00–14:30 01:30 26 13 18 38 31 0.59
S53 13:00–15:00 02:00 26 19 39 47 56 1.45
S54 13:00–15:30 02:30 26 27 56 56 88 3.16
S55 13:00–16:00 03:00 26 29 67 61 118 5.41
S56 13:00–16:30 03:30 26 33 82 68 160 9.86
S61 13:15–14:15 01:00 37 8 10 40 16 0.36
S62 13:15–14:45 01:30 40 14 31 49 42 1.20
S63 13:15–15:15 02:00 40 23 51 59 70 2.41
S64 13:15–15:45 02:30 40 28 63 66 101 4.44
S65 13:15–16:15 03:00 40 31 74 71 133 7.31
S66 13:15–16:45 03:30 40 32 91 75 165 11.11
S71 13:30–14:30 01:00 38 9 18 44 26 0.53
S72 13:30–15:00 01:30 38 15 39 52 46 1.23
S73 13:30–15:30 02:00 38 23 56 60 75 2.63
S74 13:30–16:00 02:30 38 25 67 63 101 4.20
S75 13:30–16:30 03:00 38 29 82 68 132 6.91
S76 13:30–17:00 03:30 38 32 104 72 166 10.81

132 Computational Experiments

6.2.2 Generation of Initial Set of Columns

The initial set of columns is generated with a limited subsequences strategy,
as described in Section 5.5. The value of ηk

start determines how many arcs are
considered during the restricted enumeration of feasible recovery duties. This
number is defined individually for each duty graph Gk. We set ηk

start = ∆ηk,
which is calculated from equation (5.9) on page 114. Since the value of ∆ηk

depends on the predetermined value of parameter ηpart, we test the branch-
and-price algorithm with different values of ηpart. Tests are run using all
generated test instances with the multiple pricing strategy MP, described in
Section 5.6. We choose to test five values of ηpart: 1, 5, 10, 15 and 20. The
value of ηpart = 1 corresponds to an a priori generation of feasible recovery
duties within the initial disruption neighbourhood, while the value of ηpart =
20 makes the limited subsequences strategy very strict, initially generating
very few columns. Table 6.4 shows all test results, using following notation:

• N is the number of nodes in the branch-and-price tree,

• V is the number of columns in the initial set generated with the tested
value of ηpart,

• T is the computational time in seconds for solving the problem instance
to optimality with the tested value of ηpart.

The computational times for running test instances with ηpart = 1, 5, 10, 15
and 20 are compared and the best value of the parameter is chosen for fur-
ther tests. We compare the number of times a test series with a particular
value of ηpart outperforms every other of the five test series with respect to
the computational times, as well as in how many test instances the tested
series outperforms all remaining ones. Comparisons are presented in in Ap-
pendix E. According to results, the differences in the computational times
are insignificant for all smaller instances, i.e. for the test instances S11–S35,
and Si1–Si4 for i = 4, 5, 6. The a priori generation of the initial set of
columns performs worst, especially for the large instances. As the size of
the initial disruption neighbourhood grows, the number of feasible recovery
duties becomes larger. As an example, the computational time for running
the test instance S66 with ηpart = 1 is 32.42 sec, compared to 11.63 sec with
ηpart = 15. We have also conducted a few sample experiments of the a priori

6.2 Testing the Solution Method 133

generation of columns. They show that that when reserve train drivers are
included in the initial disruption neighbourhood, the number of a priori gen-
erated columns with ηpart = 1 for exceeds 1.5–1.7 million some of the larger
test instances, which results in running times of several minutes. The a priori
generation of columns for TDRP is therefore not appropriate to use in the
real-time recovery applications.

Comparing results, we conclude that the value of ηpart must not be either
too large or too small, i.e. the number of initially generated columns must be
of a moderate size. Test series with ηpart = 5 and ηpart = 20 perform worse
than that of ηpart = 10 and ηpart = 15. We choose the value of ηpart = 15
for further testing. With this value of ηpart the number of initially generated
columns leads to a good initial basis for TDRP–LP, and the branch-and-price
algorithm converges faster.

134 Computational Experiments

Table 6.4: Testing the value of ηpart.

ηpart = 1 ηpart = 5 ηpart = 10 ηpart = 15 ηpart = 20
ID N V T N V T N V T N V T N V T
S11 1 16 0.38 1 11 0.38 1 11 0.36 1 11 0.33 1 11 0.34
S12 1 25 0.39 1 14 0.42 1 11 0.39 1 11 0.41 1 11 0.41
S13 1 69 0.41 1 22 0.39 1 12 0.41 1 11 0.41 1 11 0.44
S14 1 163 0.48 1 62 0.47 1 28 0.61 1 21 0.56 1 14 0.50
S15 1 402 0.58 1 114 0.59 1 51 0.75 1 37 0.70 1 26 0.61
S16 1 1105 0.78 1 222 0.78 1 91 0.97 1 53 0.94 1 41 0.97
S21 1 29 0.55 1 15 0.45 1 15 0.42 1 15 0.44 1 15 0.42
S22 1 65 0.59 1 27 0.52 1 20 0.48 1 15 0.50 1 15 0.50
S23 1 120 0.47 1 46 0.48 1 25 0.42 1 15 0.53 1 15 0.55
S24 1 364 0.58 1 139 0.58 1 66 0.69 1 40 0.67 1 25 0.78
S25 1 394 0.58 1 140 0.67 1 69 0.75 1 45 0.67 1 26 0.70
S26 1 882 0.78 1 275 0.89 1 125 1.11 1 72 0.91 1 50 1.14
S31 1 30 0.81 1 15 0.77 1 15 0.72 1 15 0.70 1 15 0.72
S32 1 150 0.81 1 58 0.83 1 37 0.75 1 25 0.80 1 25 0.83
S33 1 1185 1.27 1 266 1.23 1 122 1.28 1 89 1.33 1 63 1.34
S34 1 3551 1.39 1 830 1.34 1 409 1.38 1 256 1.42 1 196 1.53
S35 1 22765 4.91 1 3564 4.30 1 1539 4.11 1 916 3.75 1 528 3.72
S36 1 118872 22.53 7 12257 20.36 3 4359 12.72 13 2388 29.22 3 1562 29.22
S41 1 58 1.15 1 25 1.17 1 21 1.11 1 19 1.11 1 19 1.11
S42 1 365 1.20 1 106 1.31 1 57 1.34 1 44 1.50 1 33 1.50
S43 1 1211 1.70 1 281 1.95 1 144 1.89 1 100 1.86 1 77 1.86
S44 1 5009 4.33 1 1207 4.31 1 533 4.31 1 335 4.13 1 229 4.13
S45 3 46189 14.38 1 5996 5.50 1 2334 5.77 1 1186 5.38 3 772 5.38
S46 1 196324 29.73 1 17614 14.47 1 6353 14.11 1 3339 15.31 1 2010 15.31
S51 1 46 0.86 1 22 0.86 1 18 0.86 1 18 0.86 1 18 0.86
S52 1 306 1.16 1 88 1.25 1 49 1.11 1 42 1.16 1 34 1.16
S53 1 1222 1.97 1 338 2.19 3 160 2.53 3 103 2.44 1 84 2.44
S54 1 4201 2.62 1 1137 2.11 1 509 2.11 1 284 2.11 1 220 2.11
S55 1 42769 6.55 1 5190 4.23 1 1963 4.44 1 967 4.15 1 624 4.45
S56 1 212278 35.80 1 18874 15.27 1 6285 11.69 1 3138 12.44 1 1966 13.72
S61 1 42 1.34 1 26 1.30 1 23 1.17 1 22 1.16 1 22 1.17
S62 1 424 1.72 1 139 1.75 1 81 1.83 1 54 1.73 1 46 1.75
S63 1 1692 3.23 1 536 3.31 1 226 3.44 1 132 3.20 1 106 3.33
S64 1 8140 2.75 1 1828 3.17 1 709 2.59 1 388 2.75 1 272 2.75
S65 1 35320 6.94 1 6070 5.80 1 2221 6.16 1 1040 5.16 1 698 5.91
S66 1 254413 32.42 1 20452 12.70 1 6482 12.17 1 3278 11.63 1 1901 12.98
S71 1 85 1.66 1 36 1.72 1 29 1.75 1 27 1.75 1 27 1.73
S72 1 432 2.31 1 136 2.20 1 72 2.20 1 52 2.28 1 50 2.33
S73 1 1925 3.34 1 638 3.66 1 294 3.52 1 181 3.27 1 129 3.59
S74 1 8101 3.93 1 1786 3.23 1 781 2.94 1 461 2.92 1 333 2.98
S75 1 30828 6.64 1 5911 6.27 1 2078 5.63 1 1014 6.27 1 663 5.67
S76 3 271099 77.28 1 26385 16.94 1 9186 15.42 1 4690 12.72 1 2562 13.38

6.2 Testing the Solution Method 135

6.2.3 Effectiveness of Pricing Strategies

We compare the four pricing strategies implemented in the branch-and-price
algorithm. For all tests the initial sets of columns are generating using the
limited subsequences strategy with ηpart = 15, which is found best suitable, as
described in Section 6.2.2. The performance of the pricing strategies is tested
by comparing the computational times required to achieve optimal solutions
and the number of pricing iterations. We compare the pricing strategies sim-
ilarly to the test comparisons of ηpart in Section 6.2.2, and comparison results
are presented in Appendix F. Table 6.5 shows computational experiments
with different pricing strategies. The following notation is used:

• N is the number of nodes in the branch-and-price tree,

• It is the number of pricing iterations,

• V is the number of variables generated in the branch-and-price algo-
rithm,

• T is the computational time in seconds for solving the problem instance
to optimality with the tested pricing strategy,

• MP is the multiple pricing strategy,

• SP is the limited subsequences pricing strategy,

• PP is the partial pricing strategy,

• FP is the full pricing strategy.

The full pricing strategy FP performs worst, particularly on the larger test
instances. The partial pricing PP is only slightly better than FP. The mul-
tiple pricing MP and the limited subsequences pricing SP perform well, the
multiple pricing being the evident winner among the four pricing strategies.
In FP and PP only one column is added to the RMP after each pricing
iteration. Therefore, a larger number of iterations is required to finish col-
umn generation. Every pricing iteration is computationally more expensive
than several iterations of the revised simplex algorithm employed in MOSEK
LP-solver. Hence, when several good columns are returned to the restricted
master problem, the algorithm converges faster. We therefore choose the
multiple pricing strategy MP for further computational experiments.

136 Computational Experiments

Table 6.5: Testing pricing strategies.

MP SP PP FP
ID N It T N It T N It T N It T
S11 1 10 0.33 1 10 0.33 1 28 0.56 1 24 0.52
S12 1 12 0.41 1 14 0.42 1 40 0.70 1 39 0.75
S13 1 14 0.41 1 15 0.44 1 56 1.20 1 55 1.20
S14 1 16 0.56 1 15 0.47 1 87 1.25 1 78 1.75
S15 1 20 0.70 1 24 0.75 1 114 2.42 1 114 2.61
S16 1 33 0.94 1 22 0.80 1 129 2.91 1 179 4.36
S21 1 10 0.44 1 11 0.44 1 36 0.92 1 41 1.31
S22 1 13 0.50 1 17 0.56 1 59 1.33 1 54 1.28
S23 1 17 0.53 1 18 0.55 1 78 1.14 1 81 1.20
S24 1 21 0.67 1 21 0.73 1 112 1.56 1 134 2.20
S25 1 16 0.67 1 22 0.77 1 98 1.67 1 111 1.98
S26 1 22 0.91 1 29 1.13 1 181 2.53 1 216 5.38
S31 1 18 0.70 1 19 0.73 1 72 1.67 1 73 1.73
S32 1 18 0.80 1 26 0.95 1 87 2.11 1 93 2.27
S33 1 26 1.33 1 27 1.34 1 149 2.66 1 188 4.52
S34 1 21 1.42 1 32 1.78 1 244 4.55 1 352 13.14
S35 1 28 3.75 1 29 3.20 1 435 12.00 1 700 43.55
S36 13 99 29.22 3 51 11.91 1 555 39.93 3 1138 133.47
S41 1 24 1.11 1 26 1.20 3 122 3.20 1 102 2.67
S42 1 27 1.50 1 30 1.52 1 112 3.14 1 98 2.27
S43 1 27 1.86 1 35 1.91 1 178 3.66 1 215 5.88
S44 1 31 4.13 1 41 4.27 1 333 8.73 1 475 18.17
S45 1 33 5.38 3 50 7.63 1 490 16.16 1 857 61.67
S46 1 48 15.31 1 40 11.72 1 636 46.42 1 1186 175.30
S51 1 18 0.86 1 22 0.92 1 84 1.70 1 79 2.14
S52 1 23 1.16 1 32 1.34 1 106 2.48 1 124 2.36
S53 3 38 2.44 1 39 2.23 1 223 4.44 1 257 7.11
S54 1 21 2.11 1 29 2.27 1 249 7.95 1 373 11.50
S55 1 24 4.15 1 35 4.22 1 408 12.77 1 548 36.66
S56 1 37 12.44 1 39 11.56 1 625 53.67 1 1017 164.69
S61 1 18 1.16 1 23 1.30 1 101 2.77 1 82 2.53
S62 1 23 1.73 3 42 2.13 1 173 3.50 1 151 3.55
S63 1 26 3.20 1 41 3.73 1 250 6.19 1 327 9.61
S64 1 24 2.75 1 38 3.61 1 332 10.91 1 390 14.56
S65 1 28 5.16 1 41 5.61 1 436 15.27 1 690 42.78
S66 1 34 11.63 1 47 12.45 1 646 36.59 1 998 139.59
S71 1 29 1.75 1 31 1.89 1 121 3.70 1 117 3.75
S72 1 33 2.28 1 37 2.27 1 197 4.14 1 265 5.69
S73 1 26 3.27 1 39 3.80 1 235 6.31 1 286 10.50
S74 1 24 2.92 1 39 3.48 1 285 11.17 1 393 18.81
S75 1 33 6.27 1 37 5.31 1 495 23.16 1 694 43.48
S76 1 34 12.72 1 46 14.13 1 663 44.81 1 1243 156.58

6.2 Testing the Solution Method 137

6.2.4 Early Termination of Branch-and-Price

Among all presented series of tests there are only a very few problem instances
that require branching. All other instances are solved to optimality in the
root node of the branch-and-price tree. In fact, among the 336 runs presented
so far, the optimal solution is found in the root node of the branch-and-price
tree in 322 runs, i.e. in ca. 96% of al test runs.

As argued previously, the feasibility of the recovery solution is more impor-
tant than optimality. The employed constraint branching strategy forces the
“most suitable” train driver to cover a train task, which is covered by more
than one driver in the optimal fractional solution to the TDRP–LP. Com-
bined with a depth-first search of the branch-and-price tree, the employed
branch-and-price algorithm searches for a good feasible solution by looking
through the left size (the 1-branches) of the tree first. We ague that the
termination of the branch-and-price algorithm as soon as the first integer
solution is found is sufficient for finding a solution which is close to optimal.
To support this, we implement the early termination of the branch-and-price
algorithm and compare results to the optimal solutions. These test cases are
presented in Table 6.6, using following notation:

• PrSt is the pricing strategy used in the algorithm,

• ηpart is the value of ηpart used to generate initial set of columns,

• App is the solution approach for finding integer solutions. Opt: the
test instance is solved to optimality with the depth-first search of the
branch-and-price tree. Feas: the algorithm terminates as soon as the
first feasible integer solution is found by the dept-first search,

• #N is the number of solved nodes in the branch-and-price tree, includ-
ing the root node,

• Diff is the difference in the objective values between the optimal and
the feasible solution found with DFS-feas method,

• Gap is the difference between the feasible solution value and the global
lower bound value in the branch-and-bound tree,

• DecT is the decrease in the computational time achieved by solving
the problem to feasibility.

138 Computational Experiments

We observe from Table 6.6 that in the vast majority of test cases the gaps
between the global lower bound value in the tree and the first found integer
solution are zero. In all other cases the gaps are so low, that the differences
between optimal and feasible integer solutions are very small, approximately
0.2%. We also observe that noticeable decreases in the computational times
can be achieved by solving the problems to feasibility. We therefore suggest to
terminate the branch-and-price algorithm as soon as the first feasible integer
solution is achieved with the depth-first search of the tree. Alternatively, the
branch-and-price can continue until the gap between the lower bound and
the upper bound of the integer solution decreases to a certain value, e.g. 1%.

6.2.5 Test Conclusions

Based on the aforementioned test results we conclude that the multiple pric-
ing strategy works better than the other implemented pricing strategies in the
branch-and-price framework. We therefore suggest to implement the multiple
pricing strategy as it is described in this thesis, i.e. by virtually partitioning
all non-basic variables in subsets belonging to different train drivers. Then, at
every pricing iteration, to return the minimum negative reduced cost column
from every such subset, thereby adding several candidates to enter the basis.
We have also observed that the way of generating the initial set of columns
has an effect on the running time of the branch-and-price algorithm. The
test results show that a fast convergence is achieved by using the limited sub-
sequences strategy with the parameter ηpart = 15 for generating the initial
columns.

Another important observation confirms our expectation to the integer prop-
erties of the set partitioning based model to TDRP. Test results reported
in this thesis as well as the preliminary tests described in Rezanova and
Ryan [2006] and Rezanova and Ryan [2009] show that more than 95% of
all generated TDRP instances are solved to optimality in the root node of
the branch-and-price tree, i.e., by solving the LP-relaxation of the problem.
Furthermore, we conclude that the objective function values of the first feasi-
ble integer solutions found by the depth-first search of the branch-and-price
tree are very close to optimal solutions, and the gaps between the lower and
the upper bounds are very small. We therefore conclude that the prema-

6.2 Testing the Solution Method 139

Table 6.6: Comparing optimal and feasible integer solutions.

ID PrSt(ηpart) App #N #It #Var Z∗ Diff Gap Time DecT
S36 MP(5) Opt 7 52 13152 2389 20.36
S36 MP(5) Feas 3 40 13150 2393 0.17% 0.17% 14.98 26.40%
S36 MP(10) Opt 3 46 5470 2389 12.72
S36 MP(10) Feas 2 40 5470 2389 0.00% 0.00% 10.81 14.99%
S36 FP(15) Opt 3 1138 3713 2389 133.47
S36 FP(15) Feas 2 1105 3713 2389 0.00% 0.00% 127.25 4.66%
S36 SP(15) Opt 3 51 3587 2389 11.91
S36 SP(15) Feas 2 45 3587 2389 0.00% 0.00% 11.38 4.46%
S36 MP(15) Opt 13 99 3878 2389 29.22
S36 MP(15) Feas 2 47 3697 2394 0.21% 0.21% 12.27 58.02%
S36 MP(20) Opt 3 52 2840 2389 12.81
S36 MP(20) Feas 2 46 2840 2389 0.00% 0.00% 11.23 12.32%
S41 PP(15) Opt 3 122 190 2360 3.20
S41 PP(15) Feas 2 105 190 2360 0.00% 0.00% 2.23 43.38%
S45 MP(1) Opt 3 21 46489 2617 14.38
S45 MP(1) Feas 2 15 46489 2617 0.00% 0.00% 10.69 25.66%
S45 SP(15) Opt 3 50 2246 2617 7.63
S45 SP(15) Feas 2 46 2246 2617 0.00% 0.00% 6.23 18.24%
S45 MP(20) Opt 3 41 1908 2617 6.67
S45 MP(20) Feas 2 37 1908 2617 0.00% 0.00% 6.23 10.06%
S53 MP(10) Opt 3 38 579 2393 2.53
S53 MP(10) Feas 2 32 579 2393 0.00% 0.00% 2.27 10.51%
S53 MP(15) Opt 3 38 523 2393 2.44
S53 MP(15) Feas 2 35 523 2393 0.00% 0.00% 2.36 3.20%
S62 SP(15) Opt 3 42 400 7122 2.13
S62 SP(15) Feas 2 37 400 7122 0.00% 0.00% 2.23 5.13%
S76 MP(1) Opt 3 19 271424 9472 77.28
S76 MP(1) Feas 2 17 271424 9472 0.00% 0.00% 59.14 23.47%

140 Computational Experiments

ture termination of the branch-and-price algorithm should be implemented
in TDR–DSS.

Table 6.7 presents solution details which are common for all pricing strategies.
The following notation is used:

• |K|(Init) is the number of train drivers in the disruption neighbour-
hood. The number in parenthesis describes the initial value before
disruption neighbourhood expansion,

• |N |(Init) is the number of train tasks in the disruption neighbourhood.
The number in parenthesis describes the initial value before disruption
neighbourhood expansion,

• C is the number of constraints in TDRP–LP,

• Sh is the number of train driver duties with a shifted check-out task,
see Section 5.7,

• Ext is the number of train drivers with extended recovery period,

• Add is the number of added reserve drivers,

• Z∗ is the objective function value of the solution,

• Non is the number of non-covered train tasks in the solution,

• T Computational times for solving all instances, except for S36 and S56,
to optimality with the multiple pricing strategy MP to optimality. An
early termination of branch-and-price is used to solve S36 and S56.

Solution results suggest that the disruption neighbourhood for all test in-
stances with the recovery period of 1 hour and 1.5 hours was expanded by
extending the recovery period for at least one train driver. We can there-
fore conclude that these recovery period lengths are too short to be applied
to recover the train driver schedule, based on the tested data input. The
expansion of disruption neighbourhood by adding reserve train drivers was
necessary in all presented test cases. It was furthermore observed that at
least 3 reserve train drivers were used in all recovery solutions. We therefore
suggest to add all available reserve drivers to the initial disruption neigh-
bourhood in further experiments. Since the test instances are generated
independently of the previous recovery of the train driver schedule, the sizes
of the instances grow as the start time of the recovery period increases. It

6.2 Testing the Solution Method 141

is also much harder to find a recovery solution that can cover all train tasks
in the disruption neighbourhood, if no attempts to recover the schedule has
been made. It it therefore important to start the recovery process of the
train driver schedule as early as possible, and use all available information
about the disruption. The computational times increase with the size of
the disruption neighbourhood, but are still acceptable for employment of the
presented solution method to solving TDRP in S-tog’s daily operations.

142 Computational Experiments

Table 6.7: Solutions details for test instances.
ID |K|(Init) |N |(Init) C Sh Ext Add Z∗ Non T
S11 21 (12) 10 (8) 31 0 1 9 404 0 0.33
S12 21 (12) 14 (12) 35 0 1 9 404 0 0.41
S13 21 (12) 20 (20) 41 0 0 9 61 0 0.41
S14 23 (12) 28 (28) 51 0 0 11 61 0 0.56
S15 23 (12) 35 (35) 58 0 0 11 61 0 0.70
S16 24 (12) 41 (41) 65 0 0 12 76 0 0.94
S21 26 (17) 17 (13) 43 0 2 9 176 0 0.44
S22 26 (17) 23 (21) 49 0 1 9 176 0 0.50
S23 26 (17) 29 (29) 55 0 0 9 176 0 0.53
S24 28 (17) 38 (38) 66 0 0 11 176 0 0.67
S25 28 (17) 40 (40) 68 0 0 11 176 0 0.67
S26 29 (17) 46 (46) 75 0 0 12 174 0 0.91
S31 31 (22) 23 (11) 54 0 7 9 700 0 0.70
S32 35 (26) 37 (30) 72 0 4 9 1702 0 0.80
S33 46 (35) 56 (54) 102 0 1 11 1892 0 1.33
S34 56 (45) 81 (81) 137 0 0 11 1935 0 1.42
S35 67 (55) 120 (120) 187 0 0 12 2291 0 3.75
S36 72 (60) 151 (151) 223 0 0 12 2389 0 12.27
S41 39 (30) 33 (17) 72 3 8 9 2360 0 1.11
S42 43 (34) 44 (36) 87 4 3 9 2720 0 1.50
S43 55 (44) 62 (58) 117 4 1 11 2042 0 1.86
S44 68 (57) 98 (94) 166 4 1 11 2413 0 4.13
S45 76 (64) 131 (131) 207 4 0 12 2617 0 5.38
S46 81 (69) 169 (169) 250 4 0 12 2574 0 15.31
S51 38 (30) 25 (14) 63 7 5 8 2829 0 0.86
S52 48 (38) 38 (31) 86 7 4 10 2958 0 1.16
S53 57 (47) 63 (56) 120 7 3 10 2393 0 2.36
S54 67 (56) 88 (88) 155 7 0 11 2653 0 2.11
S55 72 (61) 118 (118) 190 7 0 11 2752 0 4.15
S56 81 (68) 160 (160) 241 7 0 13 2753 0 12.44
S61 48 (40) 32 (16) 80 9 8 8 7477 5 1.16
S62 59 (49) 53 (42) 112 9 6 10 7122 4 1.73
S63 69 (59) 78 (70) 147 9 3 10 6227 3 3.20
S64 77 (66) 101 (101) 178 9 0 11 6098 3 2.75
S65 82 (71) 133 (133) 215 9 0 11 5693 3 5.16
S66 88 (75) 165 (165) 253 9 0 13 5632 3 11.63
S71 54 (44) 43 (26) 97 7 10 10 10011 6 1.75
S72 62 (52) 60 (46) 122 7 7 10 9919 6 2.28
S73 71 (60) 80 (75) 151 7 3 11 10103 6 3.27
S74 74 (63) 101 (101) 175 7 0 11 9525 6 2.92
S75 81 (68) 132 (132) 213 7 0 13 9471 6 6.27
S76 85 (72) 166 (166) 251 7 0 13 9472 6 12.72

6.3 Rolling Time Horizon Cases 143

6.3 Rolling Time Horizon Cases

The recovery of the train driver schedule must continue during the day of
operation until the order on the S-train network is restored. TDRP instances
are therefore generated and solved with a rolling time horizon, as described
in Section 3.2.3. We test the rolling horizon framework on the same data
input used for generating test instances described in Section 6.1. The rolling
horizon scenarios are, however, generated with slightly different assumptions.
We assume that the system, and hence the train driver dispatcher has the
information about all disruptions within the chosen recovery period, includ-
ing expected delay propagations. To compare, the test instances described
in Section 6.2.1 are generated by assuming that the system only has the in-
formation about delayed trains which run during the first 5 minutes after the
recovery start time.

The initial disruption neighbourhood of every TDRP instance is generated by
adding all train drivers who are assigned to the disrupted train tasks within
the recovery period and all reserve drivers available during the recovery pe-
riod. We start to recover the train driver schedule at 12:00 and continue to
recover until 20:00, using recovery periods of 2, 2.5 and 3 hours, and a mon-
itoring interval of 30 minutes. We measure the quality of recovery solutions
achieved by solving the rolling horizon TDRP with the three chosen recovery
periods. The main measurement criteria is the number of times the train
driver duties within the disruption neighbourhood have been changed during
the whole time horizon. This number corresponds to the number of times a
train driver dispatcher has to inform train drivers about changes in the duty,
if the solutions suggested by TDR–DSS were approved and implemented.
Other measurements are the number of passengering tasks, the number of
taxi rides, and the number of train driver changes from train tasks to train
tasks on København H. These connections are given high costs, as described
in Section 4.2.4. Tables 6.8, 6.9, and 6.10 present the test results using the
following notation:

• T G is the computational time in seconds for generating duty graphs
and other data structure,

• T S is the computational time in seconds for finding the optimal solu-
tion,

144 Computational Experiments

• Pas is the number of passengering tasks in the recovery solution,

• Taxi is the number of assigned taxi rides in the recovery solution,

• KH is the number of driver changes at København H,

• Ch is the number of train drivers who’s original duties changed in the
recovery solution,

• %Ch is the percentage of Ch among all train drivers in the disruption
neighbourhood.

There was not need to expand the disruption neighbourhoods of any rolling
horizon test instances during the whole time horizon, partly because the
reserve train drivers were added to the initial disruption neighbourhood,
and partly because all disruptions during the recovery period were available.
There were no uncovered train tasks in the recovery solutions either. We have
therefore omitted the details of Sh, Ext, Add, and Non from the tables.
The rolling time horizon tests perform best with respect to the number of
changed duties during the hole time horizon when the recovery period of 2
hours is applied. The train driver dispatcher would have to inform drivers 59
times compared to 70 and 87 times if the recovery periods of 2.5 and 3 hours
are applied, respectively. The number of used taxi rides is highest if the
shortest tested recovery period is applied, while the longest tested recovery
period only generated 3 taxi rides. The taxi rides are very expensive in the
solution and they are only used when no other possibility is available. It is
therefore clear that the shortest recovery period required the largest number
of taxis. The number of passengering tasks is, however, the lowest among the
three tests, when the 2-hour recovery period is used. None of the solutions
contain the unattractive train driver changes from train task to train task at
KH.

Note that the first runs, R13 1, R14 1, and R15 1, contains the largest num-
ber of disrupted trains compared to the subsequent runs. In the subsequent
runs only disruptions occurring between the end of the first recovery period
and the end of the next recovery period are added to the problem, while the
rest of the recovery period contains non-disrupted, i.e. solved in the previous
runs, duties. This is particularly evident in the test case R15 1 with the
longest recovery period. Hence, the subsequent problems in the rolling hori-
zon framework are easier to solve. This is also evident from the number of

6.3 Rolling Time Horizon Cases 145

pricing iterations, the number of generated variables, and, as a consequence,
from computational times, even though the differences are insignificant.

As we can see from the test runs, there were no more delays and re-routing
of trains after approximately 18:30, and a very few train tasks still remained
cancelled afterwards. According to the disruption records, the last cancelled
train task was originally scheduled to depart at 19:24 from KH. It might
seem strange that trains were still cancelled, even though there were no
influential delays. There is, however, a natural explanation to that, since the
train tasks were cancelled as a part of the aforementioned line cancellation
recovery strategy on the S-train network. The re-insertion of the train lines
back to operation is a non-trivial task (see Jespersen Groth et al. [2006]).
Therefore, it usually takes some time from the decision about re-insertion
of train lines to the actual implementation of the re-insertion. The order
on the S-train network was completely restored after approximately 20:00.
Zero objective function values of the solutions to the test instances R13 13,
R14 12, and R15 11 confirm that.

The computational times are much smaller than the tests conducted in the
previous section. All rolling time horizon instances were solved in the roon
node of the branch-and-price tree. We can conclude from the above tests that
the level of information is very important for how well the TDRP is solved.
Compared to the test instances generated in Section 6.2.1 with a limited
information about delays in the recovery period, the rolling horizon tests
with full information obtain better solutions to the recovery. It is apparent
that with the full information availability and a continues recovery, it is an
easy optimization task to recover the train driver schedule when disruptions
occur on the S-train network.

146 Computational Experiments

T
ab

le
6.8:

R
ollin

g
tim

e
h
orizon

test
resu

lts
w

ith
th

e
recovery

p
erio

d
of

2
h
ou

rs.

ID
R

ecP
er

D
el

T
urn

C
an

T
G

N
It

V
C

K
N

Z
∗

T
S

P
as

T
axi

K
H

C
h

%
C

h
R

13
1

12:00–14:00
21

8
5

0.67
1

9
207

59
28

31
1563

0.34
6

3
0

11
39%

R
13

2
12:30–14:30

5
5

17
0.20

1
10

170
49

23
26

1373
0.34

5
3

0
6

26%
R

13
3

13:00–15:00
3

3
28

0.14
1

9
157

48
23

25
885

0.30
6

1
0

7
30%

R
13

4
13:30–15:30

5
6

37
0.22

1
6

187
60

32
28

1100
0.25

9
1

0
7

22%
R

13
5

14:00–16:00
7

7
41

0.27
1

6
160

53
30

23
1129

0.27
13

0
0

9
30%

R
13

6
14:30–16:30

3
3

54
0.17

1
6

151
50

30
20

375
0.23

4
0

0
3

10%
R

13
7

15:00–17:00
2

2
74

0.22
1

10
274

67
38

29
453

0.41
3

0
0

6
16%

R
13

8
15:30–17:30

3
3

79
0.22

1
6

164
57

38
19

449
0.19

1
1

0
2

5%
R

13
9

16:00–18:00
5

5
79

0.33
1

7
264

66
44

22
874

0.27
4

1
0

3
7%

R
13

10
16:30–18:30

3
3

73
0.14

1
6

152
49

39
10

471
0.20

2
1

0
1

3%
R

13
11

17:00–19:00
0

0
73

0.17
1

5
151

51
38

13
337

0.20
4

0
0

2
5%

R
13

12
17:30–19:30

0
0

61
0.78

1
5

101
36

29
7

54
0.17

0
0

0
2

7%
R

13
13

18:00–20:00
0

0
50

0.46
1

2
30

15
14

1
0

0.13
0

0
0

0
0%

57
11

0
59

6.3 Rolling Time Horizon Cases 147

T
ab

le
6.

9:
R

ol
li
n
g

ti
m

e
h
or

iz
on

te
st

re
su

lt
s

w
it

h
th

e
re

co
ve

ry
p
er

io
d

of
2.

5
h
ou

rs
.

ID
R

ec
P
er

D
el

T
ur

n
C

an
T

G
N

It
V

C
K

N
Z
∗

T
S

P
as

T
ax

i
K

H
C

h
%

C
h

R
14

1
12

:0
0–

14
:3

0
26

13
18

1.
70

1
14

49
6

10
0

40
60

17
66

0.
64

9
2

0
24

60
%

R
14

2
12

:3
0–

15
:0

0
3

3
28

0.
22

1
10

21
4

56
25

31
88

0
0.

22
5

1
0

7
28

%
R

14
3

13
:0

0–
15

:3
0

5
6

37
0.

30
1

8
29

2
74

32
42

91
2

0.
22

10
0

0
9

28
%

R
14

4
13

:3
0–

16
:0

0
7

7
41

0.
39

1
8

28
3

74
33

41
14

75
0.

20
13

1
0

12
36

%
R

14
5

14
:0

0–
16

:3
0

3
3

58
0.

25
1

7
20

0
65

32
33

91
1

0.
23

3
2

0
3

9%
R

14
6

14
:3

0–
17

:0
0

2
2

77
0.

28
1

8
29

3
78

39
39

69
7

0.
25

8
0

0
6

15
%

R
14

7
15

:0
0–

17
:3

0
3

3
91

0.
36

1
8

22
6

66
39

27
44

9
0.

25
1

1
0

2
5%

R
14

8
15

:3
0–

18
:0

0
5

5
89

0.
56

1
10

39
7

76
43

33
87

4
0.

33
7

1
0

3
7%

R
14

9
16

:0
0–

18
:3

0
3

3
88

0.
28

1
6

16
8

54
41

13
47

1
0.

17
2

1
0

1
2%

R
14

10
16

:3
0–

19
:0

0
0

0
87

0.
27

1
6

21
1

62
43

19
48

2
0.

19
5

0
0

2
5%

R
14

11
17

:0
0–

19
:3

0
0

0
81

0.
78

1
4

13
3

44
36

8
82

0.
93

1
0

0
1

3%
R

14
12

17
:3

0–
20

:0
0

0
0

65
0.

62
1

1
30

15
15

0
0

0.
78

0
0

0
0

0%
64

9
0

70

148 Computational Experiments

T
ab

le
6.10:

R
ollin

g
tim

e
h
orizon

test
resu

lts
w

ith
recovery

p
erio

d
of

3
h
ou

rs.

ID
R

ecP
er

D
el

T
urn

C
an

T
G

N
It

V
C

K
N

Z
∗

T
S

P
as

T
axi

K
H

C
h

%
C

h
R

15
1

12:00–15:00
29

16
39

3.93
1

18
861

132
47

85
1880

1.61
16

0
0

32
68%

R
15

2
12:30–15:30

5
6

37
0.58

1
10

431
84

31
53

743
0.42

8
0

0
8

26%
R

15
3

13:00–16:00
7

7
41

0.75
1

12
536

95
34

61
1107

0.75
11

0
0

14
41%

R
15

4
13:30–16:30

3
3

58
0.47

1
10

399
84

33
51

1085
0.55

4
2

0
7

21%
R

15
5

14:00–17:00
2

2
81

0.67
1

11
548

88
37

51
781

0.59
8

0
0

10
27%

R
15

6
14:30–17:30

3
3

94
0.52

1
9

411
81

37
44

509
0.47

5
0

0
7

19%
R

15
7

15:00–18:00
5

5
101

0.86
1

13
520

92
42

50
566

0.73
6

0
0

5
12%

R
15

8
15:30–18:30

3
3

98
0.45

1
7

216
59

38
21

471
0.28

2
1

0
1

3%
R

15
9

16:00–19:00
0

0
102

0.39
1

4
189

60
40

20
427

0.16
5

0
0

2
5%

R
15

10
16:30–19:30

0
0

95
0.13

1
6

105
43

36
7

33
0.19

0
0

0
1

3%
R

15
11

17:00–20:00
0

0
85

0.13
1

4
83

30
24

6
0

0.17
0

0
0

0
0%

65
3

0
87

Chapter 7

Future Research and
Conclusion

7.1 Future Research

In this section we describe a few suggestions for the future research and devel-
opment of the train driver recovery problem decision support system. They
concern alternative modelling and solution approaches, general algorithmic
improvements of the programming code and implementation details.

7.1.1 Alternative Objective of Train Driver Recovery

Train driver dispatchers at S-tog aim at disturbing the original duties of as
few train drivers as possible in recovery solutions. We therefore suggest an
alternative formulation to express this. Let yk be a binary variable that is
equal to 1 if the driver k ∈ K is included in the recovery solution, and 0
otherwise. The cost ck express the unattractiveness of including a particular
driver k to the recovery solution. Let zk

i be a binary variable that is equal

150 Future Research and Conclusion

to 1 if driver k covers train i ∈ N , and 0 otherwise. Then a formulation of a
train driver recovery problem which aims at minimizing the number of train
drivers included in the recovery solution is the following:

(TDRP-min) Minimize
∑
k∈K

ck yk (7.1)

Subject to
∑
k∈K

zk
i = 1 ∀i ∈ N, (7.2)

zk
i − yk ≤ 0 ∀k ∈ K, ∀i ∈ N, (7.3)

yk ∈ {1, 0} ∀k ∈ K. (7.4)

zk
r ∈ {1, 0} ∀k ∈ K, ∀i ∈ N. (7.5)

The set of constraints (7.2) ensures that every train task i in the disruption
neighbourhood is covered by a train driver in K. The linking constraints (7.3)
ensure that if driver k covers train task i then the train driver variable yk = 1
in the solution. Since the objective function (7.1) minimizes the number of
train drivers in the solution, then variable yk = 0 if zk

i = 0. In order to ensure
feasibility of the solution to TDRP-min, an artificial variable si, i ∈ N can
be added to every partitioning constraint (7.2), as well as to be added to
the objective function with a large cost. Artificial variables play the role of
cancellation decision variables, similar to the artificial variables fi, i ∈ N in
the formulation of TDRP–LP. The problem formulation of TDRP-min does,
however, not have the same integer properties as TDRP, since there is no
GUB constraints present in the latter formulation. It means that TDRP-
min is not as “easy” to solve as the set partitioning problem with GUB
constraints by solving its LP-relaxation.

7.1.2 Integrated Approach

The most interesting and important research direction is towards the inte-
grated recovery of the railway operations. In the optimization model and the
solution method implemented in this project the hierarchical approach to re-
covery is assumed. The train driver schedule is recovered given the timetable
and the rolling stock schedule. If a particular train task i cannot be covered

7.1 Future Research 151

by the drivers within the expanded disruption neighbourhood of a particular
recovery solution, the network traffic control center must take a decision if
the departure of the train task i is to be delayed, re-routed or cancelled.

Ideally, the disruption management decision support should include delaying,
re-routing and cancellation possibilities of all train tasks within the disruption
neighbourhood. Furthermore, feasibility of these decisions cannot be ensured
unless the rolling stock schedule is taken into considerations. It is therefore
a difficult and a challenging task to develop an integrated railway recovery
tool. The integrated railway recovery approaches have not yet appeared in
the operations research literature. Potthoff et al. [2008] include cancellation
decision variables in the crew re-scheduling model. These variables, how-
ever, serve exactly the same purpose as the artificial variables fi,∀i ∈ N
in the TDRP-LP model presented in Section 5.3, namely to detect which
train tasks cannot be covered by the train drivers within the core problem.
The model does not ensure that the rolling stock schedule does not become
infeasible when a certain train task is cancelled in the solution. The inte-
grated re-timing of departures and crew recovery is implemented in a very few
applications of the airline crew recovery (Abdelghany et al. [2004]). There
are also some integrated solutions within the airline scheduling (Mercier and
Soumis [2007], Weide et al. [2009]). Solving integrated problems to optimality
is computationally expensive, even with decomposition approaches. Weide
et al. [2009] present an alternative approach, where the crew scheduling and
the aircraft scheduling problems are solved iteratively. A similar approach
seems to be suitable for recovery applications, also within railway disruption
management.

7.1.3 General Strategy for Initial Disruption Neigh-
bourhood

We have concluded that the recovery periods of approximately 2–3 hours are
suitable for recovering the train driver schedule based on the tested disrup-
tion data. Initial disruption neighbourhoods are generating by only including
the disrupted and the reserve train drivers. However, other recovery period
lengths and other strategies for including train drivers can possibly work

152 Future Research and Conclusion

better in other disrupted situations. An important issue for further research
is to determine a general strategy for adjusting the recovery period length
and other parameters to different types of disruptions. Guo [2005a] (see Ap-
pendix A) consider the airline crew recovery problem and present a strategy
mapping approach to choosing the solution method and other parameters,
such as the length of the recovery period. These ideas can be used to develop
a general strategy for generating disruption neighbourhoods according to the
magnitude and the location of disruptions, and considering the recovery ini-
tiatives towards the timetable and the rolling stock recovery on the S-train
network, and other factors.

7.1.4 Exploration of Disruption Neighbourhood

The expansion of the disruption neighbourhood is another topic which must
be explored further. Adding more train drivers to the disruption neigh-
bourhood can improve the quality of the solution. We have partly imple-
mented the possibility of adding train drivers who are available to cover the
non-covered train tasks, but the strategy needs further refinement. Potthoff
et al. [2008] present a detailed strategy for adding new train drivers to the
disruption neighbourhood. These ideas can be used as an inspiration for
further research within this area. An open question in the area of the dis-
ruption neighbourhood expansion is how to ensure that the recovery solution
restricted by the chosen disruption neighbourhood is as close to the global
optimal solution given the information available about the disruption, and
how to find the answer without having to include all train drivers in schedule
and considering a recovery period that lasts for the rest of the day?

7.1.5 Refining the Limited Subsequences Strategy

One way to refine the limited subsequences pricing strategy is to calculate a
value of the filter ηk

v for every vertex v in the duty graph Gk. Then ∆ηk
v is

also calculated individually for every vertex v:

∆ηk
v = d|δ

+(v)|
ηpart

e. (7.6)

7.1 Future Research 153

The more precise value of ηk
v makes it easier to control the speed of the

deepening of the limited subsequences though the the value of ηpart. The dis-
advantage of this refinement is in increasing number of calculations necessary
to perform at every major iteration of the pricing strategy.

Another refinement of the limited subsequences strategy is to make it possible
to control which columns are collected at each pricing iteration by using the
knowledge about the practical problem for sorting the outgoing arcs of every
vertex in a duty graph. It is not always the cheapest arcs that need to
be considered first, particulary, if a feasible recovery solution is difficult to
achieve. Consider a situation where the only way a feasible recovery duty
can be generated for a particular train driver k is to include a deadheading
in a taxi after the completion of a certain train task represented by vertex
v. Since the taxi arcs have high costs, and the outgoing arcs of v are sorted
in the increasing order of their costs, the particular taxi arc is considered
after the limited subsequences have deepened enough to reach the arc. If
the knowledge about the necessity of this particular taxi arc was available,
this arc would be given a lower cost, and the infeasibility regarding the train
driver k would have been resolved much sooner in the column generation
process. A more refined limited subsequences strategy can also allow to force
particular train tasks to be included in the recovery duty of a particular train
driver at the beginning of the column generation by changing the cost of arcs.

154 Future Research and Conclusion

7.2 Conclusion

An important operational problem is considered in this thesis, taking a start-
ing point in the operations of a Danish passenger railway company DSB S-
tog A/S. The train driver recovery problem (TDRP) occurs during the day
of operation, when the daily train driver schedule becomes infeasible due
to disruptions on the railway network. The problem is closely related to
two important areas within operations research applications: crew planning
problems in the railway industry and disruption management with focus on
crew recovery in public transportation. The operations research publica-
tions within these areas have been thoroughly reviewed in order to obtain
knowledge within the state-of-the-art on modelling, solution approaches and
implementations.

We give a general introduction and references to operations research related
work at different stages of the planning process in the passenger railway
industry. We have also explored the practical aspects of the train driver
scheduling and dispatching at S-tog. During the project, a close contact to
the planners and operations researchers at the Production Planning Depart-
ment at S-tog has been established, and we have taken several opportunities
to observe the operations of the network control center and train driver dis-
patchers. A detailed description of the tactical and operational crew planning
processes at S-tog is presented, and an insight into the timetable and rolling
stock dispatching on the S-train network is given.

We have developed a prototype for a train driver recovery decision support
system for the train driver dispatchers at S-tog. The prototype is pro-
grammed in C#.NET. The decision support system solves TDRP instances
with a rolling time horizon. In order to generate a TDRP instance we need
a timetable, a train driver schedule, and a list of disruptions to be applied
to the timetable and the train driver schedule. We consider the following
types of disruptions affecting the timetable: departure and arrival delays,
train re-routings by turning the train before it reaches the terminal station,
cancellations of single train tasks, and cancellations of train lines which re-
sult in cancelling all train tasks of these lines for a period of time. We also
consider disruptions that affect the train driver schedule directly, and only
have an indirect effect on the timetable. These are the train driver absences

7.2 Conclusion 155

from duties due to e.g. acute sicknesses and the train driver delays for other
reasons than the disrupted timetable. For every TDRP instance we choose a
certain recovery period and a certain recovery start time. The time difference
between recovery start times of two subsequent TDRP instances is called a
monitoring interval. During the monitoring interval new information about
disruptions become available to the system either directly from the network
traffic control center or from the train driver dispatcher. By solving TDRP
instances with a rolling horizon, the train driver schedule is constantly re-
covered until the operations on the S-train network are back to the normal
state.

The problem space of every TDRP instance is limited by a certain disruption
neighbourhood, which contains a set of train drivers and a set of train tasks
that are to be assigned to the drivers. Since the main objective of the recovery
solution is to make as few modification to the original train driver schedule
as possible, the size of the disruption neighbourhood is restricted by only
including the train drivers disrupted within a certain recovery period. If the
size of the disruption neighbourhood is not sufficient for finding a recovery
solution, we expand the disruption neighbourhood by extending the recovery
period and adding other train drivers. Computational experiments show
that it is appropriate to include all available reserve drivers to the initial
disruption neighbourhood. The rolling time horizon recovery tests show that
it is possible to recover the train driver schedule with the available reserve.

Different solution approaches to solving the train driver recovery problem
have been considered. We formulate TDRP as a set partitioning prob-
lem, where variables (columns) represent recovery duties of the train drivers.
The problem contains two sets of constraints. The generalized upper bound
(GUB) constraints ensure that every train driver is assigned to exactly one
recovery duty, while the set partitioning constraints ensure that every train
task is assigned to exactly one train driver. Due to the presence of the GUB
constraints the model possesses strong integer properties: every constraint
submatrix with the GUB constraint covering a particular train driver is per-
fect. The integer properties force the LP-relaxation of TDRP to have optimal
integral solutions in the vast majority of the test instances. Computational
experiments show that approximately 96% of all generated TDRP test in-
stances are solved to optimality in the root node of the branch-and-price
tree.

156 Future Research and Conclusion

The perfect structure of the driver submatrices also ensures that the frac-
tions in TDRP–LP can only occur when two or more train drivers compete
for covering the same train task. This observation suggests an efficient way to
search for integer solutions, based on constraint branching. Computational
experiments show that in cases where branching is required, the values of the
first found feasible integer solutions have approximately 0.2% gap from the
best lower bound value. The costs of recovery duties in the objective func-
tion are not represented by the real costs of duties. Artificial cost penalties
are applied to those recovery duties, which are unattractive from the point
of view of minimizing modifications to the original duties. We can therefore
conclude that it is sufficient to solve TDRP by finding the first integer solu-
tion, and the branch-and-price algorithm can terminate before the optimal
solution is found.

We use a limited subsequences strategy to generate the initial set of columns.
The idea of the limited subsequences is to limit the number of train tasks
a driver can perform after completion of every task in the duty. Since the
train task subsequences are expressed by the arcs in duty graphs, we only
allow to consider a limited number of outgoing arcs of every vertex on the
duty graph when generating recovery duties with the limited subsequences
strategy. This strategy, if carefully tuned, is efficient for generating a good
initial set of columns for TDRP–LP. We implement several pricing strate-
gies. Computational experiments show that the multiple pricing strategy
outperforms the other strategies. With the multiple pricing strategy, several
columns are added to the restricted master problem at each iteration. Each
column corresponds to the minimum negative reduced cost recovery duty for
one train driver in the disruption neighbourhood. After every pricing step
the simplex algorithm performs several iterations, and more than one gen-
erated column can therefore enter the basis every time the restricted master
problem is solved.

During this project we have considered different data input provided by S-
tog. The preliminary results reported in Rezanova and Ryan [2006] employ
the train driver schedule from year 2005 and simulated disruptions by can-
celling one train line. Afterwards, the train driver schedule from year 2007
was adopted and the real-life timetable disruptions applied. The results are
reported in Rezanova and Ryan [2009]. In this thesis we report the computa-
tional experiments with the algorithmically improved version of the program,

7.2 Conclusion 157

using the same real-life data input. We consider one day of operations from
January 2007, where due to a broken railroad switch the timetable and the
train driver schedule were severely disrupted from 12:00 to 20:00. As a conse-
quence of the disruption, several train lines were cancelled and many trains
re-routed. We generate independent test scenarios with disruption neigh-
bourhoods of 21–88 train drivers and 10–169 train tasks. All solutions are
found within 16 seconds, using the multiple pricing strategy with the best
parameter for collecting initial set of columns and applying the early termi-
nation of the branch-and-price algorithm. Computational experiments show
that recovery periods of 2–3 hours are most suitable for the recovery. The
chosen solution strategy is applied to the rolling time horizon test scenar-
ios, where TDRP instances are solved with recovery periods of 2, 2.5, and
3 hours, using the 30 minutes monitoring interval. The largest size of dis-
ruption neighbourhood generated with the rolling horizon contains 47 train
drivers and 85 train tasks. The largest rolling horizon instance is resolved
within 2 seconds, while optimal solutions to the vast majority of instances are
found within less than 0.5 seconds. Based on the computational experiments
conducted during this project we can conclude that the solution method em-
ployed in the prototype for the train driver recovery decision support system
is suitable for implementing in the real-time environment.

The feasibility and the quality of generated recovery solutions have been
continuously evaluated by train driver dispatchers at S-tog. For the purpose
of presenting recovery solutions we have developed a graphical user inter-
face (GUI) of the prototype. The GUI was unexpectedly appreciated by the
planners and dispatchers. This shows that operations research applications
must not only focus on the optimization methods, but also on providing a
comprehensible link to the end-users of the systems under development. Cur-
rently, S-tog is working on different scenarios for implementing the prototype
developed during this thesis into the operational environment. We therefore
conclude that this thesis contributes not only to operations research applica-
tions from the scientific point of view, but also to a potential improvement
of daily operations of DSB S-tog A/S, which can result in a higher service
level provided for the passengers on the S-train network.

158 Future Research and Conclusion

Appendix A

Airline Crew Recovery Review

To our knowledge, Johnson et al. [1994] is the first publication regarding the
airline crew recovery. The problem is formulated as a set covering problem
with additional constraints. The authors consider recovering pilot pairings
when a single flight is delayed at a single airport. An approach for identifying
crew to be involved in the recovery solution is proposed. Experiments are
conducted based on data files supplied by Northwest Airlines. All pairings
for the crew recovery problem are generated a priori from a time-line net-
work and the set covering problem is solved using MINTO (Nemhauser et al.
[1994]). Three small test scenarios are described, but the running times are
not presented.

Teodorović and Stojković [1995] suggest a model to reduce the airline sched-
ule disturbances, where the main focus is on recovering aircraft from dis-
ruptions. Recovery crew rotations are scheduled using a first in first out
(FIFO) principle and a sequential dynamic programming approach. In the
FIFO algorithm the first arriving flight leg at an airport is linked to the first
departing leg. The rotation finishes when the chain of flight legs cannot be
extended due to the crew working hours, number of take-offs, breaks etc. It
is not taken into account that the crew has to end the rotation at a certain
airport. In the sequential approach, a crew rotation is generated for the
“first crew”, then all flight legs used in the rotation are excluded from the
schedule, and a recovery rotation is generated for the next “first crew”. The
“first crew” is suggested to be the crew which is able to fly the shortest path

160 AppendixA

route of legs, where the length of the path is determined by the time the crew
spends on the ground after finishing each leg in the path. Both methods are
far from optimal, but the authors ague that it is “easy” to deadhead crew,
if it arrives at a different airport than planned.

Wei et al. [1997] is the first published work exclusively dedicated to the airline
crew recovery. A very similar publication is reported by the same authors in
Song et al. [1998]. The problem is modelled as an integer multi-commodity
network flow problem on a time-space network, where vertices represent flight
legs and arcs represent feasible crew transitions between flights. Each crew
is required to be back to its original schedule at the end of the recovery
time window, which is represented by return vertices in the network. A
crew represents a commodity in the network and a directed path through the
network ending up in the crew return vertex represents a feasible pairing. The
set covering problem formulation of the crew recovery problem is presented.
A heuristic-based search algorithm is proposed in order to repair the broken
crew pairings. The solution process is represented by a search tree, where
each node represent a set of uncovered flights and a list of pairings modified
so far in the search process. At each node, an uncovered flight is picked and a
candidate crew list is generated to cover this flight. Different crew candidates
lead to different branches of the solution tree. All generated pairings must be
legal, return to the designated return vertex and be as close to the original
paring as possible. If all flights are covered, the node represent a feasible
solution. The preprocessing step to the algorithm is employed in order to
try to return every affected crew back to its original pairing. A negative-cost
shortest path algorithm is employed to find a feasible path in the network,
which represent a pairing as close to the original as possible. Flights which
are still uncovered and the modified parings after the preprocessing step
form the first node of the solution tree. A few computational experiences
are given to demonstrate the application of the algorithm. The algorithm
terminates when a requested number of solution is found or when a certain
time limit is achieved. For the first set of test instances, the flight schedule
of 18 flight legs covered by 6 pairings and 1 reserve crew is used. In 6
proposed disruption scenarios one or two flights are delayed or cancelled,
resulting in modification of two or three pairings. Finding the fist feasible
solution is achieved within 0,72 to 6,50 seconds on HP 715/100. The optimal
solution is found by requesting to find all possible solution nodes, which is
achieved within 0,72 to 24,22 seconds (8 seconds on average). The second

Airline Crew Recovery Review 161

set of test scenarios was generated for 51 flights and 18 pairings, cancelling
or delaying one or two flights. Requesting the termination of the algorithm
after 3 solutions are found, solutions for the 8 test cases are found within
0,29 to 5,76 seconds on HP9000/K420 parallel system.

The framework for a decision support system presented in Wei et al. [1997]
was further developed by CALEB Technologies (www.calebtech.com) and im-
plemented in Continental Airlines, as reported Yu et al. [2003]. The success
of the implementation helped the airline to quickly recover from major snow-
storms and 9/11 terrorist attack in 2001. The project was awarded the 2002
Franz Edelman Award for Achievement in Operations Research and the Man-
agement Sciences. The decision support system incorporates an optimization
server with the system operations control database and other data systems.
The solver generates up to three solutions in order to give the operator a
flexibility to choose the most appropriate decision. Real-life test scenarios
are reported, run on one processor of a Sun system with four 300-Mhz Ul-
traSPARC II processors. Test problems with up to 20 affected flights were
resolved within 0,97-58,89 seconds on average, while crew recovery problems,
where between 21 and 40 flights were affected, took approximately 200-300
seconds on average to resolve.

Stojković et al. [1998] consider an operational airline crew scheduling prob-
lem, where individual work schedules for the crew have to be modified during
an operational phase. The problem is formulated as a set partitioning prob-
lem which is aimed at minimizing the cost of modified pairings within a
certain operational period. Decision variables represent legal pairings, which
are generated from space-time oriented graphs as resource constrained paths,
where resources represent local pairing constraints, e.g. time away from base.
The problem is solved with branch-and-price, where the linear programming
relaxation of the problem is solved with column generation, using the GEN-
COL 3.0 optimizer, which was successfully employed to solve the airline crew
pairing problem Desaulniers et al. [1997], among others. Four test scenar-
ios from an unnamed U.S. carrier pairings are generated, considering three
delayed flights and one indisposed crew member. Solutions to the two test
scenarios defined over one operational period (1 day) was found within 7,21
and 30,42 seconds on HP 9000/715. Solutions to the two remaining scenarios
defined over 7 days of operations were found within approximately 4 and 20
minutes.

162 AppendixA

Stojković and Soumis [2001] extend the crew recovery problem of Stojković
et al. [1998] with a possibility to delay scheduled flights explicitly through the
problem formulation. Some flights have fixed departure times, some others
have more flexible times in terms of a flight specific time window. The
problem is formulated as a multicommodity network flow with additional
constraints, and is solved using column generation with a master problem
and a subproblem per pilot. The solution may include the use of reserve
pilots, treated as extra artificial commodities in the problem. The model and
solution method has been tested on three problems. The largest problem has
59 pilots and 190 flights, of which 52 are originally delayed. All problems
are tested with and without reserve pilots, allowing delays of flights and
with a fixed flight schedule. The results are encouraging, both in terms
of quality and in terms of computing times. Stojković and Soumis [2005]
builds on the model derived in Stojković and Soumis [2001], but extends it
to work with multiple crew members, which makes the situation addressed
more realistic. The extension is achieved by using a number of copies of each
flight corresponding to the number of crew required. A set of constraints
ensure that the departure times for all copies of each flight are added to the
model. The solution process is similar to that described in Stojković and
Soumis [2001]. Three different models are tested: One corresponding to that
from the previous work with strict flight covering constraints, one in which
there is a linear cost for missing crew members, and one with a cost for each
flight with missing crew. It is demonstrated that using both the second and
the third model, substantial improvements compared to the initial situation
can be obtained. However, the solution times experienced for large problems
are prohibitive in an on-line situation (more than an hour).

Lettovsky et al. [2000] formulate the crew recovery problem as a general-
ized set covering problem, where rows represent flight segments that need to
be covered and columns represent feasible pairings generated from the flight
segments. It is also possible to assign no pairing to a crew and to cancel a
flight segment. Flight segments are generated in the preprocessing step and
are sequences of flight legs without crew swapping opportunities. The set
of flight segments includes all uncovered flights and flights belonging to the
crews which are chosen for the recovery in the preprocessing step. An efficient
tree-based data structure is used for storing duties and pairings, which de-
creases memory requirements and allows fast computation of reduced costs.
The linear programming relaxation of the crew recovery model is solved with

Airline Crew Recovery Review 163

primal-dual subproblem simplex method due to Hu and Johnson [1999]. A
branch-and-bound procedure is used to find a good integral solution. The
branching procedure contains a sequence of three steps. First, fractional
cancellation variables in the model are resolved. Second, the fractional dead-
heading variables are resolved. Third, branching on follow-ons (also known
as constraint branching due to Ryan and Falkner [1988]) is performed. Three
test scenarios from an unnamed U.S. carrier’s data are generated with 1296
flight legs and 177 pairings in the original schedule. In the first scenario
3 flights are delayed due to maintenance-related disruption. The second
scenario involves 11 delayed flight arrivals and 1 cancellation due to a thun-
derstorm. The third scenario involves 23 delayed flights and 12 cancellations
in three airports hit by a moving snowstorm. Each scenario is solved with
three levels of restrictions. At the first level the flight segments are not al-
lowed to be disconnected and only 3 potential crews are included for swaps
for each missed connection. Solutions to the first restriction level are found
within 1-6 seconds on a PC/Pentium 150 MHz, 48 MB RAM, and 7 and 21
flights were not covered in the second and third scenario, respectively. When
solving the recovery problems with allowing flights within flight segments to
be disconnected and adding 10 potential crews for swapping, the number of
uncovered flights in the solution was reduced to 2 and 6 in the second and
the third scenario, respectively, but the computational time increased to 6,
115 and 97 seconds for the three scenarios.

Medard and Sawhney [2007] (an earlier version in Medard and Sawhney
[2004]) point out that the crew recovery models published so far generate
crew pairings for the whole crew, without incorporating individual roster-
ing information of each crew member. The generated recovery solutions can
potentially be illegal from rostering point of view. The authors present a
crew recovery model, where rostering constraints are incorporated into the
flight-based set covering crew recovery model alone with the pairing con-
straints. An acyclic activity network is build for each crew member within a
recovery window. Carry-in and a carry-out nodes are defined individually for
each crew member, representing the beginning and the end of the recovery
window, respectively. Legal paths through the activity network represent all
potentially legal rosters between the carry-in and the carry-out for a specific
crew member. Two solution methods are proposed. A greedy enumeration
approach involves a depth-first collection of legal recovery rosters for each
crew member and then solving the set covering problem, selecting a roster

164 AppendixA

for each crew member. The second approach employs the crew pairing col-
umn generation method developed in Carmen Systems (Hjorring and Hansen
[1999]) and the integer programming solver due to Wedelin [1995]. Test in-
stances are generated from unnamed data within a recovery time window
of 48 hours, where between 14 and 885 crew members are captured by the
recovery window. The disruptions involve up to 251 uncovered flights and
up to 77 illegal crew rosters. The depth-first search approach for generating
rosters generally works faster than the column generation approach due to
the large overhead for setting up the duty network in the latter case, and the
authors conclude that the column generation framework has to be refined.
Single base test problems are resolved within 15-76 seconds with depth-first
search method, while the column generation approach required between 27
and 82 seconds on a Linux laptop (256 K RAM, 1 GHz CPU). Multi-base
test problems are resolved within 12-584 and 14-840 seconds with the two
approaches, respectively.

Abdelghany et al. [2004] present a decision support tool for recovering trip-
pairs of a hub-and-spoke airline operation. A trippair is a sequence of two
duties for one crew with a rest period in between. The recovery horizon is
divided into a set of consecutive stages. The crew recovery problem is solved
at each recovery stage. Several preprocessing steps are applied, including
shifting the problem occurrences from the spokes to hubs, adding undis-
turbed crew to the recovery for covering open flights, grouping flights into
resource-independent sets, where flights within the same set cannot be cov-
ered by the same crew and defining a set of candidate crew members to cover
each flight within the recovery period and the cost of each candidate-flight
pair. The problem of assignment of crew members to flights is formulated
as a mixed integer program, where linear variables for flight departure times
allow to minimize the total flight delay in the objective function, while the
assignment variables take care of the minimum cost crew assignment to the
flights. The problem is solved using using CPLEX Callable Library solver
(www.ilog.com). The recovery solution is only applied to the open flights in
the current recovery stage, leaving other assignment decisions to the later
recovery stages. A disruption scenario from the operations of a major U.S.
airline is used as a test case, were 18 crew members were disrupted. After
the preprocessing steps, 121 crew members were collected for the recovery to
cover an unmentioned number of flights. The recovery problem was solved
in 1 minute and 51 seconds on HP B.11.00 U 9000/800 system.

Airline Crew Recovery Review 165

Guo [2005a] present a decision support framework for recovering airline crew
rosters. The crew recovery problem is formulated as a set partitioning prob-
lem, aimed at minimizing the modifications from the planned schedule. Two
solution methods are implemented, a standard column generation with LP
relaxation of the set partitioning problem and a heuristic method based on
a hybrid of a genetic algorithm with a local search. The solution strategy is
chosen at a preprocessing step using the Analytic Hierarchy Process (due to
Saaty [1980]) by a strategy mapping, which is the main focus of the article.
The strategy mapping provides a method to prioritize alternative solution
methods for solving the crew recovery problem by evaluating a set of cri-
teria, such as additional cost for recovering the schedule, solution time, the
number of crew members that need to be notified, the period of time starting
from the first updated flight to the last one, and the number of disturbances
to crew. The authors define following factors which describe the complexity
of the disruption: the number of delayed flights, cancelled flights, new flights
to be operated, available crew members, and daily flights in average), a strat-
egy for solving the crew problem is chosen. A strategy is a combination of
solution methods (column generation and genetic algorithm) and relevant
parameters, like recovery period length. A case study containing data from
a European airline with several home bases is presented to demonstrate the
strategy mapping process. The disruption involves 2 delayed flights, 1 can-
celled flight, 2 new flights, 188 crew members and 85 daily flights on average
during a 5 days recovery period. The author presents the way to compare
three chosen criteria in order to choose between two solution method strate-
gies, and conclude that in the presented case study the genetic algorithm
solution method is preferred to the column generation method, and could
produce an acceptable solution within approximately 3 minutes, which is a
“dramatic reduction” compared to the column generation solution time. The
work is based on the Ph.D. thesis by Guo [2005b].

Nissen and Haase [2006] formulate the crew recovery problem on a duty-
period-based network. A duty period is a time when a crew is assigned to
one or several flights between two rest periods. Instead of using a time-space
network, where arcs represent flight legs or connections between flights, the
authors build a network, where arcs represent all possible duty periods and
rest periods for each crew within a chosen recovery period. Nodes in the net-
work represent an airport at a specific time as well as the dummy crew nodes
representing the beginning and the end of the recovery period. A resource

166 AppendixA

constrained path in the duty-period network, where resources determine the
rest time and workload rules for the crew, represent a feasible sequence of
duty periods, i.e. a part of the crew roster. The crew recovery problem is
formulated as a network flow problem. A Dantzig-Wolfe decomposition is ap-
plied to the original model and the set covering master problem is solved with
column generation and LP relaxation (using CPLEX 7.0 to solve linear prob-
lems). Integer solutions are found in a branch-and-price framework, where
a branch-on-follow-ons (constraint branching) is applied. Artificial short-
haul and medium-haul crew schedules for one fleet were generated based
on a flight schedule of a European airline, since the original crew schedules
were not available. The schedules included 450 and 927 flights in a week,
respectively for the two schedules, while the number of crew to cover the
flight schedule was not mentioned. Several artificial disruption test instances
were generated, containing delaying, cancelling and adding new flights to the
schedules. A recovery period of 48 and 60 hours was found to be the best
(as a compromise between solution quality and solution time) for the short-
haul and the medium-haul schedules, respectively. The authors conclude
that particularly for the larger instances it could pay off to start solving the
LP with a set of heuristically generated columns instead of a set of artificial
variables only, that the largest overhead time is spent in the subproblem, and
that only a very few test instances produced fractional solutions after solv-
ing the LP relaxation. Computational times for the tests run on a PC with
an Atlon 1200 MHz CPU and 512 MB RAM are acceptable for operational
environment for the best choice of model parameters.

Zhao et al. [2007] use grey programming to model the airline crew reschedul-
ing problem. Grey programming is a part of the grey system theory proposed
by Deng [1982], where a system is called “white” when the system information
is fully known, “black” when the system information is unknown, and “grey”
when the system information is partially known. The authors consider crew
ready times, and arrival and departure times of the flights during irregular
operations as interval grey variables ⊗x with known lower and upper bounds,
but with an unknown distribution information. The crew recovery problem
is modelled as a grey programming model with binary variables (assignment
of crew to flights) and grey variables (flight departure times variables). The
model is a copy of the mixed integer programming model proposed by Abdel-
ghany et al. [2004], with the only difference is that linear decision variables
for departure and arrival times of flights and the linear parameter defining

Airline Crew Recovery Review 167

the ready time for crew in the model of Abdelghany et al. [2004] are defined
as grey variables in the model of Zhao et al. [2007]. Furthermore, the litera-
ture review in Zhao et al. [2007] is an exact copy of the literature review in
Abdelghany et al. [2004]. A local search heuristic is applied to solve the prob-
lem. The authors present two solutions to one test case. However, neither
the test case nor the computational details are presented in the paper.

Castro and Oliveira [2007a] and Castro and Oliveira [2007b] in almost iden-
tical publications present an implementation of the Distributed Multi-Agent
System (MAS) to represent the operations control center of an airline com-
pany. The MAS includes a crew recovery agent, an aircraft recovery agent
and a passenger recovery agent. The paper is focused on the architecture
and test experiments of the crew recovery agent. A monitoring agent class of
the crew recovery agent is responsible for monitoring crew events (e.g. non-
assignments for some flights) and reporting to the crew finder agent class.
The crew finder collects a list of solutions to the problem from the algorithmic
agent classes and chooses the cheapest one using the crew payroll informa-
tion. The authors do not mention what kind of algorithms and heuristics are
used in the algorithmic agent classes to find solutions to the recovery prob-
lem. One test scenario is reported, where 15 crew members with different
ranks are set to be absent from their duties at the same base. The proposed
MAS method was compared to the human operator, where solutions to the
test problem were compared by solution time and the cost of the solution
(crew payment). The MAS recovery agent came up with a cheaper solution
in 25 seconds compared to 101 seconds used by the operator.

168 AppendixA

Appendix B

Timetable Data Representation

Table B.1: The stopping pattern of the train nr. 10100 of line A.

*10100 1234567()
UND 23:49
IH 23:51& 23:52
VLB 23:54& 23:54&
BSA 23:56& 23:56&
AVØ 23:59 23:59
FRH 00:01 00:01
ÅM 00:03 00:03
ELB 00:04&
NEL 00:05& 00:05&
SJÆ 00:06& 00:07
SYV 00:08& 00:08&
DBT 00:11& 0:11&
KH 00:14 00:15
VPT 00:16 00:16&
KN 00:18 00:18&
KK 00:21 00:21&
NHT 00:23& 00:23&
SAM 00:25 00:25&
HL 00:28 00:28&
BFT 00:30
GJ 00:31
JÆT 00:32
LY 00:33 00:33&
SFT 00:35&
VIR 00:37
HOT 00:38 00:38&
BI 00:42 00:42&
LI 00:47 00:47&
HI 00:54

170 AppendixB

Appendix C

Train Driver Duty Data
Representations

Table C.1: Train driver duty representation, type I.
DutyNr TrainNr Task Code StartTime EndTime DepStation ArrStation

209 00000 CIN 11:53 12:08 KH KH
209 00000 BEV 12:08 12:12 KH KH
209 50136 PIT 12:12 12:13 KH KH
209 50136 TFF 12:13 12:52 KH FM
209 00000 SPD 12:52 12:56 FM FM
209 50241 TFF 13:08 13:47 FM KH
209 50241 TFF 13:48 14:32 KH FS
209 00000 SPD 14:32 14:36 FS FS
209 50146 TFF 14:46 15:32 FS KH
209 50146 PIF 15:32 15:33 KH KH
209 00000 BEV 15:33 15:37 KH KH
209 00000 PAU 15:42 16:12 KH KH
209 00000 BEV 16:12 16:16 KH KH
209 60148 PIT 16:16 16:17 KH KH
209 60148 TFF 16:17 16:45 KH HO
209 00000 RNG 16:45 16:47 HO HO
209 00000 SPD 16:47 16:51 HO HO
209 00000 RNG 16:51 16:53 HO HO
209 60252 TFF 16:54 17:23 HO KH
209 60252 TFF 17:24 17:50 KH HT
209 20155 TFF 18:00 18:26 HT KH
209 20155 PIF 18:26 18:27 KH KH
209 00000 BEV 18:27 18:31 KH KH
209 00000 CUD 18:31 18:41 KH KH

172 AppendixC

Table C.2: Train driver duty representation, type II.

209 1 TogNr 55238 209 6 TogNr 60150
209 1 OpgaveType DRIVING.TRAIN 209 6 OpgaveType DRIVING.TRAIN
209 1 StartTid 772 209 6 StartTid 1017
209 1 SlutTid 822 209 6 SlutTid 1045
209 1 AfgStation 1 209 6 AfgStation 1
209 1 AnkStation 14 209 6 AnkStation 7
209 1 PDSRessKode 6 209 6 PDSRessKode 13
209 1 PDSKomm NULL 209 6 PDSKomm NULL
209 1 StogAttention NULL 209 6 StogAttention NULL
209 2 TogNr 55144 209 7 TogNr 60254
209 2 OpgaveType DRIVING.TRAIN 209 7 OpgaveType DRIVING.TRAIN
209 2 StartTid 837 209 7 StartTid 1053
209 2 SlutTid 888 209 7 SlutTid 1083
209 2 AfgStation 14 209 7 AfgStation 7
209 2 AnkStation 1 209 7 AnkStation 1
209 2 PDSRessKode 6 209 7 PDSRessKode 13
209 2 PDSKomm NULL 209 7 PDSKomm NULL
209 2 StogAttention NULL 209 7 StogAttention NULL
209 3 TogNr 55144 209 8 TogNr 60254
209 3 OpgaveType DRIVING.TRAIN 209 8 OpgaveType DRIVING.TRAIN
209 3 StartTid 889 209 8 StartTid 1084
209 3 SlutTid 922 209 8 SlutTid 1110
209 3 AfgStation 1 209 8 AfgStation 1
209 3 AnkStation 2 209 8 AnkStation 8
209 3 PDSRessKode 6 209 8 PDSRessKode 13
209 3 PDSKomm NULL 209 8 PDSKomm NULL
209 3 StogAttention NULL 209 8 StogAttention NULL
209 4 TogNr 55248 209 9 TogNr 20157
209 4 OpgaveType DRIVING.TRAIN 209 9 OpgaveType DRIVING.TRAIN
209 4 StartTid 938 209 9 StartTid 1120
209 4 SlutTid 971 209 9 SlutTid 1146
209 4 AfgStation 2 209 9 AfgStation 8
209 4 AnkStation 1 209 9 AnkStation 1
209 4 PDSRessKode 13 209 9 PDSRessKode 3
209 4 PDSKomm NULL 209 9 PDSKomm NULL
209 4 StogAttention NULL 209 9 StogAttention NULL
209 5 TogNr NULL 209 0 PDSRessKode1 3
209 5 OpgaveType PAU.BREAK 209 0 PDSRessKode2 19
209 5 StartTid 982 209 0 Cin 20
209 5 SlutTid 1012 209 0 Cud 15
209 5 AfgStation 1 209 0 StartTid 752
209 5 AnkStation 1 209 0 SlutTid 1161
209 5 PDSRessKode NULL 209 0 PDSIntTjNr 169117
209 5 PDSKomm :AUTOMATIC 209 0 TjenesteNr 209
209 5 StogAttention NULL 209 0 Schedule D-KH-12345

209 0 Attention NULL
209 0 OpgaveType

Appendix D

Station Names and Codes

Table D.1: Stations on the S-train network which appear on the passenger
timetable.

1 Albertslund ALB 44 KB Hallen KBN
2 Allerød LI 45 Kildebakke KET
3 Avedøre AVØ 46 Kildedal KID
4 Bagsværd BAV 47 Klampenborg KL
5 Ballerup BA 48 København H KH
6 Bernstorffsvej BFT 49 Køge KJ
7 Birkerød BI 50 Langgade VAT
8 Bispebjerg BIT 51 Lyngby LY
9 Brøndby Strand BSA 52 Malmparken MPT

10 Brøndbyøster BØT 53 Måløv MW
11 Buddinge BUD 54 Nordhavn NHT
12 Charlottenlund CH 55 Ny Ellebjerg NEL
13 Danshøj DAH 56 Nørrebro NØ
14 Dybbølsbro DBT 57 Nørreport KN
15 Dysseg̊ard DYT 58 Ordrup OP
16 Ellebjerg ELB 59 Peter Bangs Vej PBT
17 Emdrup EMT 60 Ryparken RYT
18 Enghave AV 61 Rødovre RDO
19 Farum FM 62 Sjælør SJÆ

174 AppendixD

20 Flintholm FL 63 Skovbrynet SKT
21 Frederikssund FS 64 Skovlunde SKO
22 Friheden FRH 65 Solrød Strand SOL
23 Fuglebakken FUT 66 Sorgenfri SFT
24 Gentofte GJ 67 Steng̊arden SGT
25 Gl. Tofteg̊ard GTG 68 Stenløse ST
26 Glostrup GL 69 Svanemøllen SAM
27 Greve GRE 70 Sydhavn SYV
28 Grøndal GHT 71 Taastrup TÅ
29 Hareskov HAR 72 Valby VAL
30 Hellerup HL 73 Vallensbæk VLB
31 Herlev HER 74 Vangede ANG
32 Hillerød HI 75 Vanløse VAN
33 Holte HOT 76 Veksø VS
34 Hundige UND 77 Vesterport VPT
35 Husum HUT 78 Vigerslev All VGT
36 Hvidovre HIT 79 Virum VIR
37 Høje Taastrup HTÅ 80 Værløse VÆR
38 Ishøj IH 81 Ølby ØLB
39 Islev IST 82 Ølstykke ØL
40 Jersie JSI 83 Østerport KK
41 Jyllingevej JYT 84 Ålholm ÅLM
42 Jægersborg JÆT 85 Åmarken ÅM
43 Karlslunde KLU

Appendix E

Test Results for Initial Set of
Columns Generation

Following notation is used in the tables:

• #N is the number of nodes in the branch-and-price tree,

• #VarIn is the number of columns in the initial set generated with the
tested value of ηpart,

• Time is the computational time in seconds for solving the problem
instance to optimality with the tested value of ηpart,

• ≤ ηz is T if the computational time for solving the problem instance
with the tested value of ηpart is less than or equal to that of ηpart = z,
and F otherwise,

• ≤all is T if the computational time for solving the problem instance
with the tested value of ηpart is less than or equal to that of the remain-
ing values of ηpart, and F otherwise.

176 AppendixE

Table E.1: Testing the value of ηpart = 1.

ID #N #VarIn Time ≤ η5 ≤ η10 ≤ η15 ≤ η20 ≤all
S11 1 16 0.38 T F F F F
S12 1 25 0.39 T T T T T
S13 1 69 0.41 F T T T F
S14 1 163 0.48 F T T T F
S15 1 402 0.58 T T T T T
S16 1 1105 0.78 T T T T T
S21 1 29 0.55 F F F F F
S22 1 65 0.59 F F F F F
S23 1 120 0.47 T F T T F
S24 1 364 0.58 T T T T T
S25 1 394 0.58 T T T T T
S26 1 882 0.78 T T T T T
S31 1 30 0.81 F F F F F
S32 1 150 0.81 T F F T F
S33 1 1185 1.27 F T T T F
S34 1 3551 1.39 F F T T F
S35 1 22765 4.91 F F F F F
S36 1 118872 22.53 F F F F F
S41 1 58 1.15 T F F T F
S42 1 365 1.20 T T T T T
S43 1 1211 1.7 T T T T T
S44 1 5009 4.33 F F F T F
S45 3 46189 14.38 F F F F F
S46 1 196324 29.73 F F F F F
S51 1 46 0.86 T T T F F
S52 1 306 1.16 T F T T F
S53 1 1222 1.97 T T T T T
S54 1 4201 2.62 F F F F F
S55 1 42769 6.55 F F F F F
S56 1 212278 35.8 F F F F F
S61 1 42 1.34 F F F F F
S62 1 424 1.72 T T T T T
S63 1 1692 3.23 T T F T F
S64 1 8140 2.75 T F T T F
S65 1 35320 6.94 F F F F F
S66 1 254413 32.42 F F F F F
S71 1 85 1.66 T T T T T
S72 1 432 2.31 F F F T F
S73 1 1925 3.34 T T F T F
S74 1 8101 3.93 F F F F F
S75 1 30828 6.64 F F F F F
S76 3 271099 77.28 F F F F F∑

T 20 17 19 24 11∑
F 22 25 23 18 31

Test Results for Initial Set of Columns Generation 177

Table E.2: Testing the value of ηpart = 5.

ID #N #VarIn Time ≤ η1 ≤ η10 ≤ η15 ≤ η20 ≤all
S11 1 11 0.38 T F F F F
S12 1 14 0.42 F F F F F
S13 1 22 0.39 T T T T T
S14 1 62 0.47 T T T T T
S15 1 114 0.59 F T T T F
S16 1 222 0.78 T T T T T
S21 1 15 0.45 T F F F F
S22 1 27 0.52 T F F F F
S23 1 46 0.48 F F T T F
S24 1 139 0.58 T T T T T
S25 1 140 0.67 F T T T F
S26 1 275 0.89 F T T T F
S31 1 15 0.77 T F F F F
S32 1 58 0.83 F F F T F
S33 1 266 1.23 T T T T T
S34 1 830 1.34 T T T T T
S35 1 3564 4.30 T F F F F
S36 7 12257 20.36 T F T F F
S41 1 25 1.17 F F F T F
S42 1 106 1.31 F T T T F
S43 1 281 1.95 F F F T F
S44 1 1207 4.31 T T F T F
S45 1 5996 5.50 T T F T F
S46 1 17614 14.47 T F T F F
S51 1 22 0.86 T T T F F
S52 1 88 1.25 F F F F F
S53 1 338 2.19 F T T F F
S54 1 1137 2.11 T T T T T
S55 1 5190 4.23 T T F T F
S56 1 18874 15.27 T F F F F
S61 1 26 1.30 T F F F F
S62 1 139 1.75 F T F T F
S63 1 536 3.31 F T F T F
S64 1 1828 3.17 F F F F F
S65 1 6070 5.80 T T F T F
S66 1 20452 12.70 T F F T F
S71 1 36 1.72 F T T T F
S72 1 136 2.20 T T T T T
S73 1 638 3.66 F F F F F
S74 1 1786 3.23 T F F F F
S75 1 5911 6.27 T F T F F
S76 1 26385 16.94 T F F F F∑

T 26 21 19 24 8∑
F 16 21 23 18 34

178 AppendixE

Table E.3: Testing the value of ηpart = 10.

ID #N #VarIn Time ≤ η1 ≤ η5 ≤ η15 ≤ η20 ≤ all
S11 1 11 0.36 T T F F F
S12 1 11 0.39 T T T T T
S13 1 12 0.41 T F T T F
S14 1 28 0.61 F F F F F
S15 1 51 0.75 F F F F F
S16 1 91 0.97 F F F T F
S21 1 15 0.42 T T T T T
S22 1 20 0.48 T T T T T
S23 1 25 0.42 T T T T T
S24 1 66 0.69 F F F T F
S25 1 69 0.75 F F F F F
S26 1 125 1.11 F F F T F
S31 1 15 0.72 T T F T F
S32 1 37 0.75 T T T T T
S33 1 122 1.28 F F T T F
S34 1 409 1.38 T F T T F
S35 1 1539 4.11 T T F F F
S36 3 4359 12.72 T T T T T
S41 1 21 1.11 T T T T T
S42 1 57 1.34 F F T T F
S43 1 144 1.89 F T F T F
S44 1 533 4.31 T T F T F
S45 1 2334 5.77 T F F T F
S46 1 6353 14.11 T T T F F
S51 1 18 0.86 T T T F F
S52 1 49 1.11 T T T T T
S53 3 160 2.53 F F F F F
S54 1 509 2.11 T T T T T
S55 1 1963 4.44 T F F T F
S56 1 6285 11.69 T T T T T
S61 1 23 1.17 T T F T F
S62 1 81 1.83 F F F F F
S63 1 226 3.44 F F F F F
S64 1 709 2.59 T T T T T
S65 1 2221 6.16 T F F F F
S66 1 6482 12.17 T T F T F
S71 1 29 1.75 F F T F F
S72 1 72 2.2 T T T T T
S73 1 294 3.52 F T F T F
S74 1 781 2.94 T T F T F
S75 1 2078 5.63 T T T T T
S76 1 9186 15.42 T T F F F∑

T 28 25 20 29 13∑
F 14 17 22 13 29

Test Results for Initial Set of Columns Generation 179

Table E.4: Testing the value of ηpart = 15.

ID #N #VarIn Time ≤ η1 ≤ η5 ≤ η10 ≤ η20 ≤all
S11 1 11 0.33 T T T T T
S12 1 11 0.41 F T F T F
S13 1 11 0.41 T F T T F
S14 1 21 0.56 F F T F F
S15 1 37 0.70 F F T F F
S16 1 53 0.94 F F T T F
S21 1 15 0.44 T T F F F
S22 1 15 0.50 T T F T F
S23 1 15 0.53 F F F T F
S24 1 40 0.67 F F T T F
S25 1 45 0.67 F T T T F
S26 1 72 0.91 F F T T F
S31 1 15 0.70 T T T T T
S32 1 25 0.80 T T F T F
S33 1 89 1.33 F F F T F
S34 1 256 1.42 F F F T F
S35 1 916 3.75 T T T F F
S36 13 2388 29.22 F F F F F
S41 1 19 1.11 T T T T T
S42 1 44 1.50 F F F F F
S43 1 100 1.86 F T T T F
S44 1 335 4.13 T T T T T
S45 1 1186 5.38 T T T T T
S46 1 3339 15.31 T F F F F
S51 1 18 0.86 T T T F F
S52 1 42 1.16 T T F T F
S53 3 103 2.44 F F T F F
S54 1 284 2.11 T T T T T
S55 1 967 4.15 T T T T T
S56 1 3138 12.44 T T F T F
S61 1 22 1.16 T T T T T
S62 1 54 1.73 F T T T F
S63 1 132 3.20 T T T T T
S64 1 388 2.75 T T F T F
S65 1 1040 5.16 T T T T T
S66 1 3278 11.63 T T T T T
S71 1 27 1.75 F F T F F
S72 1 52 2.28 T F F T F
S73 1 181 3.27 T T T T T
S74 1 461 2.92 T T T T T
S75 1 1014 6.27 T T F F F
S76 1 4690 12.72 T T T T T∑

T 26 27 27 31 14∑
F 16 15 15 11 28

180 AppendixE

Table E.5: Testing the value of ηpart = 20.

ID #N #VarIn Time ≤ η1 ≤ η5 ≤ η10 ≤ η15 ≤ all
S11 1 11 0.34 T T T F F
S12 1 11 0.41 F T F T F
S13 1 11 0.44 F F F F F
S14 1 14 0.50 F F T T F
S15 1 26 0.61 F F T T F
S16 1 41 0.97 F F T F F
S21 1 15 0.42 T T T T T
S22 1 15 0.50 T T F T F
S23 1 15 0.55 F F F F F
S24 1 25 0.78 F F F F F
S25 1 26 0.70 F F T F F
S26 1 50 1.14 F F F F F
S31 1 15 0.72 T T T F F
S32 1 25 0.83 F T F F F
S33 1 63 1.34 F F F F F
S34 1 196 1.53 F F F F F
S35 1 528 3.72 T T T T T
S36 3 1562 29.22 T T F T F
S41 1 19 1.11 F F F F F
S42 1 33 1.50 F F F T F
S43 1 77 1.86 F T F F F
S44 1 229 4.13 F F F F F
S45 3 772 5.38 T F F F F
S46 1 2010 15.31 T T T T T
S51 1 18 0.86 T T T T T
S52 1 34 1.16 F T F F F
S53 1 84 2.44 F T T T F
S54 1 220 2.11 T T T T T
S55 1 624 4.45 T F F F F
S56 1 1966 13.72 T T F F F
S61 1 22 1.17 T T T F F
S62 1 46 1.75 F T T F F
S63 1 106 3.33 F F T F F
S64 1 272 2.75 T T F T F
S65 1 698 5.91 T F T F F
S66 1 1901 12.98 T F F F F
S71 1 27 1.73 F F T T F
S72 1 50 2.33 F F F F F
S73 1 129 3.59 F T F F F
S74 1 333 2.98 T T F F F
S75 1 663 5.67 T T F T F
S76 1 2562 13.38 T T T F F∑

T 19 22 18 15 5∑
F 23 20 24 27 37

Appendix F

Test Results for Pricing
Strategies

Following notation is used in the tables:

• N is the number of nodes in the branch-and-price tree,

• It is the number of pricing iterations,

• V is the number of variables generated in the branch-and-price algo-
rithm,

• T is the computational time in seconds for solving the problem instance
to optimality with the tested pricing strategy,

• ≤XX is T if the number of iterations or the computational time for
solving the problem instance with the tested pricing strategy is less
than or equal to that of the pricing strategy XX, and F otherwise,

• ≤all is T if the number of iterations or the computational time for
solving the problem instance with the tested pricing strategy is less
than or equal to that of the other pricing strategies all together, and F
otherwise.

182 AppendixF

Table F.1: Testing the multiple pricing strategy MP.

Compare #Iterations Compare Time
ID N It V T ≤SP ≤PP ≤FP ≤all ≤SP ≤PP ≤FP ≤all
S11 1 10 89 0.33 T T T T T T T T
S12 1 12 106 0.41 T T T T T T T T
S13 1 14 124 0.41 T T T T T T T T
S14 1 16 197 0.56 F T T F F T T F
S15 1 20 232 0.70 T T T T T T T T
S16 1 33 377 0.94 F T T F F T T F
S21 1 10 111 0.44 T T T T T T T T
S22 1 13 137 0.50 T T T T T T T T
S23 1 17 197 0.53 T T T T T T T T
S24 1 21 251 0.67 T T T T T T T T
S25 1 16 240 0.67 T T T T T T T T
S26 1 22 357 0.91 T T T T T T T T
S31 1 18 140 0.70 T T T T T T T T
S32 1 18 199 0.80 T T T T T T T T
S33 1 26 423 1.33 T T T T T T T T
S34 1 21 728 1.42 T T T T T T T T
S35 1 28 1739 3.75 T T T T F T T F
S36 13 99 3878 29.22 F T T F F T T F
S41 1 24 195 1.11 T T T T T T T T
S42 1 27 261 1.50 T T T T T T T T
S43 1 27 460 1.86 T T T T T T T T
S44 1 31 1013 4.13 T T T T T T T T
S45 1 33 2164 5.38 T T T T T T T T
S46 1 48 4744 15.31 F T T F F T T F
S51 1 18 170 0.86 T T T T T T T T
S52 1 23 258 1.16 T T T T T T T T
S53 3 38 523 2.44 T T T T F T T F
S54 1 21 810 2.11 T T T T T T T T
S55 1 24 1685 4.15 T T T T T T T T
S56 1 37 4391 12.44 T T T T F T T F
S61 1 18 177 1.16 T T T T T T T T
S62 1 23 365 1.73 T T T T T T T T
S63 1 26 632 3.20 T T T T T T T T
S64 1 24 1032 2.75 T T T T T T T T
S65 1 28 1959 5.16 T T T T T T T T
S66 1 34 4493 11.63 T T T T T T T T
S71 1 29 278 1.75 T T T T T T T T
S72 1 33 441 2.28 T T T T F T T F
S73 1 26 661 3.27 T T T T T T T T
S74 1 24 1053 2.92 T T T T T T T T
S75 1 33 1980 6.27 T T T T F T T F
S76 1 34 5934 12.72 T T T T T T T T∑

T 38 42 42 38 33 42 42 33∑
F 4 0 0 4 9 0 0 9

Test Results for Pricing Strategies 183

Table F.2: Testing the limited subsequences pricing strategy SP.

Compare #Iterations Compare Time
ID N It V T ≤MP ≤PP ≤FP ≤all ≤MP ≤PP ≤FP ≤all
S11 1 10 74 0.33 T T T T T T T T
S12 1 14 86 0.42 F T T F F T T F
S13 1 15 119 0.44 F T T F F T T F
S14 1 15 134 0.47 T T T T T T T T
S15 1 24 215 0.75 F T T F F T T F
S16 1 22 264 0.80 T T T T T T T T
S21 1 11 95 0.44 F T T F T T T T
S22 1 17 129 0.56 F T T F F T T F
S23 1 18 158 0.55 F T T F F T T F
S24 1 21 222 0.73 T T T T F T T F
S25 1 22 238 0.77 F T T F F T T F
S26 1 29 373 1.13 F T T F F T T F
S31 1 19 139 0.73 F T T F F T T F
S32 1 26 214 0.95 F T T F F T T F
S33 1 27 371 1.34 F T T F F T T F
S34 1 32 738 1.78 F T T F F T T F
S35 1 29 1673 3.20 F T T F T T T T
S36 3 51 3587 11.91 T T T T T T T T
S41 1 26 200 1.20 F T T F F T T F
S42 1 30 254 1.52 F T T F F T T F
S43 1 35 469 1.91 F T T F F T T F
S44 1 41 1011 4.27 F T T F F T T F
S45 3 50 2246 7.63 F T T F F T T F
S46 1 40 4530 11.72 T T T T T T T T
S51 1 22 170 0.92 F T T F F T T F
S52 1 32 281 1.34 F T T F F T T F
S53 1 39 520 2.23 F T T F T T T T
S54 1 29 813 2.27 F T T F F T T F
S55 1 35 1794 4.22 F T T F F T T F
S56 1 39 4338 11.56 F T T F T T T T
S61 1 23 182 1.30 F T T F F T T F
S62 3 42 400 2.13 F T T F F T T F
S63 1 41 663 3.73 F T T F F T T F
S64 1 38 1078 3.61 F T T F F T T F
S65 1 41 1954 5.61 F T T F F T T F
S66 1 47 4492 12.45 F T T F F T T F
S71 1 31 265 1.89 F T T F F T T F
S72 1 37 431 2.27 F T T F T T T T
S73 1 39 707 3.80 F T T F F T T F
S74 1 39 1122 3.48 F T T F F T T F
S75 1 37 1925 5.31 F T T F T T T T
S76 1 46 6059 14.13 F T T F F T T F∑

T 6 42 42 6 11 42 42 11∑
F 36 0 0 36 31 0 0 31

184 AppendixF

Table F.3: Testing the partial pricing strategy PP.

Compare #Iterations Compare Time
ID N It V T ≤MP ≤SP ≤FP ≤all ≤MP ≤SP ≤FP ≤all
S11 1 28 67 0.56 F F F F F F F F
S12 1 40 83 0.70 F F F F F F T F
S13 1 56 106 1.20 F F F F F F T F
S14 1 87 157 1.25 F F F F F F T F
S15 1 114 207 2.42 F F T F F F T F
S16 1 129 245 2.91 F F T F F F T F
S21 1 36 91 0.92 F F T F F F T F
S22 1 59 120 1.33 F F F F F F F F
S23 1 78 146 1.14 F F T F F F T F
S24 1 112 216 1.56 F F T F F F T F
S25 1 98 209 1.67 F F T F F F T F
S26 1 181 326 2.53 F F T F F F T F
S31 1 72 137 1.67 F F T F F F T F
S32 1 87 181 2.11 F F T F F F T F
S33 1 149 337 2.66 F F T F F F T F
S34 1 244 635 4.55 F F T F F F T F
S35 1 435 1536 12.00 F F T F F F T F
S36 1 555 3164 39.93 F F T F F F T F
S41 3 122 190 3.20 F F F F F F F F
S42 1 112 238 3.14 F F F F F F F F
S43 1 178 391 3.66 F F T F F F T F
S44 1 333 830 8.73 F F T F F F T F
S45 1 490 1880 16.16 F F T F F F T F
S46 1 636 4222 46.42 F F T F F F T F
S51 1 84 160 1.70 F F F F F F T F
S52 1 106 230 2.48 F F T F F F F F
S53 1 223 442 4.44 F F T F F F T F
S54 1 249 685 7.95 F F T F F F T F
S55 1 408 1562 12.77 F F T F F F T F
S56 1 625 4001 53.67 F F T F F F T F
S61 1 101 198 2.77 F F F F F F F F
S62 1 173 335 3.50 F F F F F F T F
S63 1 250 525 6.19 F F T F F F T F
S64 1 332 895 10.91 F F T F F F T F
S65 1 436 1688 15.27 F F T F F F T F
S66 1 646 4174 36.59 F F T F F F T F
S71 1 121 239 3.70 F F F F F F T F
S72 1 197 366 4.14 F F T F F F T F
S73 1 235 562 6.31 F F T F F F T F
S74 1 285 917 11.17 F F T F F F T F
S75 1 495 1718 23.16 F F T F F F T F
S76 1 663 5600 44.81 F F T F F F T F∑

T 0 0 31 0 0 0 36 0∑
F 42 42 11 42 42 42 6 42

Test Results for Pricing Strategies 185

Table F.4: Testing the full pricing strategy FP.

Compare #Iterations Compare Time
ID N It V T ≤MP ≤SP ≤PP ≤all ≤MP ≤SP ≤PP ≤all
S11 1 24 63 0.52 F F T F F F T F
S12 1 39 82 0.75 F F T F F F F F
S13 1 55 105 1.20 F F T F F F T F
S14 1 78 148 1.75 F F T F F F F F
S15 1 114 207 2.61 F F T F F F F F
S16 1 179 295 4.36 F F F F F F F F
S21 1 41 96 1.31 F F F F F F F F
S22 1 54 115 1.28 F F T F F F T F
S23 1 81 149 1.20 F F F F F F F F
S24 1 134 238 2.20 F F F F F F F F
S25 1 111 222 1.98 F F F F F F F F
S26 1 216 361 5.38 F F F F F F F F
S31 1 73 138 1.73 F F F F F F F F
S32 1 93 187 2.27 F F F F F F F F
S33 1 188 376 4.52 F F F F F F F F
S34 1 352 743 13.14 F F F F F F F F
S35 1 700 1801 43.55 F F F F F F F F
S36 3 1138 3713 133.47 F F F F F F F F
S41 1 102 188 2.67 F F T F F F T F
S42 1 98 224 2.27 F F T F F F T F
S43 1 215 428 5.88 F F F F F F F F
S44 1 475 972 18.17 F F F F F F F F
S45 1 857 2247 61.67 F F F F F F F F
S46 1 1186 4772 175.30 F F F F F F F F
S51 1 79 155 2.14 F F T F F F F F
S52 1 124 248 2.36 F F F F F F T F
S53 1 257 476 7.11 F F F F F F F F
S54 1 373 809 11.50 F F F F F F F F
S55 1 548 1702 36.66 F F F F F F F F
S56 1 1017 4393 164.69 F F F F F F F F
S61 1 82 179 2.53 F F T F F F T F
S62 1 151 313 3.55 F F T F F F F F
S63 1 327 602 9.61 F F F F F F F F
S64 1 390 953 14.56 F F F F F F F F
S65 1 690 1942 42.78 F F F F F F F F
S66 1 998 4526 139.59 F F F F F F F F
S71 1 117 235 3.75 F F T F F F F F
S72 1 265 434 5.69 F F F F F F F F
S73 1 286 613 10.50 F F F F F F F F
S74 1 393 1025 18.81 F F F F F F F F
S75 1 694 1917 43.48 F F F F F F F F
S76 1 1243 6180 156.58 F F F F F F F F∑

T 0 0 12 0 0 0 7 0∑
F 42 42 30 42 42 42 35 42

186 AppendixF

Bibliography

E. Abbink, M. Fischetti, L. Kroon, G. Timmer, and M. Vromans. Reinventing
crew scheduling at Netherlands Railways. Interfaces, 35(5):393–401, 2005.

E. Abbink, J. van ’t Wout, and D. Huisman. Solving large scale crew schedul-
ing problems by using iterative partitioning. In ATMOS 2007, 7th Work-
shop on Algorithmic Approaches for Transportation Modeling, Optimiza-
tion and Systems, pages 96–106, 2007.

E. Abbink, J. van ’t Wout, and D. Huisman. Solving large scale crew schedul-
ing problems by using iterative partitioning. Econometric Institute Report
EI2008-03, Econometric Institute, Erasmus University Rotterdam, The
Netherlands, 2008.

A. Abdelghany, G. Ekollu, R. Narasimhan, and K. Abdelghany. A proactive
crew recovery decision support tool for commercial airlines during irregular
operations. Annals of Operations Research, 127:309–331, 2004.

B. Adenso-Dı́az, M. O. González, and P. González-Torre. On-line timetable
re-scheduling in regional train services. Transportation Research Part B,
33(6):387–398, 1999.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algo-
rithms, and applications. Prentice Hall, Inc., 1993.

A. C. Andersen, C. G. Christensen, I. L. T. Heilmann, and C. T. Holst.

188 BIBLIOGRAPHY

Planlægning af køreplaner. Bachelor thesis, Informatics & Mathematical
Modelling, Technical University of Denmark, 2006.

Y. Aneja, V. Aggarwal, and K. Nair. Shortest chain subject to side con-
straints. Networks, 13(2):295–302, 1983.

A. Assad. Analytical models in rail transportation: an annotated bibliogra-
phy. INFOR. Canadian Journal of Operational Research and Information
Processing, 19(1):59–80, 1981.

A. A. Assad. Models for rail transportation. Transportation Research Part
A, 14(3):205–220, 1980.

F. Azevedo, P. Barahona, F. Fages, and F. Rossi, editors. Recent Advances in
Constraints: 11th Annual ERCIM International Workshop on Constraint
Solving and Constraint Logic Programming, CSCLP 2006 Revised Selected
and Invited Papers, volume 4651 LNAI, 2007. Springer Verlag.

M. Ball, L. Bodin, and R. Dall. A matching based heuristic for scheduling
mass transit crews and vehicles. Transportation Science, 17(1):4–31, 1983.

C. Barnhart, N. L. Boland, L. W. Clarke, E. L. Johnson, and G. L.
Nemhauser. Flight string models for aircraft fleeting and routing. Trans-
portation Science, 32(3):208–220, 1998a.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance. Branch-and-price: column generation for solving huge integer
programs. Operations Research, 46(3):316–329, 1998b.

C. Barnhart, A. M. Cohn, E. L. Johnson, D. Klabjan, G. L. Nemhauser, and
P. H. Vance. Airline crew scheduling. In R. W. Hall, editor, Handbook
of Transportation Science. Kluwer Academic Publishers, second edition,
2003.

L. Bengtsson, R. Galia, T. Gustafsson, C. Hjorring, and N. Kohl. Rail-
way crew pairing optimization. Technical Report CRTR-0408, Carmen
Research and Technology Report, Nov. 2004.

C. Berge. Balanced matrices. Mathematical Programming, 2(1):19–31, 1972.

BIBLIOGRAPHY 189

N. L. Boland, L. W. Clarke, and G. L. Nemhauser. The asymmetric traveling
salesman problem with replenishment arcs. European Journal of Opera-
tional Research, 123:408–427, 2000.

G. Budai, G. Maróti, R. Dekker, D. Huisman, and L. Kroon. Re-scheduling
in railways: the rolling stock balancing problem. Econometric Institute
Report EI2007-21, Econometric Institute, Erasmus University Rotterdam,
The Netherlands, May 2007.

M. R. Bussieck, T. Winter, and U. T. Zimmermann. Discrete optimization
in public rail transport. Mathematical Programming, 79:415–444, 1997.

E. R. Butchers, P. R. Day, A. P. Goldie, S. Miller, J. A. Meyer, D. M. Ryan,
A. C. Scott, and C. A. Wallace. Optimized crew scheduling at Air New
Zealand. Interfaces, 31(1):30–56, 2001.

X. Cai, C. Goh, and A. I. Mees. Greedy heuristics for rapid scheduling of
trains on a single track. IIE Transactions, 30(5):481, 1998. Institute of
Industrial Engineers.

G. Caimi, D. Burkolter, and T. Herrmann. Finding delay–tolerant train
routings through stations. In H. Fleuren, editor, Operations Research Pro-
ceedings 2004: Selected Papers of the Annual International Conference of
the German Operations Research Society (GOR), pages 136–143. Springer
Verlag, 2005.

A. Caprara, M. Fischetti, P. Toth, D. Vigo, and P. L. Guida. Algorithms for
railway crew management. Mathematical Programming, 79:125–141, 1997.

A. Caprara, F. Focacci, E. Lamma, P. Mello, M. Milano, P. Toth, and
D. Vigo. Integrating Constraint Logic Programming and Operations Re-
search techniques for the crew rostering problem. Software - Practice and
Experience, 28(1):49–76, 1998a.

A. Caprara, P. Toth, D. Vigo, and M. Fischetti. Modeling and solving the
crew rostering problem. Operations Research, 46(6):820–830, 1998b.

A. Caprara, M. Fischetti, P. L. Guida, P. Toth, and D. Vigo. Solution of large-
scale railway crew planning problem: the Italian experience. In M. H. M.

190 BIBLIOGRAPHY

Wilson, editor, Computer-Aided Transit Scheduling, volume 471 of Lec-
ture Notes in Economic and Mathematical Systems, pages 1–18. Springer-
Verlag, 1999a.

A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering
problem. Operations Research, 47(5):730–743, 1999b.

A. Caprara, M. Monaci, and P. Toth. A global method for crew planning in
railway applications. In S. Voß and J. D. Daduna, editors, Computer-Aided
Scheduling of Public Transport, volume 505 of Lecture Notes in Economic
and Mathematical Systems, pages 17–36. Springer-Verlag, Berlin, 2001.

A. Caprara, L. Kroon, M. Monaci, M. Peeters, and P. Toth. Passenger railway
optimization. In C. Barnhart and G. Laporte, editors, Transportation,
volume 14 of Handbooks in Operations Research and Management Science,
pages 129–187. Elsevier, 2007.

A. J. Castro and E. Oliveira. Using specialized agents in a distributed mas to
solve airline operations problems: A case study. In 2007 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT’07), pages
473–476, 2007a.

A. J. Castro and E. Oliveira. A distributed multi-agent system to solve air-
line operations problems. In ICEIS 2007. Proceedings of the Ninth Inter-
national Conference on Enterprise Information Systems, volume AIDSS,
pages 22–30, Funchal, Madeira, Portugal, June 12 - 16 2007b.

S. C. K. Chu and E. C. H. Chan. Crew scheduling of light rail transit in
Hong Kong: from modeling to implementation. Computers & Operations
Research, 25(11):887–894, 1998.

V. Chvátal. Linear programming. W. H. Freeman and Company, New York,
1983.

J. Clausen, A. Larsen, J. Larsen, and N. Rezanova. Disruption manage-
ment in the airline industry–concepts, models and methods. Computers &
Operations Research, in press, 2009. doi: 10.1016/j.cor.2009.03.027.

M. Conforti, G. Cornuéjols, A. Kapoor, and K. V. sković. Perfect, ideal
and balanced matrices. European Journal of Operational Research, 133(3):
455–461, 2001.

BIBLIOGRAPHY 191

J.-F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models for
train routing and scheduling. Transportation Science, 32(4):380–404, 1998.

G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

A. D’Ariano. Improving Real-Time Train Dispatching: Models, Algorithms
and Applications. PhD thesis, Department of Transport & Planning, Delft
University of Technology, April 2008.

A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm
for scheduling trains in a railway network. European Journal of Operational
Research, 183(2):643–657, 2007.

J.-L. Deng. Control problems of grey systems. Systems & Control Letters, 1
(5):288–294, 1982. ISSN 01676911.

G. Desaulniers, J. Desrosiers, Y. Dumas, S. Marc, B. Rioux, M. M. Solomon,
and F. Soumis. Crew pairing at Air France. European Journal of Opera-
tional Research, 97:245–259, 1997.

M. Desrochers and F. Soumis. A generalized permanent labelling algorithm
for the shortest path problem with time windows. INFOR, 26(3):191–212,
1988.

J. Desrosiers, Y. Dumas, M. Solomon, and F. Soumis. Time constrained
routing and scheduling. In M. Ball, T. Magnanti, C. Monma, and
G. Nemhauser, editors, Handbooks in Operations Research and Manage-
ment Science, volume 8: Network Routing, pages 35–140. Elsevier, Ams-
terdam, 1995.

I. Dumitrescu and N. Boland. Algorithms for the weight constrained shortest
path problem. International Transactions in Operational Research, 8(1):
15–29, 2001.

A. T. Ernst, M. Krishnamoorthy, and D. Dowling. Train crew rostering using
simulated annealing. In Proceedings of International Conference on Opti-
mization Techniques and Applications, ICOTA’98, pages 859–866, Perth,
1998.

192 BIBLIOGRAPHY

A. T. Ernst, H. Jiang, M. Krishnamoorthy, H. Nott, and D. Sier. An op-
timization approach to train crew rostering. In Proceedings of the 15th
National Conference of the Australian Society for Operations Research,
pages 470–481, Gold Cost, 1999.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, H. Nott, and D. Sier. Rail crew
scheduling and rostering optimization algorithms. In S. Voß and J. D.
Daduna, editors, Computer-Aided Scheduling of Public Transport, volume
505 of Lecture Notes in Economic and Mathematical Systems, pages 53–71.
Springer-Verlag, Berlin, 2001a.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, H. Nott, and D. Sier. An inte-
grated optimization model for train crew management. Annals of Opera-
tions Research, 108:211–224, 2001b.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier. An
annotated bibliography of personnel scheduling and rostering. Annals of
Operations Research, 127:21–144, 2004.

P. J. Fioole, L. Kroon, G. Maróti, and A. Schrijver. A rolling stock circulation
model for combining and splitting of passenger trains. European Journal
of Operational Research, 174:1281–1297, 2006.

M. Fischetti and L. G. Kroon. Solving large-scale crew scheduling problems at
the Dutch Railways. In S. Voß and J. D. Daduna, editors, Computer-Aided
Scheduling of Public Transport, volume 505 of Lecture Notes in Economic
and Mathematical Systems. Springer-Verlag, Berlin, 2001.

M. Folkmann, J. Jespersen, and M. N. Nielsen. Estimates on rolling stock
and crew in DSB S-tog based on timetables. In F. G. et al., editor, Algo-
rithmic Methods for Railway Optimization, number 4359 in Lecture Notes
in Computer Science. Springer-Verlag, 2007. Paper draft.

P. Føns. Decision support for depot planning in the railway industry. Master’s
thesis, Informatics and Mathematical Modelling, Technical University of
Denmark, DTU, 2006.

S. Fores. Column generation approaches to bus driver scheduling. PhD thesis,
University of Leeds, 1996.

BIBLIOGRAPHY 193

S. Fores, L. G. Proll, and A. Wren. An improved ILP system for driver
scheduling. In M. H. M. Wilson, editor, Computer-Aided Transit Schedul-
ing, volume 471 of Lecture Notes in Economic and Mathematical Systems,
pages 43–62. Springer-Verlag, 1999.

S. Fores, L. Proll, and A. Wren. Experiences with a flexible driver scheduler.
In S. Voß and J. D. Daduna, editors, Computer-Aided Scheduling of Public
Transport, volume 505 of Lecture Notes in Economic and Mathematical
Systems, pages 137–152. Springer-Verlag, Berlin, 2001.

S. Fores, L. Proll, and A. Wren. TRACS II: a hybrid IP/heuristic driver
scheduling system for public transport. Journal of the Operational Re-
search Society, 53(10):1093–1100, 2002.

R. Freling, R. M. Lentink, and M. A. Odijk. Scheduling train crews: a
case study for the Dutch Railways. In S. Voß and J. D. Daduna, editors,
Computer-Aided Scheduling of Public Transport, volume 505 of Lecture
Notes in Economic and Mathematical Systems, pages 153–165. Springer-
Verlag, Berlin, 2001.

R. Freling, R. M. Lentink, and A. P. M. Wagelmans. A decision support sys-
tem for crew planning in passenger transportation using a flexible branch-
and-price algorithm. Annals of Operations Research, 127:203–222, 2004.

M. Gamache, F. Soumis, G. Marquis, and J. Desrosiers. A column generation
approach for large-scale aircrew rostering problems. Operations Research,
47(2):247–263, 1999.

A. Ginkel and A. Schbel. To wait or not to wait? the bicriteria delay man-
agement problem in public transportation. Transportation Science, 41(4):
527, 2007.

J. Goossens. Models and Algorithms for Railway Line Planning Problems.
PhD thesis, University of Maastricht, The Netherlands, 2004.

Y. Guo. A decision support framework for the airline crew schedule disruption
management with strategy mapping. In Operations Research Proceedings
2004, volume Volume 2004. Springer Berlin Heidelberg, 2005a.

Y. Guo. Decision Support Systems for Airline Crew Recovery. PhD thesis,
University of Paderborn, April 2005b.

194 BIBLIOGRAPHY

A. E. Haghani. Rail freight transportation: a review of recent optimization
models for train routing and empty car distribution. Journal of Advanced
Transportation, 21(2):147–172, 1987.

A. Hartog, D. Huisman, E. J. W. Abbink, and L. G. Kroon. Decision support
for crew rostering at NS. Public Transport: Planning and Operations,
accepted for publication, 2008.

G. Heilporn, L. De Giovanni, and M. Labbe. Optimization models for the sin-
gle delay management problem in public transportation. European Journal
of Operational Research, 189(3):762–774, 2008.

T. M. Herrman. Stability of Timetables and Train Routings the Station Re-
gions. PhD thesis, Swiss Federal Insitute of Technology Zurich, 2006.

F. S. Hillier and G. J. Lieberman. Introduction to Operations Research.
McGraw-Hill, 1995.

C. Hjorring. Solving larger crew pairing problems. In Proceedings of TRIS-
TAN V: The Fifth Triennial Symposium on Transportation Analysis, Le
Gosier, Guadeloupe, Handbooks in Operations Research and Management
Science, June 2004.

C. A. Hjorring and J. Hansen. Column generation with a rule modeling lan-
guage for airline crew pairing. In Proceedings of 34th Annual Conference of
the Operations Research Society of New Zealand, Hamilton, New Zealand,
December 1999.

A. J. Hoffman and J. B. Kruskal. Integral boundary points of convex poly-
hedra. In H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities
and Related Systems, number 38 in Annals of Mathematics Studies, pages
223–246. Princeton University Press, Princeton, 1956.

M. Hofman and L. F. Madsen. Robustness in train scheduling. Master thesis,
Informatics & Mathematical Modelling, Technical University of Denmark,
2005.

M. A. Hofman, L. Madsen, J. J. Groth, J. Clausen, and J. Larsen. Ro-
bustness and recovery in train scheduling - a simulation study from DSB
S-tog A/S. Technical Report IMM-Technical Report-2006-12, Informatics
& Mathematical Modelling, Technical University of Denmark, 2006.

BIBLIOGRAPHY 195

J. Hu and E. L. Johnson. Computational results with a primal-dual subprob-
lem simplex method. Operations Research Letters, 25:149–157, 1999.

D. Huisman. A column generation approach for the rail crew re-scheduling
problem. European Journal of Operational Research, 180(1):163–173, 2007.

D. Huisman, L. G. Kroon, R. M. Lentink, and M. J. C. M. Vromans. Opera-
tions Research in passenger railway transportation. Statistica Neerlandica,
59(4):467–497, 2005.

J. Jacobs. Reducing delays by means of computer-aided “on the spot”
rescheduling. In J. Allan, C. Brebbia, R. Hill, G. Sciutto, and S. Sone,
editors, Computers in Railways IX, pages 603–612. WIT Press, 2004.

J. Jespersen Groth. Simulation study of train driver schedule. In Nordic
Optimization Symposium, Copenhagen, April 2006.

J. Jespersen Groth. Decision Support for the Rolling Stock Dispatcher. PhD
thesis, Technical University of Denmark, 2008a.

J. Jespersen Groth. The rolling stock recovery problem. Technical Report
IMM-Technical Report-2008-18, Informatics & Mathematical Modelling,
Technical University of Denmark, 2008b.

J. Jespersen Groth, J. Clausen, and J. Larsen. Optimal reinsertion of can-
celled train lines. Technical Report IMM-Technical Report-2006-13, In-
formatics & Mathematical Modelling, Technical University of Denmark,
2006.

J. Jespersen Groth, D. Potthoff, J. Clausen, D. Huisman, L. Kroon,
G. Maróti, and M. N. Nielsen. Disruption management in passenger rail-
way transportation. Econometric Institute Report EI2007-05, Econometric
Institute, Erasmus University Rotterdam, The Netherlands, 2007.

E. L. Johnson, L. Lettovsky, G. L. Nemhauser, R. Pandit, and S. Querido.
Final report to Northwest Airlines on the crew recovery problem. Technical
report, The Logistic Institute, Georgia Institute of Technology, Atlanta,
GA, August 12 1994.

N. Kohl. Solving the world’s largest crew scheduling problem. ORbit,
Newsletter Danish Operations Research Society, Special Issue:8–12, Au-
gust 2003.

196 BIBLIOGRAPHY

N. Kohl and S. E. Karisch. Airline crew rostering: problem types, modeling,
and optimization. Annals of Operations Research, 127:223–257, 2004.

L. Kroon and M. Fischetti. Crew scheduling for Netherlands Railways ”Desti-
nation: Customer”. In S. Voß and J. D. Daduna, editors, Computer-Aided
Scheduling of Public Transport, volume 505 of Lecture Notes in Economic
and Mathematical Systems, pages 181–201. Springer-Verlag, Berlin, 2001.

L. Kroon and M. Fischetti. Scheduling train drivers and guards: the Dutch
”Noord-Oost” Case. In Proceedings of the 33rd Hawaii International Con-
ference on System Sciences, 2000.

L. Kroon, D. Huisman, E. Abbink, P. J. Fioole, M. Fischetti, G. Maróti,
L. Shrijver, A. Steenbeek, and R. Ybema. The new dutch timetable: The
or revolution. Interfaces, 39:6–17, 2009.

L. G. Kroon, R. Dekker, and M. J. C. M. Vromans. Cyclic railway
timetabling: a stochastic optimization approach. In Algorithmic Meth-
ods for Railway Optimization, volume 4359 of Lecture Notes in Computer
Science. Springer-Verlag, 2007.

A. S. Kwan, R. S. Kwan, M. E. Parker, and A. Wren. Producing train
driver schedules under different operating strategies. In N. H. M. Wilson,
editor, Computer-Aided Transit Scheduling, volume 471 of Lecture Notes
in Economic and Mathematical Systems, pages 129–154. Springer-Verlag,
1999a.

A. S. K. Kwan, R. S. K. Kwan, M. E. Parker, and A. Wren. Producing train
driver shifts by computer. In J. Allan, C. Brebbia, R. Hill, G. Sciutto,
and S. Sone, editors, Computers in Railways V - Vol.1 Railway Systems
and Management, pages 421–435. Computational Mechanics Publications,
1996.

A. S. K. Kwan, R. S. Kwan, and A. Wren. Driver scheduling using ge-
netic algorithms with embedded combinatorial traits. In M. H. M. Wilson,
editor, Computer-Aided Transit Scheduling, volume 471 of Lecture Notes
in Economic and Mathematical Systems, pages 81–102. Springer-Verlag,
1999b.

A. S. K. Kwan, M. E. Parker, R. S. K. Kwan, S. Fores, L. Proll, and
A. Wren. Recend advances in TRACS. In 9th International Conference

BIBLIOGRAPHY 197

on Computer-Aided Scheduling of Public Transport (CASPT), San Diego,
California, Aug. 2004.

R. S. K. Kwan, A. Wren, and A. S. K. Kwan. Hybrid genetic algorithms for
scheduling bus and train drivers. In Proceedings of the 2000 Congress on
Evolutonary Computation, number 1 in Evolutionary Computation, pages
285–292, 2000.

R. S. K. Kwan, A. S. R. Kwan, and A. Wren. Evolutionary driver scheduling
with relief chains. Evolutionary Computation, 9(4):445–460, 2001.

C.-K. Lee. The integrated scheduling and rostering problem of train driver
using Genetic algorithm. In 9th International Conference on Computer-
Aided Scheduling of Public Transport (CASPT), San Diego, California,
Aug. 2004.

C.-K. Lee and C.-H. Chen. Scheduling of train driver for taiwan railway
administration. Journal of the Eastern Asia Society for Transportation
Science, 5:292–306, 2003.

A. Lehman. On the width-length inequality. Mathematical Programming, 17:
403–417, 1979.

R. M. Lentink, M. A. Odijk, and E. van Rijn. Crew rostering for the
High Speed Train. Erim report series research in management, Erasmus
Research Institute of Management, Erasmus University Rotterdam, The
Netherlands, 2002.

L. Lettovsky, E. L. Johnson, and G. L. Nemhauser. Airline crew recovery.
Transportation Science, 34(4):337–348, 2000.

C. Liebchen. Periodic Timetable Optimization in Public Transport. PhD
thesis, Technische Universitt Berlin, 2006.

C. Liebchen. The first optimized railway timetable in practice. Transporta-
tion Science, 42(4):420–435, 2008.

C. Liebchen and S.Stiller. Delay resistant timetabling. Technical Report
ARRIVAL-TR-0056, ARRIVAL Project, November 2006. Presented at
CASPT 2006.

198 BIBLIOGRAPHY

L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete
Mathematics, 306(10-11):867–875, 2006.

L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete
Mathematics, 2:253–268, 1972.

M. E. Lübbecke and J. Desrosiers. Selected topics in column generation.
Operations Research, 53(6):1007–1023, 2005.

R. Lusby. Optimization methods for routing trains through railway junctions.
PhD thesis, Department of Engineering Science, School of Engineering,
The University of Auckland, New Zealand, 2008.

G. Maróti. Operations Research Models for Railway Rolling Stock Planning.
PhD thesis, Eindhoven University of Technology, Eindhoven, The Nether-
lands, 2006.

J. Martins, E. Morgado, and R. Haugen. Tpo: a system for scheduling and
managing train crew in norway. In J. Riedl and R. Hill, editors, Pro-
ceedings of the Fifteenth Innovative Applications of Artificial Intelligence
Conference, pages 25–32. AAAI Press, 2003.

C. P. Medard and N. Sawhney. Airline crew scheduling from planning to op-
erations. Technical Report CRTR-0406, Carmen Research and Technology
Report, June 2004.

C. P. Medard and N. Sawhney. Airline crew scheduling from planning to
operations. European Journal of Operational Research, 183(3):1013–1027,
2007.

M. Meilton. Selecting and implementing a computer aided scheduling system
for a large bus company. In S. Voß and J. D. Daduna, editors, Computer-
Aided Scheduling of Public Transport, volume 505 of Lecture Notes in Eco-
nomic and Mathematical Systems, pages 203–214. Springer-Verlag, Berlin,
2001.

A. Mercier and F. Soumis. An integrated aircraft routing, crew scheduling
and flight retiming model. Computers & Operations Research, 34:2251 –
2265, 2007.

BIBLIOGRAPHY 199

E. M. Morgado and J. P. Martins. Scheduling and managing crew in the
portuguese railways. Expert Systems with Applications, 5:301–321, 1992.

E. M. Morgado and J. P. Martins. An AI-based approach to crew schedul-
ing. In Proceedings of 9th IEEE Conference on Artificial Intelligence for
Applications, pages 71–77, 1993.

E. M. Morgado and J. P. Martins. Crews-NS: scheduling train crews in the
Netherlands. AI Magazine, 19(1):25–38, 1998a.

E. M. Morgado and J. P. Martins. Crews: a train scheduling tool. In Pro-
ceedings of the International Conference on Computer Aided Design, Man-
ufacture and Operation in The Railway and Other Advanced Mass Transit
Systems, pages 287–297. Computational Mechanics Publ, 1998b.

MOSEK. The Mosek .NET API Manual. Version 5.0, www.mosek.com. The
Mosek Optimization Software, Denmark, 2008.

G. L. Nemhauser, M. W. Savelsbergh, and G. C. Sigismondi. MINTO, a
Mixed INTeger optimizer. Operations Research Letters, 15(1):47–58, 1994.

L. K. Nielsen. A decision support framework for rolling stock rescheduling.
Technical Report ARRIVAL-TR-0158, Arrival Project, August 2008.

L. K. Nielsen. Planlægning af arbejdsplaner for togrevisorer i S-toge. Master’s
thesis, Department of Mathematics and Computer Science, University of
Southern Denmark, 2006.

M. Nielsen, B. Hove, and J. Clausen. Constructing periodic timetables using
MIP - a case study from DSB S-train. European Journal of Operational
Research, 1(3):213–227, 2006.

M. N. Nielsen and T. Christensen. Duty planning and design of experi-
ments. In ATMOS 2006, 6th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization and Systems, 2006.

R. Nissen and K. Haase. Duty-period-based network model for crew
rescheduling in European airlines. Journal of Scheduling, 9(3):255–278,
2006.

W. Orchard-Hays. Advanced Linear–Programming Computing Techniques.
McGraw-Hill, New York, 1968.

200 BIBLIOGRAPHY

M. Padberg. Lehman’s forbidden minor characterization of ideal 0-1 matrices.
Discrete Mathematics, 111:409–420, 1993.

M. W. Padberg. Perfect zero-one matrices. Mathematical Programming, 6
(2):180–196, 1974.

M. E. Parker, A. Wren, and R. S. K. Kwan. Modelling the scheduling of
train drivers. In J. D. Daduna, I. Branco, and J. M. P. Paixao, editors,
Computer-Aided Transit Scheduling, volume 430 of Lecture Notes in Eco-
nomic and Mathematical Systems, pages 359–370. Springer-Verlag, 1995.

L. W. P. Peeters. Cyclic railway timetable optimization. PhD thesis, Erasmus
Research Institute of Management, Erasmus University Rotterdam, The
Netherlands, 2003.

L. Ping, N. Axin, J. Limin, and W. Fuzhang. Study on intelligent train dis-
patching. In Proceedings of 2001 IEEE Intelligent Transportation Systems,
pages 949–953, 2001.

D. Potthoff, D. Huisman, and G. Desaulniers. Column generation with
dynamic duty selection for railway crew rescheduling. Technical Report
EI 2008-28, Econometric Institute, Erasmus University Rotterdam, The
Netherlands, December 19, 2008.

N. J. Rezanova and D. M. Ryan. The train driver recovery problem – a set
partitioning based model and solution method. Technical Report IMM-
Technical Report-2006-24, Informatics & Mathematical Modelling, Tech-
nical University of Denmark, 2006.

N. J. Rezanova and D. M. Ryan. The train driver recovery problem – a set
partitioning based model and solution method. Computers & Operations
Research, in press, 2009. doi: 10.1016/j.cor.2009.03.023.

J. Rodriguez. A constraint programming model for real-time train scheduling
at junctions. Transportation Research Part B, 41(2):231–245, 2007.

D. M. Ryan. ZIP - a zero-one integer programming package for schedul-
ing. Computer Science and Systems Division Report 85, Atomic Energy
Research Establishment, Harwell, Oxfordshire, UK, 1980.

BIBLIOGRAPHY 201

D. M. Ryan. The solution of massive generalized set partitioning problems
in aircrew rostering. Journal of the Operational Research Society, 43(5):
459–467, 1992.

D. M. Ryan and J. C. Falkner. On the integer properties of scheduling set
partitioning models. European Journal of Operational Research, 35(3):
442–456, 1988.

D. M. Ryan and B. A. Foster. An integer programming approach to schedul-
ing. In A. Wren, editor, Computer Aided Scheduling of Public Transport,
pages 269–280. North-Holland Publishing Company, 1981.

T. L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, 1980.

I. Şahin. Railway traffic control and train scheduling based on inter-train con-
flict management. Transportation Research Part B, 33(7):511–534, 1999.

A. Schbel. Integer programming approaches for solving the delay manage-
ment problem. In Algorithmic Methods for Railway Optimization, volume
4359 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

B. M. Smith and A. Wren. A bus crew scheduling system using a set covering
formulation. Transportation Research Part A, 22(2):97–108, 1988.

B. M. Smith, C. J. Layfield, A. Wren, E. C. Freuder, and R. J. Wallace.
A constraint programming pre-processor for a bus driver scheduling sys-
tem. In Constraint Programming and Large Scale Discrete Optimization.
DIMACS Workshop, pages 131–148, 2001.

M. S. Sodhi and S. Norris. A flexible, fast, and optimal modeling approach
applied to crew rostering at London Underground. Annals of Operations
Research, 127:259–281, 2004.

M. Song, G. Wei, and G. Yu. A Decision Support Framework for Crew Man-
agement During Airline Irregular Operations. In Y. G, editor, Operations
Research in the Airline Industry. Kluwer Academic Publishers, Boston,
1998.

M. Stojković and F. Soumis. An optimization model for the simultaneous
operational flight and pilot scheduling problem. Management Science, 47
(9):1290 – 1305, 2001.

202 BIBLIOGRAPHY

M. Stojković and F. Soumis. The operational flight and multi-crew scheduling
problem. Yugoslavian Journal of Operations Research, 15(1):25 – 48, 2005.

M. Stojković, F. Soumis, and J. Desrosiers. The operational airline crew
scheduling problem. Transportation Science, 32(3):232–245, 1998.

B. Szpigel. Optimal train scheduling on a single line railway. Operations
Research, 72:344–351, 1973.

D. Teodorović and G. Stojković. Model to reduce airline schedule distur-
bances. Journal of Transportation Engineering, 121:324–331, 1995.

J. Törnquist. Railway traffic disturbance management - an experimental
analysis of distrurbance complexity, management objectives and limita-
tions in planning horizon. Transportation Research Part A, 41(3):249–266,
2007.

J. Törnquist and J. A. Persson. Train traffic deviation handling using tabu
search and simulated annealing. In Proceedings of the 38th Hawaii Inter-
national Conference on System Sciences, 2005.

J. Törnquist and J. A. Persson. N-tracked railway traffic re-scheduling during
disturbances. Transportation Research Part B, 41(3):342–362, 2007.

B. Vaidyanathan, K. C. Jha, and R. K. Ahuja. Multicommodity network
flow approach to the railroad crew-scheduling problem. IBM Journal of
Research and Development, 51(3/4):325–344, 2007.

J. C. Villumsen. Construction of timetables based on periodic event schedul-
ing. Master’s thesis, Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, 2006.

M. Vromans. Reliability of Railway Systems. PhD thesis, Erasmus University
Rotterdam, Rotterdam School of Management, The Netherlands, 2005.

C. G. Walker, J. N. Snowdon, and D. M. Ryan. Simultaneous disruption
recovery of a trian timetable and crew roster in real time. Computers &
Operations Research, 32(8):2077–2094, 2005.

D. Wedelin. An algorithm for large scale 0-1 integer programming with
application to airline crew scheduling. Annals of Operations Research, 57
(1):283–301, 1995.

BIBLIOGRAPHY 203

S. Wegele and E. Schnieder. Dispatching of train operations using genetic
algorithms. In CD-ROM Proceedings of the 1st International Seminar on
Railway Operations Modelling and Analysis, Delft, The Netherlands, 2005.

G. Wei, G. Yu, and M. Song. Optimization model and algorithm for crew
management during airline irregular opertions. Journal of Combinatorial
Optimization, 1:305–321, 1997.

O. Weide, D. Ryan, and M. Ehrgott. An iterative approach to robust and
integrated aircraft routing and crew scheduling. Computers & Operations
Research, in press, 2009. doi:10.1016/j.cor.2009.03.024.

W. E. Wilhelm. A technical review of column generation in integer program-
ming. Optimization and Engineering, 2:159–200, 2001.

W. P. Willers. Improved algorithms for bus crew scheduling. PhD thesis,
University of Leeds, 1995.

W. P. Willers, L. Proll, and A. Wren. A dual strategy for solving the linear
programming relaxation of a driver scheduling system. Annals of Opera-
tions Research, 58:519–531, 1995.

N. Wilson, editor. Computer-Aided Transit Scheduling, volume 471 of Lecture
Notes in Economic and Mathematical Systems. Springer-Verlag, Berlin,
1999.

L. A. Wolsey. Integer programming. John Wiley & Sons, Inc., 1998.

A. Wren. Scheduling vehicles and their drivers - forty years’ experience.
In 9th International Conference on Computer-Aided Scheduling of Public
Transport (CASPT), San Diego, California, Aug. 2004.

A. Wren and R. S. K. Kwan. Installing an urban transport scheduling system.
Journal of Scheduling, 2(1):3–17, 1999.

A. Wren and B. M. Smith. Experiences with a crew scheduling system based
on set covering. In J. D. Daduna and A. Wren, editors, Computer-Aided
Transit Scheduling, pages 104–118. Springer-Verlag, 1988.

A. Wren, R. S. K. Kwan, and M. E. Parker. Scheduling of rail driver duties.
In T. K. S. Murthy, B. Mellit, C. Brebbia, G. Sciutto, and S. Sone, editors,

204 BIBLIOGRAPHY

Railway Operations, volume 2 of Computers in Railways - IV. Computa-
tional Mechanics Publications, Southampton, Boston, 1994.

A. Wren, S. Fores, A. S. K. Kwan, R. S. K. Kwan, M. Parker, and L. Proll. A
flexible system for scheduling drivers. Journal of Scheduling, 6(5):437–455,
2003.

G. Yu, M. Argüello, G. Song, S. M. McCowan, and A. White. A new era for
crew recovery at Continental Airlines. Interfaces, 33(1):5–22, 2003.

X. L. Zhao, J. F. Zhu, and M. Guo. Application of grey programming in
irregular flights scheduling. In 2007 IEEE International Conference on
Industrial Engineering and Engineering Management, 2007.

