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1 Introduction

1.1 Motivation

A competitive rail transport within a single European transport zone is one of the key

objectives of the European Union, both for freight and passenger transportation (Gen-

eraldirektion Mobilität und Verkehr 2016). In Germany, a steady increase in

passenger transport performance can been observed for years, see Figure 1.1. Here it is

necessary to further increase the transport performance with limited resources and thus to

apply a cost-efficient planning in order to remain competitive with other modes of trans-

port. This applies especially for freight transport, where a stagnation can be observed,
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Figure 1.1: Transport performance in Millions1

although the road freight transport performance has been rising continuously since 1995.

Again, similar observations can also be made for whole Europe (Generaldirektion

1Figure is based on data extracted from Statistisches Bundesamt (2020b, p.8) and Statistisches
Bundesamt (2020a).

2
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Mobilität und Verkehr 2019). This makes it very difficult to achieve both domes-

tic German and pan-European environmental targets, especially due to the significantly

poorer performance of road transport compared to rail transport in terms of greenhouse

gas emissions, see Figure 1.2. Therefore, in addition to the urgently required political
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Figure 1.2: Greenhouse gas emissions
per ton-kilometers2

Pers
onnel

expensesD
ep

re
ci

at
io

nO
perating

m
aterials

Purch
ase

d

Serv
ice

s

M
aintanance

Others

affected by
Crew scheduling

affected by
Vehicle scheduling

Figure 1.3: Share of expenses in the an-
nual report of DB Regio AG
20193

initiatives (BMVI 2017), cost-efficient planning for competitive market participation of

the rail freight sector is of crucial importance.

Regarding the share of different costs in the total expenditure of railway companies,

both vehicle-based and personnel costs are particularly important. Figure 1.3 shows as

an example the shares based on the profit and loss account of DB Regio AG for 2019.

About 80% of the purchased services are related to the use of infrastructure (i.e., renting

tracks and stations). Over 90% of the operating materials are costs for energy (fuel and

electricity). Nearly 94% of depreciation is related to vehicles. Over 80% of the personnel

costs are incurred in the transport sector. Similar information can also be found for other

European rail operators for both freight and passenger transport (SNCF Group 2020;

BLS AG 2017).

Figure 1.3 highlights the influence of two optimization problems on a majority of the

expenses. Crew scheduling has a significant impact on the personnel costs of moving

operations, as it can significantly affect the efficiency of the single duties as well as the

total number of duties required and thus the number of employees. On the other hand, the

influences of engine scheduling on the expenses are more diverse. Firstly, efficient vehicle

usage makes it possible, for example, to save on empty runs and thus energy costs. This

2Figure is based on data extracted from Umweltbundesamt (2020).
3Figure is based on data extracted from DB Regio AG (2019).
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also leads to savings in infrastructure costs, as network usage can be reduced. Finally,

the efficient use of vehicles also makes it possible to reduce their number, which would

result in lower depreciation in the long term. Due to the influence of these two problems

on central cost factors, efficient methods of solving them are of decisive importance in

order to maintain or further increase the competitiveness of rail transport.

Both planning problems raise considerable challenges to automated planning, as well

in terms of their mathematical complexity as in terms of the large number of practical

requirements. Therefore, suitable models have to be developed in combination with the

implementation of efficient solution algorithms based on methods of operations research.

This applies to freight as well as to passenger transport, whereby similar solution methods

can be applied in each case.

1.2 Railway optimization problems

1.2.1 Planning process in railway transportation

The planning process in (interregional) railway transportation is an ensemble of sev-

eral very complex optimization problems. The design of the individual problems as

well as the sequence of processing and, if necessary, also the combined consideration

of these vary greatly depending on the application. In the literature there is a variety

of possible structuring schemes and sequences, although even the sub-problems consid-

ered are not uniform (e.g., Ghoseiri / Szidarovszky / Asgharpour 2004; Goossens /

Van Hoesel / Kroon 2004; Huisman et al. 2005; Lusby et al. 2011; Hoffmann et al.

2017; Ávila-Torres et al. 2018; Borndörfer et al. 2018; Scheffler / Neufeld /

Hölscher 2020). However, the references have in common that the planning is struc-

tured hierarchically and most of them make a classification into strategic, tactical and

operational levels.

Figure 1.4 gives an overview of the planning process and the relevant problems. Note

that the chosen order and assignment of problems in the presentation does not claim to

be universally valid. Most of the research results from practical applications, whereby

in each case the embedding in different overall planning is carried out and thus different

requirements and data for similar planning problems are used. Overlaps and changes

in order may occur in individual practical cases. For this reason, arrows between the

problems have been omitted to show that no universal sequence of planning exists in

practice. However, five main tasks can be summarized, which have to be processed one

after the other during the planning process and by which the individual planning problems

can be classified: Network Design, Routing/Timetabling, Vehicle Management, Crew
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Management and Traffic Management.
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Figure 1.4: Placing the considered planning problems in the planning process

Lusby et al. (2011) give a general description of the planning levels. Strategic planning

problems refer to long planning horizons (5-20 years), whereby the focus is on the procure-

ment or provision of resources. Tactical level problems are usually considered annually or

semi-annually and determine the allocation of resources. Operational problems occur on

a day-to-day (or week-to-week) planning and react to current circumstances by adjusting

the longer-term planning results. In general, it is useful to keep the boundaries between

the planning levels smooth, as these can vary depending on the application. For example,

Borndörfer et al. (2018) place the train routing in freight transport on the strategic

level. Klug (2018) analyses train routing for capacity assessment, whereas in contrast

Cacchiani / Caprara / Toth (2010) do this on a tactical level with a higher level of

detail. Furthermore, it is important to consider feedback between the planning levels.

Long-term capacity planning of resources (i.e., locomotives, cars, employees) is based on

insights from the tactical planning level or is a result of sensitivity analyses with tactical

planning models.

First of all, the basis and initial step of planning is a demand forecast (e.g., in form of

origin-destination matrix). Banerjee / Morton / Akartunalı (2020) present an ex-

tensive review on this in scheduled transportation. Since this is not a planning problem

in the actual sense, it is not included in the figure. Based on this forecast, long-term de-

cisions are made at the strategic level, especially with regard to the physical rail network.

Network Design generally involves a very long planning horizon in order to plan exten-

sions and changes to the existing network (e.g., Laporte et al. 2011; Bärmann / Liers

2018), especially concerning the capacity (e.g., Abril et al. 2008; Bešinović / Goverde

2018).
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The planning of the physical network is followed by a planning step that can be sum-

marized as routing or timetabling respectively. The result of this planning step is a precise

definition of the transport services offered, i.e., departure station and time, arrival station

and time as well as a route in combination with an assignment of tracks for each service.

In the following a short insight into the variety of terms and planning perspectives used in

the literature will be given. In passenger transport line planning is used to generate the

actual usable network accessible to the customers. Exemplary approaches are provided by

Goossens / Van Hoesel / Kroon (2004), Goossens / Van Hoesel / Kroon (2006),

Borndörfer / Grötschel / Pfetsch (2007), and Schöbel (2012). Analogously to

line planning in passenger transport, block building can be seen as the equivalent in

freight transport. It aims for finding suitable aggregations of single shipments to blocks

during their transportation from origins to destinations (e.g., Ahuja / Jha / Liu (2007)).

Here the routing of the blocks also takes place implicitly. Borndörfer et al. (2016) and

Klug (2018) consider the routing in a downstream planning step as the train routing prob-

lem based on predefined blocks. Both references take capacity restrictions into account

and aim at estimating the long-term performance of freight transportation. Allocating the

track capacity of the network over time is carried out in several planning problems. Lusby

et al. (2011) give a detailed overview of this. Caprara / Fischetti / Toth (2002) carry

out track allocation during solving the timetabling problem for passenger transportation.

The result is a (periodic) timetable without capacity violations. Kaspi / Raviv (2013)

combine line planning with timetabling to an integrated approach. Cacchiani / Toth

(2012) give a general review on timetabling in railway industry. For freight transport Fü-

genschuh / Homfeld / Schülldorf (2015) integrate block building and timetabling in

a so called single-car routing problem. Finally, in passenger transportation, timetabling

is directly followed by the train platforming problem. It aims to assign each train to a

platform in each station. Sels et al. (2014) and Caprara / Galli / Toth (2011) can be

mentioned as relevant references.

After routing and timetabling the vehicle management has to be considered. The main

planning problem here is rolling stock scheduling, i.e., generating circulations for the ve-

hicles. This is the first of the two problems considered in detail in this thesis. A general

description of this problem and a short overview of relevant literature is given in Section

1.2.2. Maintenance planning can be considered in different levels of detail mostly de-

pending on whether a direct assignment of the circulations to vehicles takes place or not.

Note, in contrast to crew planning there is no clear distinction in terminology between

scheduling and rostering for vehicles in literature. Giacco / D’Ariano / Pacciarelli

(2014) and Jaumard / Tian / Finnie (2014) present suitable approaches for the planning

of maintenance. In freight transportation the return or transfer of empty cars is neces-
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sary. Joborn et al. (2004) and Narisetty et al. (2008) can be mentioned as suitable

approaches for dealing with this problem. Further all shunting yard operations have to

be planned. Boysen et al. (2012) give a detailed review on this. The cars of the arriving

trains have to be separated and reassembled into new trains until the following departure.

In contrast, in passenger transport shunting of train units occurs mainly whenever units

temporarily do not operate (e.g., during the night), see Freling et al. (2005).

Based on the rolling stock circulations crew scheduling is carried out. This is the

second considered problem in this thesis. A general description and a brief overview of

the literature is given in Section 1.2.3. As mentioned above, here a clear distinction exists

in the literature between creating anonymous duties (crew scheduling) and personalizing

this schedule by assigning employees to duties (crew rostering; Caprara et al. 1998;

Hartog et al. 2009).

Finally, (real-time) traffic management is required. In this context, the terms reschedul-

ing and dispatching are closely linked or used synonymously. However, the former is more

general and used for optimization models and suitable solution approaches during the en-

tire planning process. Literature reviews are published by Alwadood / Shuib / Hamid

(2012) and Cacchiani et al. (2014). Dispatching is usually used in context of train dis-

patching (e.g., Lamorgese et al. 2018). Dollevoet et al. (2017) present an integrated

approach for rescheduling the timetable, rolling stock and the crew.

1.2.2 Rolling Stock Scheduling

Due to the high share of costs (see Section 1.1, Figure 1.3), rolling stock scheduling is

one of the most important planning tasks in both passenger and freight transportation.

In general, rolling stock scheduling deals with the planning of circulations for powered

and unpowered vehicles. In passenger transport usually locomotives and cars are planned

together or in close coordination. In freight transport the goal is to assign locomotives to

trains. Since this work focuses on the problem in freight transport, only a presentation

of this application area is given in the following. A brief literature review can be found

in Section 3.2 and a more detailed one is presented by Piu / Speranza (2014).

Assigning locomotives to trains is called the Locomotive Assignment Problem (LAP),

which is also known as Locomotive or Engine Scheduling Problem. Based on a preplanned

train schedule, a set of locomotives have to be assigned to each train. A train is the

smallest planning unit and defined by departure time and station, arrival time and sta-

tion as well as operating requirements for the locomotives. Simultaneously, permissible

circulations must be planned for the locomotives. For both, the assignment of locomotives

to trains as well as for the generation of circulations a variety of requirements has to be
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considered. Especially combining two or more locomotives for moving a train results in

considerable challenges during planning.

1.2.3 Crew Scheduling

Crew scheduling considers as major planning step the second movable resource: the per-

sonnel. It is one of the most challenging problems because of the huge amount of legal

regulations, operating conditions and requirements from the transportation contract. On

the one hand, the train drivers have to be scheduled for both passenger and freight trans-

portation. On the other hand, conductors have to be scheduled additionally in passenger

transportation. This work focuses on the latter in context of crew scheduling. A brief

literature review is given in Section 4.2 and a comprehensive one is presented by Heil /

Hoffmann / Buscher (2020).

In general, crew scheduling aims at creating a set of (anonymous) duties for covering a

given set of trips. A trip is defined by departure time and station as well as arrival time

and station. In the special case of conductors, however, some transportation contracts

do not require the attendance of all trips, but require a percentage coverage. These so-

called attendance rates are based on the distance (i.e., kilometers) and describe the ratio

between attended and total (attended + unattended) kilometers of the network. It is

common that there are several (different) attendance rates for parts of the network or

certain times of the day. It is also possible that more than one conductor is required (i.e.,

rates > 100%). All rates that are not multiples of 100% represent an additional degree of

freedom for the planning problem. Besides the decision which trip is attended by which

duty, it is also necessary to decide which trips should be attended at all.

1.2.4 Comparison with other modes of transport

The planning and optimization of transport is necessary for all modes of transport. Al-

though the track-bound is a very special characteristic of railway transportation, this

distinguishes the individual planning problems only slightly. For this reason, it makes

sense to study the literature for the individual planning steps across all modes of trans-

port in order to be able to make use of possible similarities in research (i.e., road-, sea-

and air-transportation). In order to keep the focus of this work, only rolling stock as well

as crew scheduling are discussed.
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Rolling Stock Scheduling

Starting with road transport, the equivalent of rolling stock scheduling is named as vehi-

cle scheduling. In freight transportation Nossack / Pesch (2013) present for example

a so called ’full-truckload pickup and delivery problem with time windows’ for assigning

trucks to container transportation requests. Here the connections to the vehicle routing

problem (Toth / Vigo 2014), dial-a-ride problem (Cordeau / Laporte 2007) and the

general pickup and delivery problem (Savelsbergh / Sol 1995) are smooth. It should

be noted, that the focus of research here is much more on routing than on scheduling ve-

hicle rotations. The reason for this can be assumed to be the substantially lower vehicle

and maintenance costs. In passenger transportation (i.e., scheduling of buses) Bunte /

Kliewer (2009) gives an overview to vehicle scheduling and Kliewer / Mellouli /

Suhl (2006) and Hassold / Ceder (2014) present comparable approaches to the LAP

based on time space networks. Decisive differences with regard to complexity and model-

ing result from the fact that in rail transport the combination of vehicles (i.e., locomotives)

must be considered much more explicitly. Two vehicles are able to drive the same route

independently of each other on the road (split delivery). However, in rail industry often

the simultaneous pulling of a train by several locomotives is required.

In air transportation the assignment of airplanes to flights is known as the fleet assign-

ment problem. Sherali / Bish / Zhu (2006) give an overview on this. Again it can be

modeled based on a time space network. Since only individual airplanes are assigned to

flights, it differs greatly from LAP in terms of complexity and modeling, too. Chris-

tiansen et al. (2013) give an overview to routing and scheduling in the shipping industry.

Usually both planning steps are integrated here. Agarwal / Ergun (2008) and Brouer

et al. (2014) can be mentioned as examples. All in all, the lines and network structures

in air and sea traffic differ significantly from those in the railroad sector. Hub-and-spoke

networks (e.g., An / Zhang / Zeng (2015) and Zheng / Meng / Sun (2015)) are com-

mon practice in both air and water transport, which are barely existent in (interregional)

rail transport.

Crew Scheduling

Again, starting with road transport, crew scheduling is a very scarce field of research in

freight sector. Goel (2010) present the truck driver scheduling for application in the

European Union. The problem differs essentially from crew scheduling in the railroad

industry because it is possible to interrupt transportation services for breaks at almost

any time. Goel / Irnich (2017) integrate truck driver scheduling into the vehicle rout-

ing problem. For passenger transportation Ibarra-Rojas et al. (2015) give a general de-



1.3 Purpose 10

scription of the driver scheduling problem. In the few newer research papers an integrated

approach with vehicle routing is preferred (e.g., Boyer / Ibarra-Rojas / Rıíos-Solıís

(2018) and Babaei / Rajabi-Bahaabadi (2019)).

Very intensive research takes place in the field of airline crew scheduling. Literature

reviews are presented by Barnhart et al. (2003), Gopalakrishnan / Johnson (2005),

Kasirzadeh / Saddoune / Soumis (2017), and Deveci / Demirel (2018). With re-

gard to the terms used, crew scheduling in the aviation industry is usually referred

to as crew pairing. Instead, the term crew scheduling is usually used as a combina-

tion with the downstream planning step (crew rostering). In general, there is a mutual

reference between both research areas (aviation and railway) in the literature. This is

also reflected by the use of column generation as a preferred solution methodology (avi-

ation: Kasirzadeh / Saddoune / Soumis (2017); railway: Heil / Hoffmann / Bu-

scher (2020)). However, the special case of attendance rates does not apply in this

or a comparable form in aviation.

Finally crew scheduling approaches in shipping industry are barely non-existent in liter-

ature. Giachetti et al. (2013) discuss crew scheduling in the cruise industry. They point

out the essential differences to crew scheduling in other transportation modes because of

the fixed assignment of a crew member to a ship. Sereno / Reinhardt / Guericke

(2018) uses column generation as well for solving a liner shipping crew scheduling prob-

lem.

1.3 Purpose

The main aim of this work is to provide decision makers suitable approaches for solving

two crucial planning problems in the railway industry. On the one hand, the focus is on

practical usability and the necessary integration and consideration of real-life requirements

in the planning process. On the other hand, solution approaches are to be developed,

which can provide solutions of sufficiently good quality within a reasonable time by taking

all these requirements into account.

With regard to the LAP, mathematical problem formulations used in North America will

first be adapted for application for a European freight operator. Additional requirements,

which are characteristic for Europe, are integrated. Although solution approaches in the

literature provide promising results, adaptations and improvements are necessary to solve

European instances. Further a generalization of two different formulations is aspired.

Crew scheduling with attendance rates is a rather less studied problem. Since the

existing approaches are only suitable for smaller instance sizes, further development is

essential. Again, this improvement is combined with the further integration of additional
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requirements, which are inevitable for practical application. In addition to cost-oriented

crew scheduling, one upstream and one downstream issue for which no automated planning

approaches exist so far are discussed and analyzed. Besides the planning perspective of

the railroad operator, the general cost effects resulting from demanding attendance rates

in the transportation contract are examined.

The purpose of this work can be summarized in the following research questions:

Q1 How can the iterative heuristic of Ahuja et al. (2005) be accelerated for solving

European instances of the locomotive assignment problem?

Q2 How does the reasonable restriction of the solution space allow an accelerated solu-

tion of the locomotive assignment problem?

Q3 How can real-world instances of railway crew scheduling problems with attendance

rates be solved for practical application?

Q4 What cost effects result from the use of attendance rates?

Q5 How can the daily distribution of duties during solving crew scheduling problems

with attendance rates be controlled?

Q6 How can suitable locations for crew bases of conductors be determined?

1.4 Structure of this work

Following the considered planning problems this work is structured in two parts. Figure

1.5 illustrates the general structure and connections between the seven chapters. The

five main chapters (2–6) represent published or submitted manuscripts by the author.

Pointing out the motivation, presenting the entire planning process and introducing the

objectives are given in Chapter 1. Chapters 2–3 deal with the locomotive assignment and

Chapters 4–6 are about crew scheduling. A summary and an overview for possible future

research is given in Chapter 7.

The consideration of the LAP starts with Chapter 2 by adapting an existing flow

formulation from North America for the application on European instances. Because of

the different physical network characteristics as well as transport frequencies and distances

of the continents the solution methods from literature are reaching their limits. That is

why an answer to research question Q1 is given by simplifying the existing relaxation-

based iterative procedure to an one-step process.4

On the one hand, Chapter 3 integrates several real-life requirements, which are necessary

in Europe, to the flow formulation used in Chapter 2. On the other hand, a framework for

4This chapter corresponds to M. Scheffler / M. Hölscher / J. S. Neufeld (2019): An Improved
LP-Based Heuristic for Solving a Real-World Locomotive Assignment Problem. In: Logistics Man-

agement. Springer, pp. 314–329.
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Figure 1.5: Structure of this work

a targeted restriction of the solution space is developed. A simplification of the problem

and thus an accelerated solution is examined on the basis of four approaches: reducing the

number of trains by a previous merging, the use of predefined locomotive combinations

only, ignoring issues regarding the combination of locomotives and, finally, restricting the

free movement of locomotives. The presented framework provides answers to research

question Q2.5

In Chapter 4 an answer to research question Q3 is given by presenting a highly sophis-

ticated column generation approach for solving crew scheduling problems with attendance

rates. For providing real-life decision support several requirements are discussed and inte-

grated for the first time. Due to very large practical problem sizes several methodological

enhancements are necessary to be able to generate solutions at all. Besides the solution

approach and the consideration of practical requirements, Chapter 4 also answers research

question Q4. Managerial insights about the general cost effects resulting from the use of

5This chapter corresponds to M. Scheffler / J. S. Neufeld / M. Hölscher (2020): An MIP-based
heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting pro-
cesses. In: Transportation Research Part B: Methodological, vol. 139, pp. 64–80.
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attendance rates are discussed.6

When generating crew schedules, a number of additional questions arise during plan-

ning. The attendance rates in combination with the frequency-based timetables cause the

fact that there are many solutions with (almost) identical costs. Chapter 5 deals with

the distribution of duties over the planning horizon. Research question Q5 is answered

by discussing and testing two variants for measuring the distribution and for considering

a targeted distribution during solving without significant cost increase.7

For the generation of efficient crew schedules, the location of crew bases (i.e., stations

where a duty can start/end) is of crucial importance. Chapter 6 focuses on this seldomly

discussed question in literature. The assumption of pre-defined crew bases is softened by

considering the possibility of opening or closing (existing) bases during crew scheduling.

The presented approach answers research question Q6.8

Finally this work will be concluded in Chapter 7. A summary of the gained results in

combination with a re-discussion of the research questions will be provided. Furthermore,

some existing drawbacks, together with possible directions for future research are pointed

out.

6This chapter corresponds to J. S. Neufeld et al. (2021): An efficient column generation approach
for practical railway crew scheduling with attendance rates. In: European Journal of Operational

Research, vol. 293, no. 3, pp. 1113–1130. This paper was still under review at the time of submission.
7This chapter corresponds to M. Scheffler / J. S. Neufeld (2020): Daily Distribution of Duties for

Crew Scheduling with Attendance Rates: A Case Study. In: International Conference on Computa-

tional Logistics. Springer, pp. 371–383.
8This chapter corresponds to M. Scheffler (2020): Strategic Planning of Depots for a Railway Crew

Scheduling Problem. In: Operations Research Proceedings 2019. Springer, pp. 781–787.





2 An improved LP-based heuristic for

solving a real-world locomotive

assignment problem

Abstract

The locomotive assignment (or scheduling) problem is a highly relevant problem in rail

freight transport. For a preplanned train schedule, minimum-cost locomotive schedules

have to be created so that each train is pulled by the required number of locomotives

(locomotives are assigned to trains). Determining locomotive schedules goes hand in hand

with determining the number of required locomotives and this has a significant impact

on capital commitment costs. Therefore, this paper proposes an improved heuristic for

scheduling locomotives at a European rail freight operator. We show that a transformation

of an iterative process to simplify the underlying network into a one-step procedure can

significantly reduce computing times of a heuristic. Computational tests are carried out on

the real-world instance as well as on smaller instances. The results show that the proposed

heuristic outperforms an existing heuristic from literature in terms of both solution quality

and computation times and, in contrast to approaches from literature, enables a solution

of a practical instance in Europe.
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2.1 Introduction

The railway sector in Europe is characterized by a strong competition and a continuing

privatization trend. It is therefore important for the railway companies to exploit cost

saving potentials to keep their competitiveness Hoffmann et al. (2017). Because of the

high costs for the operation of trains and the high acquisition costs for locomotives an effi-

cient deployment of rolling stock is strongly relevant Rouillon / Desaulniers / Soumis

(2006). This is mainly determined by the so-called Locomotive Assignment Problem

(LAP), which describes the assignment of locomotives to trains (preplanned train sched-

ule) with consideration of several side constraints Piu et al. (2015). Both operational

costs (e.g., petrol/electricity) and fixed costs for the use of locomotives are minimized.

Even small improvements with regard to an efficient locomotive assignment can lead to

significant economic savings, while at the same time the LAP is a highly complex planning

problem Piu (2011).

Various approaches to tackle the LAP have been presented in literature, which are

summarized by Piu / Speranza (2014). Some studies focus on locomotive or rolling

stock scheduling in passenger transport (e.g., Reuther / Schlechte (2018)). How-

ever, there are several characteristics that make the developed algorithms difficult to

apply to freight transport, such as the timely distribution of trains, technical restric-

tion or the different planning procedures in passenger and freight transport. In general,

LAP approaches can be classified in single locomotive models and multiple locomotive

models Piu / Speranza (2014). While in single locomotive models only one locomo-

tive is assigned to each train (e.g., Cordeau / Soumis / Desrosiers 2001; Lübbecke /

Zimmermann 2003), in multiple locomotive models a combination of two or more loco-

motives, are formed and scheduled (Florian et al. 1976; Ziarati et al. 1997; Powell /

Topaloglu 2003; Vaidyanathan et al. 2008). Such a combination of several locomo-

tives is called consist. Often consists are necessary to gain enough engine power for pulling

the designated trains. With this, the resulting LAP is much more difficult to solve. In

addition, several types of locomotives may exist in practical problems, which is regarded

by Ahuja et al. (2005), who study a LAP in North America. This increases complexity

as well, but the consideration is often necessary to provide real-world decision support.

For the practical LAP studied in this paper, only these approaches are suitable. Still,

it has to be noted that the LAP in European freight transport differs significantly from

problems in North America. In particular, in Europe relatively short trains are prevalent,

while, at the same time, the number of trains is rather large. Moreover, as a train may

have to cross several borders, not all locomotives might meet legal or technical conditions

for pulling a train from end to end.
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In this paper, we apply the heuristic by Ahuja et al. (2005) to a real-world LAP for

railway freight transport in Europe. Our results reveal that the existing approach is

not able to solve large real-world problems with the characteristics mentioned above.

Therefore, we propose an improved algorithm, which is based on a MIP formulation as

multicommodity flow problem and, most notably, speeds up a heuristic step of simplifying

the underlying network. Two variants are tested and compared to the existing approach.

Our work is structured as follows. In Section 2.2.1 we describe the specific charac-

teristics of the studied LAP. The MIP formulation presented in Section 2.2.2 forms the

basis for the presented heuristic in Section 2.3. Computational results for several test

instances are discussed in Section 2.4, which is followed by a summary and outlook on

fruitful directions for future research.

2.2 Problem description

2.2.1 Characteristics of the studied LAP

The locomotive assignment problem is modeled as a multicommodity flow problem with

consideration of several side constraints as in Ahuja et al. (2005). In general the main

objective is to find a feasible flow for certain commodities in a network while minimizing

the total costs. In the context of the LAP, the commodities are represented by different

locomotives. The task is to find an optimized assignment to trains and plan the flow of

locomotives through the underlying network. The train schedule itself is planned in a

preceding step and is therefore a direct input to the LAP. The planning horizon is given

by one week.

The used network is modeled as a space-time network that represents the basis for the

following optimization processes. A graphical illustration is shown in Figure 2.1. The

network consists of a set of nodes N that can be divided in ground nodes (NGround),

departure nodes (NDeparture) and arrival nodes (NArrival). Nodes with a round shape are

representing the same station. Angular nodes represent any other stations. The nodes

are linked by a set of arcs A, that contains train arcs (AT rain), connection arcs (AConnect),

ground arcs (AGround) and light arcs (ALight). The nodes and arcs are characterized by

attributes for place and time. An important component of the network are the train arcs,

which map the actual trains. These arcs connect a departure node and an arrival node

of the respective train. For every event (departure and arrival of a train) ground nodes

are added to the network with a relation to a specific train station. The connections

between arrival or departure nodes and the corresponding ground nodes are implemented

by connection arcs. A special subset of the connection arcs are the train-train connections
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Time
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Figure 2.1: Space-time network

(AT rainT rain). These represent the direct linking between an arrival node and a departure

node of a later train that leaves from the same train station. In this case, the whole

consist, that is pulling an incoming train, remains unaffected and is transferred without

any changes in its structure to a later outgoing train. An alternative is offered by so

called consist busting, that describes the process of splitting up a consist of locomotives

and regrouping them for other trains. In this case, the locomotives use an connection

arc from the arrival node to the corresponding ground node (ABust) and the locomotives

get to a pool of vehicles that could be composed to new consists for upcoming trains.

The ground nodes are connected by ground arcs for modelling idle times of locomotives

at the respective train stations, whereas the last ground node (NLast) of the planning

horizon at each station has an outgoing ground arc to the first ground node to create a

cyclic assignment plan. If this is ensured, the closing balance of the current time period

matches with the opening balance of the next time period in terms of the number of

locomotives at each station.

The locomotives are given by set L. Since each type of locomotive l can only drive on a

part of the rail network (e.g. electric locomotives cannot be assigned to a train that goes

along a non-electrified track), a set Al is introduced, which contains all passable arcs for

locomotive type l. For the locomotives in the space-time network, there are three different

possibilities of moving. First, locomotives are able to actively pull trains on a train arc.

Moreover, locomotives could attend other locomotives passively, that means they are
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pulled by other locomotives. This process is called deadheading. Finally, locomotives can

use light-traveling to move to other train stations. In this case, the locomotives do not

pull a train but independently change their location in the network. Light-traveling can

be used, for example, to balance availability of locomotives at train stations. Basically, a

light arc (ALight) always connects two ground nodes of different stations. Like in Ahuja

et al. (2005) we create light arcs departing with the fixed time interval of eight hours at

a train station. This means it is possible to reach every other station by light-traveling

every eight hours. However, we illustrate only two examplary light arcs in Figure 2.1 to

ensure clarity.

2.2.2 Mathematical formulation

We present a linear mixed integer programming model for the multicommodity flow prob-

lem based on Ahuja et al. (2005). Note that constraints (2.2)-(2.7) are directly adapted.

The objective function and constraints (2.8)-(2.18) are different. Table 2.1 displays the

used notation.

The objective function (2.1) of the MIP formulation describes the total cost function

of the LAP, that includes several terms representing the influencing factors. These are,

firstly, the costs of active locomotives pulling trains on train arcs (γActive
la ) associated with

the number of locomotives flowing on these arcs (xla). The second term describes the costs

of deadheading locomotives (γP assive
la ) multiplied with the amount of these locomotives

(yla) flowing on the corresponding train arcs. The costs for light-traveling are modeled

analogously and are calculated by the product of the cost rate (γLight
la ) and the number of

flowing locomotives on the light arcs (yla). Note that for active pulling and light travelling

set Al (passable arcs) is taken into account. Note yla is used for modelling different things

on different arcs: deadheading on train arcs, light-travelling on light arcs and the general

flow on ground and connection arcs. The fourth term of the objective function describes

consist busting. Therefore the corresponding costs (γBust) are multiplied with the binary

decision variable va, that becomes 1 if at least one locomotive flows on arc a of the set

ABust. The last two terms of the objective function describe the fixed costs for using

locomotives of different types (γF ix
l ) multiplied with the number of used locomotives

(ul) and the penalty costs for exceeding the available number of locomotives (γP en) by

the amount of sl locomotives. This proceeding differs from the proposed one of Ahuja

et al. (2005), who work with a formulation that only includes the possibility of saving a

certain number of locomotives in comparison with the fleet size Bl. But to preserve the

feasibility of the model for fictive or unknown instances, where the actual fleet size Bl

can be uncertain or needs to be set manually, this paper considers a formulation where
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Table 2.1: Notation in MIP-formulation
Sets

A Set of all arcs a

ABust Subset of AConnect with all arcs a causing consist busting

AConnect Set of all arcs a representing connection arcs

AGround Set of all arcs a representing ground arcs

AIn
i

Set of all incoming arcs a at node i

Al Subset of A with all passable arcs a for locomotive type l

ALast Subset of AGround with all arcs a ending in the temporally last ground node
of a time period at each station

ALight Set of all arcs a representing light-traveling

AOut
i Set of all outgoing arcs a at node i

AT rain Set of all arcs a representing a train

AT rainT rain Subset of AConnect with all arcs representing train-train connections

L Set of all locomotive types l

N Set of all nodes i

NArrival Set of all nodes i with incoming train arcs

NDeparture Set of all nodes i with outgoing train arcs

Parameters

γActive
la

Cost of an active locomotive of type l on train arc a

γBust Cost of consist busting

γF ix
l

Cost of using one locomotive of type l

γLight
la

Cost of light-traveling on light arc a

γP assive
la

Cost of deadheading locomotive of type l on arc a

γP en Penalty costs

Bl Number of available locomotives of type l

K Maximum number of locomotives on an arc

Ta Tonnage requirement on train arc a

tla Tonnage pulling capability of locomotive type l on train arc a

Variables

sl Integer variable, number of locomotives of type l exceeding Bl

ul Integer variable, number of used locomotives of type l

va Binary variable, 1 if at least one locomotive flows on arc a

xla Integer variable, number of active locomotives of type l on train arc a

yla Integer variable, number of locomotives not pulling a train (including dead-
heading, light-traveling, idling) of type l on arc a

the used locomotives ul are counted and Bl can be exceeded by the integer variable sl. In

practice, this feature makes it possible to create a solution at any time. This enables the

planner to analyze the reason for the inadmissibility.

Constraints (2.2) ensure that the assigned locomotives are able to pull the weight of

the trains. The following constraints (2.3) of the MIP formulation ensure that not more

than K locomotives are used on train arcs and light arcs. Constraints (2.4) control the

flow balance and state that at each node the number of incoming locomotives has to

be equal to the number of outgoing locomotives. Constraints (2.5) assign the value 1

to the variable va if a locomotive flows on the connection arc a, which is needed for

the calculation of fixed costs for consist busting. Constraints (2.6) ensure that at each

arrival node all the involved locomotives use only one outgoing connection arc either to
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a ground node (causing consist busting) or to a subsequent departure node (train-train

connection). Similarly constraints (2.7) state that all locomotives leaving a departure

node are flowing on the same incoming connection arc before. With constraints (2.8) the

number of used locomotives is stored in the variable ul and constraints (2.9) maintain

the described opportunity of exceeding the fleet size Bl by using the penalized variable

sl to guarantee a feasible solution. The constraints (2.10)-(2.18) describe the type of the

different decision variables and their definition and value range.

min
∑

l∈L

∑

a∈AT rain∩Al

γActive
la · xla +

∑

l∈L

∑

a∈AT rain

γP assive
la · yla

+
∑

l∈L

∑

a∈ALight∩Al

γLight
la · yla +

∑

a∈ABust

γBust · va

+
∑

l∈L

γF ix
l · ul +

∑

l∈L

γP en · sl (2.1)

s.t.
∑

l∈L:a∈Al

tla · xla ≥ Ta ∀ a ∈ AT rain, (2.2)

∑

l∈LL:a∈Al

(xla + yla) ≤ K ∀ a ∈ AT rain, (2.3)

∑

a∈AIn
i

∩Al

xla + yla =
∑

a∈AOut
i

∩Al

xla + yla ∀ i ∈ N, ∀l ∈ L, (2.4)

∑

l∈L

yla ≤ K · va ∀ a ∈ AConnect, (2.5)

∑

a∈AOut
i

va = 1 ∀ i ∈ NArrival, (2.6)

∑

a∈AIn
i

va = 1 ∀ i ∈ NDeparture, (2.7)

ul =
∑

a∈ALast

yla ∀ l ∈ L, (2.8)

ul ≤ Bl + sl ∀ l ∈ L, (2.9)

sl, ul ∈ N ∀ l ∈ L, (2.10)

sl, ul ≥ 0 ∀ l ∈ L, (2.11)

va ∈ {0, 1} ∀ a ∈ AConnect, (2.12)

xla ≥ 0 ∀l ∈ L, ∀ a ∈ AT rain ∩ Al, (2.13)

yla ≥ 0 ∀l ∈ L, ∀ a ∈ ALight ∩ Al, (2.14)

yla ≥ 0 ∀l ∈ L, ∀ a ∈ A \ ALight, (2.15)
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xla ∈ N ∀ l ∈ L, a ∈ AT rain ∩ Al, (2.16)

yla ∈ N ∀ l ∈ L, a ∈ ALight ∩ Al, (2.17)

yla ∈ N ∀ l ∈ L, a ∈ A \ ALight. (2.18)

2.3 Solution Approaches

2.3.1 Complexity of the mathematical model

While analyzing the problem structure of the LAP, it can be observed that the number

of arcs is increasing rapidly for larger instances. The size of the solution space is mainly

affected by the relation between the number of train stations, the number of scheduled

trains and the number of different locomotive types, that could be used for the assignment.

Ahuja et al. (2005) have shown that the LAP is NP -complete. Therefore, it is necessary

to develop heuristic methods to solve the LAP or to reduce the associated solution space.

An important starting-point to reducing the complexity of the problem are the train-train

connection arcs (subset of AConnect), that link arrival nodes with departure nodes in the

space-time network. The amount of connection arcs (specifically train-train connections)

usually exceeds the number of train arcs by far and is strongly dependent of the specific

problem instance and the scheduled trains. In addition, the proposed MIP formulation

in combination with all the possible train-train connections leads to a large number of

binary variables (va), that cause an increasing problem complexity. Because of constraints

(2.6) and (2.7) of the model, one needs to solve a decision problem at every arrival (and

departure) node, i.e., which of the outgoing (incoming) arcs should be used, as on only

one of them has to be a positive flow of locomotives. This is necessary because the used

consist is either busted (consist busting arc is used) and the locomotives flow to a ground

node or they are transferred altogether to another departure node (train-train connection

arc is used). It is not possible to split the consist and send the locomotives on different

train-train connections or have a mixture of consist busting and the usage of train-train

connections at a specific arrival (departure) node. Otherwise, the consist busting costs

could not be accurately mapped.

To reduce the amount of connection arcs in the space-time network and to accelerate

the solution process it is reasonable to shorten the time window for feasible train-train

connections in a first step (Ahuja et al. (2005)). We have defined that it is only possible

to use a train-train connection and transfer a consist of locomotives to an other departure

node in the first 12 hours after the arrival at a train station. This avoids very long idle

times, as it can be assumed that they do not contribute to a minimum-cost schedule.
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2.3.2 LP-based heuristics

For further reduction of arcs in the space-time network, Ahuja et al. (2005) propose an

iterative heuristic method to determine certain train-train connections. Although our

formulation is very similar, but not identical with [1], the heuristic can still be adapted

without changes. Firstly, the integrality restrictions are removed to obtain the linear

programming relaxation of the original MIP model. Furthermore, the binary variable

va and the associated constraints (2.5)-(2.7) are eliminated from the model formulation.

With this, it is possible that on more than one outgoing (incoming) arc at an arrival

(departure) node locomotives are flowing, which reduces the solution time significantly.

In addition, high costs are assigned to all arcs of the set ABust (train-to-ground connection

arcs) to prevent consist busting and force the flowing locomotives on the relevant train-

train connection arcs. For our problem the result is a new objective function shown by

(1’).

min
∑

l∈L

∑

a∈AT rain∩Al

γActive
la · xla +

∑

l∈L

∑

a∈AT rain∩Al

γP assive
la · yla

+
∑

a∈ALight∩Al

∑

l∈L

γLight
la · yla +

∑

a∈ABust

∑

l∈L

γP en · yla

+
∑

l∈L

γF ix
l · ul +

∑

l∈L

γP en · sl (1’)

In summary, the linear programming relaxation is given by min (1’) s.t. (2.2)-(2.4), (2.8)-

(2.15). In a following step the cumulated flow of locomotives on potential train-train

connection arcs a ∈ ACandidate is calculated and represented by the variable ϕ(a). The

train-train connection arc with the largest value of ϕ(a) seems to be a good choice for a

train-train connection and is determined to be the only possible connection between the

two associated train arcs. Afterwards, the linear programming relaxation is solved again

and the related objective value is analyzed. If it has increased by an amount that exceeds

the parameter θ, the fixation of the train-train connection is reversed, otherwise it is kept.

θ is used here as the treshold for worsening the objective value and is assumed to be 1000,

analogous to Ahuja et al. (2005). This iterative procedure is repeated until either no

more potential train-train connections (ACandidate) are left or until a specified number of

determined train-train connections represented by parameter γ has been reached. For

the experimental tests (see Section 2.4) we have changed these termination criteria to a

simple time based termination. The pseudo-code of the algorithm is given in Algorithm

2.1.
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Algorithm 2.1:

Original heuristic presented by Ahuja et al. (2005)
1 ACandidate = AT rainT rain; AR = ∅

2 while time limit not reached & ACandidate 6= ∅ do

3 min (1’) s.t. (2.2)-(2.4), (2.8)-(2.15).

4 if current objective ≤ previous objective + θ then

5 Atmp = ∅

6 determine ϕ(a) ∀a ∈ ACandidate

7 choose a∗ to which applies ∀a ∈ ACandidate : ϕ(a) ≤ ϕ(a∗)

8 remove a∗ from ACandidate

9 make a∗ the only connection between the two associated train arcs

10 add eliminated arcs to AR and Atmp

11 else

12 AR = AR \ Atmp

13 end

14 end

15 for l ∈ L, a ∈ AR do

16 add yla to Y R

17 end

18 min (2.1) s.t. (2.2)-(2.18), yla = 0 ∀ yla ∈ Y R.

From our perspective, one main disadvantage of this heuristic is that especially for larger

instances the linear programming relaxation has to be solved very often to determine a

sufficient number of train-train connection arcs. Even for the relaxed model the solution

time is increasing significantly with growing problem size. Hence, it is unfavorable to solve

it very often, which is necessary for real-world instances. Moreover, it could happen that

after one iteration the preceded fixation has to be reversed, which affects the efficiency

of the heuristic. Therefore, we propose an improved heuristic to determine train-train

connection arcs for the LAP, which is described in the following.

To avoid the determination of only one train-train connection per iteration, the linear

programming relaxation is only solved once in our approach. After that, the flow of

locomotives on train-train connections arcs ϕ(a) is calculated and all of the arcs with

ϕ(a) = 0 are removed from the set of connection arcs in a single step. In the first version

of the heuristic, the cumulated flow of all types of locomotives (CF) is considered at

that point, see Algorithm 2.2. We use ȳla as solution of solving the linear programming

relaxation and set Y R to store removed variables temporarily. In contrast, in a second

version (see Algorithm 2.3) the flow of each individual locomotive type (SF) is taken into

account and the train-train connection arcs are blocked for specific types of locomotives.

If only train-train connection arcs with a flow of zero locomotives are removed from the

network, for both variants it is guaranteed that the objective function value of the relaxed

model is not affected. That makes a change analysis of the objective function value like in

the algorithm of Ahuja et al. (2005) unnecessary. Since the objective value is not affected

by removing arcs/variables with zero flow, we are able to remove all in one step. With this
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new procedure it is possible to reduce the number of arcs in the underlying space-time

network quickly and preserve only promising candidates for train-train connections. To

determine the same amount of train-train connections with the approach of Ahuja et al.

(2005) significantly more time is necessary. Furthermore, after using the heuristic of A-

huja et al. (2005), consist busting is taking place more often, because of the small number

of determined train-train connections. Hence, the cost-saving potential is probably not

exploited in the same extent as in the proposed improved algorithm.

Algorithm 2.2:

Cum. flow based heuristic (CF)
1 min (1’) s.t.(2.2)-(2.4), (2.8)-(2.15).

2 for a ∈ AT rainT rain
do

3 ϕ(a) =
∑

l∈L
ȳla

4 if ϕ(a) = 0 then

5 for l ∈ L do

6 add yla to Y R

7 end

8 end

9 end

10 min (2.1) s.t.(2.2)-(2.18), yla = 0 ∀ yla ∈ Y R.

Algorithm 2.3:

Single flow based heuristic (SF)
1 min (1’) s.t. (2.2)-(2.4), (2.8)-(2.15).

2 for a ∈ AT rainT rain
do

3 for l ∈ L do

4 if ȳla = 0 then

5 add yla to Y R

6 end

7 end

8 end

9 min (2.1) s.t. (2.2)-(2.18), yla = 0 ∀ yla ∈ Y R.

2.4 Experimental tests

2.4.1 Experimental design

The heuristic of Ahuja et al. (2005) as well as the improved heuristics described in Section

2.3 were implemented in C#. For solving the optimization problems we used Gurobi (8.0.0).

All tests were run with a limit of 4 parallel threads on an Intel(R) Xeon(R) CPU E5-2630

v2 with 2.6GHz clock speed and 384 GB RAM.

As mentioned in Section 2.1, the solution approaches were used to solve a real-world

instance of an European rail freight operator. The instance represents a train schedule for

one week which covers four central European countries. 2342 trains are distributed over

121 track sections. The sections connect 76 stations. The total number of locomotives is

162 with 13 different locomotive types. In order to be able to guarantee meaningful tests,

we derived smaller test instances of different sizes from the real-world problem. This can

easily be done by using network-specific knowledge to ignore single trains or groups of

trains. The important set sizes for all instances are summarized in Table 2.2. The small

(middle, large, very large) instances are denoted by ’s’ (’m’, ’l’, ’v’) and are numbered

consecutively. Instance ’r’ is the real-life instance. Note that the set of light arcs ALight

is the same size for all instances (41012) because we use the same creating procedure like
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Ahuja et al. (2005). Light arcs are created every 8 hours between all stations.

Table 2.2: Set sizes of the considered instances

N A AT rain A
T rain

T rain N A AT rain A
T rain

T rain

s1 44653 91115 831 4646 m1 45646 95300 1090 7579
s2 43815 87870 612 2458 m2 45366 94689 1016 7322
s3 43888 88769 632 3264 m3 45601 95519 1072 7861
s4 44096 89205 681 3443 m4 45709 95805 1104 8007
s5 43759 87895 594 2557 m5 45906 96245 1158 8196

l1 47662 107021 1615 16759 v1 49105 117746 2000 25656
l2 46988 102479 1444 13062 v2 48780 114236 1913 22558
l3 47129 104262 1477 14671 v3 48987 115143 1962 23209
l4 47322 104788 1526 14955 v4 49063 117606 1982 25576
l5 47103 102654 1468 13098 v5 48231 111238 1763 20259

r 50422 128201 2342 34452

To keep the number of tests manageable, in a first step we compare both variants of the

improved heuristic (CF - cumulated flow based; SF - single flow based) and the heuristic

of Ahuja et al. (2005) (A) with solution of the original MIP formulation presented in

Section 2.2.2 (M). For this, we use only the small and medium-sized instances and limit

the computing time to two hours. Afterwards, the best variant of our heuristic (CF or

SF) is compared to Ahuja et al. (2005) for the large and very large instances. Finally,

we solve the real-life instance with a time limit of six hours.

2.4.2 Experimental results

Figure 2.2 shows the results for comparing the improved heuristic (CF and SF) with the

heuristic of Ahuja et al. (2005) (A) and the original MIP formulation (M). The presented

values are averages of 5 runs. Each MIP was terminated with a gap less or equal 1%. In

order to allow a fair comparison, A was solved twice (A(CF) and A(SF)) with different

time limits. The time limits were set based on the slowest runs of the corresponding

improved heuristics (CF or SF). Furthermore, the available time for A has to be split into

two parts: iterative procedure and solving the reduced MIP. Preliminary tests show that

using 75% of time for the former and 25% for the latter is suitable.

It can be seen that the improved heuristics achieve significantly better objective val-

ues than A. CF achieves slightly better values than SF, since the solution space is less

restricted by the heuristic. However, this small disadvantage is compensated by the con-

siderably faster computing time. This in turn, is caused by the smaller remaining solution

space. Thus, we decided to use only SF as improved heuristic for all further tests. For

these instance sizes (nearly) optimal solutions can be obtained in reasonable time by

solving the original MIP formulation (M). The convergence speed on the medium-sized
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instances is sufficient to keep up with CF and SF. On average, a gap of less than 5% (2%)

could be achieved in less than 5 (45) minutes.
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Figure 2.2: Results for the small and mid sized instances

Figure 2.3 shows the results for the large and very large instances. Again, solving the

original MIP formulation leads on average to solutions with a gap of less than or equal to

5% within about half an hour. However, for instance v2 not every run of M could create a

feasible solution at all (marked as N in Figure 2.3). Once more SF produces much better

results than A within the same time. Moreover, SF is able to create average optimality

gaps of about 3%. These gaps are calculated in relation to the highest lower bound

obtained by all runs of M. In addition, A is not able to generate practically executable

solutions for all instances. This means for instances l1, l3, l4 and all very large instances

more locomotives are scheduled then available. However, this also applies to SF and M
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on instance l1.
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Figure 2.3: Results for the large and very large sized instances

The reason for this is the used time interval for creating light arcs. As mentioned in

Section 2.2.1, we have chosen the value of eight hours analogously to Ahuja et al. (2005).

However, the set of light arcs is not sufficient to create admissible schedules. Therefore,

it is necessary to vary this parameter for the last test. Figure 2.4 shows the results for

the real-life instance with a variation of light-traveling every eight, four and two hours

(LT_8h, LT_4h, LT_2h). In addition, we have also shown the number of locomotives

required in the final schedule. Note that even though solutions for LT_4 and LT_8 do

not exceed the total number of existing locomotives, this is still the case for individual

locomotive types. It can be seen that M is not able to generate valid solutions for all

frequencies of light-traveling. Again, SF outperforms A for each setting. Only SF is able
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Figure 2.4: Results for the real-life instances

to generate admissible solutions with light arcs every two hours. Optimality gaps can be

obtained by using the highest lower bound generated by all runs of M. The average gap

of SF is lower than 7%. In addition, SF enables us to solve this real-life instance of an

European rail freight operator within reasonable time for the tactical planning level. A

computing time of about 1 hour (LT_2h) can be assessed positively.

2.5 Conclusions

In this paper, we studied a practical LAP of a European railway freight transport company.

Since existing approaches were not able to solve the real-world instance, we proposed an

improved heuristic, that determines train-train connections efficiently and is therewith

able to simplify the underlying solution space effectively. By comparing to variants of the

algorithm for several test instances a preferable algorithm could be identified, that is also

able to solve the real-world instance within reasonable time.

The small number of approaches that are suitable to solve complex practical locomotive

assignment problems and integrate necessary restrictions indicates a big potential for

future research. Some of these restrictions are, for example, the fact that not all locomotive

types can be combined with each other or a detailed modelling of unavoidable times that

occur through (dis-)connecting processes between cars and locomotives. A crucial point

for future work is the removal of all used heuristic limitations of the solution space (e.g.,
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light arcs are only available every 8 hours, train-train connections limited to 12 hours).

As the results for the real instance have shown, it is important to find an automated and

general approach for light-travelling. Furthermore, an integrated approach considering all

factors that increase complexity is necessary. Nevertheless, we could show that with the

improved heuristic real problem sizes can already be solved with high solution quality.
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3.1 Introduction

Assigning locomotives to trains is one of the most crucial tasks for a rail freight operator,

as it determines the number of locomotives. Since each locomotive is associated with very

high capital commitment costs, an efficient solution is necessary. The problem considered

in this paper arises from a practical application in European rail freight transport. It can

be modeled as a Locomotive Assignment Problem (LAP), which is a large scale combi-

natorial optimization problem also known as the Engine Scheduling Problem (Florian

et al. 1976) or the Locomotive Scheduling Problem (Vaidyanathan / Ahuja 2015).

For scheduling locomotives, several real-world requirements must be taken into account.

One of the most demanding is combining two or more locomotives into a consist (com-

bination of locomotives). In practice, the associated processes of building and busting

a consist require time and incur costs. As a result, these connecting and disconnecting

processes directly affect the feasibility and costs of a schedule. For example, two loco-

motives might only be able to pull a train together (i.e., forming a consist), due to the

weight of the train. But connecting two locomotives to form a consist needs additional

effort (time and costs). That is why time restrictions might be violated or higher costs

might be incurred.

Railway planning in Europe has several characteristics that are different from those

of other continents, because of the nature of the underlying rail network. The network

consists of relatively short connections and is divided into several zones. The zones are not

only determined by national borders but are the historically developed results of different

technical and legal conditions, which mean that different parts of the network might

require different types of locomotives. Due to this segmentation of the network, (dis-)-

connecting processes between locomotives and cars occur much more frequently than,

for example, in North America. In summary, a more detailed consideration of the (dis-)-

connecting processes between locomotives and locomotives as well as cars and locomotives

is necessary for the considered real-life problem. However, refueling strategies are not

relevant to the problem under consideration, as only electric locomotives are used.

The proposed solution approach is based on modeling the problem as a multicommodity

flow formulation (Ahuja et al. 2005; Vaidyanathan et al. 2008). The main idea is to

gradually increase the size of the problem by sequentially solving variants of a generic

Mixed-Integer Program (MIP). The solution space can be appropriately restricted for a

heuristic solution. For this, suitable possibilities arising from the structure of the problem

are considered, such as using predefined consists (which cannot be busted) or ignoring

(dis-)connecting processes. Each intermediate solution is used as the initial solution for

the next step and, finally, the original problem.
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The major contributions of this paper can be summarized as follows:

• To the best of our knowledge, several real-world requirements are integrated into

the LAP for the first time, which are necessary for the applicability of the generated

solutions in practice. Among these are, in particular, the connecting and discon-

necting processes, distinguish between push and pull trains, the limited zones for

locomotives, the modeling of tasks as a special case of a train as well as invalid

combinations of locomotives.

• Based on an MIP-formulation, a generalized solution framework is presented that

allows an analysis and comparison of different solution procedures and provides a

guideline for the choice of suitable methods in practice. Furthermore, the existing

approaches of Vaidyanathan et al. (2008) and Ahuja et al. (2005) can be modeled

as special cases of the generalized MIP by adding or removing certain constraints.

Both approaches from the literature are outperformed by the presented framework.

• Finally, the proposed method is able to generate high-quality solutions for a complex

real-world problem. Its efficiency is proven for several newly generated instances that

possess the relevant characteristics of practical LAP in Europe.

Section 3.2 gives a brief overview of the relevant literature. This is followed by a detailed

problem description and a generalized mathematical formulation in Section 3.3. Based

on this, we present different ways for restricting the size of the problem by transforming

the mathematical formulation and a resulting solution framework in Section 3.4. Section

3.5 describes the computational tests in detail. The paper is summarized in Section 3.6,

closing with a look at future research questions.

3.2 Related work and the general planning process

Although the scheduling of locomotives has a major impact on the overall costs of a rail

freight operator, the literature on this is limited. One of the first works considering het-

erogeneous consists (i.e., consists with different types of locomotives) is Florian et al.

(1976). Usually, the problem is modeled as a multicommodity flow problem based on a

space-time network (Florian et al. (1976), Ziarati et al. (1997), Ahuja et al. (2005),

Vaidyanathan et al. (2008), Piu et al. (2015), and Vaidyanathan / Ahuja (2015)).

Ahuja et al. (2005) present a descriptive network and a general formulation considering

different modes of locomotion and the processes of building and busting a consist. A sim-

plified formulation based on predefined consists continues this work (see Vaidyanathan

et al. (2008) and Vaidyanathan / Ahuja (2015)). Unfortunately, they do not consider
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the issues concerning certain locomotion modes any more. Piu et al. (2015) present a

consist selection problem for predefining consists.

Cordeau / Toth / Vigo (1998) gives a general survey of optimization models in rail

transport. For a detailed overview for the LAP we refer to Piu / Speranza (2014).

They show that a considerably more research has been published on problems in North

America than for the rest of the world. Reuther / Schlechte (2018) notice that there

is no straight line or structure in the literature (compared to, e.g., vehicle routing). The

reason given for this is the number of different complex requirements that have to be

taken into account in each case.

The problem of assigning locomotives to trains occurs not only in freight transport,

but also in passenger transport (Lai / Fan / Huang (2015) and Haahr et al. (2016)).

Due to the general planning sequence (passenger transport first, freight transport second)

and other different conditions (e.g., the temporal distribution of the trains or cars and

locomotives are planned as one unit in some cases), these problems differ from each

other. For suitable work on passenger transport we also refer to Cordeau / Soumis /

Desrosiers (2001) and Reuther / Schlechte (2018).

Figure 3.1 illustrates the integration of the LAP into the planning process for rail

freight transport. Due to the large number of different problems and planning situations

considered, this is only one of many possible ways of presentation. Most research results

from practical projects, so that mainly very detailed planning problems (or a combination

of several) with specific requirements are considered. The figure is structured according
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Figure 3.1: The process of planning rail freight transport

to the resources to be taken into consideration in the planning process. We concentrate

on the moving resources (cars, locomotives, drivers), because here a successive planning

process becomes best visible. Although yard management (see e.g., Boysen et al. (2012))

and track allocation (see e.g., Lusby et al. (2011)) are only marginal in this figure, there

has been a variety of research.
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Supply and demand are initially balanced by bundling individual cars into blocks with

the same origin and destination (railroad blocking problem). Blocks are used for reducing

the classification and shunting processes (yard management). Successful work in this

area is presented by Barnhart / Jin / Vance (2000), Ahuja / Jha / Liu (2007) and

Kuttner (2018).

This is followed by train scheduling, whereby no uniform and clear terminology is used to

describe this planning step in the literature. Within this step, the blocks are routed, which

goes hand in hand with the forming of trains (i.e. bundling blocks to trains). This also in-

cludes defining the timetable of the trains. As examples, Caprara / Fischetti / Toth

(2002) and Klug (2018) can be mentioned here. Especially in Europe the timetabling of

trains requires often periodic/daily repeatable trains (referred to as lines, see e.g., Caimi

et al. (2011) and Kümmling et al. (2015)). In addition, the return or transfer of empty

cars must be taken into account when planning wagons. Narisetty et al. (2008) and

Joborn et al. (2004) present suitable approaches for this. Zhu / Crainic / Gendreau

(2014) combine all these issues with the blocking problem and yard management to an

integrated approach.

After the trains have been planned, the circulation of the locomotives for moving the

trains is planned. This is done by solving the locomotive assignment/scheduling problem

(see Ahuja et al. (2005), Vaidyanathan / Ahuja (2015), and Vaidyanathan et al.

(2008)), which is also the focus of this paper. The scheduling of maintenance can be

taken into account with different levels of detail during planning (see Jaumard / Tian /

Finnie (2014), Giacco / D’Ariano / Pacciarelli (2014), and Bury et al. (2018)). Ad-

ditionally (re-)fueling strategies can be considered (see Nourbakhsh / Ouyang (2010)).

Finally, the train drivers have to be scheduled (crew scheduling, see e.g., Jütte et al.

(2011), Hoffmann et al. (2017), and Heil / Hoffmann / Buscher (2020)) and drivers

must be assigned to duties (crew rostering, see e.g., Caprara et al. (1998)).

As the individual problems form a system of planning problems, there are also inte-

grated approaches with upstream or downstream planning tasks. Concerning the LAP, a

simultaneous (train) timetabling and engine scheduling is done by Godwin / Gopalan /

Narendran (2006), Fügenschuh et al. (2006), Fügenschuh et al. (2008), Bach /

Gendreau / Wøhlk (2015), and Xu / Li / Xu (2018). Bach / Dollevoet / Huisman

(2016) even extend this to include the integration of a crew scheduling problem.

3.3 Definition of the problem

In this section, we give a descriptive explanation of the considered problem and the inte-

grated real-life requirements. This is followed by a presentation of the underlying space-
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time network. Finally, the notation used is summarized and a generalized mathematical

problem formulation is presented.

3.3.1 Description of the problem

Based on a preplanned train schedule for one week (planning horizon), a set of locomo-

tives has to be assigned to a number of trains at minimal cost. Hence, the goal is to

find an optimal schedule for each locomotive under consideration of several real-world

requirements. These can be divided into the following categories: requirements regard-

ing the trains, requirements regarding the locomotives, and requirements regarding the

(dis-)connecting processes.

A train is defined as a set of cars which must be moved from a departure station (from)

to an arrival station (to) starting at a given departure time (dep.) and ending at a fixed

arrival time (arr.). Multiple trains can use the same set of cars. For example, a set of

cars may be moved from station A to station B (first train), followed by (un-)loading and,

finally, by moving this set of cars from station B to station C (second train). The relation

between the first and second trains is denoted by a common ID (train-ID). Furthermore,

there are three different types of trains:

• Pull trains have to be pulled with enough power. The cumulated tonnage pulling

capability of all assigned locomotives must be greater than or equal to the weight

of the train.
• Push trains require at least one locomotive that is able to push a train. This is

usually necessary on relatively steep slopes in order not to exceed the limits of the

forces acting on the couplings. Push trains have no weight requirement and no

train-ID.
• Tasks are used for modeling activities like relocating cars. A task has to be covered

by at least one locomotive. Tasks have no weight requirement and no train-ID.

To the best of our knowledge, tasks and push trains have not been mentioned explicitly in

the literature before. Table 3.1 shows an example of a train schedule as input data. Note

that for each push train a corresponding pull train exists (see train 4 and 5). In practice

both trains represent the same set of cars (i.e. it is only one train), but for modelling

we consider two trains. Because of this only the pull train requires a tonnage pulling

capability by the locomotives.

Table 3.2 shows the corresponding locomotive schedule as one solution for the problem

(output data). As can be seen with train 3 (pulled by locomotives 1 and 2), it may be

necessary for several locomotives to pull a train due to its high weight and a limited

pulling capability of a single locomotive. In this case, both locomotives form a consist.
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Table 3.1: Input: train schedule
train

from to dep. arr. type weight
(train-ID)

1(1) A B 07:30 08:15 pull 850
2(1) B C 08:30 08:45 pull 1000
3(1) C A 09:00 09:30 pull 1500
4(2) A D 09:35 10:50 pull 1200

5 A D 09:35 10:50 push
6(2) D C 11:00 11:30 pull 1000

7 D D 11:30 14:00 task
8 B A 08:15 09:00 task

Table 3.2: Output: locomotive schedule
loc train from to dep. arr.
1 1 A B 07:30 08:15 deadheading
1 2 B C 08:30 08:45 pulling a train
1 3 C A 09:00 09:30 pulling a train
2 3 C A 09:00 09:30 pulling a train
2 4 A D 09:35 10:50 pulling a train
2 6 D C 11:00 11:30 pulling a train
3 5 A D 09:35 10:50 pushing a train
3 7 D D 11:30 14:00 doing a task
3 D A 14:00 15:15 light traveling
4 1 A B 07:30 08:15 pulling a train
4 8 B A 08:15 09:00 doing a task

In general, we define a consist as an aggregation of locomotives collectively serving a

train. The order of the locomotives within the consist does not matter. Note that for the

solution approach in Section 3.4 it is important to treat a single locomotive as a special

case of a consist: it corresponds to a consist that aggregates only one locomotive.

We consider different types of locomotives. Since these are exclusively electric locomo-

tives, it is not necessary to consider refueling strategies. Maintenance is not explicitly

considered, but in practice tasks are used as a buffer for maintenance to be scheduled

later at short notice. For each type, the number of locomotives is limited and only a

part of the rail network, referred to as a zone, is drivable because of technical or legal

requirements. Again, to the best of our knowledge, zones have not been taken into ac-

count for the solution of the LAP as a multicommodity flow problem so far. Furthermore,

not all types are able to push a train and not all types can be combined with each other

(forming a consist). Only Ziarati et al. (1997) model (in-)valid combinations of locomo-

tives indirectly by assuming a restricted set of suitable locomotives for each train. The

direct modeling cannot be found in recent literature. Locomotives can be moved in three

different ways:

• Pulling or pushing a train or performing a task.
• Moving without performing a task or operating a train (i.e., just changing the

station). We refer to this as light traveling.
• Being inactive and being pulled by another locomotive (deadheading).

Furthermore, a locomotive schedule has to be cyclic, which can be achieved by equalizing

the number of starting and ending locomotives (based on the planning horizon) at each

station for each type.

(Dis-)connecting processes have to be considered in two ways: the connection of cars

to locomotives and of locomotives to locomotives. (Dis-)Connecting two or more loco-

motives with (from) each other is also called consist building (busting). Figure 3.2(a)

gives a general overview. The upper part of the box shows disconnecting and the lower
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part shows connecting processes. The figure is to be interpreted from the perspective of

locomotive l1. First, locomotive l1 and locomotive l2 form a consist which pulls train t1.

The disconnection of the consist from the train follows. The consist could now either re-

main and serve another train in the same composition (see Figure 3.2(b)), or be busted, as

shown in Figure 3.2(a) (i.e., consist busting). Locomotive l1 then forms a new consist with

locomotives l3 and l4 (i.e., consist building). This new consist is then connected to train

t2. Note that since the order of the locomotives within a consist is unknown, we assume

that consist busting requires the disconnection of the train from the consist first. Both

(dis-)connecting processes need time and so consist busting and building incure costs. As

explained by Ahuja et al. (2005) it is sufficient to model the total costs of both processes

only for one. If a consist is build it must be busted again (and vice versa).

(a) General
(Dis-)Connecting

t1 l1 l2

t1 l1 l2

l1 l2

l1 l3 l4

t2 l4 l1 l3

t2 l4 l1 l3

(b) Different train ID
(Dis-)Connecting

t3(1) l1 l2

t3(1) l1 l2

t4(2) l1 l2

t4(2) l1 l2

(c) Same train ID

t3(1) l1 l2

t4(1) l1 l2

train locomotive consist Disconnecting Connecting

Figure 3.2: (Dis-)Connecting processes

As mentioned before, the consist of locomotive l1 and l2 remains unchanged in Figure

3.2(b). Additionally, in this figure train-IDs are given in brackets. If the consist re-

mains but train t3 and train t4 have different train-IDs, the consist must be disconnected

from train t3 first and then be connected to train t4. In contrast, these (dis-)connecting

processes are not necessary for the same train-ID, see Figure 3.2(c).

Even though it is necessary to model (dis-)connecting processes for solving the studied

real-world problem, a detailed examination of these has not been discussed in the literature

so far. Moreover, the integration of these processes makes the use of sophisticated col-

umn generation approaches like Reuther / Schlechte (2018) or Bach / Gendreau /

Wøhlk (2015) impossible, because with these, columns (i.e., the schedules of certain

locomotives) are not independent from each other. To the best of our knowledge, this is

the first approach considering both (dis-)connecting between cars and locomotives as well

as between locomotives and locomotives.
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3.3.2 The space-time network

We model the problem as a multicommodity flow problem. For this purpose, we consider

the underlying space-time network first. Its general structure is based on the specification

of Ahuja et al. (2005) and Vaidyanathan et al. (2008), which is adapted to integrate new

problem-specific requirements. Figure 3.3 illustrates the general design of this network.

Source

Sink

Time

APull

APush

ATask

ALight

AGround

AConnect

NGround

NArrival

NDeparture

Figure 3.3: Space-time network

Each node has two attributes: time and a station (location). Round nodes represent

the same station. The set of all nodes is the union of the ground nodes, the arrival nodes,

and the departure nodes, N = NGround ∪ NArrival ∪ NDeparture. The source nodes and

the sink nodes (both are ground nodes) represent the begin and the end of the planning

horizon at each station and are given by the sets NSource and NSink.

Trains are represented by train arcs. These arcs are given by the set ATrain = APull ∪

APush ∪ ATask. A train arc connects a departure node with an arrival node. Note that

tasks do not necessarily involve a change of station (e.g., relocating cars).

Light arcs (set ALight) represent light traveling and connect two ground nodes of different

stations. Note that the light arcs shown in Figure 3.3 are only examples. The number

of light arcs used has a significant impact on the size of the solution space. In order to

fully exploit the solution space, it must be ensured that any station can be reached from

any other station at any time. At “any time” means that with a continuous time axis, an

infinite number of light traveling arcs are required. Ahuja et al. (2005) limits the solution

space by generating light traveling arcs only at fixed intervals (every eight hours). This
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procedure is exemplified in Figure 3.4(a). In contrast, we create light traveling arcs based

on the train schedule, see Figure 3.4(b). A change of location is possible directly after

each train. If light traveling arcs are generated based on the train schedule, the complete

solution space is used. At the end of Section 3.5.4 we will give a numerical example of

how this strategy obtains solutions significantly better compared to introducing light arcs

at fixed intervals, as done by Ahuja et al. (2005).

Source

Sink

(a) Lightarcs based on fixed intervalls

Source

Sink

(b) Lightarcs based on train schedule

Figure 3.4: Variants for creating sets of light arcs

Ground arcs are used to model idle times. Arcs between sink and source nodes are

necessary for creating cyclic schedules. Connection arcs (AConnect) are inevitable to model

(dis-)connecting processes and given by AConnect = ATrainTrain ∪ ABust ∪ ABuild. Figure 3.5

shows these arcs in detail. Busting (building) a consist is represented by arcs of the set

time

ABuild ABust AChange AChange

Figure 3.5: Space-time network: connection arcs

ABust (ABuild) connecting an arrival node with a ground node (ground node with departure

node). Consist busting arcs representing the processes shown in the upper box in Figure

3.2(a), whereas consist building arcs represent the lower box. The times required for these

processes may vary for each station.
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Train–train connection arcs connect an arrival node with a departure node of the same

station. These arcs model the possibility of one consist operating two subsequent trains

without busting and rebuilding. The set ATrainTrain = AChange ∪AChange contains all train–

train connection arcs. A distinction must be made between arcs where the train-ID

changes (AChange) and where the train-ID does not change (AChange).

The set AChange contains all arcs corresponding to the example given in Figure 3.2(b).

Therefore, these arcs are only created if there is enough time between the two trains for

(dis-)connecting. Although Figure 3.5 shows only one arc as an example, many of these

arcs exist in real networks. This is because for each incoming train, arcs have to be created

to all later departing trains.

The set AChange contains all arcs corresponding to the example given in Figure 3.2(c).

In the case of identical train-IDs, (dis-)connecting processes between cars and consist are

not necessary. These arcs are generated without any additional temporal checks.

Finally, for each node i ∈ N , the sets AIn
i and AOut

i can be created, containing all

inbound and outbound arcs. All described sets of arcs are subsets of A, which contains

all arcs a.

3.3.3 Mathematical formulation of the problem

In the following, we present a generalized mixed-integer programming formulation for

dealing with consists (and the associated issues) in a locomotive assignment problem of

an European rail freight operator. It is a generalized formulation because it also enables

the use of predefined consists as artificial locomotives. This feature is the basis for the

solution framework presented in Section 3.4.

The formulation of Ahuja et al. (2005) uses only individual locomotives as input data,

while the creation of suitable consists is a result of solving the model. In contrast, the

formulation of Vaidyanathan et al. (2008) is based on predefined consists as input data.

In Section 3.4.2 we present a suitable strategy for predefining consists. Both formulations

can be seen as special cases of this generalized formulation.

The notation used is summarized in Table 3.3. The set L contains all types of real

locomotives l. All locomotives which are able to push a train are included in the subset

LPush of L. For each type of locomotive l, there is a set L̂l containing all locomotive types

l̂ which cannot be combined with l.

As mentioned in Section 3.3.1, a single locomotive can be interpreted as special case of

a consist. That is why set C contains all types of consists c and L can be interpreted as

subset of this. Note that suitable consists have to be predefined (input data). A suitable

approach for this is presented in Section 3.4.2. For each type of consist c, there is a set Lc
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Table 3.3: Summary of the notation
Sets

C set of all consists c

L subset of C with all real locomotive types l

LPush subset of L with all locomotive types l that are able to push a train

CPush subset of C with all consist types c that are able to push a train

L̂l set of all locomotive types l̂ that cannot be combined with l

Ĉc set of all consist types ĉ that cannot be combined with c

Lc set of all real locomotive types l forming consist c

N set of all nodes i

NArrival subset of N with all nodes n with incoming train arcs

NDeparture subset of N with all nodes n with emanating train arcs

A set of all arcs a

ATrain subset of A with all arcs a representing a train

APull subset of ATrain with all arcs a representing pulling of a train

APush subset of ATrain with all arcs a representing pushing of a train

ATask subset of ATrain with all arcs a representing a task

ALight subset of A with all arcs a representing light traveling

AGround subset of A with all arcs a representing a ground arc

ASink subset of AGround with all arcs a ending in a sink

AConnect subset of A with all arcs a representing connections

ATrainTrain subset of AConnect with all arcs a representing train–train connections

AChange subset of ATrainTrain with all arcs a for changing the train-ID

AChange subset of ATrainTrain with all arcs a for not changing the train-ID

ABust subset of AConnect with all arcs a causing consist busting

AIn
i

subset of A with all incoming arcs a at node i

AOut
i

subset of A with all emanating arcs a at node i

Al subset of A with all passable arcs a for locomotive type l

Ac subset of A with all passable arcs a for consist type c

Parameters

Ta tonnage of corresponding pull train of arc a

K maximum number of locomotives on an arc

tl tonnage pulling capability provided by an active locomotive of type l

Bl number of available locomotives of type l

γFix
l

fixed costs for using one locomotive of type l

γPen penalty costs for exceeding Bl

γLight
la

costs for light traveling of l on arc a

γActive
la

costs for active pushing/pulling of locomotive type l on arc a

γPassive
la

costs for deadheading of locomotive type l on arc a

γBust costs for consist busting

Variables

xca integer variable, number of active consists of type c using arc a

yca integer variable, number of inactive consists of type c using arc a

rca binary variable, 1 if at least one consist of type c uses arc a

va binary variable, 1 if at least one consist using arc a

wa binary variable, 1 if at least two consists using arc a

ul continuous variable, number of used locomotives of type l

sl integer variable, number of used locomotives of type l exceeding Bl

containing all real locomotive types forming the consist c. If Lc ∩ LPush 6= ∅, then c is an

element of CPush containing all types of consists that are able to push a train. Note, in

the generalized formulation the predefined consists are treated as artificial locomotives.



3.3 Definition of the problem 44

Therefore, it is theoretically possible to combine them again. This is only prevented by the

transformation of the formulation described in Section 3.4.1. However, for generalization,

the set Ĉc can be derived based on L̂l and Lc. This set contains all types of consists ĉ

that cannot be combined with c.

The network is given by the sets introduced in Section 3.3.2. Since each type of locomo-

tive l can only drive on a part of the rail network, a set Al is introduced, which contains

all passable arcs for l. Again, based on this, a set Ac can be derived for each consist. This

set contains all arcs which are passable by all real locomotive types l ∈ Lc.

For each train arc a ∈ APull, a parameter Ta is given which represents the weight

of the associated train. For each l ∈ L, the parameter tl indicates the tonnage pulling

capability of an active locomotive of type l. Furthermore, there are only a limited number

of available locomotives given as parameter Bl for each locomotive type l. The number

of locomotives is limited to K on each arc. On the one hand, this parameter represents

a technical restriction (e.g., for electric locomotives), while, on the other hand, it is used

as big-M. Parameter K is set to 10 for all instances considered in Section 3.5.

Fixed costs γFix
l arise from using one locomotive of type l. The penalty costs for exceed-

ing Bl are identical for each l and given by γPen. Busting a consist incurs costs specified

by γBust. The costs for light traveling, moving a train, performing a task and deadheading

are given for each combination of arc a and locomotive type l by the parameters γLight
la ,

γActive
la and γPassive

la .

The variables xca and yca are used to model the flow in the network. The interpretation

of these variables depends on the associated arcs: The number of active consists of type

c is indicated by xca for each arc a ∈ ATrain ∪ ALight. If a ∈ ATrain, xca shows the

number of consists moving this train or performing this task. In contrast, if a ∈ ALight,

xca represents the number of consists doing light traveling. For train arcs, yca is used to

model deadheading, indicating the number of affected types of consists for each a ∈ ATrain.

It is also used for connection arcs and ground arcs to model (dis-)connecting processes

correctly.

In addition to these flow variables, variables for modeling special states on an arc are

necessary. The variable rca is a binary variable, with rca = 1 if at least one consist of

type c flows on arc a; otherwise 0. The variable va is a binary variable, with va = 1 if at

least one consist flows on arc a; otherwise 0. Similarly, the variable wa describes this for

at least two consists.

Finally, to count the number of used locomotives of each type, we use the variable

ul. In our formulation, it is defined as a continuous variable and becomes an integer

automatically because it is determined by the sum of integers. In the unlikely case of

exceeding the given number of locomotives, we use the variable sl to measure this violation
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for each type of consist.

Using this notation, summarized in Table 3.3, we introduce the following MIP formu-

lation:

min
∑

c∈C

∑

l∈Lc

(

γFix
l · ul + γPen · sl

+
∑

a∈ALight∩Al

γLight
la · xla +

∑

a∈ATrain∩Al

γActive
la · xla

+
∑

a∈ATrain∩Al

γPassive
la · yla

)

+
∑

a∈ABust

γBust · wa

(3.1)

s.t.
∑

a∈AIn
i

∩Ac

(xca + yca) =
∑

a∈AOut
i

∩Ac

(xca + yca) ∀ i ∈ N, c ∈ C, (3.2)

∑

c∈C:a∈Ac

∑

l∈Lc

(xca + yca) ≤ K ∀ a ∈ ATrain, (3.3)

∑

c∈C:a∈Ac

∑

l∈Lc

tl · xca ≥ Ta ∀ a ∈ APull, (3.4)

∑

c∈CP ush:a∈Ac

xca ≥ 1 ∀ a ∈ APush, (3.5)

∑

c∈C:a∈Ac

xca ≥ 1 ∀ a ∈ ATask, (3.6)

xca + yca ≤ rca · K ∀ a ∈ ATrain, c ∈ C : a ∈ Ac, (3.7)

rca + rĉa ≤ 1 ∀ c ∈ C, ĉ ∈ Ĉc, a ∈ ATrain ∩ Ac ∩ Aĉ,

(3.8)
∑

c∈C:l∈Lc

∑

a∈ASink∩Ac

yca = ul ∀ l ∈ L, (3.9)

ul − sl ≤ Bl ∀ l ∈ L, (3.10)
∑

c∈C

yca ≤ va · K ∀ a ∈ AConnect, (3.11)

∑

a∈AOut
i

va = 1 ∀ i ∈ NArrival, (3.12)

∑

a∈AIn
i

va = 1 ∀ i ∈ NDeparture, (3.13)

∑

c∈C

yca − 1 ≤ wa · K ∀ a ∈ ABust, (3.14)

xca ∈ N ∀ c ∈ C, a ∈ ATrain ∩ Ac, (3.15)
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xca ∈ N ∀ c ∈ C, a ∈ ALight ∩ Ac, (3.16)

yca ∈ N ∀ c ∈ C, a ∈ Ac \ ALight, (3.17)

rca ∈ {0, 1} ∀ c ∈ C, a ∈ ATrain ∩ Ac, (3.18)

va ∈ {0, 1} ∀ a ∈ AConnect, (3.19)

wa ∈ {0, 1} ∀ a ∈ ABust, (3.20)

ul ∈ R
+ ∀ c ∈ C, (3.21)

sl ∈ N ∀ c ∈ C. (3.22)

The objective function (3.1) minimizes the total cost, consisting of fixed costs, penalty

costs, costs for moving the locomotives, and consist busting costs. Constraints (3.2) ensure

the flow conservation for each node. The number of locomotives using the same train arc

is limited by Constraints (3.3).

Constraints (3.4) makes sure that the cumulated tonnage pulling capability of all loco-

motives pulling a train is higher than the weight of this train. The requirement that each

push train and each task is covered by a suitable consist is enforced by Constraints (3.5)

and (3.6).

Constraints (3.7) assign the value 1 (0) to rca if consist c is (not) using arc a. Based on

this information, Constraints (3.8) arranges that only one of two incompatible consists

can be used on arc a. This prevents invalid combinations of consists.

Constraints (3.9) count the number of used locomotives for each type. This is done

by the value of the flow leading to the sink nodes. Constraints (3.10) limit this number

to a given maximum for each type of locomotive. Note that these are soft constraints,

which enable a feasible solution even if the limits are exceeded, by causing penalty costs.

In practice, this is an indispensable feature for planners. In contrast to infeasibility, an

inadmissible solution enables the operator to analyze the reasons for the inadmissibility.

Constraints (3.11) assign the value 1 to va if at least one consist using connection arc a

(0 otherwise). Constraints (3.12) make sure that all consists are using the same emanating

arc for each arrival node. After serving a train, the decision must be made whether the

consist should remain (using a train–train arc) or be busted (using a consist busting arc).

As already mentioned, in the generalized formulation it is possible to combine predefined

consists (and thus also bust these new consists into predefined consists). We refer to

Section 3.4.1, which shows that the used presented framework avoids this issue. When

using the formulations, these constraints are relevant only if C = L holds. Analogously,

Constraints (3.13) ensure that all consists use the same incoming arc for each departure

node. Constraints (3.14) assign the value 1 to wa if at least two consists flow on the

consit busting arc a (0 otherwise). Constraints (3.11)–(3.14) are necessary for modeling
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consist busting and the associated times and costs correctly.

Constraints (3.15)–(3.22) state the domains.

3.4 Solution approach

The basic concept of our solution approach is sequentially solving the adapted formula-

tions of Vaidyanathan et al. (2008) (Consist Flow Formulation; CFF) and Ahuja et al.

(2005) (Locomotive Flow Formulation; LFF). Both formulations are covered by our gener-

alized formulation presented in Section 3.3.3. This means we are able to create a heuristic

solution by CFF and use this as initial solution for LFF. For this reason, we first describe

the necessary transformation processes in Section 3.4.1. Since CFF requires predefined

consists, we describe the strategy used for defining them in Section 3.4.2. Finally, we

develop the basic concept of a generalized solution approach, that gradually restrict the

size of the solution space (Section 3.4.3). The resulting heuristic solution framework is

presented at the end of this section (Section 3.4.4).

3.4.1 Transforming the formulations

Assuming L = C ignores the predefined consists and transforms the generalized formu-

lation (min (3.1), s.t. (3.2)–(3.22), see Section 3.3.3) to the formulation of Ahuja et al.

(2005). This can be achieved by adding Constraints (3.23) and (3.24) to the model:

xca = 0 ∀ c ∈ C \ L, a ∈ Ac, (3.23)

yca = 0 ∀ c ∈ C \ L, a ∈ Ac. (3.24)

In contrast, by adding Constraints (3.25) and (3.26) we are able to transform the formu-

lation to the MIP used by Vaidyanathan et al. (2008):

∑

c∈C:a∈Ac

xca ≤ 1 ∀ a ∈ ATrain, (3.25)

xca ≤ 1 ∀ a ∈ ATrain, c ∈ C : a ∈ Ac. (3.26)

Constraints (3.25) arrange that only one consist is used on each train arc. This avoids

the re-combiniation of predefined consists. Constraints (3.26) change the domain of xca

to binary for all train arcs. Note that Constraints (3.26) follows from Constraints (3.25)

and could be omitted. Furthermore, Constraints (3.11)–(3.14) could be omitted, since

these are automatically fulfilled by the combination of Constraints (3.2) and (3.25). For a

clear presentation, this is not done in the following. State of the art solvers remove these
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constraints automatically in a pre-processing step. We can summarize both formulations

as follows:

Locomotive Flow Formulation (LFF):
min (3.1)
s.t. (3.2)–(3.22),

(3.23)–(3.24).

Consist Flow Formulation (CFF):
min (3.1)
s.t. (3.2)–(3.22),

(3.25)–(3.26).

Transforming the formulation from CFF to LFF requires a transformation of the solu-

tion, too. It is obvious that a CFF solution becomes invalid for LFF because of Constraints

(3.23)–(3.24). But the solution can be transformed by applying assignments of Equations

(3.27) and (3.28):

xla := xla + xca ∀ c ∈ C \ L, l ∈ Lc, a ∈ Ac, (3.27)

yla := yla + yca ∀ c ∈ C \ L, l ∈ Lc, a ∈ Ac. (3.28)

The assignments split each consist into real locomotives and increase the corresponding

variables of the real locomotives (xla and yla).

3.4.2 Predefining consists

For solving the CFF, the predefinition of suitable consists becomes necessary. Vaid-

yanathan et al. (2008) assume a predefined superset of consists as input data. Only

consists from this set can be selected in the model. Our goal is to determine a set of con-

sists without a manual preselection. The preliminary consist selection model introduced

by Piu et al. (2015) is based on refueling strategies and ignores deadheading and light

traveling, which are quite important for our problem. Hence, we use a different approach,

based on the requirements of the trains.

In contrast to Vaidyanathan et al. (2008) and Piu et al. (2015), we solve a simple

and small model for each pull train a ∈ APull. Pull trains are chosen as decision criterion,

because the required tonnage pulling capability for pull trains makes consists necessary

(Constraints (3.4)). Furthermore, all pushing and task requirements can be satisfied by

at least one locomotive only (see Constraints (3.5)and (3.6)). The model determines for

each train the consist that can pull it at lowest costs. The consists can only contain valid

locomotive combinations and the number of locomotives must not exceed K.

In order to reduce the number of predefined consists, for each given train we solve this

problem only if there is no existing consist that satisfies these Constraints for the actual

arc a. Together with L, the result of this procedure constructs the set C. The number of
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created consists is less than ten for each of the considered instances in this paper, which

is in accordance with the recommendation of Vaidyanathan et al. (2008).

3.4.3 Restricting the solution space

The use of CFF equals LFF with a restricted solution space. By restricting the number of

possible consists to a predefined set, the solution space is considerably reduced. Following

this basic idea, three further variants can be considered: ignoring consist busting (Section

3.4.3), varying the number of light arcs (Section 3.4.3), and varying the number of trains

(Section 3.4.3).

Ignore-Heuristic (IH)

The Ignore-Heuristic (IH) amounts to ignoring the fact that building and busting a consist

incur costs. Based on this assumption, it does not matter if the flow between two trains

is via the combination of a consist busting arc and a consist building arc or via the

train–train connection arc. Thus most of the train–train connections can be omitted.

This considerably reduces the size of AConnect and thus accelerates the solving. For the

problem described in this paper, we can only ignore the train–train connections when the

train-ID is changing. This can be expressed by Constraints (3.29):

yca = 0 ∀ a ∈ AChange, c ∈ C : a ∈ Ac. (3.29)

The effect of Constraints (3.29) on CFF is different from its effect on LFF. Vaid-

yanathan et al. (2008) already ignore train–train connections for CFF. Adding these

constraints to CFF means that the associated consist busting arc of a train arc has to

be used automatically (except for train arcs with the same train-ID). The consist busting

costs are avoided as Constraints (3.14) only set wa to 1 if at least two consists are using

this arc, but, at the same time, only one consist is possible because of Constraints (3.26).

But we can add these constraints to LFF, too. In this case, consist busting costs arise

for each train almost automatically, because all arcs a ∈ AChange are forbidden. If at least

two locomotives are serving a train, Constraints (3.14) are the cause of the incurred costs.

The objective value increases by at most |ATrain| · γBust, i.e., the consist busting costs for

each train. This means accepting consist busting costs for almost all trains is tantamount

to ignoring them.

Summarizing, we distinguish between using predefined consists and ignoring all arcs

a ∈ AChange. In contrast, Vaidyanathan et al. (2008) uses both together for CFF. We

will refer to adding Constraints (3.29) to LFF or CFF as the Ignore-Heuristic (IH).
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Light-Heuristic (LH)

The Light-Heuristic (LH) amounts to selecting a set of promising light traveling arcs and

thereafter solving the model excluding nonpromising light traveling arcs. Solving the

model with a reduced set of light arcs speeds up the computation.

To define such a reduced set, we use a simplified version of the heuristic presented by

Ahuja et al. (2005). At some stations of the network, more locomotives depart than

arrive (or vice versa). By solving a minimum-cost-flow problem that minimizes the light

traveling costs, these differences can be balanced. These costs differ for each type of

locomotive. Hence, we solve this problem for each type of locomotive and use the union

of all resulting relations to determine a reduced set of light arcs ÂLight, a subset of ALight.

For each relation we add all corresponding light arcs to ÂLight. Based on this, we restrict

the solution space of LFF and CFF by adding Constraints (3.30) to the formulations; we

refer to this as the Light-Heuristic (LH).

xca = 0 ∀ a ∈ ALight \ ÂLight, c ∈ C : a ∈ Ac (3.30)

Merge-Heuristic (MH)

The Merge-Heuristic (MH) amounts to requiring that predefined successive trains have

to be served by the same locomotives. This is another way to restrict the problem size,

because this amounts to reducing the number of trains. For the considered problem, this

can be done by merging successive trains with the same train-ID. Merging two trains

means predefining that both are moved by the same consist. The same train-ID indicates

that the same set of cars is moved and (dis-)connecting processes are avoided. However,

for merging trains, we also have to take into account the drivable parts of the rail network

for each type of locomotive. A train e can be merged with a train f only if there is at

least one consist c for which e ∈ Ac and f ∈ Ac. In addition, we have to take into account

higher-level interrelationships. For example, if f is merged with another train g, this

condition must also be valid for the combination of e and g (transitivity relation). Based

on this, we are able to create a set M containing all merged trains e and f as a pair (e, f)

(and the associated arcs, respectively). Finally, Constraints (3.31) are added to LFF and

CFF. We will refer to this as the Merge-Heuristic (MH).

xce = xcf ∀ (e, f) ∈ M, c ∈ C : e ∈ Ac, f ∈ Ac (3.31)

For problems without taking into account train-IDs or locomotive zones, merging trains

is still possible. In this case, the proposed strategies can even be simplified.
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3.4.4 Generalized solution framework

Based on the presented procedures for defining the sets C, M and ÂLight as well as the

transforming processes (formulations and solutions) we are able to design a framework,

shown in Figure 3.6. Five variants of the generalized model are solved. Here the solution

C, M, ÂLight CFF
(MH, LH, IH)

min (3.1)
s.t. (3.2)-(3.22),(3.23)-(3.24),

(3.25)-(3.26),
(3.29), (3.30), (3.31).

H1-Solution removing MH

CFF
(LH, IH)

min (3.1)
s.t. (3.2)-(3.22),(3.23)-(3.24),

(3.25)-(3.26),
(3.29), (3.30), (3.31).

H2-Solution �
Changing from
CFF to LFF

LFF
(LH, IH)

min (3.1)
s.t. (3.2)-(3.22),(3.23)-(3.24),

(3.25)-(3.26),
(3.29), (3.30), (3.31).

H3-Solution removing LH

LFF
(IH)

min (3.1)
s.t. (3.2)-(3.22), (3.23)-(3.24),

(3.25)-(3.26),
(3.29), (3.30), (3.31).

H4-Solution removing IH

LFF
min (3.1)
s.t. (3.2)-(3.22), (3.23)-(3.24),

(3.25)-(3.26),
(3.29), (3.30), (3.31).

Solution

Figure 3.6: Solution framework

space is gradually increased (in the figure this is done from top to bottom). This means

each model is a relaxation of the models above. First, we solve CFF with MH, LH, IH and

get a heuristic solution (H1). Then, we remove MH (Constraints (3.31)) and solve the

model again by using H1 as initial solution. The resulting solution (H2) is transformed

to an LFF solution (indicated by �). After that, the model is also transformed to LFF

by removing Constraints (3.25)–(3.26) and adding Constraints (3.23)–(3.24). The model

is solved again and a third heuristic solution (H3) is obtained. In the next step, all

light arcs are released (removing LH, Constraints (3.30)) and another heuristic solution

(H4) obtained. After removing IH (Constraints (3.29)), LFF is solved for the last time

(without any heuristic). Obviously, this is only one of several possible orders in which

to run the different heuristics. Nevertheless, the results of Section 3.5.4 show that this

intuitively formed order works well.

It must be noted that it is not necessary to solve the four heuristic models to optimality.

A reasonable small gap is sufficient, as each intermediate schedule represents a heuristic

solution anyway. Moreover, for practical applications, it may not be necessary or even

not possible within a reasonable amount of time to solve the last model (standalone LFF)
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to optimality. Therefore, the use of appropriate termination criteria is reasonable, which

are presented in Section 3.5.1.

3.5 Computational analysis

In this section we present the computational experiments. First, we describe our exper-

imental design, which is followed by a detailed depiction of the real-life instance. After

that, we explain some newly generated instances. Finally, we present the results of our

tests.

3.5.1 Experimental design

The framework described in Section 3.4.4 has been implemented in C# using Gurobi (8.0.0)

to solve the models. All tests were run on an Intel(R) Xenon(R) CPU E5-4627 with 3.3

GHz clock speed and 768 GB RAM, limiting the number of parallel used threads of Gurobi

to 4. Because of the random decisions in state-of-the-art solvers, each framework setting

was run 10 times per instance. Since the use of the framework is on a tactical level, a

longer computing time is acceptable. Hence, we decided to limit the total computing

time of the framework to six hours for each instance. Heuristic models were terminated if

the gap was lower than 10% or after 30 minutes under the condition that a solution had

already been found. If no solution had been found by then, the process continued until

a solution was determined. For solving the last model (standalone LFF), the remaining

computing time, until reaching six hours, is available. As mentioned in Section 3.4.4, we

fixed the running order of the heuristics.

LFF

LFF

LFF
(IH)

H1-Solution

LFF

IH_LFF

CFF
(IH)

H1-Solution �

LFF

CFF/IH_LFF

CFF
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H1-Solution �

LFF
(IH)

H2-Solution

LFF

CFF_IH_LFF

CFF
(LH, IH)

H1-Solution �
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H2-Solution
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H3-Solution
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H1-Solution
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Figure 3.7: Tested settings of the presented framework

We examine the impact of including or omitting the individual heuristics. The tested

settings are shown in Figure 3.7. They are named based on the order in which the individ-

ual heuristics are switched off (from left to right). LFF resembles the MIP formulation by
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Ahuja et al. (2005). MH_CFF_LH_IH_LFF is the presented setting of Section 3.4.4.

Setting CFF/IH_LFF corresponds to a sequentially solution of the formulations of A-

huja et al. (2005) and Vaidyanathan et al. (2008). In contrast to this, CFF_IH_LFF

separates CFF and IH. Because of this distinction, we have also tested the complete

framework without using CFF (MH_LH_IH_LFF). We also compare the results directly

to the formulation of Vaidyanathan et al. (2008). This can be done by solving CFF

together with IH to optimality. We refer to this as CFF/IH.

3.5.2 A real-life instance

The considered real-life instance is based on the data of a European rail freight operator.

Figure 3.8 illustrates the key characteristics graphically. Within a planning horizon of

one week, 2342 trains (pull: 2074; push: 16; task: 252) have to be covered on a network

with 76 stations (nodes). Figure 3.8(a) shows the spatial distribution of these using a

heat map. It can be seen that traffic mainly takes place between two agglomerations. In

addition, Table 3.4 shows the temporal distribution of the trains (based on the departure

time).

Table 3.4: Temporal distribution of the trains
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Number of trains 263 400 401 377 305 410 186

The drivable zones for the 13 types of locomotive are shown in Figure 3.8(b). For a

clear presentation and to avoid 13 different line styles, we have aggregated similar zones

to superordinate zones. As a result, the basic relationships are still apparent. Two types

of locomotives are omitted in Figure 3.8(b), as they are only allowed to use a single

connection. Nevertheless, the illustration clearly shows that no locomotive can drive on

the entire network.

Figure 3.8(c) illustrates an example for a set of eight trains with the same train-ID.

In practice, this means that the same set of cars is moved from station A to station B

of the network. By comparing Figures 3.8(b) and 3.8(c), the importance of the (dis-)-

connecting processes for the considered problem becomes clear. It can be seen that not

all trains of the exemplified train-ID can be moved by the same consist, and a change of

the locomotive or consist is inevitable.
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Figure 3.8: Real-life instance
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3.5.3 Newly generated instances

In general, the number of real-life instances that can be provided by a single rail freight

operator is limited. Therefore, it is common in the literature to consider different scenarios

based on a single rail network. Obviously, these scenarios are not independent of each

other. In order to enable a better evaluation, we generated additional random instances.

Since this procedure of creation is itself a very complex process, we do not describe

it in detail. The instances were generated to meet all important parts of the problem

description (see Section 3.3.1). Table 3.5 summarizes the relevant sets of the instances.

Table 3.5: Sizes of the sets of the considered instances
Instances

real-life R/110 R/70 C/110 C/70

N 61,855 89,915 51,604 71,131 90,865
A 172,306 247,393 208,377 195,029 226,189
ATrain 2,342 2,408 2,414 2,408 2,438
APull 2,074 1,958 1,938 1,956 1,990
APush 16 49 74 51 42
ATask 252 401 402 401 406
ALight 47,709 86,607 44,912 64,130 85,162
AGround 49,404 85,070 46,752 66,283 85,955
AConnect 72,851 73,308 114,299 62,208 52,634
AChange 67,019 67,174 108,146 56,038 46,270
L 13 9 12 13 7
C 17 15 18 20 14

The generated instances are based on randomly created stations spread over an area of

1400 by 1400 kilometers (R). In accordance with the real-life instance, we also simulated

the occurrence of urban agglomerations by producing clustered presences of stations (C)

in random areas. We also varied the number of stations (70 or 110, real life: 76). The

rail network is assumed to be a minimum spanning tree supplemented by further edges.

The distances are calculated based on the Euclidean distance.

The sizes of the problems correspond approximately to the real-life instance. For L, the

total number of locomotives is shown in brackets. In the generated instances, we assumed

a fixed limit of 50 locomotives for each type. For instance R/110 this is not sufficient

(ul > Bl for at least one l). Therefore we have adjusted the values. The planning horizon

is always one week (time interval is one minute).

3.5.4 Results and evaluation

The results for the presented settings of Figure 3.7 for all instances are shown in Table 3.6.

Each value is the average of ten runs. OBJ denotes the values of the objective function,

in millions, while STD denotes the standard deviation in %. The optimality gap in %
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is denoted by GAP and determined in relation to the best lower bound computed by all

tested settings. Since no gap is equal to 0, each run required the time limit of six hours

for the tested framework settings.

In accordance with the computing times reported by Vaidyanathan et al. (2008),

CFF/IH solves the instances in some cases very quickly. For this reason, the total comput-

ing times (CPU) are presented explicitly (in minutes) for this algorithm setting. However,

as CFF/IH does not provide a lower bound (and also no gap) with respect to the original

problem (LFF), we calculated the values for GAP in relation to the best lower bound

computed by all other tested settings for each instance (analogously to the framework

settings). Therefore, all gaps are directly comparable with each other.

The total net computing time for the entire runs outlined in Table 3.6 is over 100 days.

The last column shows the average gaps and standard deviations in % achieved by each

setting for all instances.

Table 3.6: Computational results
Instances

real-life R/110 R/70 C/110 C/70 avg

LFF OBJ - - - - -
equals formulation of STD - - - - - -
Ahuja et al. (2005) GAP - - - - - -

IH_LFF
OBJ 47.64 52.79 47.02 48.44 35.70
STD 0.34 0.44 5.49 5.55 1.85 2.73
GAP 4.02 4.11 27.21 40.09 16.98 18.48

CFF/IH_LFF
OBJ 254.91 52.64 72.86 37.28 38.95
STD 14.03 0.52 66.48 13.07 1.81 19.18
GAP 83.87 3.84 38.48 21.25 23.90 34.27

CFF_IH_LFF
OBJ 54.46 52.41 38.65 36.09 34.79
STD 19.22 0.41 0.84 4.89 1.34 5.34
GAP 13.29 3.42 11.71 19.64 14.83 12.58

CFF_LH_IH_LFF
OBJ 49.97 52.51 38.49 33.34 33.96
STD 13.53 0.43 0.28 1.07 0.34 3.13
GAP 7.26 3.61 11.36 13.21 12.75 9.64

MH_CFF_LH_IH_LFF
OBJ 47.66 52.49 38.96 34.22 33.87
STD 0.37 0.26 0.57 1.25 0.66 0.62
GAP 4.06 3.56 12.42 15.44 12.52 9.60

MH_LH_IH_LFF
OBJ 47.58 52.47 38.99 34.63 34.06
STD 0.31 0.29 0.61 2.02 0.70 0.79
GAP 3.89 3.52 12.49 16.44 13.01 9.87

CFF/IH OBJ 418.77 60.55 40.88 35.15 36.37
equals formulation of STD 0.00 0.00 0.02 0.04 0.01 0.01
Vaidyanathan et al. (2008) GAP 89.08 16.40 16.54 17.70 19.19 33.59

CPU 9 101 360 360 360

Solving LFF alone could not generate a valid solution for any of the considered instances.

This is consistent with the results of Ahuja et al. (2005). In contrast, the formulation of

Vaidyanathan et al. (2008) (CFF/IH) can solve all instances with very short computing
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times. However, it is clear from the quality of the solution (especially for the real-life

instance) that there is significant potential for improvement here. This potential can be

almost fully exploited by the novel approaches.

The fact that IH_LFF was able to create solutions for all instances with small gaps

(e.g. for the real-life instance) shows the strength of this heuristic. The differences in the

results for CFF/IH_LFF and CFF_IH_LFF show that the explicit distinction between

CFF and IH is necessary. CFF/IH_LFF is not sufficient for the real-life instance and did

not achieve a smaller gap than CFF_IH_LFF for any instance. This proves that inte-

grating another heuristic (LH, MH or both), on the one hand, improves the results (OBJ)

and, on the other hand, makes them more robust (STD). Using the complete framework

(MH_CFF_LH_IH_LFF) achieves the best average standard deviation (0.62%) and also

the best average gap (9.60%) for all instances.

Based on the very similar average GAP values of the last three framework settings,

it is difficult to decide which of these settings is preferable. Therefore, we take a closer

look at the development of the objective values. As an example, Figure 3.9 illustrates

this development for the first two hours of computing for the real-life instance. The

objective values for all 10 runs are plotted every minute for MH_CFF_LH_IH_LFF

and CFF_LH_IH_LFF and each compared to MH_LH_IH_LFF. The sudden transi-

tion from values of about 500 million to values of about 100 million can be explained by

reaching feasible solutions (ul ≤ Bl ∀l ∈ L). It can be seen that MH_LH_IH_LFF

is about half an hour ahead of the other two for any given objective value. The figures

also show that most of the improvement takes place within the first two hours. It can be

concluded that the chosen limitation of computing times was appropriate. Similar obser-
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Figure 3.9: Convergence of objective values for the real-life instance; CPU<120 minutes

vations can be made for the other instances. Thus, MH_LH_IH_LFF can be identified

as the preferable setting. An additional advantage of this setting is that it eliminates the

need of a preliminary determination of the consists. This simplifies the application of the
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solution approach to other instances and use cases considerably. It should be mentioned

that a total average gap of 9.60% can be assessed as very good for large scale problems

like the LAP. Moreover, the framework itself enables us to present these gaps, which are

often missing for similar problems in the literature.

Lastly, it can be proven that creating light arcs based on the train schedule provides

significantly better results than generating them at fixed intervals. The difference can

be evaluated by comparing lower and upper bounds for both strategies for one instance,

which was done for the real-life instance. If the fixed intervals are assumed to be six

hours, the set of light arcs becomes about the same size as when using the train schedule

(the proposed approach). By using the setting MH_CFF_LH_IH_LFF, a lower bound

of 117.57 million can be determined for fixed intervals. This value is significantly larger

than the upper bounds (OBJ) of Table 3.6 (i.e., when light arcs are generated based on

the train schedule). Therefore, it is obvious that the exploration of the complete solution

space is not ensured. By reducing the intervals (e.g., to three hours) the solution quality

could be improved, but this increases the number of light arcs as well. In the best case,

identical results can be achieved with higher computational effort. Thus, creating light

arcs based on the train schedule is most suitable for the considered problem.

3.6 Conclusions and further research

This paper has presented a generalized multicommodity flow formulation for the loco-

motive assignment problem dealing with various practical requirements in European rail

freight transport. A main focus was the correct modeling of (dis-)connecting processes

of locomotives with other locomotives as well as cars. Based on an MIP formulation,

we introduced a heuristic solution framework for increasing the problem size gradually.

We discussed several possibilities for restricting, which can speed up the solution process

significantly.

The results showed that the basic idea of gradually increasing the problem size works

and the presented framework was proven to be adequate for solving practical problems.

Within reasonable computation times for the tactical planning level, schedules for loco-

motives could be generated with an average gap below 10%. For the real-life instance, we

were even able to achieve gaps of less than 4%. The fact that real optimality gaps can be

determined is itself a big advantage of this framework. We were also able to show that

this approach outperforms previous approaches from the literature. The major contribu-

tion of this paper is a generalized approach for routing locomotives and consists, which is

suitable for a wide range of problem instances. We also demonstrated that light traveling

should be modeled based on the train schedule instead of fixed intervals. Furthermore,
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the effort for a preliminary consist selection should be kept within limits.

Nevertheless, there are several interesting directions for future research. Other running

orders of the presented heuristics could lead to additional improvements. At the same

time, it could be tested whether the proposed heuristics can be used in other stages

as well. For example, the arcs of set AChange could be released in more than one step

based on the intermediate idle times. Similar considerations could be made for LH and

MH. Furthermore, the approach should be tested for robustness with regard to the cost

structure. In particular, zero consist busting costs and simultaneously still taking the

associated times into account would be interesting. Moreover, the issues of consist busting

could be ignored completely and the combination of CFF, LH and MH could be tested

against a column generation framework. Finally, limited track capacity at each station

could be taken into account to ensure the applicability of the generated schedules.
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4 An efficient column generation

approach for practical railway crew

scheduling with attendance rates

Abstract

The crew scheduling problem with attendance rates is highly relevant for regional passen-

ger rail transport in Germany. Its major characteristic is that only a certain percentage

of trains have to be covered by crew members or conductors, causing a significant increase

in complexity. Despite being commonly found in regional transport networks, discussions

regarding this issue remain relatively rare in the literature. We propose a novel hybrid

column generation approach for a real-world problem in railway passenger transport. To

the best of our knowledge, several realistic requirements that are necessary for successful

application of generated schedules in practice have been integrated for the first time in

this study. A mixed integer programming model is used to solve the master problem,

whereas a genetic algorithm is applied for the pricing problem. Several improvement

strategies are applied to accelerate the solution process; these strategies are analyzed in

detail and are exemplified. The effectiveness of the proposed algorithm is proven by a

comprehensive computational study using real-world instances, which are made publicly

available. Further we provide real optimality gaps on average less than 10% based on

lower bounds generated by solving an arc flow formulation. The developed approach is

successfully used in practice by DB Regio AG.
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4.1 Introduction

In Germany, federal states or subsidiary transport associations are responsible for orga-

nizing and implementing regional passenger rail transport. Thus, they define lines and

timetables for the regional railway networks. Furthermore, specific requirements are de-

tailed, such as the type of vehicles and pricing systems. These conditions have to be met

by railway companies that apply for network operation. The liberalization of German

regional passenger rail transport has led to increasing competition between the tender-

ing processes of different railway companies. As a result of high cost pressure, efficient

deployment of personnel, vehicles, and resources by the railway companies is crucial for

their success. This holds true across all levels of the planning process in regional passenger

rail transport. Based on the conditions that are established by the transport association,

rolling stock scheduling, maintenance planning, and crew scheduling have to be carried

out by the railway company before the generated schedules are assigned to specific ve-

hicles and personnel (rostering) (Hoffmann et al. 2017). In particular, crew scheduling

has a substantial influence on total costs. It is a part of tactical planning and results in an

anonymous crew schedule, i.e., a set of duties that have not been assigned to particular

employees. A crew on a train consists of a train driver and one or several conductors who

are responsible for checking tickets, customer service, and certain operational tasks.

A special challenge in the crew scheduling of conductors is the common requirement

of attendance rates, which means that only a defined rate of trains needs to be covered.

Attendance rates are set by superordinate transport associations and were introduced to

save costs. If attendance rates are not met by the employed crew schedule, the liable

railway company must pay a contractual penalty. For the underlying planning problem,

attendance rates result in an additional degree of freedom compared to the crew scheduling

problem (CSP), i.e., in addition to the assignment of conductors to trains, the trains that

are attended have to be selected first.

The crew scheduling problem with attendance rates (CSPAR) has rarely been stud-

ied in the literature to date, and research has been limited to one conductor per trip at

most (Heil / Hoffmann / Buscher 2020). Nevertheless, it constitutes a major plan-

ning challenge for practical crew scheduling. Thus, the goal of our work is to present a

novel hybrid column generation approach for solving the CSPAR that was developed and

implemented as a client-server program during a long-term project with DB Regio AG

(Neufeld 2019).

In this paper, we provide four major contributions. First, several real-world specifica-

tions, such as multi-manning and part-time employees, are considered for the first time.

Further, we integrated the use of overlapping duties for problems with attendance rates
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for the first time. Overlapping duties begin and end at two different albeit consecutive

days, which is necessary for night duties, for example. Although these specifications have

not been considered in the literature to date, they are required by transport associations

and planners and are therefore vital for a successful application in practice. To bridge

this gap, we present a new overlapping multi-period railway crew scheduling problem with

attendance rates (OMCSPAR) that can be extended by various restrictions.

Second, we make the considered real-world instances publicly available in a xml-based

file format. In addition, we have provided and published a test script that contains all

considered rules for the duty generation. It can be used to easily check feasibility of a

newly generated schedule and serves as explicit definition of the considered requirements.

This allows reproducibility of our results as well as comparison of different crew scheduling

approaches. The provided instances can also be used for testing other crew scheduling

approaches without attendance rates.

Third, based on the problem description and basic algorithm from the literature, so-

phisticated methodological enhancements are presented to enable a solution of practical

instances within a reasonable time. This includes a novel three-phase solution procedure

for generating initial solutions. To the best of our knowledge, the present study is the first

to investigate and discuss the generation of initial solutions in detail. Additionally, we

quicken the subsequent column generation process by integrating various improvements.

Our algorithmic contributions are analyzed using several real examples that are based

on 14 German regional railway networks. We show that these improvements allow us to

solve many previously intractable instances and provide decision support for considerably

large networks for the first time. Moreover, we demonstrate that the presented approach

is able to generate optimal solutions for small real-world instances and we provide lower

bounds for larger networks based on solving an arc flow formulation.

Finally, we discuss the cost effects of attendance rates and some other requirements

established by federal states or subsidiary transport associations in the tender process.

Thus, we not only consider the perspective of railway planners but also provide some

managerial insights for decision makers in federal states and transport associations.

The remainder of the paper is structured as follows: Section 4.2 gives an overview of the

relevant literature on railway crew scheduling. The studied problem is defined in detail

in Section 4.3, and various practical requirements are described. These requirements

form the basis for the mixed integer programming formulation of the OMCSPAR. The

applied hybrid column generation approach is presented in Section 4.4. Special attention

is paid to the initial solution, which has a substantial influence on the performance of the

algorithms, and to the genetic algorithm for solving the pricing problem. A comprehensive

computational study based on several German real-world instances is presented in Section
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4.5. Managerial insights into the effects of attendance rates are provided in Section 4.6.

Section 4.7 closes with concluding remarks and constructive directions for future research.

4.2 Related literature

The CSP first arose in the airline and bus industries (Arabeyre et al. 1969; Carraresi /

Gallo 1984; Van den Bergh et al. 2013; Ibarra-Rojas et al. 2015; Kasirzadeh /

Saddoune / Soumis 2017). Since then, it has been applied to other transportation sec-

tors; in particular, several approaches in the railway sector were published after 1995.

For detailed overviews of models and methods for the various planning tasks in the

railway industry, we refer exemplary to Huisman et al. (2005), Caprara et al. (2007),

Narayanaswami / Rangaraj (2011), Teodorović / Janić (2017), and Heil / Hoff-

mann / Buscher (2020). Usually, crew scheduling models have been proposed for prac-

tical problems; consequently, such models often comprise specific characteristics and chal-

lenges (Barnhart et al. 2003). At the same time, a common property is that large-scale

problems have to be solved.

Two prevalent modeling approaches have evolved (Suyabatmaz / Şahin 2015): net-

work flow models and set covering or set partitioning formulations. All in all, network flow

models are seldom used (e.g., Şahin / Yüceoğlu 2011; Vaidyanathan / Jha / Ahuja

2007; Fuentes / Cadarso / Marín 2019), whereas set covering/partitioning approaches

form the majority of publications. Column generation, in particular, has been proven to

be suitable for solving practical instances by exerting a reasonable computational ef-

fort (Caprara et al. 1997; Caprara et al. 2007; Ernst et al. 2001; Jütte et al. 2011;

Shen / Chen 2014). Bengtsson et al. (2007) present an algorithm for a problem sim-

ilar to the one discussed herein but without attendance rates. A column generation

approach is applied to solve the pricing problem through the k-shortest path enumera-

tion. Nishi / Muroi / Inuiguchi (2011) present dual inequalities that accelerate column

generation and reduce the number of iterations. Given the NP-hard nature of the CSP

(Kwan 2011), metaheuristics have also been developed. Among these are tabu search

and genetic algorithms (Shen et al. 2013). Yaghini / Karimi / Rahbar (2015) propose

a train driver CSP through a combined metaheuristic and mathematical programming ap-

proach. Recently, decomposition techniques were applied to CSPs in rail freight transport

as well, leading to considerably promising results (Jütte / Thonemann 2012; Jütte /

Thonemann 2015). Janacek et al. (2017) use a column generation approach to generate

periodic crew schedules.

Furthermore, the literature has also discussed integrated crew-scheduling approaches

combined with timetabling (Bach / Dollevoet / Huisman 2016) or vehicle scheduling
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(Dauzère-Pérès et al. 2015; Steinzen / Suhl / Kliewer 2009) as well as rescheduling

problems (Veelenturf et al. 2014) in recent years. To the best of our knowledge, at-

tendance rates have only been considered by Hoffmann et al. (2017) and Hoffmann /

Buscher (2019). Such an approach is elaborated upon in the following text in greater

detail.

4.3 Problem definition

4.3.1 Problem description and practical requirements

To generate crew schedules that are applicable in real-world railway networks, various

restrictions and practical requirements must be considered. The objective is to find a

schedule that satisfies these requirements with minimal costs. Scientifically developed

algorithms may lead to very good solutions regarding a defined objective function; nev-

ertheless, at the same time, the generated schedules are not satisfactory from a planner’s

view or are not viable at all. The application of the proposed solution approach in practice

showed that the consideration of the following requirements is crucial for fulfilling region-

ally differing conditions in regional transport. However, several of these requirements have

not been mentioned in the existing literature. In the following section, we address the

differences in the literature in a more detailed manner. All the requirements described by

Jütte et al. (2011) and Hoffmann et al. (2017) are taken into consideration.

Operating Conditions

Operating conditions specify the general structure of duties and guarantee a trouble-free

realization. A duty is defined as a combination of consecutive trips covered by a certain

conductor on a given day. Each trip is characterized by a designated departure time,

departure station, arrival time, and arrival station and represents the smallest planning

entity. On a superordinate level, a train can consist of several trips. Because a change of

trains is not possible at every stop, a limited number of stations, so-called relief points, is

usually defined at which changeovers are possible.

Apart from relief points, crew bases are important nodes in regional railway transport

networks. A crew base is associated with a certain station, and each duty of a conductor

has to start and end at the same crew base. Hence, conductors are assigned to crew bases;

each crew base can only have a maximum number of employees assigned to it. In contrast

to Hoffmann et al. (2017), we support the separation between full-time employees and

part-time employees, who usually perform shorter duties. This distinction is important

for planners because not all current conductors are full-time employees. In addition,
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recruiting new conductors for regional railway companies is difficult, and working part-

time is an appealing option for prospective conductors.

Duties are usually created on a daily basis, i.e., a time period from the start of the first

trip in the morning until the end of operations at night is considered. In particular, for city

trains in larger urban regions and during weekends, there is often no end of operations.

Thus, extending the considered time span for generating duties is inevitable to ensure

that trips at night can be integrated into valid duties. As a result, duties may consist of

trips of two consecutive days; therefore, we must consider overlapping duties similar to

Abbink et al. (2011) in the pricing problem. Note that attendance rates in combination

with an uniform distribution (see Section 4.3.1) require the consideration of multi-periods

in the master problem as well. Therefore, in contrast to the literature, the master problem

must also be adapted accordingly.

Furthermore, planners may desire to control the number and daily distribution of morn-

ing, day, evening, and night duties for each crew base. These categories are dependent

on the starting times of the duties and can represent the preferences of conductors. For

example, if morning and night duties are less popular, the distribution has higher per-

centages for day and evening duties. However, such patterns can lead to competing goals,

particularly if attendance rates differ by the time of day because a higher rate at a certain

time correlates with a higher number of duties.

Legal Requirements and Labor Contracts Regulations

Labor contracts and legal regulations specify several characteristics of a feasible duty.

According to the German Working Hours Act, three types of working time can be dis-

tinguished. First, duty time is the time from signing on at the beginning of a duty to

signing off at the end of the duty. Second, protected working time is defined as duty time

excluding all breaks, deadhead times, and idle times. Finally, paid time is specified as

the duty time excluding breaks. Because full-time conductors are supposed to have five

workdays (i.e., five duties) per week on average, the average paid time of all duties must

be restricted within certain bounds. For a detailed description of the legal requirements

considered, we refer to Jütte et al. (2011) and Hoffmann et al. (2017), although the

concrete values may vary depending on the context.

Transportation Contract

The third category of conditions is caused by the transportation contract of the respective

transport network, which is announced by the transport associations. From this contract,

attendance rates in particular have a major influence on the arising CSP. Attendance
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rates are defined as the percentage of kilometers of all trips with a common rate that

must be covered by conductors. The rates can depend on certain lines, product types,

track sections, train numbers, or the time of the day and usually range between 0 % (i.e.,

no conductor is necessary) and 100 %. The latter indicates that the trip must always be

accompanied by a conductor. If the attendance rate is 100 % for all trips, the considered

problem equals the crew scheduling of train drivers studied in the literature. As an

extension of the known literature, we consider rates higher than 100 % that are required

in some regional railway networks. Therefore, multiple conductors must cover the same

trip (multi-manning). Multi-manning is particularly important for rush hour trips in

which a solitary conductor cannot control all the passengers or for the evening to provide

a greater sense of security.

Finally, a uniform distribution of the attended trips over the planning period can be

claimed to avoid a predictable or imbalanced appearance of conductors on trains. The

uniform distribution is typically ensured by conducting each trip at least once within a

period of two weeks. In other transport networks, a weaker variant is demanded, and

accompanying at least one trip by each train (i.e., train number) within the requested

period is sufficient. Thus, both definitions of uniform distribution must be integrated,

and a planning horizon of 14 days is usually chosen for the tactical railway CSP.

To provide a brief summary, Table 4.1 presents the additional requirements for railway

CSPs with attendance rates that are considered in the present research compared to those

considered in the known literature.

Table 4.1: Comparison of considered requirements to the known literature on railway
crew scheduling problems with attendance rates
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4.3.2 Mathematical Problem Formulation

Notation for Sets, Parameters, and Decision Variables

In the following section, we extend the multi-period railway crew scheduling model with

variable attendance rates presented in Hoffmann et al. (2017) by the various afore-

mentioned requirements. We distinguish between the basic OMCSPAR, which takes the

coverage of attendance rates into account, and additional requirements demanded by the

transportation contract or railway planners.

OMCSPAR aims to find a minimal cost combination of duties selected from a set of

feasible duties N . The planning horizon consists of |K| days with K as a set of days of

the week, and each duty j ∈ N begins on a specific day k ∈ K. Thus, we define set Nk

as a set of duties starting on day k. Moreover, a duty covers a subset of trips i ∈ M ,

with M representing the set of all trips in the transportation network. Hence, a duty

can be represented by a column in matrix A ∈ {0, 1}|M |×|N | with aij = 1 if duty j covers

trip i and 0 otherwise. A trip i can exist on a single day k ∈ K or on several days of

the planning horizon K. As a result, Mk can be defined as a subset of M that contains

all the trips i ∈ M that take place on day k. Additionally, the planner can specify trips

that must be checked regardless of their attendance rate. To this end, we define the set

of mandatory trips O and add trip i ∈ M on day k as pair (i, k) if it is marked by the

planner.

Further, creating overlapping duties may be beneficial or even necessary for practical

applications. Figure 4.1 shows the timespan from which trips are considered for each

day of the planning horizon. A trip i ∈ Mk, which is operated prior to a certain time

limit on day k, may be covered not only by duties starting on day k but also by duties

beginning the day before. For example, if a trip starts on a Tuesday between the start of

day and the time limit (e.g., 12 a.m.), this trip may be integrated in a duty from Tuesday

(k = 1), but also a duty that starts on a Monday (k = 0). In other words, the days of our

planning horizon overlap. In addition, we consider a cyclic planning horizon (one week or

two weeks), as is also shown in Figure 4.1. Hence, the day previous to Monday (k = 0) is

Sunday (k = 6); consequently, k − 1 is an invalid general representation of the day before

k. Thus, we apply k̄ = (k − 1) mod |K| to determine the day before k correctly. Note

that enabling overlapping duties only on certain nights (e.g., weekends) is also possible.

However, this occurs in the pricing problem because only the set of available trips for each

of the |K| sub-problems (see Section 4.4.3) has to be adjusted accordingly.

Furthermore, let G be the set of all attendance rates g ∈ R
+
0 defined in the transporta-

tion contract. We can determine dig as the distance of trip i ∈ M with attendance rate

g ∈ G. Note that index g is necessary because one trip may consist of several sections
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Tuesday
k = 1
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k = 3
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k = 4
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of day
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Time
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Coverable trips of
duties starting
on day k

Figure 4.1: Representation of duties across different days

with varying attendance rates.

The costs cj of a feasible duty j ∈ N consist of two parts. First, fixed costs cfix occur

for every duty. Second, every minute of the paid working time τj of duty j is rated

with variable costs cvar, yielding cj = cfix + cvar · τj . The paid working time is calculated

in accordance with the operating conditions and legal requirements described in Section

4.3.1. If a duty does not meet an operating condition or a legal requirement, we penalize

the use of this duty with costs cpen.

In addition to the sets and parameters described previously, we introduce the following

decision variables. Integer variable xj corresponds to the frequency of duty j ∈ N in

the solution. Owing to potential multi-manning, xj is not always a binary variable, as

it is in most crew scheduling approaches, but an integer variable. For example, if two

conductors are assigned to a duty j, xj = 2, i.e. j is selected two times in the solution.The

maximum frequency of duty j ∈ N is defined by the highest attendance rate of all trips

included in this duty. If a duty would be selected more often than this highest atten-

dance rate, at least one of these duties would only increase costs without improving the

stipulated coverage of trips. Hence, the upper bound λu
j of xj can be determined with

λu
j = ⌈maxi∈M,g∈G ({aijg | dig > 0})⌉ . The check for dig > 0 is necessary because atten-

dance rate g ∈ G only needs to be considered if trip i ∈ M requires an attendance rate of

g. Furthermore, we use integer variables yik to model the number of conductors attend-

ing trip i ∈ M on day k ∈ K in the solution. Similar to the variable xj , the frequency

depends on the attendance rates of the trip. Therefore, we can define a lower (upper)

bound µl
i (µu

i ) as follows: µl
i = ⌊maxg∈G ({g | dig > 0})⌋ , µu

i = ⌈maxg∈G ({g | dig > 0})⌉ .

Thus, for example, if the attendance rate of a trip is 1.5, the trip should comprise at least

one duty and at most two duties.

Basic OMCSPAR set covering model

Using the notation presented earlier, we introduce the basic OMCSPAR as follows.

[OMCSPAR]: min
∑

j∈N

cjxj (4.1)
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s.t.
∑

k∈K

∑

i∈Mk

digyik ≥ g
∑

k∈K

∑

i∈Mk

dig ∀ g ∈ G (4.2)

∑

j∈Nk̄

aijxj +
∑

j∈Nk

aijxj ≥ yik ∀ k ∈ K, i ∈ Mk (4.3)

yik = µu
i ∀ (i, k) ∈ O (4.4)

xj ≤ λu
j ∀ j ∈ N (4.5)

µl
i ≤ yik ≤ µu

i ∀ k ∈ K, i ∈ Mk (4.6)

xj ∈ N ∀ j ∈ N (4.7)

yik ∈ N ∀ k ∈ K, i ∈ Mk (4.8)

The objective function (4.1) minimizes the total operating costs. Constraints (4.2) ensure

compliance with the required attendance rates. This compliance is achieved by forcing

the accumulated distance of the covered trips of each attendance rate in the solution

schedule to be greater than or equal to the requested percentage of the total distance

assigned to this rate. Constraints (4.3) are linking variables xj and yik. Hence, there has

to be at least µl
i duty j ∈ Nk or j ∈ Nk̄ in the solution schedule covering trip i on day k

if trip i on day k is in the solution. Note that trip i can be covered by a duty starting

on day k or k̄. Furthermore, deadheads are possible because of the inequality relation.

The inclusion of all mandatory trips in the final schedule is modeled by constraints (4.4).

This constraint has been slightly modified to meet attendance rates higher than 100 %.

Finally, constraints (4.5)–(4.8) set the aforementioned bounds and state the domains to

enable attendance rates of more than 100 %.

In the following section, we present the additional requirements that can be necessary

to generate valid and accepted crew schedules.

Average paid time

As explained earlier, balancing the paid working time of duties across the week is neces-

sary. In our approach, we define that the average paid working time of all duties of the

planning horizon must be between a lower bound τmin and an upper bound τmax. Hence,

we introduce the following constraints:

∑

j∈N

τjxj ≥ τmin
∑

j∈N

xj (4.9)

∑

j∈N

τjxj ≤ τmax
∑

j∈N

xj. (4.10)

Constraints (4.9) guarantee that the average paid time over all duties in the solution

schedule is either longer than or equal to the permitted lower bound, and constraints
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(4.10) ensure compliance with the upper bound.

Uniform distribution

The uniform distribution should ensure that a variety of trips is checked. We provide two

different approaches to model this requirement. The first variant

∑

k∈K | i∈Mk

yik ≥ 1 ∀ i ∈ M (4.11)

guarantees that each trip is covered at least once in the planning horizon. Note that this

corresponds to the trip-based uniform distribution in Section 4.3.1.

In addition, we present a new alternative variant called train-based uniform distribution.

For this purpose, we define set Mkz as a set of all trips on day k associated with train

number z ∈ Z, where Z is the set of all train numbers. This definition enables the

train-based uniform distribution to be modeled as follows:

∑

k∈K

∑

i∈Mkz

yik ≥ 1 ∀ z ∈ Z. (4.12)

Note that one variant can be used at most, i.e., a uniform distribution can also be deac-

tivated.

Crew base capacity

Another practical requirement introduced in Section 4.3.1 is the maximum number of

duties starting at a crew base. Let E be the set of all crew bases in the network; subse-

quently, parameter bje equals one if duty j starts at crew base e and zero otherwise. The

capacity of each crew base e ∈ E may vary depending on the day k ∈ K and is denoted

by Qek. We can now introduce

∑

j∈Nk

bjexj ≤ Qek ∀ e ∈ E, k ∈ K (4.13)

as crew base capacity constraints.

In some scenarios, however, planners must distinguish between full-time and part-time

employees. For this purpose, the notation will be extended again. First, we define the

maximum number of full-time duties starting at e on day k by QFT
ek . Second, we set

binary parameter wj to one if duty j must be performed by a full-time employee and to

zero otherwise. A duty is considered invalid for a part-time employee if its duty time

is longer than a predefined but variable threshold. Note that all part-time duties are
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included in the general crew base capacity Qek because shorter duties can be operated

by part-time and full-time employees. Hence, considering them separately is unnecessary,

and constraints

∑

j∈Nk

bjewjxj ≤ QFT
ek ∀ e ∈ E, k ∈ K (4.14)

are used to restrict the maximum number of full-time employees per day for each crew

base.

Daily duty distribution

Finally, we consider the daily distribution of duties as a further requirement that arises

in railway CSPs, which may vary between different crew bases. To this end, we define

a set of daytimes T for categorizing duties as early, day, late, and night and parameter

ljet. This parameter equals one if duty j ∈ N starts at crew base e ∈ E during daytime

t ∈ T and zero otherwise. Hence, only the start time of a duty is decisive for the daytime

category. In addition, each crew base e has a desired percentage pet of duties starting

there at time of day t ∈ T . Note that we cannot apply a fixed number of duties for each

daytime because we do not know how many duties begin at crew base e.

In most cases, however, meeting this quota exactly is not possible. Therefore, we

introduce continuous variables vet ∈ R and uet ∈ R as the lower and upper deviations

from the desired total number of duties starting at crew base e ∈ E during daytime t ∈ T

and implement the daily duty distribution as the following soft constraints:

∑

j∈N

ljetxj ≥ pet

∑

j∈N

bjexj − vet ∀ e ∈ E, t ∈ T (4.15)

∑

j∈N

ljetxj ≤ pet

∑

j∈N

bjexj + uet ∀ e ∈ E, t ∈ T. (4.16)

Constraints (4.15) allow the number of duties that start during t at base e to remain under

the desired percentage pet of all duties starting at crew base e. Conversely, constraints

(4.16) permit the number of duties that begin during t at base e to exceed the desired

percentage pet of all duties beginning at base e.

However, variables vet and uet must be penalized to control the extent of deviation. We

evaluate the deviation from the desired number of duties with variable penalty costs s.

Thus, the original objective function (4.1) must be extended by a penalty term, and we
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obtain the following new objective function:

min
∑

j∈N

cjxj + s
∑

e∈E

∑

t∈T

(vet + uet) . (4.17)

Here, the higher the value of s, the greater the enforced compliance with the daily duty

distribution.

4.4 Solution approach for OMCSPAR

4.4.1 Column generation framework

Set covering problems in large-scale crew-scheduling applications are usually tackled by

column generation approaches because the set of all feasible duties N is considerably

large. Hence, a complete creation of N would be too consuming in terms of both time and

memory. By contrast, column generation operates with a restricted set of duties N̄ and

successively adds new duties in an iterative process. Thus, two iteratively connected prob-

lems, called restricted master problem (RMP) and pricing problem, are applied herein.

The RMP is equivalent to OMCSPAR but with the restricted set of duties N̄ instead of

N . Solving the linear relaxation of the RMP (rRMP) yields dual values that are used

in the pricing problem to generate new columns with negative reduced costs, i.e., duties

that may reduce the objective function value. Because our planning horizon consists of

|K| days, we can decompose the pricing problem in K independent problems. Thus, we

create new duties for a specific day k ∈ K and solve the rRMP with a new set of duties

N̄ in each iteration. This procedure is adapted from the cyclic generation strategy intro-

duced in Mourgaya / Vanderbeck (2007) for a multi-period vehicle routing problem.

Another approach might be to generate new duties for the entire planning horizon first

and subsequently solve the rRMP. However, this approach could lead to the generation

of many unused duties, which needlessly inflates the RMP.

The general flow of our column generation procedure is presented in Figure 4.2. The

procedure will be described in detail below. As with all column generation approaches, our

algorithm starts by generating an initial set of duties N0. We apply different strategies to

determine feasible initial solutions within a short processing time. However, it is important

to note that the rRMP should be able to generate a feasible solution with N0, but N0

itself may contain infeasible duties. We refer to Section 4.4.2 for an in-depth description

of our approach. Subsequently, the restricted set of duties N̄ is initialized with N0, and

control variables l and k are introduced. Variable k represents the currently considered

day, whereas variable l counts the number of contiguous iterations without newly found
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Figure 4.2: Flowchart of the proposed multi-period column generation algorithm

columns. Moreover, the RMP is initialized. However, if capacity constraints ((4.13) and

(4.14)) are considered for a network, these constraints are first omitted because a feasible

initial solution is not guaranteed with tight crew base capacities.

Subsequently, the iterative procedure of generating new duties begins. As described

previously, we iterate all days of the planning horizon using variable k and create new

columns for each day. Because we omit constraints (4.13) and (4.14) during initialization,

we have to add them manually. To do so, we first check whether they have been added

in a previous iteration. If this is the case, we solve the linear relaxation of the RMP;

if not, we add them temporarily and then solve the linear relaxation. In the case of a

feasible relaxation, the capacity constraints are added permanently. Otherwise, we solve

the rRMP again without the constraints. Thus, in any case, we achieve a feasible solution

of the rRMP and can obtain the dual values of all constraints related to the variables xj .

Furthermore, if the crew capacity constraints (4.13) and (4.14) are already added per-

manently, we attempt to remove unnecessary columns from the RMP. This should ac-

celerate the solution of the rRMP as well as reduce memory consumption. A column

is marked as unnecessary if, first, it is not a basic variable for a number of contiguous
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iterations (maxAgeofDuties, mAoD) and, second, if its positive reduced costs are smaller

than a predefined threshold (reducedCostsThreshold, rCT ). Moreover, because columns

are solely removed from the RMP but duties from set N̄ are not, we can also reinsert

already deleted columns with the now negative reduced costs. Consequently, favorable

duties are not erroneously excluded from the final solution.

In the next step, we attempt to determine new duties for day k that may improve the

objective function value, i.e., have negative reduced costs. Solving the pricing problem in

an efficient manner is a crucial aspect of every column generation approach. In contrast

to the initial solution procedure, we apply a genetic algorithm that only generates feasible

duties. This solution approach for the pricing problem is explained in further detail in

Section 4.4.3. If the set of new duties with negative reduced costs is not empty, we add

every new duty j to N̄ and the corresponding new column xj to the RMP. To quicken

the solution process, for all new duties, we also check whether it is possible and beneficial

to add similar duties on other days of the planning horizon. Because trips do not occur

every day, the feasibility of duties on all days is not guaranteed. Additionally, it is only

beneficial to add a duty with negative reduced costs. If either is true, we add a similar

but new duty and column. If no new duties with negative reduced costs are found by

solving the pricing problem, we increase l by one.

Finally, variable k is updated, and the next iteration starts if no termination criterion

is reached. We apply two different termination criteria to stop the generation of new

columns. First, we use the criterion introduced in Mourgaya / Vanderbeck (2007).

There, the loop stops if i = |K|, meaning that no new duties with reduced costs were

created for K consecutive iterations. However, this approach may lead to considerably

long computing times because we deal with extremely large transportation networks.

Therefore, we apply a time limit as a second termination criterion.

If new columns have stopped being generated, we solve the RMP with all current

columns in N̄ as a mixed integer linear program to obtain a feasible schedule. This

approach is called restricted master heuristic (Joncour et al. 2010) or price-and-branch

(Desrosiers / Lübbecke 2011) and leads to good solutions in reasonable computation

times. As mentioned in cite Joncour et al. (2010), the restricted master heuristic can

result in infeasible problems since the generated columns might be feasible for the rRMP,

but not for the RMP. However, infeasibility is not an issue here because the set N̄ is quite

large. In contrast, the column generation method could be integrated into a branch-

and-price framework to obtain optimal solutions. Unfortunately, this is not viable for

the considered problem sizes as solving one node in the branch-and-bound tree with

column generation could take several hours and many nodes might have to be processed.

Therefore, this approach would exceed reasonable computation times.
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4.4.2 Initial solution

General procedure

Generating an initial solution related to a column generation approach has yet to be

described exhaustively. Chen / Shen (2013) use a vehicle-based approach to generate

sets of potential duties. We will refer to this procedure as a vehicle-based block generator

(VBBG). Hoffmann et al. (2017) describe a trip-based depth-first search within heuristic

limits to create an initial solution. We refer to this procedure as a block generator (BG).

Both procedures are two-stage algorithms consisting of a creating and a combining stage.

For practical applications, a feasible solution that covers each trip at least once is difficult

to find. Therefore, Shen / Chen (2014) use artificial variables. However, an artificial

solution can be assumed to decelerate the solution process. Finally, Janacek et al. (2017)

use shortest path information based on a frame concept for small problems (less than

100 trips). Generating reasonable-sized sets of potential duties has not been discussed

extensively in the literature for large scale crew scheduling.

Older approaches directly discuss the enumeration of all feasible duties, which is fol-

lowed by solving the RMP. Alefragis et al. (1998) use a straightforward depth-first

enumeration. Caprara / Monaci / Toth (2001) combine the enumeration with the use

of time-related shortest path information between nodes in the underlying temporal and

spatial network for improving branching strategies. Goumopoulos / Housos (2004) fo-

cus on the efficiency of the feasibility checks needed for an enumeration and use shortest

path-based information to generate bounds as pruning of the branching tree. Konior-

czyk / Talas / Gedeon (2015) extend this approach by heuristic limits. Clearly, an

enumeration requires an accurate handling of infeasibility, whereas an initial solution can

handle this more generously. Therefore, we first need to clarify different types of infeasi-

bility and their impact on the algorithm.

An initial solution can be infeasible because of three reasons: trip infeasibility, con-

straint infeasibility, and duty infeasibility. Trip infeasibility (t-inf) is caused by missing or

uncovered trips. For example, a trip with g ≥ 1 (i.e. it must be attended) which is not

part of any duty in N0 causes t-inf. If an initial solution does not fulfill constraints (4.9)

and (4.10) of the rRMP, it falls under constraint infeasibility (c-inf). This infeasibility

is also applicable to constraints (4.13) and (4.14), but as described in Section 4.4.1, we

treat these separately in the subsequent column generation process. We do not consider

these for generating the initial solution. The duties of the initial solution are referred to

as blocks. A block represents a symmetrical (i.e., starting and ending at the same crew

base) and ordered list of trips without taking legal requirements into account, such as

maximum working time or other time restrictions. Finally, duty infeasibility (d-inf) de-
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scribes blocks that violate one of these restrictions but could theoretically be attended by

a conductor. c-inf and d-inf can be fixed during the column generation approach, whereas

t-inf prevents the start of this, because constraints (4.2) and (4.3) cannot be fulfilled and

even the rRMP is infeasible. Thus, we extend the initial solution approach using a repair

procedure (RP). The result is a three stage procedure consisting of creating, repairing,

and combining, as illustrated in Figure 4.3.

Create-Stage
(BG, VBBG)

Repair-Stage
(RP)

Combine-Stage
(PP) initial solution

Figure 4.3: Flowchart of the proposed initial solution procedure

For the Combine-Stage, we have used a simple pre-processing (PP). A set of blocks is

chosen randomly from the solution pool. For each of these blocks, a matching downstream

block is searched for by requiring a break between both. This strategy is suitable for the

considered problem sizes in regional transport.

Improved create-stage

In the first step, we performed several tests for BG described by Hoffmann et al. (2017)

using different settings for the parameters minD, maxD (minimum and maximum duration

of a block in minutes; generated by the BG), maxT (maximum accepted transition time

between two subsequent trips in a block), and maxS (number of subsequent trips; limits

the number of possible branches at each vertex of the branching tree). These preliminary

tests showed that each network requires a different parameter setting for a suitable initial

solution. Determining the appropriate setting is occasionally very time consuming.

To avoid this, we extend the BG by introducing three levels for the Create-Stage, i.e.

three different search strategies are used for the BG. Therefore, the generator is called

three times for each trip i ∈ ME , using ME ⊆ M , which contains all trips starting at

any crew base. Hoffmann et al. (2017) set several network-specific limits to reduce the

branching tree used for the depth-first search. We use the fixed setting BGminD−maxD
maxS−maxT =

BG120−360
6−120 for each level. Note that using this setting for the original BG would result in

an initial solution that is far too large. To prevent this, we introduce variables BlockLimit,

Depth, and Random, which focus on the branching tree itself. The BG is implemented

recursively and is based on the Extend method shown in Algorithm 4.1. On each level, the

method is called for the first time for each trip i ∈ ME with different values for Random

and Depth. Variable ct is initialized with 0 for each trip on each level. The first if branch

(line 3-6) adds appropriate blocks to the initial solution N0. The second if branch (line

7-18) is used to recursively extend the blocks with different strategies for each level. For
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Algorithm 4.1: Extend(oldBlock, newTrip)
Data: parameters: minD, maxD, maxS, maxT global variables: ct, BlockLimit, Depth, Random

1 currentBlock = Copy(oldBlock);
2 Add newT rip at the end of currentBlock
3 if currentBlock is symmetrical & minD≤Duration(currentBlock)≤maxD then

4 Add currentBlock to N0

5 increment ct by one

6 end

7 if Duration(currentBlock)≤maxD & ct<BlockLimit & TripCount(currentBlock)<Depth then

8 determine maxS subsequent trips of newtrip with transition time ≤ maxT
9 if Random then

10 for determined subsequent trips t of newT rip in random order do

11 Extend(currentBlock, t)
12 end

13 else

14 forall determined subsequent trips t of newT rip sorted by departure time do

15 Extend(currentBlock, t)
16 end

17 end

18 end

levels one and two the else branch (line 13-17) is used. For level three the if-branch is

used (line 9-12).

The underlying idea of Depth is quite similar to the maximum distance to the depot

introduced by Koniorczyk / Talas / Gedeon (2015). The value of Depth in Level 1 is

based on the average duration of a trip l̄ and is calculated by 360/l̄. For Level 2 and Level

3, the average number of trips in a block as a result of Level 1 is used. To avoid outliers

on certain special networks, the value of Depth in Level 1 is fixed in the range [10, 25],

which is suitable for all the considered networks in this paper. The value of Random is

false for Level 1 and Level 2 but is true for Level 3.

The value for BlockLimit is calculated by |M |·|E|·2
|ME |

and is constant for each level. This

equation ensures that the total number of blocks generated by each level of the generator

is controllable and network-specific. In addition, an equal distribution of blocks over the

underlying temporal and spatial network is achieved.

Figure 4.4 illustrates a branching tree and the explored solution space for each level.

To provide a clear presentation, contrary to the implementation, maxS is set to two.

This setting reduces the tree to a binary structure. We assume a value Depth of six in

Level 1. In approximate terms, maxS limits the width of the branching tree, and Depth

limits the height. Considering maxT and maxD, some branches can be ignored (dotted

arrows). Note that the length of an arrow is not related to the length of the corresponding

trip. Arrows (i.e., trips) leaving a node are sorted from left to right by increasing order

of transition times. Further, we assume a value of seven for BlockLimit. Finally, each

connection between two crew base nodes is assumed to have a duration that is longer

than 120 minutes. For practical instances, minD prevents the generation of overly short

blocks.
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Figure 4.4: Depth-first branching trees (BlockLimit = 7, maxS = 2)

The result of Level 1 is a set of seven blocks with an average trip count of five (4.857;

rounded to the nearest integer), which is why the value of Depth is reduced to five for the

following levels and the upper arrows and nodes become irrelevant (gray). Since Random

is false in Level 1 and Level 2, the explored search space is on the left side of the tree

because subsequent trips are chosen by a minimum transition time. By contrast, Level 3

is random based, and the exploration space becomes less organized. For Level 1 and Level

2, the illustrated results are deterministic; for Level 3, the result is merely an example.

Repair-stage

To ensure the feasibility of the RMP, the solution pool generated by the creating stage

has to be checked for uncovered trips to fulfill constraints (4.2), (4.3), (4.4) and (4.11)

or (4.12). For each uncovered trip, finding a single block that includes the trip is suf-

ficient. Avoiding d-inf by creating only feasible duties is unnecessary in this stage; this

is assumed to be achieved by the genetic algorithm (see Section 4.4.3). As observed by

Caprara / Monaci / Toth (2001) and Goumopoulos / Housos (2004) in relation to

their enumeration approaches, using the shortest paths is a suitable method for connecting

a sequence of trips to a crew base. Extending this idea, we use the algorithm introduced

by Dijkstra (1959) to find two paths for each uncovered trip. To this end, we use the
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underlying space-time network, as shown in Figure 4.5. Each node represents a distinct

Time

Crew base
, ,

Relief points

Trip Transition
time

Uncovered trip

2nd set of paths 1st set of paths

Figure 4.5: Spatial and temporal network for the shortest path repair procedure

combination of time and a relief point or a crew base. Trips (change the place) and tran-

sition times (stay in one place) are represented by arcs and are weighted by the length of

the travel or transition time. Thus, all possible paths between two nodes have the same

duration. To avoid t-inf, the path that is chosen by the procedure does not matter. To

obtain productive paths, each transition time longer than one hour is penalized by high

weight. Starting from the arrival node of an uncovered trip, we search for the shortest

path to each crew base node later in time. Analogously, the departure node of an un-

covered trip must be reached from an earlier crew base node. Therefore, this search is

carried out backward in time. Each arc is reversed, and starting at the departure node

of an uncovered trip, we search for the shortest path to each crew base earlier in time.

For each crew base, this process results in two sets of paths (there and back). One path

is chosen randomly from each set for each crew base, and the resulting block of joining

both paths and the uncovered trip is added to N0. Note that the presented initialization

of Janacek et al. (2017) aims at choosing more than one set from each path. However,

the instance sizes considered in this paper are too large to use this approach.

If at least one set is empty, the trip cannot be covered by a duty beginning at the

concerned crew base; if this applies for all crew bases, the trip is not coverable. For

practical application, this approach provides essential information for crew planners, e.g.,

the need for additional deadheads. By using this procedure, the validation of real-world

data is simplified, and identifying critical trips or other issues in the network is possible.

Preliminary tests

A suitable initial solution needs to be of a reasonable size and quality and simultaneously

generated within an acceptable computing time. This trade-off requires a detailed view

of different strategies on the Create-Stage. Furthermore, following Chen / Shen (2013),

we implemented and tested a VBBG. The VBBG creates all symmetrical blocks without

a change in vehicle and a working time lower than the given maximum. For a detailed

description of the used networks, refer to Section 4.5.

Table 4.2 provides the results of different initial solution procedures. The first column

indicates the used procedure and parameter in the Create-Stage and the additional stages
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that were carried out. Because the Create-Stage is essential, the table is structured in

groups of three rows that used the same creating parameters. In the first row of a group,

only the Create-Stage was used. In the second and third row, RP was additionally carried

out. PP was only used as an additional step in the last row (all three stages are carried

out). The computing time required to solve the RMP first, t0, is a suitable indicator for

the expected time needed for one iteration of the following column generation approach

and increases proportionally with the size (i.e. column size in Table 4.2) of the initial

solution N0. The corresponding objective value obj0 equals the total costs of the crew

schedule. In the first group of rows, the BG setting of Hoffmann et al. (2017) is used.

The second group shows the results for using the VBBG as the Create-Stage. Note that

for the first two groups in each case, only the approach used in the first line is identical

to the literature. In the third group (1lvlBG), only Level 1 is used. In the fourth group

(2lvlBG), Level 1 and Level 2 are carried out. In the last group (3lvlBG), all three levels

are used.

Table 4.2: Computational results for different initial solution procedures (14 Days)
Network Network Network

N0 I I* N0 II II* N0 III III*

size t t0 obj0 t0 obj0 size t t0 obj0 t0 obj0 size t t0 obj0 t0 obj0

BG120−180
4−60 0.1 2 c-inf t-inf 0.3 3 c-inf c-inf 0.2 3 t-inf t-inf

+RP 0.1 4 2 73.2 3 85.3 0.3 6 c-inf c-inf 0.2 15 3 93.4 5 109.7

+RP+PP 0.2 34 4 8.8 8 10.3 0.3 92 4 45.2 6 45.2 0.2 68 6 41.8 13 51.5

VBBG 6.3 28 267 5.7 t-inf 3.5 17 97 3.1 t-inf 0.9 6 t-inf t-inf

+RP 6.3 176 216 5.5 255 9.5 3.5 75 120 3.1 146 15.0 0.9 32 30 6.7 34 15.5

+RP+PP 6.3 312 254 5.5 283 9.4 3.5 131 98 3.1 96 11.0 1.0 45 32 6.7 38 15.5

1lvlBG 0.2 7 c-inf t-inf 0.1 3 t-inf t-inf 0.1 26 t-inf t-inf

+RP 0.2 9 c-inf c-inf 0.1 5 c-inf c-inf 0.1 31 2 6.0 4 12.1

+RP+PP 0.2 53 14 5.3 28 6.1 0.1 11 4 11.5 13.6 0.1 46 7 3.9 8 8.8

2lvlBG 0.3 9 c-inf t-inf 0.1 4 t-inf t-inf 0.1 42 t-inf t-inf

+RP 0.3 13 c-inf c-inf 0.1 6 c-inf c-inf 0.1 49 3 6.3 5 12.0

+RP+PP 0.3 103 25 5.3 54 6.6 0.1 14 5 11.4 10 13.5 0.1 57 9 3.9 11 8.3

3lvlBG 0.4 12 c-inf c-inf 0.2 5 c-inf t-inf 0.2 63 t-inf t-inf

+RP 0.4 18 c-inf c-inf 0.2 7 c-inf c-inf 0.2 68 6 16.4 10 19.7

+RP+PP 0.4 104 27 5.3 42 5.6 0.2 19 7 4.8 11 5.5 0.2 108 13 3.9 18 4.6

Notation: BGminD - maxD

maxS - maxT
; size: # duties in millions; t: CPU time in sec.; t0: CPU time first rRMP in sec.; obj0: objective

value in millions

The function of each stage can be seen exemplarily for row-group 1lvlBG on network II.

Applying RP avoids t-inf and ensures usability for real-world applications. Analogously,

the need for PP to avoid c-inf can be acknowledged. Note that the computing time of

RP and PP depends on the result of the first stage. The process of searching uncovered

trips (RP) and choosing suitable blocks (PP) slows down with increasing block number

as a result of stage one.

Certainly, using all three levels of the BG yields the best results and outperforms all
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procedures presented in Table 4.2 on networks I, I*, II*, III, and III*. On the one hand,

the objective value is adequate for each network. On the other hand, the size of N0 and the

time needed for the complete three-stage-approach are reasonably small for creating an

initial solution. The best objective values for network II are achieved by VBBG. However,

by considering t and particularly t0 in combination with the related size of N0, the setting

3lvlBG evidently deals best with the underlying trade-off among feasibility, quality, and

size (computing time). Hence, this setting is used for all the considered networks in this

paper. The used parameter values are apparently suitable for a wide range of networks.

Based on these improvements, the following column generation approach can be assumed

to be accelerated by this as well (see Section 4.5.2).

4.4.3 Solving the pricing problem

Solving the pricing problem is one of the most challenging aspects of every column gen-

eration approach. As described in Section 4.4.1, |K| different problems have to be solved

during the algorithm. Based on Hoffmann et al. (2017) and the additional constraints

introduced in Section 4.3.2, the reduced costs for a duty j that starts on day k are given

by

c̄j = cj −
∑

i∈Mk

aijπik −
∑

i∈Mk′

aijπik′ +
∑

e∈E

bjeσek +
∑

e∈E

bjewjσ
FT
ek

− (τj − τmin) · ρmin − (τmax − τj) · ρmax

−
∑

e∈E

∑

t∈T

[

(ljet − bjepet) · γl
et + (bjepet − ljet) · γu

et

]

(4.18)

using k′ = (k + 1) mod |K| as the day after k, πik as the dual value of constraints (4.3),

ρmin and ρmax of (4.9) and (4.10), σek of (4.13), σFT
ek of (4.14), and γl

et as well as γu
et of

(4.15) and (4.16). Finding duties with negative reduced costs under consideration of all

requirements described in Section 4.3.1 represents the complete pricing problem.

In general, the pricing problem can be modeled as a resource constrained shortest

path problem (RCSPP). Irnich / Desaulniers (2005) provide a detailed overview on

several solution approaches for this issue. Because this problem is already an NP-hard

optimization problem, a solution might be considerably time consuming. Furthermore,

they note that an optimal RCSPP solution is merely required in the last pricing step.

Based on the results of Albers (2009) summarized by Hoffmann et al. (2017) in the

context of railway crew scheduling, dynamic programming as a common exact solution

method yields its limits within the single-digit range of trips in a feasible duty. Chen /

Shen (2013) introduce the notion of ignoring the RCSPP by choosing duties with negative
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reduced costs from a reasonably large and pre-compiled pool of promising productive

duties. Moreover, a heuristic solution approach simplifies the integration of newly arising

practical requirements. Therefore, we use an improved genetic algorithm (GA) based on

the description of Hoffmann et al. (2017).

Some enhancements to the proposed algorithm are implemented. To achieve some kind

of variation, the initial population consists of 4
5
·popSize best and 1

5
·popSize randomly se-

lected individuals from the duty pool. The value of popSize is equals |M |, which makes

a reference to the considered network. Liu / Haghani / Toobaie (2010) note the termi-

nation of the GA (in each CG-iteration) when a fixed number of feasible individuals is

created. Because we are only interested in feasible duties with negative reduced costs, our

GA stops immediately if more than 100 new duties (c̄j < 0) have been found. This slows

down the growth of the duty pool in the first iterations, in particular, and ensures the use

of proper dual values. We also vary the number of iterations made in the recombination

phase for each k, depending on the number of new duties that are generated in previous

iterations for k of the column generation approach.

Requiring symmetrical duties in combination with the exclusive use of an OPC leads

to the fact that only duties with the same crew base can be used for each recombination

step. This may result in the unlikely case that trips are permanently assigned to a single

crew base, which happens if a trip is covered only by duties that start at the same crew

base. To avoid this situation, a two point crossover (TPC) is suitable for breaking up

such assignments. The OPC itself is already a complex procedure under consideration of

all temporal and spatial requirements.

Parent 1

Parent 2

7 8 9 10 11 12 13 14 15 16 17

A B C D E E D C H I HC C B A

J C H I HC J J CH I HC J

cp1

cp2

inf-Offspring 1

inf-Offspring 2

7 8 9 10 11 12 13 14 15 16 17

A B C H I HC J J C H I HC J

J C D E E D C H I HC B A

cp3

cp4
7 8 9 10 11 12 13 14 15 16 17

A B C H I HC J J C H I HC C B A

J C D E E D C H I HC J

Offspring 1

Offspring 2

Figure 4.6: Two point crossover

Therefore, we implemented the TPC by calling the OPC twice. As shown in Figure

4.6, duties can be recombined with different crew bases in compliance with conditions

time(cp1) < time(cp3) and time(cp2) < time(cp4) for the associated times of the cutting
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points cp1, cp2, cp3, and cp4. By using the TPC, an exhaustive exploration of the solution

space is ensured. Preliminary tests show that calling OPC with a probability of 50 % and

TPC with 30 % is a suitable setting. For the remaining 20 %, a mutation is done only

on a randomly selected individual. Further, if the OPC was not successful, the TPC

is then called. A mutation for a new individual created by a crossover happens with a

probability of 10 %. The mutation operator itself replaces a randomly selected trip of a

duty with another suitable one. We also tested roulette selection and tournament selection

as variants for choosing individuals for recombination, but no improvements could be seen

for both when compared to random selection.

4.5 Computational analysis

4.5.1 Experimental design

Real-world decision support is only guaranteed if a number of different crew-scheduling

planners benefit from such a system. Therefore, the entire solution approach has been em-

bedded in a client-server architecture. The generated schedules are directly transformable

into action or can be used for a realistic evaluation of different scenarios. The algorithm it-

self was implemented in C#, and all tests were run on an Intel(R) Xenon(R) CPU E5-4627

with a 3.3 GHz clock speed and 768 GB RAM. RMP and rRMP were solved using Gurobi

7.5. Commonly, rRMP during CG is solved using a dual simplex algorithm. However,

Gurobi also provides the barrier method (interior point method, e.g., Bixby et al. 1992).

Rousseau / Gendreau / Feillet (2007) show a clear improvement in computing time

when using an interior point within column generation for a vehicle routing problem with

time windows. The same is true for our instances of the OMCSPAR. Hence, the barrier

method was employed in these tests. The maximum of parallel threads used by Gurobi

was limited to four, whereas the GA was run on a single core. For each run, we limited

the computation time to reasonable values for a tactical decision support system. Col-

umn generation was terminated after six hours, and solving RMP was limited to three

hours. Because the GA is a probabilistic approach, each test was run 10 times. Table 4.3

summarizes all the parameter values used in the presented solution approach.

Table 4.3: Parameter values
Costs Initial Solution Master Problem Pricing Problem

cfix = 2,000 minD = 120 min mAoD = 7 P (OPC) = 0.5
cvar = 50 maxD = 360 min rCT = 1000 P (TPC) = 0.3
cpen = 500,000 maxT = 120 min P (Mutation only) = 0.2
s = 500 maxS = 6 P (Mutation additional) = 0.1

10 ≤Depth≤ 25
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To demonstrate practical applicability, we consider 18 real-world instances with a plan-

ning horizon of two weeks. Table 4.4 provides the relevant data and the specific require-

ments for each network, with set B containing all relief points. Because schedules are

Table 4.4: Considered networks
# trips per attendance rates Constraints

n |B| |E| 0 % 10 % 25 % 30 % 50 % 67 % 90 % 100 % 150 % od (4.11) (4.12) (4.13) (4.14)
I 18 10 972 7,560 1,304
I* 18 10 972 7,560 1,304 •
II 13 4 184 6,312 1,038
II* 13 4 184 6,312 1,038 •
III 15 4 300 6,396 1,566
III* 15 4 300 6,396 1,566 •
IV 11 5 156 3,794 4,326
V 21 6 12,300 340 4,338 •
VI 17 7 174 848 8,614 2,966 •
VII 18 6 1,260 15,034 •
VIII 12 5 716 5,292 1,528 • • •
IX 14 11 182 8,556 1,982 2,172 • •
X 43 10 1,044 13,114 7,704
X* 43 10 1,044 13,114 7,704 •
XI 77 13 1,628 34,208 1,076 3,350

XII 3 2 68 768
XIII 4 2 450 994
XIV 8 3 256 1376

Notation: n: network; |B|: # of relief point; |E|: # of crew bases; od: overlapping duties; (4.11): uniform distribution
trips; (4.12): uniform distribution trains; (4.13): crew base capacity; (4.14): part-time employees

created at the tactical level, distinguishing requirements that characterize the instance

itself, such as sets B, E, and M as well as the attendance rates, is essential. Based on our

experience in hands-on cooperation with DB Regio AG, the requirements given on the

right side of the table are commonly scenario dependent and can be assumed as change-

able at the tactical level. Therefore the table shows both 14 networks and 18 instances.

To restrict the amount of testing within reasonable limits, we have chosen this represen-

tative set of instances. Note that instances I, II, III, and X are each listed twice. Because

Hoffmann et al. (2017) indicate that constraints (4.11) make solving considerably more

difficult(an additional constraint for each trip), we consider all four networks with and

without this requirement. A star (*) indicates that the instance requires uniform distri-

bution for each trip. The table also includes three classic instances with only 100 % trips,

which equals CSPs for train drivers (XII-XIV).

All instances are made publicly available at: https://bit.ly/3dzlWvF. We also pro-

vide a script, which contains the relevant requirements for the duty generation and can

serve to validate generated schedules.

For an evaluation of the improvements of the column generation approach proposed in

Section 4.4, using the approach of Hoffmann et al. (2017) as a benchmark is appropriate

in Section 4.5.2. This is followed by the presentation of the results for all 14 networks in

Section 4.5.2. Because the pricing problem is solved heuristically, we have no information

https://bit.ly/3dzlWvF
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regarding optimality gaps. However, by removing all limits used in Section 4.4.2 from the

BG, we can generate all feasible duties for networks XII, XIII, and XIV in a reasonable

amount of time. Subsequently, solving the unrestricted master problem (URMP) results

in the optimal solution. Hence, we can compare the column generation approach to the

optimal solution for these small instances. For larger instances, we use a productivity

value φ (see, e.g., Gopalakrishnan / Johnson 2005; Jütte et al. 2011), which is also

commonly used in practice. This value is based on the ratio of protected working time

and paid time, each of which is accumulated over all duties of the final schedule and given

by

φ = 1 −
cumulated paid time − cumulated protected working time

cumulated paid time
. (4.19)

Nevertheless, it is merely an auxiliary value to obtain an idea of the solution quality

because productivity is highly dependent on the network’s characteristics. Therefore we

use a reduced version of the arc flow formulation for the complete planning problem

introduced by Hoffmann / Buscher (2019) expanded to a multi-periodic approach for

generating valid lower bounds. This reduced version considers all requirements presented

above, except the average paid time requirements (see RMP, constraints (4.9) and (4.10)),

two rules for positioning breaks during a duty and the integrity constraints. These minor

simplifications help to speed up the calculation of the bound significantly. A detailed

description is available in Section 4.A. In the following we will refer to this as break

relaxation (BR).

4.5.2 Evaluation and comparison of algorithms

Comparison with Hoffmann et al. (2017)

Table 4.5 summarizes the improvements made by the actual approach (A). All values

are the averages of 10 runs. For each instance, two groups of columns exist: on the one

hand, relevant values concerning the column generation steps are displayed (CG); on the

other hand, key values for solving the RMP are given (RMP). The basic approach of

Hoffmann et al. (2017) (H) is used as a basis for evaluating the gained improvements.

First, it should be noted that only the actual approach is able to solve all instances.

For instances where a comparison is possible, this approach also provides better results.

Only network II* is solved by A and H with almost the same quality. The number of

iterations is increased for A by removing columns (Section 4.4.1). This means that after

seven iterations (rCT ), the problem size decreases considerably (|Nit| ≫ |N̂it|). If more

iterations can be performed, the objective value decreases. Only network I is an excep-
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Table 4.5: Comparison with Hoffmann et al. (2017)
network approach

CG RMP

t it |Nit| |N̂it| t OBJ ST D δ LBBR GAPBR

I
H 4.1 846 256 256 2.9 4.861 0.25 0.0

4.358
10.15

A 6.0 2,239 510 53 1.8 4.738 0.05 -2.3 8.04

I*
H - - - - - - - -

4.700
-

A 6.0 1,846 826 75 3.0 5.121 0.09 −∞ 8.23

II
H 4.7 978 726 726 1.5 2.739 0.16 0.0

2.563
6.42

A 6.0 2,887 500 160 0.4 2.719 0.17 -0.8 5.58

II*
H 6.0 12 727 727 3.0 3.258 2.35 0.0

2.688
17.49

A 0.6 281 283 46 3.0 3.069 0.55 -5.8 12.14

III
H - - - - - - - -

3.160
-

A 6.0 3,732 529 97 0.6 3.374 0.27 −∞ 6.35

III*
H - - - - - - - -

3.465
-

A 6.0 1,812 723 144 3.0 3.758 0.32 −∞ 7.81

Notation: H: Hoffmann et al. (2017); A: Actual Approach; t: CPU time in h; it: # of iterations; |Nit|: total # of

generated duties in thousand; |N̂it|: # of used duties in RMP in thousand; OBJ: objective function value in millions;
STD: standard deviation in %; δ: rel. improvement of A compared to H; LBBR: lower bound in millions generated
by BR; GAPBR: optimality gap in % based on LBBR

tion because a much larger solution pool was created in the same time. Furthermore,

computational effort was shifted from rRMP to GA, indicating that more time is used

to explore the solution space (creating columns). This also suggests that the solution

space is searched in a more structured manner because similar or better objective values

are achieved. Furthermore, it is evident that the solution quality could be significantly

improved, particularly for instances with uniform distribution (constraints (4.11)). An

average gap of 8.09 % was achieved across all 6 instances. Note that the uniform distribu-

tion is a very weak constraint for BR. This explains the higher gaps when it is required.

Considering the instance size and the fact that the lower bound is based on a relaxation,

the solution quality can be assessed as very good.

Finally, it should be mentioned that the instances for this test were chosen in such a

way that a comparison with the literature is possible. On the one hand, only requirements

that were also taken into account are included (see Section 4.3.1). On the other hand, the

size and complexity is sufficiently small that the algorithm of Hoffmann et al. (2017)

has a chance to solve it (i.e. is at least able to generate a solution). A detailed analysis

of the impact of the different proposed improvements of our column generation approach

can be found in the Appendix.

Real-world instances

Table 4.6 shows the results for Networks I–XI using the actual approach. On average,

we achieve a productivity φ of 83.7% for all networks. In practice, φ > 80% are assessed

considerably positively by crew-scheduling planners. However, productivity does not rep-

resent an explicit measure for solution quality in each case. In particular, the minimum

paid working time and the average paid time are input parameters that can distort the
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resulting values of φ. If these parameters are too high, long and unproductive duties

might be generated to fit these values.

Table 4.6: Results for considered real-world networks I–XI

tCG tRMP OBJ STD LBBR GAPBR φ 1st

I 6.0 1.8 4.738 0.05 4.358 8.04 89.1
I* 6.0 3.0 5.121 0.09 4.700 8.23 87.5 •
II 6.0 4.2 2.718 0.17 2.563 5.68 88.3
II* 0.6 3.0 3.069 0.55 2.688 12.41 83.2
III 6.0 0.6 3.374 0.27 3.160 6.35 82.7 •
III* 6.0 3.0 3.758 0.32 3.465 7.81 79.4 •
IV 6.0 3.0 5.973 0.14 5.583 6.53 89.2 •
V 6.0 0.3 9.703 0.23 8.780 9.65 65.5 •
VI 6.0 3.0 10.099 0.72 8.830 12.61 88.8 •
VII 6.0 3.0 14.816 0.81 12.687 14.37 85.9 •
VIII 6.0 3.0 5.458 0.11 5.061 7.27 82.3 •
IX 6.0 3.0 14.087 5.83 12.168 13.62 88.7 •
X 6.0 3.0 19.693 0.70 - - 79.1 •
X* 6.0 3.0 21.338 0.70 - - 77.4 •
XI 6.0 3.0 12.205 0.61 - - 89.1 •

Notation: tCG: CPU time column generation in h; tRMP: CPU time RMP in h; OBJ: objective function value in
millions; STD: standard deviation in %; φ(%): productivity of solution from eq. (4.19) in %; LBBR: lower bound in
millions generated by BR; GAPBR: optimality gap in % based on LBBR; 1st: a (heuristic) solution is obtained for
the first time

If overlapping duties are required, these can also lead to distortion of the productivity.

Because only few trains run at night, avoiding longer interruptions by an efficient change

of trains is not always possible. For example, both factors apply to network V. Neverthe-

less, high values of φ are indicators for good solutions. Additionally, for each run of all

instances, the over-fulfillment of attendance rates was lower than 1 %, which also proves

the high efficiency of the gained solutions. Within a time limit of 5 days and the use of

up to 24 threads we were able to generate 12 of 15 valid lower bounds by solving BR for

the instances shown in Table 4.6.1 Again the gap is higher than 10 % for three instances

with uniform distribution (VI, VII and IX). However, very high productivity values φ are

achieved for these instances, so that it can be guessed that the large gaps are caused by

the rather weak lower bound.

Table 4.7 shows the results for the smaller networks XII–XIV. The actual approach was

able to find the same solutions as those gained by solving the URMP for each instance,

indicating that the optimal solution could be determined. If necessary, the column gener-

ation approach was limited to the time used of the exact approach. The gap based on BR

(GAPBR) is in a similar range compared to Instances I-XI. Therefore it can be expected

that even for the very large instances results are obtained which are closer to the optimal

solution than the gap suggests. Note, that the presented approach is also able to solve

small instances to optimality with attendance rates less than 100% as well (see Section

1Note the very large problem sizes. BR(X): 48,127,462 variables; 6,610,369 constraints. BR(X*):
51,333,382 variables; 7,051,711 constraints. BR(XI): 49,835,222 variables; 6,489,146 constraints.
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4.6.1).

Table 4.7: Results for considered real-world networks XII-XIV
t OBJRMP LBURMP GAPURMP LBBR GAPBR

XII 0.4 1.620 1.620 0.00 1.490 7.99
XIII 0.2 3.101 3.101 0.00 2.997 3.38
XIV 1.1 2.324 2.324 0.00 2.193 5.60

Notation: t: CPU time of the presented approach in h; OBJRMP: objective value after solving RMP in millions;
LBURMP: lower bound after solving URMP in millions; GAPURMP: optimality gap based on LBURMP; LBBR: lower
bound after solving BR in millions; GAPBR: optimality gap based on LBBR

In conclusion, it can be said that the presented approach finds optimal solutions for

small instances and performs very well for large instances, taking several practical re-

quirements into account. All tests presented in this section required an accumulated net

computing time of longer than two months.

4.6 Managerial insights for decision makers in the tender

process

4.6.1 Cost effects of varying attendance rates

In this and in the following section, we discuss the effects that arise from the considera-

tion of attendance rates. The objective is to provide better insights into the concept of

attendance rates. Note that this section is interesting for different stakeholders, including

not only railway companies but also principals (i.e., federal states or subsidiary transport

associations). The latter defines the general conditions (including attendance rates and

uniform distribution) for the tendering process. Thus, both sides can better estimate cost

changes owing to modified conditions. First, we analyze the influence of attendance rates

on the total costs of the final schedule.

For the analyses, we manipulate the attendance rates of instances I–III and XII–XIV.

This manipulation is necessary because statements regarding the influence of attendance

rates can only be made if the same network is solved with different rates. If several

attendance rates occur, we unify them. This simplifies the interpretation of the results

immensely.

For the first issue, we start with the small instances XII–XIV because we can solve these

optimally. Figure 4.7 indicates the relation between costs and attendance rates for these

networks. The horizontal axis indicates the attendance rates. The vertical axis shows the

proportional costs in relation to the solution with attendance rates of 100% (g = 1).

In the left graph, attendance rates less than 100 % clearly lead to disproportionate cost
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Figure 4.7: Progression of objective values with increasing attendance rates (small in-
stances)

saving. For example, a halving of the attendance rate (100 % to 50 %) enables cost savings

of more than 50 % because unproductive trips or trip combinations can be avoided. In

other words, those duties that meet the required attendance rates at the lowest costs can

be selected from the set of all possible duties.

In the right graph of Figure 7, this effect can also be clearly observed for attendance

rates higher than 100 %. Thus, for example, a rate of 175 % leads to less than 175 % of

the cost compared to the 100 % solution. In addition, the question arises as to whether

the solutions can be added, i.e., for example, whether the schedule of the 125 % solution

corresponds to the combination of the 100 % solution and 25 % solution. Intuitively, such

a combination would be expected, but the results allow for other conclusions to be drawn.

Because this is difficult to recognize in Figure 4.7, Figure 4.8 shows the results for the

same test on networks I–III. The shape of the curves is analogous to Figure 4.7, but
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200 OBJ
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Figure 4.8: Progression of objective values with increasing attendance rates (large in-
stances)

the bulge is more pronounced. Note that these are heuristic solutions. The differences

between the two sides become much clearer for these instances. Based on the objective
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values, the 125 % solution is clearly not the addition of the 100 % and the 25 % solution.

The final schedules show that this is due to deadheads. Figure 4.9 gives an illustrative

example.

7 8 9 10 11 12 13 14 15 16

A B E D A

F C B E F

Attended trip

Deadhead

Figure 4.9: Deadhead example for g > 100%

Assuming the two duties shown are part of the 100 % solution, then the second one

contains a deadhead. Note that it costs the same regardless of whether or not the third trip

is a deadhead (paid time does not change). For a solution with a rate higher than 100 %

we can change this trip from deadhead to attended trip within the same costs. Therefore,

the value of the corresponding y-variable for this trip changes from one to two. However,

the value of the left side of constraint (4.2) increases automatically (
∑

k∈K

∑

i∈Mk
digyik).

Thus, for the 125 % example only less than 25 % of the kilometers must be additionally

attended. Consequently, less than 25 % of additional costs are incurred.

Additional cost-saving potential results from the fact that with rates higher than 100 %

duty combinations can also be chosen, which have mutually excluded themselves with

100 % because of the resulting deadheads.

4.6.2 Cost effects of less predictable schedules

In the second step, we conduct a more precise investigation on the influence of the two

definitions of uniform distribution. In general, it should be noted that both variants only

affect the solution at attendance rates less than 100 %. For rates greater than or equal to

100 % every trip is still attended.
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Figure 4.10: Progression of objective values depending on uniform distribution
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For the analysis, we solved networks I–III and XII–XIV with and without uniform

distributions for different attendance rates. Figure 4.10 shows the results. The illustration

on the left side are similar to those in Figure 4.7. However, the values are not shown

individually for each instance; instead, the average value was calculated. In contrast to

the previous figures, no structural differences that depend on the instance size could be

found here. Compared to the 100 % solution, the impact on costs seems small and only

relevant for low rates. However, this presentation does not present the interrelations with

sufficient clarity.

The right side shows the results in relation to the solution without uniform distribution

but at the same rate. In the range between 25 % and 100 %, cost increases because of

both types of uniform distribution are relatively moderate. Nevertheless, absolute values

correspond to considerable additional costs and must not be ignored in practice. The

lower the rate, the more extreme is the relative cost increase. The variant in which

each trip must be attended at least once always creates more costs than the train-based

rule. For example, one train contains an average of 2.7 trips for the networks I–III. The

trip-based rule forces each trip to be attended. For the train-based rule, only one of each

train is sufficient. The differences between both variants increase with decreasing rates.

At rates of 5 %, the additional costs correspond to almost the same (train) or double

(trip) the original costs. At rates of 0 %, the optimal solution without uniform distribution

is an empty schedule (no constraint requires an attended trip). Therefore, the cost increase

caused by uniform distribution is infinite.

Finally, in addition to the cost increases, uniform distribution represents a considerable

challenge for planners in practice. In an appropriate form, this can only be dealt with

through automated planning support, as is possible with the approach presented.

4.7 Conclusions and further research

In this paper, we presented a highly sophisticated column generation approach for solving

multi-period CSPs, which is integrated into a running software and used by DB Regio

AG in practice. Further, we focused on the integration of several necessary real-world

requirements. To the best of our knowledge, these conditions have been presented for the

first time.

Moreover, the algorithm itself was accelerated by several adjustments. A holistic con-

sideration of the complete algorithm enabled us to achieve a better solution quality within

reasonable computation times at the tactical planning level. In addition, we were able to

solve some instances for the first time.

In the context of column generation, we also considered aspects in detail that have rarely
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been discussed in the literature to date, such as creating an initial solution, choosing

a suitable setting for solving the rRMP, and distinct optimality gaps. The proposed

algorithm was exemplarily proven to be able to solve 24 real-world problems in regional

rail transport and is used successfully in practice. Additionally, small instances were

proven to be optimally solvable.

Finally, we provided valuable managerial insights into the mode of action of atten-

dance rates. Disproportionate cost savings were shown to be achievable with a smaller

attendance rate.

Nevertheless, several interesting directions remain for future research. First, assessing

the quality of the solution in terms of optimality for large instances would be worth-

while. Because introducing and determining lower bounds (for large instances) end in

a complex optimization problem itself, implementing an exact approach for solving the

pricing problem is necessary. By disregarding the used time limits, an optimal solution

may be obtained through this exact approach if the GA does not create new duties any-

more. Clearly, this approach would be considerably time consuming and only for scientific

interest.

For practical applications, the identification of a better termination criterion for the

column generation could be helpful. Specifically, convergence-based criteria seem suitable.

Furthermore, a detailed discussion on solving the RMP must be carried out. In particular,

heuristic solution approaches have to be investigated. Finally, the proposed algorithm

should be tested for larger networks or for a combination of several networks. If necessary,

integration into a decomposition approach is possible.
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4.A Reduced multi periodic arc flow formulation

Generating a lower bound for crew scheduling problems is a very hard optimization prob-

lem itself. Since the GA still generates new duties even after several days of computing

time in column generation, it seems to be impossible to reach a regular end and get a

lower bound this way. Therefore we solve a relaxation of the complete problem modeled
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as multi-periodic arc flow formulation. The formulation is adapted from Hoffmann /

Buscher (2019) and extended to the multi-periodic approach by generating a graph

for each day of the planning horizon. Figure 4.11 shows the graphs for two consecutive

days enabling overlapping duties. The trip arcs between the gray marked nodes A and C

represent the same trip which can be covered in both graphs (i.e. by both days; black:

previous day; gray: next day). Beside this we refer to Hoffmann / Buscher (2019) for

a detailed explanation of the graph.

1 a.m. 1 p.m. 1 a.m. 1 p.m. 1 a.m.

A C

C A

A C

A B

B A

A C

C A

A C

A B

B A

A

C

A

C

A

C

A

C

k
k + 1

trip arcs source arcs sink arcs waiting arcs sink-source arcs

Figure 4.11: Example graph with trip, source, sink, waiting and sink-source arcs

Further, Table 4.8 shows the used notation. Again this is very similar to Hoffmann /

Buscher (2019). For generating lower bounds we can omit the node-related resources.

Based on this notation we introduce a relaxation for the complete planning problem

given by (4.20)–(4.40). As mentioned in Section 4.5.1 this corresponds to a reduced

formulation of Hoffmann / Buscher (2019) expanded to a multi-periodic approach.

Because of the strong similarity the following description is very briefly.

[BR]: min
∑

k∈K



cvar ·
∑

c∈C

ptck + cfix ·
∑

c∈C

∑

q∈Qk

∑

j∈Vk

xqjck



 (4.20)

s.t.
∑

(i,j)∈Ak

tijxijck − (30uck + 15vck) ≤ ptck ∀ k ∈ K, c ∈ C (4.21)

tmin ·
∑

q∈Qk

∑

j∈Vk

xqjck ≤ ptck ∀ k ∈ K, c ∈ C (4.22)

∑

k∈K

∑

(i,j)∈Fk

dijgkyijk − g
∑

k∈K

∑

(i,j)∈Fk

dijgk ≥ 0 ∀ g ∈ G (4.23)
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∑

c∈C

xijck ≥ yijk ∀ k ∈ K, (i, j) ∈ Fk (4.24)

yijk ≥ xijck ∀ k ∈ K, (i, j) ∈ Fk, c ∈ C (4.25)
∑

h∈Vk:(h,i)∈Ak

xhick −
∑

j∈Vk:(i,j)∈Ak

xijck = 0 ∀ k ∈ K, i ∈ Vk, c ∈ C (4.26)

∑

(i,j)∈Rk

xijck ≤ 1 ∀ k ∈ K, c ∈ C (4.27)

∑

(i,j)∈Ak

tijkxijck ≤ tmax ∀ k ∈ K, c ∈ C (4.28)

∑

(i,j)∈Ak

sijkxijck ≤ smax ∀ k ∈ K, c ∈ C (4.29)

∑

(i,j)∈Ak

sijkxijck ≥ 361 · uck ∀ k ∈ K, c ∈ C (4.30)

∑

(i,j)∈Ak

sijkxijck − (smax − 360)uck ≤ 360 ∀ k ∈ K, c ∈ C (4.31)

∑

(i,j)∈Ak

sijkxijck ≥ 541 · vck ∀ k ∈ K, c ∈ C (4.32)

∑

(i,j)∈Ak∈K,

sijkxijck − (smax − 540)vck ≤ 540 ∀ k ∈ K, c ∈ C (4.33)

∑

(i,j)∈Ak

bijkxijck ≥ 30 · uck ∀ k ∈ K, c ∈ C (4.34)

∑

(i,j)∈Ak

bijkxijck ≥ 45 · vck ∀ k ∈ K, c ∈ C (4.35)

xijck ∈ {0, 1} ∀ k ∈ K, (i, j) ∈ Ak, c ∈ C (4.36)

yijk ∈ {0, 1} ∀ k ∈ K, (i, j) ∈ Fk (4.37)

ptck ∈ R
+ ∀ k ∈ K, c ∈ C (4.38)

uck ∈ {0, 1} ∀ k ∈ K, c ∈ C (4.39)

vck ∈ {0, 1} ∀ k ∈ K, c ∈ C. (4.40)

Objective (4.20) minimizes the total costs of all duties over all days of the planning

horizon. The paid time ptck for each duty is calculated by constraint (4.21). To avoid

very short duties constraints (4.22) set a lower bound for ptck. Constraints (4.23) ensure

the coverage of the attendance rates. Constraints (4.24) and (4.25) are linking constraints

for variables xijck and yijk. The flow conservation for each duty is given by constraints

(4.26). Constraints (4.27) ensure that each conductor returns to the crew base only

once. The duty time and the protected working time are restricted to the given limits

by constraints (4.28) and (4.29). Constraints (4.30) set variable uck to zero if no break

is required. Constraints (4.31) cause the opposite if the protected working time is bigger
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than 6 hours. Constraints (4.32) and (4.33) are used for a 45 minute break analogously.

If a break is required, constraints (4.34) and (4.35) ensure that enough time is available.

Finally constraints (4.36)–(4.40) state the domains. Note for generating a lower bound

the binary constraints are relaxed and we solve the linear program only.

The average paid time (see constraints (4.9) and (4.10)) and two positioning rules for

breaks during a duty are not considered in this formulation. The first prohibits breaks

within the first and last two hours of a duty. The second requires a break after no more

than 6 hours of protected working without a break. Both are modeled by Hoffmann /

Buscher (2019) in detail. The average paid time constraints link all x variables in two

constraints. The positioning rules require the tracking of accumulated resources variables

across all nodes of the graph for each duty. Since both makes solving of the arc flow

formulation considerably more difficult we relax these. The resulting lower bounds are

valid because not considering them leads to a decrease of the bound (i.e., the minimum

required costs are underestimated). Note, that the consideration of the positioning rules

are not mentioned explicitly in Section 4.3, because it is only a additional feasibility check

in the GA without novelty. Nevertheless both are considered during the hybrid solution

approach.

The optional constraints for both types of uniform distribution are given by constraints

(4.41) and (4.42).

∑

(i,j,k)∈Tm

yijk ≥ 1 ∀m ∈ M (4.41)

∑

(i,j,k)∈Tz

yijk ≥ 1 ∀z ∈ Z (4.42)

All other optional constraints described in Section 4.3.2 (e.g. crew base capacity) are not

considered for generating lower bounds. Obviously a consideration in future approaches

would further improve it. Some networks require a minimum break time of 30 minutes

without interruptions. Again this is not mentioned explicitly in Section 4.3, because it is

only a additional feasibility check in the GA without novelty. Nevertheless it is considered

during the hybrid solution approach. For generating a lower bound this can be modeled

by constraints (4.43).

∑

(i,j,k)∈Ak:bijk≥30

xijck ≥ uck ∀ ∈ M (4.43)

Finally we adapt three valid inequalities for the multi periodic formulation: symmetry

breaking constraints, prohibiting the use of parallel arcs and preassigning 100% trips to

conductors (Constraints (47), (49) and (50) in Hoffmann / Buscher (2019)).
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Table 4.8: Sets, parameters and variables

Sets Parameters
K periods (days) dijgk distance of trip arc (i, j) with rate
M trips g on day k

Tm trip arcs of all days of trip m tijk duty time of arc (i, j) on day k

Tz trip arcs of all days of train z sijk protected working time of arc (i, j)
Vk nodes on day k on day k

Qk sources on day k bijk possible break time of arc (i, j)
Sk sinks on day k on day k

Ak arcs on day k tmin minimum paid time
Fk trip arcs on day k tmax maximum duty time
Rk sink-source arcs on day k smax maximum protected working time
C set of conductors cfix fixed costs per duty
G set of attendance rates cvar variable costs per minute

Decision variables

xijck =

{

1, if conductor c uses arc (i, j) on day k,

0, otherwise

yijk =

{

1, if trip arc (i, j) is in solution on day k,

0, otherwise

uck =

{

1, if protected working time of conductor c is > 360 on day k,

0, otherwise

vck =

{

1, if protected working time of conductor c is > 540 on day k,

0, otherwise

ptck paid time for conductor c on day k

4.B Evaluation of improvements of the solution approach

Figure 4.12 illustrates the results for testing the extensions of our column generation

approach separately from each other. Setting Ext1 represents the basic approach of

Hoffmann et al. (2017) extended by the general adjustments of the column generation

framework only (see Section 4.4.1). Settings Ext2 and Ext3 represent this approach with

the adjustments for creating an initial solution (see Section 4.4.2) and solving the pricing

problem (see Section 4.4.3). We also consider the proposed approach (a combination of

all extensions). The figure shows extension-wise resulting objective values of 10 runs for

each instance.

The algorithm of Hoffmann et al. (2017) as well as the extensions Ext1 and Ext3

are not able to generate feasible initial solutions for all networks. For networks I* and

III*, not all trips could be scheduled in blocks to meet constraints (4.11). For network

III, this applies for constraints (4.2) with g = 100%. These results are marked with
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Notation: OBJ : objective function value in millions; t-inf: trip infeasibility, see Section 4.4.2

Figure 4.12: Comparison of improvements

t-inf. This clarifies that the initial solution procedure (Ext2) is essential to be able

to solve real-world networks. In addition, this improves the solution quality for those

instances where a comparison is possible (I, II, II*). The extensions of Section 4.4.1

(Ext1) seem most effective for solving instances requiring uniform distribution, see e.g.

network II*. Although at this point the statement is only supported by one instance, we

were able to observe this effect for many real-world instances during the cooperation with

DB Regio AG. These adjustments speed up the process of solving the rRMP, whereby a

significant higher number of iterations can be achieved. This results in lower objective

values for instances with uniform distribution. In contrast, only convergence is accelerated

for instances without uniform distribution. Although the GA improves the solution for

several instances significantly (Ext3), it does not seem to be a stand-alone improvement.

This is because the performance of the GA depends on the quality of the initial solution.

Table 4.9 shows the average computing times for each algorithm. It should be noted

that faster computing times can only be observed with the combined consideration of

all three extensions. This applies to both column generation and solving the RMP. The

individual extensions accelerate the solution only for individual instances. In general, the

combination of all three extensions achieves the best results for all networks. At this
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Table 4.9: Average computing times - algorithm extensions
H Ext1 Ext2 Ext3 A

CPU
CG

CPU
RMP

CPU
CG

CPU
RMP

CPU
CG

CPU
RMP

CPU
CG

CPU
RMP

CPU
CG

CPU
RMP

I 2.6 1.9 2.2 1.8 2.3 0.6 3.7 2.5 2.3 0.8
I* - - - - 6.0 3.0 - - 6.0 3.0
II 4.7 1.5 4.9 1.0 2.6 1.0 5.5 0.9 4.6 0.1
II* 6.5 3.0 3.4 3.0 2.2 3.0 6.3 3.0 0.6 2.8
III - - - - 6.0 0.2 - - 3.9 0.0
III* - - - - 6.0 3.0 - - 6.0 3.0

Notation:
CPU
CG

: CPU time column generation in hours; CPU
RMP

: CPU time integer
RMP in hours; H: Hoffmann et al. (2017); A: Actual Approach.

point, it can be observed that the improvements work very well.



5 Daily distribution of duties for crew

scheduling with attendance rates: a

case study

Abstract

The railway crew scheduling problem with attendance rates is particularly relevant for

the planning of conductors in German regional passenger transport. Its aim is to find a

cost-minimal set of duties. In contrast to other crew scheduling problems, only a given

percentage of trains has to be covered by personnel. As a result, existing solution ap-

proaches for this complex planning task often generate schedules in which the number

of duties per day varies significantly. However, schedules with an uneven distribution

are often not applicable in practice, as an proper assignment of duties to conductors

becomes impossible. Therefore, we discuss several ways how an even distribution can

be considered in a column generation solution method, namely post-processing and inte-

grated approaches. In addition, the daily distribution is also examined for each depot,

where a given number of conductors may be assigned to. In a case study the presented

approaches are examined and compared for three real-world transportation networks. It

is shown that without much additional computational effort and only a minor increase of

costs schedules with evenly distributed duties can be gained. Especially the depot-based

integrated approaches show promising results. Hence, this study can contribute to an

improved applicability in practice of automated railway crew scheduling.

Reference

Published paper: M. Scheffler / J. S. Neufeld (2020): Daily Distribution of Duties

for Crew Scheduling with Attendance Rates: A Case Study. In: International Conference

on Computational Logistics. Springer, pp. 371–383.
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5.1 Introduction

Crew scheduling is a major planning step in the operation of a railway network. Its aim is

to find a cost-minimal set of feasible duties for personnel. This schedule has to satisfy all

legal regulations (e.g., working hours act) as well as operating conditions, and, at the same

time, must enable the staff to fulfill all necessary tasks. Especially for train drivers and

conductors an efficient deployment of personnel is a crucial aspect for railway operators.

On the one hand, many European railway companies face an increasing shortage of skilled

workers. On the other hand, together with costs for the rolling stock personnel costs are

one of the two major operational cost components (Jütte / Thonemann 2012; Heil /

Hoffmann / Buscher 2020).

Crew scheduling is based on the preceding timetabling and rolling stock rostering.

Duties are usually generated as anonymous shifts, i.e., they still have to be assigned

to specific employees in the following crew rostering step (Hoffmann et al. 2017). A

challenge arising when implementing automated crew scheduling approaches in practice

is that for the sake of simplification and efficiency usually some practical restrictions are

not integrated into the underlying model. This, however, can lead to the problem that

generated schedules are very cost-efficient but not applicable in reality.

One of these aspects, that came up during a long-term crew scheduling project at

DB Regio AG in Germany (Neufeld 2019), was an uneven daily distribution of duties

for conductors. This is especially critical in regional passenger transport in Germany,

where commonly attendance rates have to be taken into account. This means that only

a given percentage of trips has to be attended by a conductor (Hoffmann 2017), which

often results in a lower number of duties on certain days. This can lead to infeasibility

of the whole schedule due to several reasons. For example, collective labor agreements

may define a maximum percentage of duties on weekends, which may be conflicting with

aim to find a cost-minimizing schedule. Furthermore, if the duties are concentrated on

particular days of the week, the schedule complicates the downstream planning step of

crew rostering. Possibly an assignment of conductors to duties is not possible legally.

Despite these challenges, a consideration of an even distribution of duties is still missing

in crew scheduling approaches.

Note, in general, the personnel capacity of a network or a depot, where a given number

of conductors is located, is measured by a maximum number of duties per week. This

measure can easily be integrated into crew scheduling models (Hoffmann / Buscher

2019). However, these constraints cannot be used for new networks, as no existing data

is available for the number of conductors. Furthermore, this only sets an upper bound,

but this does not prevent considerable fluctuations in the distribution.
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The goal and major contribution of the study at hand are now twofold: First, we

discuss several ways how an even distribution can be integrated in models for the crew

scheduling problem with attendance rates (CSPAR) to generate applicable schedules for

practice. Second, we present a case study for real-world railway networks to compare these

different approaches regarding solution quality and to show the impact and relevance of

an (un-)even distribution of duties in practice.

Therefore, the paper is structured as follows: In Section 5.2 the considered CSPAR is

defined and a basic column generation approach from literature is presented. Furthermore,

the relevance and challenges regarding an even distribution of duties per day are explained

in more detail. Section 5.3 discusses different measures for evaluating the distribution of

duties as well as ways of integrating it to the column generation framework, namely an

integrated planning and post-processing. A case study with computational experiments

on three real-world networks serves as evaluation of the proposed methods and the impact

of uneven distributions of duties in Section 5.4. Finally, the results are summarized and

future research opportunities are pointed out in Section 5.5.

5.2 Distribution of duties in railway crew scheduling

5.2.1 The railyway crew scheduling problem with attendance rates

The CSPAR is defined as task to find a cost-minimizing schedule of duties for conduc-

tors in railway passenger transport for a given planning horizon. Various algorithms

have been presented to solve this complex planning problem and nearly all of them

have been developed for real-world railway networks in different countries (for a de-

tailed overview see Heil / Hoffmann / Buscher 2020). Among these two major mod-

eling approaches can be identified: network flow formulations (e.g., Şahin / Yüceoğlu

2011; Vaidyanathan / Jha / Ahuja 2007) and set covering or set partitioning mod-

els (e.g., Abbink / Wout / Huisman 2007; Jütte / Thonemann 2012; Chen / Shen

2013). Most studies have in common that large-scale problems have to be solved, while

many practical restrictions are considered. However, so far the CSPAR has only been

considered with the second approach. Therefore, we present a simplified MIP formulation

based on Hoffmann et al. 2017, which models the CSPAR as set covering problem and

makes use of a column generation approach. For an overview of column generation itself,

we refer to Lübbecke / Desrosiers 2005.

The planning horizon is given by a set of several days k ∈ K (usually one or two weeks).

A trip i ∈ M is the smallest planning entity, with M being a set of all trips in the railway

network. Each trip is defined by a departure and arrival time as well as a departure and
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arrival station, and is a result of the preceding timetabling. A duty j ∈ N , with N being

a set of feasible duties, is defined by a list of consecutive trips i ∈ M , added by required

rest times, train-related services or walks if trains are changed. Each duty represents a

shift or working day and has to meet all legal and technical restrictions (for a detailed

description of these see Hoffmann / Buscher 2019; Jütte et al. 2011).

Each trip i ∈ M may exist on several days of the planning horizon, so that Mk is defined

as subset of M with all trips starting on day k. Likewise, Nk is a subset of N , containing

all duties starting on day k. The matrix A ∈ {0, 1}|M |×|N | contains all duties as columns,

with aij = 1 if duty j ∈ N covers trip i ∈ M and 0 otherwise.

Each duty j leads to given costs cj based on its paid working time. If the binary decision

variable xj = 1, duty j is chosen in the solution schedule, 0 otherwise. The second binary

decision variable yik is 1 if trip i is attended on day k. Attendance rates are given by the

transportation contract and defined for each trip i. The given rate g ∈ G of attended

trips, with G representing a set of all attendance rates and g ∈ [0, 1], is based on the

total number of attended kilometers. Therefore, the distance dig of trip i ∈ M is used to

calculate its fulfillment.

Based on this notation we use the restricted master problem (RMP):

[RMP]: min
∑

j∈N

cjxj (5.1)

s.t.
∑

k∈K

∑

i∈Mk

digyik ≥ g
∑

k∈K

∑

i∈Mk

dig ∀ g ∈ G (5.2)

∑

j∈Nk

aijxj ≥ yik ∀ k ∈ K, i ∈ Mk (5.3)

xj ∈ {0, 1} ∀ j ∈ N (5.4)

yik ∈ {0, 1} ∀ k ∈ K, i ∈ Mk (5.5)

The column generation approach is designed straightforward and based on Hoffmann

et al. 2017. Based on an initial solution the linear programming relaxation of RMP is

solved in each iteration. Let pik be the dual value of Constraints (5.3), then the reduced

costs are calculated by Equation (5.6):

c̄RMP
j = cj −

∑

i∈Mk

aijπik (5.6)

Subsequently, the pricing problem is solved to find new duties with negative reduced costs,

which potentially further improve the objective value. As described by Abbink / Wout /

Huisman 2007 it can be decomposed in K independent problems. In each iteration of

column generation the pricing problem of a different day is solved by a genetic algorithm
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using the reduced costs as fitness. It searches for new duties with negative reduced costs.

These are added to N and the algorithm moves on to the next iteration. The column

generation terminates as soon as no new duties with negative reduced costs are found for

the entire planning period or a given time limit is reached. The final schedule is obtained

by solving RMP. For details we refer to Hoffmann et al. 2017.

5.2.2 Challenges regarding the distribution of duties

Before automatically generated schedules can be implemented in practice, often minor

manual adjustments are necessary, since it is neither advisable nor possible to integrate

every practical detail in the mathematical model. But sometimes these necessary modifi-

cations can be very time-consuming or even be not manageable by a human planer, e.g.,

if a minor aspect leads to infeasibility of the whole schedule.

This can be the case for an uneven daily distribution of duties which is especially rel-

evant for crew scheduling with attendance rate. Attendance rates are commonly found

in German regional passenger transport (Hoffmann 2017) and are also the focus of this

study. If all trips in a network have to be attended by personnel, the daily distribution

of duties is mostly predefined by the trips of a network. In contrast, if only a certain per-

centage of trips needs to be covered, conventional algorithms regularly generate schedules

with unevenly distributed duties. The example given in Figure 5.1 illustrates this issue

for a network with two stations A and B. Here, there is a trip from A to B and back only

in the morning (upper row) and in the afternoon (lower row). We further assume that

this network leads to a set of 14 feasible duties (7 in the morning, 7 in the afternoon) with

identical costs. Each trip has an attendance rate of 50 %. Since all trips have the same

distance, exactly seven duties must be selected. For an even distribution over the week a

worst case example is choosing duties of the first half of the week only (marked with gray

color). In practice the distribution is random and causes considerable problems for the

planners when assigning personnel to the duties.

Mo Tu We Th Fr Sa Su

A B A
A B A

A B A
A B A

A B A
A B A

A B A
A B A

A B A
A B A

A B A
A B A

A B A
A B A

Figure 5.1: Example for the daily distribution of duties

Use cases in practice have a much higher complexity than the chosen example, espe-

cially if duties contain trips with different attendance rates. Furthermore, the demanded

distribution of duties might also follow different predefined patterns. Therefore, complex
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manual planning steps can be necessary regularly to generate or manipulate a feasible

schedule. But due to the complexity of the crew scheduling problem with attendance

rates (CSPAR) an automated decision support is necessary.

5.3 Solution approaches

5.3.1 Measuring the distribution of duties

Measuring the distribution of duties can be done by using the standard deviation (STD) of

the daily number of duties. For a simplified notation we introduce the following definitions.

The number of all duties can be counted by X and is determined by Equation (5.7). The

number of all duties on day k can be counted by Xk and is determined by Equation (5.8).

X =
∑

j∈N

xj (5.7)

Xk =
∑

j∈Nk

xj =
∑

j∈N

bjk · xj ∀ k ∈ K (5.8)

Note, parameter bjk is introduced for an easy calculation of the reduced costs in Section

5.3.2. It becomes 1 if duty j takes place on day k.

For a practical application, minimizing STD is not always desirable. Often the timetable

on weekends differs from the timetable on working days, so a different number of duties

in both time periods is desired. Because of this, we aim for a given ratio pk of duties per

day k ∈ K, i.e.,
∑

k∈K
pk = 1. In case of minimizing STD the parameter pk equals 1

|K|
for

all k ∈ K. We will refer to this generalization as minimization the average deviation from

the targeted distribution (AD). Based on this, STD and AD are given by statement (5.9).

STD =

√

√

√

√

∑

k∈K

1
|K|

(

Xk −
1

|K|
X

)2

→ AD =

√

√

√

√

∑

k∈K

1
|K|

(Xk − pkX)2 (5.9)

AD is hard to optimize because it is not linear. Without changing the goal of the opti-

mization, we can replace the square root and the power of two by using the absolute value

for the result of the subtraction. Furthermore, it does not matter whether we minimize

the average or the sum. Hence, it is also possible to minimize the cumulated deviation of

the targeted distribution (CD) without the constant 1
|K|

, leading to the Objective (5.10):

min AD → min CD =
∑

k∈K

|Xk − pkX| (5.10)
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By using ok as exceeding and uk as deceeding of the targeted number of duties on day

k, this can be linearized to:

min
∑

k∈K

uk + ok (5.11)

s.t. pkX − Xk + ok ≥ 0 ∀ k ∈ K, (5.12)

Xk − pkX + uk ≥ 0 ∀ k ∈ K, (5.13)

uk, ok ≥ 0 ∀ k ∈ K. (5.14)

However, reaching a targeted distribution of duties over the week does not automatically

lead to a corresponding distribution for each depot. This point is decisive for practical

applications, as the conductors are assigned to depots. Therefore, the approach described

above can be extended on the basis of the depots. Again, for a simplified notation we

introduce some definitions. The number of all duties starting in depot e can be counted

by Xe and is determined by Equation (5.15). The number of all duties starting in depot

e on day k can be counted by Xek and is determined by Equation (5.16).

Xe =
∑

j∈N

bjexj ∀ e ∈ E (5.15)

Xek =
∑

j∈Nk

bjexj =
∑

j∈N

bjkbjexj =
∑

j∈N

bjekxj ∀ e ∈ E, k ∈ K (5.16)

Again parameter bje is introduced for an easy calculation of the reduced costs in Section

5.3.2. It becomes 1 if duty j starts on depot e. In the following we use bjek as the product

of bjk and bek. Based on this we can minimize the depot based CD, referred to as dCD,

by Objective (5.17):

min
∑

e∈E

∑

k∈K

uek + oek (5.17)

s.t. pekXe − Xek + oek ≥ 0 ∀ k ∈ K, e ∈ E, (5.18)

Xek − pekXe + uek ≥ 0 ∀ k ∈ K, e ∈ E, (5.19)

uek, oek ≥ 0 ∀ k ∈ K, e ∈ E. (5.20)

5.3.2 Integrated planning

A first variant for gaining a targeted distribution of duties is an integrated approach. We

are using the weighted sum in Objective (5.21) for minimizing the costs and CD during

column generation. Parameter β can be interpreted as scale factor that transforms the

value of CD into the same unit as the costs. We use the costs of the most expensive
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possible duty. This equals a duty with the legally maximum permitted length.

min





∑

j∈N

cjxj



 + β





∑

k∈K

(uk + ok)



 (5.21)

The complete optimization problem RMP/CD is given by min (5.21), s.t. (5.12)–(5.14),

(5.2)–(5.5). Let γo
k be the dual values of Constraints (5.12) and γu

k be the dual values of

Constraints (5.13), than the reduced costs c̄j are calculated by Equation (5.22).

c̄
RMP/CD
j = cj −

∑

i∈Mk

aijπik

−
∑

k∈K

(−bjk + pk) · γo
k

−
∑

k∈K

(+bjk − pk) · γu
k

(5.22)

For minimizing the costs and dCD we use Objective (5.23).

min





∑

j∈N

cjxj



 + β





∑

e∈E

∑

k∈K

(uek + oek)



 (5.23)

Again the complete optimization problem RMP/dCD is given by min (5.23), s.t. (5.18)–

(5.20), (5.2)–(5.5). Let γo
ek be the dual values of Constraints (5.18) and γu

ek be the dual

values of Constraints (5.19), than the reduced costs c̄j are calculated by Equation (5.24).

c̄
RMP/dCD
j = cj −

∑

i∈M
kj

aijπikj

−
∑

k∈K

(−bjek + pke) · γo
ek

−
∑

k∈K

(+bjek − pke) · γu
ek

(5.24)

Note that each variable xj is only contained in Constraints (5.19)–(5.20) for a single depot.

This means that the sum for all depots is eliminated for the calculation of the reduced

costs.

5.3.3 Post-processing

A second variant for gaining a targeted distribution of duties is a post-processing (PoP)

step after solving the original RMP. This corresponds to the current practical procedure

and is done by hand. However, the limits of what is humanly possible are quickly reached

here, since the attendance rates make it highly complicated.
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Set S contains all duties of the final min-cost schedule. This implies xj = 1 ∀j ∈ S.

In the following, we refer to all sets derived from S with an hat for a clear presentation.

For each duty j of the min-cost schedule we can derive a set Ŝj containing j and all

feasible duplicates of j on all other days. Again, we refer to the elements of the sets Ŝj

with ĵ. For example, the solution schedule may contain a duty j ∈ S on a Monday, that

consist only of trips that are also valid on Tuesday. The same duty, but which is now

considered on Tuesday, would be referred to as duty ĵ ∈ Ŝj. In addition, we refer to the

union of all Ŝj with Ŝ. From this set, the duties should be selected aiming for the desired

distribution. Therefore, we still need the daily subsets Ŝk of Ŝ for all days. Figure 5.2

gives an illustrative example of all mentioned sets.

Mo Tu We Th Fr Sa Su Ŝj

Ŝ1

Ŝ2

Ŝ3

Ŝ4

Ŝ5

Ŝk ŜMo ŜTu ŜWe ŜTh ŜFr ŜSa ŜSu

set S; min-cost schedule feasible duties on other days

Figure 5.2: Feasible duplicates of duties on other days

The goal of post-processing is to select a schedule from Ŝ in which the CD or dCD is

minimized. For the first this can be done solving the original RMP with the following

Objective (5.25):

min
∑

k∈K

∣

∣

∣

∣

∣

∣

∑

ĵ∈Ŝk

xĵ − pk|S|

∣

∣

∣

∣

∣

∣

. (5.25)

Again, we can extend this approach to a depot based variant. We use set Se containing

all duties of the final min-cost schedule starting at depot e. Additionally we define set Ŝek

following the same logic as used for Ŝk but with additional distinction of depots. Based

on this we can minimize dCD as follows:

min
∑

e∈E

∑

k∈K

∣

∣

∣

∣

∣

∣

∑

ĵ∈Ŝek

xĵ − pk · |Se|

∣

∣

∣

∣

∣

∣

. (5.26)

Note that both variants can be linearized in the same way as shown in Section 5.3.1. In

addition to the targeted distribution, two crucial points have to be considered. On the

one hand, the attendance rates must continue to be met. Because of this, it is not possible

to simply shift any duty to other days. On the other hand, the objective value must not

deteriorate significantly. The latter can be ensured by fixing the number of duties for
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each j:

∑

ĵ∈Ŝj

xĵ = |Sj| ∀ j ∈ S (5.27)

The complete optimization problem for PoP is given by min (5.25) or min (5.26) s.t.

(5.2)–(5.5), (5.27).

5.4 Computational experiments and discussion

We have tested the approaches presented in Section 5.3 in a case study with three different

real-life instances. The generated schedules are directly transformable into action and

can be used for realistic evaluation of the different approaches. The complete column

generation algorithm was implemented in C#. The tests were run on Intel(R) Xenon(R)

CPU E5-4627 with 3.3 GHz clock speed and 768 GB RAM. RMP and its relaxation were

solved by Gurobi 7.5. The number of parallel threads for Gurobi was limited to 4. The

genetic algorithm was run on a single core only. For each run we limited the computation

time to 3 hours for column generation and 1.5 hours for solving the integer programming

model. Since the GA is a probabilistic approach, each test was run five times. For an easy

interpretation we set pk ∀ k ∈ K and pek ∀ e ∈ E, k ∈ K to 1
|K|

. This means the results

for minimizing CD equal minimizing STD and those for dCD equal the cumulated depot

based STD (dSTD). We also show the resulting values for STD and dSTD explicitly.

Table 5.1 shows the results for the post processing (PoP), the integrated approach (IA)

and the depot based integrated approach (dIA). The costs are given in millions, while

the computing times for column generation, solving the RMP and doing PoP are given

in seconds (CG, RMP, PoP). All three tested approaches do not differ in the computing

Table 5.1: Computational results for the considered real life instances
Costs CD dCD STD dSTD CG RMP PoP |S|

PoP 2.365 3.4 19.8 1.0 3.6 10800 139 157 103
I IA 2.368 0.0 17.7 0.0 2.9 10800 173 - 105

dIA 2.385 1.6 1.6 0.0 0.3 10800 22 - 107

PoP 2.757 11.5 19.0 1.9 3.5 10800 21 78 109
II IA 2.759 1.6 20.9 0.3 4.2 10800 72 - 109

dIA 2.783 0.3 0.3 0.1 0.1 10800 125 - 112

PoP 4.888 15.8 27.3 3.0 4.9 10800 5400 252 209
III IA 4.879 0.0 24.0 0.0 4.2 10800 5400 - 218

dIA 4.911 0.3 0.3 0.0 0.0 10800 5400 - 217

times. The time required for PoP is negligible (maximum average value of 252 seconds

for Instance III). Note that the high computing times for solving the RMP for Instance
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III are caused by the instance itself. For all three instances PoP and IA gain almost the

same costs, but IA simultaneously eliminates the daily fluctuations almost completely.

The values of CD are much lower, which is equivalent to STD near zero for all instances,

whereas CD is up to 15.8 for the PoP approach (Instance III). A reason for this is the fact

that PoP cannot generate new duties when aiming for an even distribution, but is limited

to shifting duties of the final min cost schedule to other days. This means the solution

space for PoP is very limited. In general, the attendance rates account for a problem with

many different solutions with (almost) identical costs. The IA is able to consider these

similar solutions for minimizing CD, whereby the PoP cannot do this.

Although IA achieves very good results for CD, there are still large daily deviations for

the individual depots (dCD). For example for Network II the dCD is higher than 20.

To enable a better interpretation of the values, Figure 5.3 shows randomly selected

solutions as examples for all three approaches on Instance II. Figure 5.3 (a) depicts the
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depot 1 depot 2 depot 3 depot 4 depot 5

(a) Postprocessing
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(b) Integrated Approach
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(c) Integrated Approach based on depots
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Figure 5.3: Number of duties per day and depot for a real-life instance

solution for PoP. It can be seen that the number of duties is significantly lower on weekends

(Sa and Su) and difference between the maximum and minimum number of duties per day

is up to three duties for Depots 3 and 4. Even though the sum of duties per day shows a
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nearly even distribution if the integrated approach is chosen, especially for Depot 1 and

3 the daily number of duties still fluctuates significantly in Figure 5.3 (b). The use of

dIA, displayed in Figure 5.3 (c), achieves a much better distribution over the week than

both other approaches. Values close to zero for dSTD show that there are almost no daily

fluctuations in the number of duties for each depot. This improvement in distribution

causes only a minimal increase in costs of less than 1% for all instances compared to best

solution gained by PoP or IA (see Table 5.1). For all three instances, this increase of

costs corresponds approximately to the cost of a single duty. It can also be noted that the

integrated approaches require more duties in total. At the same time, the average paid

time of a duty decreases minimally.

However, it is important to note that higher costs do not automatically lead to more

needed conductors. For example, the minimum number of required conductors can be

defined as the highest number of duties on one day of the week cumulated over all depots.

For the given example in Figure 5.3 this results in at least 19 conductors for PoP and 22

for IA. But for dIA this results in only 16 conductors, which is a considerable advantage

for the planner. Furthermore, in practice a schedule has to deal with many and sometimes

also contradictory requirements. Hence, it is also common to keep the average paid time

within predefined limits as well as to limit the number of duties itself for each depot (see

Hoffmann et al. 2017). In this study, we focused on the even distribution detached from

other requirements, whereby the combined practical application with other requirements

is easily possible.

5.5 Conclusion and further research

In this paper, we addressed the even distribution of duties over the week for a crew

scheduling problem with attendance rates. The analysis was carried out using a col-

umn generation approach, that has been proven to be suitable in practice. In order to

avoid daily fluctuations in the required personnel, we examined and compared both post-

optimization and integrated approaches. We were able to show that the depot-based

integrated approach achieves the best results. Furthermore, an even distribution of duties

over the week causes a cost increase which is approximately equal to the costs of one

duty. The presented procedure facilitates the practical planning immensely and basically

increases automation, because a manual planning step between crew scheduling and crew

rostering can be replaced. This intermediate step has not yet been considered in the

literature.

Nevertheless, there are some interesting aspects which can be considered in future work.

In practice, an unequal distribution in absolute numbers is more critical for a depot with
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relatively few conductors per day compared to the same deviations for a larger depot

with much personnel. A solution approach that weights the deviation depending on the

number of duties per depot would further simplify the practical work flow. Further-

more, a multi-objective approach for column generation (e.g., Artigues / Jozefowiez /

Sarpong 2018) could be tested for the simultaneous goals of minimizing costs and min-

imizing the deviation of an targeted distribution.



6 Strategic planning of depots for a

railway crew scheduling problem

Abstract

This paper presents a strategic depot planning approach for a railway crew scheduling

problem integrated in a column generation framework. Since the integration strongly

weakens the relaxation of the master problem we consider different variants for strength-

ening the formulation. In addition, the problem can be sufficiently simplified by using

a standard day at the strategic level. Based on a case study for an exemplary real-life

instance, we can show that a proper pre-selection of depots reduces the number of needed

depots significantly with the same personnel costs.
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Published paper: M. Scheffler (2020): Strategic Planning of Depots for a Railway
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6.1 Introduction

Crew scheduling problems are one of the most important problems within the planning

process in passenger rail transport. Heil / Hoffmann / Buscher (2020) give a detailed

overview to this topic. We consider a multi-period railway crew scheduling problem

with attendance rates for conductors of a German railway operator. The goal of this

problem is to find a schedule satisfying operating conditions, legal requirements and the

transportation contract at minimal costs. The attendance rates are a peculiarity and

generalization of the classic crew scheduling problem. This means that not every trip

has to be covered, but a percentage of the trips is sufficient. Usually the problem is

solved with 14 days planning horizon. For a general description of the problem and

the considered constraints for the duty generation, we refer to Hoffmann et al. (2017).

Since the problem is NP-hard using a column generation approach is a common method

for solving (see Heil / Hoffmann / Buscher 2020). Since duties can only begin and

end at one depot (i.e., crew base), the selection of suitable relief points (railway stations)

as depots is crucial on strategic planning level. On the one hand, it has to be taken into

account that opening depots causes costs (e.g., rental fee for rooms). In addition, a small

number of opened depots is preferred, as this reduces administrative effort. This means

it is advisable to avoid opening depots where only a small number of duties starts. On

the other hand, a small number of depots may increase the number of employees (duties)

required. In practice, balancing these conflicting objectives is hard because there is a

lack of suitable planning approaches for integrating in decision support systems. Limiting

depot capacity on tactical level is common practice (see Hoffmann et al. 2017; Shen /

Chen 2014). Suyabatmaz / Şahin (2015) determines a minimum required crew size in

a region, without taking depot locations into account.

In order to investigate the trade-off in detail, we adapt an existing column generation

approach from tactical planning level (see Hoffmann et al. 2017). The integration of the

mentioned strategic planning issues to the master problem (MP) is presented in Section

6.2. Since MP is hard to solve, we introduce a standard day and show possibilities for

strengthening the formulation in Section 6.3. In Section 6.4 the computational analyses

are carried out for the different formulations on real-life instances. It is combined with a

case study for an exemplary real-life network. Section 6.5 gives a summary and present

suitable research content for further work.
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6.2 Problem description

The MP aims at finding a minimal cost combination of duties selected from a set of

feasible duties N . The planning horizon is given by K containing days k of the week. A

duty j ∈ N covers a subset of trips i ∈ M with M representing the set of all trips. A duty

is represented by a column in matrix A ∈ {0, 1}|M |×|N | with aij = 1 if duty j covers trip i

(0 otherwise). A trip i can exist on a single day k ∈ K or on several days of the planning

horizon K. Set Mk is defined as subset of M , containing all trips i ∈ M existing on day

k. Additionally, let G be the set of all attendance rates g ∈ [0, 1], we can determine dig

as the distance of trip i ∈ M with attendance rate g ∈ G. The costs cj of a feasible duty

j ∈ N are calculated in accordance with the operating conditions and legal requirements

described by Hoffmann et al. (2017). Furthermore, let E be the set of all depots, then

parameter bje equals 1 if duty j starts at depot e, 0 otherwise. Set E consist of the two

subsets Eo containing all possible depots that may need to be opened and Ec containing

all existing depots that may need to be closed. Parameter f o
e (f c

e ) indicates the costs

for opening (closing) depot e. Parameter M is used as reasonable big number (Big-M ).

Finally, we introduce the following decision variables. The binary variables xj take value

1 if duty j is in the solution, 0 otherwise. Furthermore, we use binary variables yik to

model if trip i ∈ M on day k ∈ K is in the solution. The binary variables oe are used to

model the decision whether to use depot e (using an existing depot or opening a possible

depot) or not (closing an existing depot or not using a possible depot). Based on this

notation the MP is given as following:

min
∑

j∈N

cjxj +
∑

e∈Eo

f o
e oe −

∑

e∈Ec

f c
e (1 − oe) (6.1)

s.t.
∑

k∈K

∑

i∈Mk

digyik ≥ g
∑

k∈K

∑

i∈Mk

dig ∀ g ∈ G, (6.2)

∑

j∈Nk

aijxj ≥ yik ∀ k ∈ K, i ∈ Mk, (6.3)

∑

j∈N

bjexj ≤ Moe ∀ e ∈ E, (6.4)

xj ∈ 0, 1 ∀ j ∈ N, (6.5)

yik ∈ 0, 1 ∀ k ∈ K, i ∈ Mk, (6.6)

oe ∈ 0, 1 ∀ e ∈ E. (6.7)

The formulation is a reduced version of the presented formulation by Hoffmann et al.

(2017) with an other objective and extended by constraint (6.4). The objective minimizes
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the total operating costs for all duties and the costs for opening a possible depot. Closing

an existing depot leads to cost savings, which is why the last sum is deducted. Constraints

(6.2)-(6.3) ensure compliance with the required attendance rates. We refer to Hoffmann

et al. (2017) for a detailed description of the mode of action. Constraint (6.4) sets variables

oe to 1, if at least one duty starting in e is used in the solution. This models the opening

and closing of depots. Note, this constraint is very similar to the depot capacity constraint

introduced by Hoffmann et al. (2017), but this variant causes a weaker LP-relaxation.

Constraints (6.5)-(6.7) state the domains.

Since all adjustments only concern the MP, we can directly use the genetic algorithm

described by Hoffmann et al. (2017) for solving the subproblem. Only the calculation

of the reduced costs has to be adjusted. Let πik, i ∈ Mk, be the dual value of Constraints

(6.3) and γe, e ∈ E, of (6.4) then c̄j = cj −
∑

i∈M aijπik +
∑

e∈E bjeγe specifies the reduced

costs of duty j ∈ Nk.

6.3 Solution approach

The determination of the depots is a long-term decision in which the exact train schedule

(i.e., input data) is available in a rough form only or it can be assumed that subtleties

will change again and again over the course of time (e.g., Huisman 2007). Therefore it is

not mandatory to carry out a detailed planning for 14 days, but it is sufficient to solve a

suitable simplification. For this purpose, it makes sense to reduce the planning period to

a standard day. Ahuja et al. (2005) describes a procedure for the locomotive scheduling

problem in rail freight transportation, whereby a trip is considered in the standard day, if

it takes place on at least 5 days of the week. In contrast to freight transport, the weekend

schedule for passenger transport differs much more often and strongly from the weekday

schedule. When using 5 days as a criterion, there is thus a risk that the weekends are

not sufficiently taken into account in the standard day. If certain lines (successive trips

of a train/vehicle) only run on weekends, there is even a risk that entire groups of trips

will not be taken into account. For this reason, we adopt the procedure of Ahuja et al.

(2005) and supplement it with the additional identification of such special cases and, if

necessary, also take them into account in the standard day. Preliminary tests showed

that the convergence of the objective value during column generation without the use of

the standard day is extremely slowed by the additional decision to open/close depots.

Even after 24 hours computing time, a sufficiently good solution quality could not yet be

achieved.

As already mentioned, the LP-Relaxation is very weak due to constraint (6.4). There-

fore, we consider two ways to strengthen the formulation. Due to the spatial distribution
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of trips and the resulting travel times, it is usually not possible for each trip to be covered

by a permissible duty starting from each depot. This means that each trip i can only be

covered by duties if they begin at a depot that is element of the subset Ei of E. Based

on set Ei we introduce the valid inequalities given by (6.8).

∑

e∈Ei

oe ≥ yik ∀ k ∈ K, i ∈ Mk (6.8)

This especially strengthens the formulation in case of relaxing the integer constraints

(6.5)-(6.7). When the relaxation is solved, the Big-M of the constraints (6.4) causes oe to

take only very small values. Since constraints (6.8) are independent of Big-M, the values

of oe are significantly increased. The difficulty, however, is to determine the sets Ei for

all trips i. Since column generation is based on generating only a subset of all possible

duties for creating a suitable solution, this information is not available. That is why we

use shortest path based informations which we can generate on the basis of a spatial and

temporal network.

Each node represents a distinct combination of time and a relief point or depot, re-

spectively. Trips and transition times are represented by arcs and weighted by the length

of the travel or transition time. For determining Ei it is sufficient to find a path from a

node at e to the departure node of trip i and also a path from the arrival node of trip i

to another node at e. This can be done by using the algorithm described by Dijkstra

(1959).

Another possibility to strengthen the formulation is the decomposition of the Big-M

constraints (6.4). We can replace these constraints by (6.9).

bjexj ≤ oe ∀ j ∈ N, e ∈ E (6.9)

For each duty, a single constraint is created with which the duty is coupled to variable

oe. Once again the relaxation is strengthened because oe is independent from Big-M and

therefore has to accept bigger values. Note, the calculation of the reduced costs change,

if we use constraints (6.9) instead of (6.4). Let γje be the dual value of constraints (6.9)

then c̄j = cj −
∑

i∈M aijπik +
∑

e∈E bjeγje specifies the reduced costs of duty j ∈ Nk. In

addition, it should be noted that newly generated duties cannot be evaluated directly with

reduced costs, since the model must first be solved with the new constraint for this duty

in order to obtain a dual value γje. This means that when deciding whether to include

a duty in the duty pool, the dual information on the depots is not taken into account.

Section 6.4 shows that this is negligible at first. But there is potential for improvement

in future research. However, since the selection in the GA is based on the reduced costs
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(see Hoffmann et al. 2017), the information of the dual values γje is not completely lost.

6.4 Computational analysis

The complete column generation approach is implemented in C# and all computational

test are carried out on Intel(R) Xeon(R) Gold 6136 CPU with 3.0 GHz clock speed and

128 GB RAM. For solving the MP we are using Gurobi 8.1. For the evaluation of the

presented formulations we have tested on two real-life networks. Network I consists of 17

relief points, 8 of those are existing depots and 3 are possible depots. Set M contains of

792 trips with attendance rates of 30 % and 90 %. Network II is given by 11 relief points

(5 existing depots, 3 possible depots) and 1106 trips (|M |) with attendance rates of 25 %

and 100 %. We structured the computational tests as follows. First we compare the use

of the different constraints by using the standard day on both networks. Based on the

results we are able to determine a sufficient set of (open) depots. Using Network I as an

example, we then study the schedules with and without a pre-selection of the depots for

the planning period of 14 days and using min
∑

j∈N cjxj as objective. This corresponds to

the objective function of actual crew scheduling (see Hoffmann et al. 2017) and therefore

to the downstream planning level. This is done to check the quality of the pre-selection.

Table 6.1 shows the results of the column generation approach with MP given as

min (6.1) s.t.(6.2) − (6.3), (6.5) − (6.7) supplemented by the constraints marked in the

left columns. Each values are averages of five runs and we limited the generation of

columns to 6 hours (or no new columns with negative reduced costs can be created).

Using constraints (6.9) instead of (6.4) leads to better objective values and a much faster

Table 6.1: Comparison of the formulations using a standard day
constraints instance I instance II

(6.4) (6.9) (6.8) OBJ rOBJ CPU D S OBJ rOBJ CPU D S
• 325.7 295.4 6.2 3.2 16.8 417.3 391.8 6.1 3.0 16.4
• • 336.5 306.3 6.1 3.2 17.4 425.0 411.5 6.1 3.0 17.2

• 311.2 284.7 0.6 3.0 15.0 407.0 363.7 1.0 3.0 16.0
• • 314.9 298.3 0.7 3.0 15.7 406.5 395.2 1.2 3.0 16.0

Notation: OBJ: average objective value in thousands; rOBJ: average objective value of the LP-relaxation
in the last iteration; CPU: average computing time in hours; D: # selected depots in final schedule; S: #
duties in final schedule.

computing time. The additional use of the valid inequalities (constraints (6.8)) does not

further improve both values. However, this considerably reduces the gap between integer

and relaxed objective values. Based on the results of Table 6.1 we are able to identify

three preselected depots for instance I. Figure 6.1 shows the underlying spatial network

and the given depots. A reduction of the required depots can be observed for many in-

stances. This is mainly due to the fact that the depots were determined a long time ago



6.5 Conclusion and further research 119

when no attendance rates were requested (i.e., only 100 % trips). In order to evaluate the

quality of the pre-selection, we compare the results for a 14-day planning horizon with

and without preselected depots by optimizing min
∑

j∈N cjxj s.t.(6.2) − (6.3)(6.5) − (6.6).

Using all existing depots leads to an average objective of 4.747 millions in 7.3 hours by

using on average 5.2 depots and 191 duties are necessary. Again, all values are averages

of 5 runs. In contrast to this, the exclusive use of the three pre-selected depots gives an

average objective of 4.782 millions (+0.74%) in 6.7 hours with 181 needed duties. Both

variants achieve almost identical objective values. This means that at the same personnel

costs 2-3 depots (and the associated costs) can be saved. Furthermore, it can be observed

in the solution with all depots that some depots have only a few duties on a maximum

of 2 days of the planning horizon (zero duties on all other days). This represents unnec-

essary administrative effort in practice and is successfully avoided by the pre-selection.

In general, it can be assumed for the crew scheduling problem on tactical level that due

to the large number of existing depots combined with the attendance rates, an extremely

large solution space is created with many similarly good solutions close to the optimum.

By the upstream selection of suitable depots on the strategic level, this is significantly

reduced without losing solution quality.

existing depot
possible depot
relief point
selected depot

Figure 6.1: Spatial network of instance I

6.5 Conclusion and further research

In this paper, the presented pre-selection of depots on strategic planning level enables the

effective depot determination with a sufficient consideration of subsequent crew scheduling

itself. The integration into the master problem could be successfully carried out by the

presented strengthening of the formulation and using the standard day. We could also

show, for an example of a real-life instance, that at the same cost on tactical level, the

number of depots required on a strategic level can be significantly reduced.

For further research it would be interesting for small instances to completely enumerate

the pool of possible duties and then to generate a pareto front for the cost of the duties

and the number of required depots on the basis of a multi-objective approach. This would

determine the influence of the number of depots more precisely and conclusions could be

drawn for larger networks.



7 Conclusions

7.1 Summary and Discussion of the Research Questions

This work considers two crucial planning problems in railway industry: the locomotive

assignment problem and the crew scheduling problem with attendance rates. A detailed

characterization of the studied problems is given. On the one hand special attention is

granted to the integration of real world requirements into planning and on the other hand

the development of suitable solution approaches is achieved. Only the combined consid-

eration of both aspects enables realistic decision support for practical applications. For

the locomotive assignment problem, existing solution approaches from the literature were

adapted and improved for solving European real-life instances. Furthermore, a model-

based heuristic solution framework using a generalized flow formulation was developed.

It has been shown that this framework outperforms the approaches from literature. For

the crew scheduling problem with attendance rates, a sophisticated column generation

approach was developed which enables the automated solving of several large scale real-

life instances for the first time. Furthermore, based on extensions of this approach, firstly

an evaluation of suitable locations for crew bases and secondly an automated planning

approach for the distribution of duties over the week were presented.

Within this work, the research questions posed in Section 1.3 could successfully be

answered. Research question Q11 aims at the transfer of knowledge regarding approaches

from North America for solving European instances of the LAP. In Chapter 2 it was shown

that the formulation of Ahuja et al. (2005) can be adapted for the use in Europe, first.

However the iterative relaxation-based heuristic does not provide sufficiently good results.

By reversing the heuristic fixation strategy from fixing arcs with large flows to excluding

arcs with zero flows, we could show that it is possible to simplify the heuristic to a one

step procedure. In addition to the significantly improved solution quality and shortened

computing time, it was possible for the real-life instance to generate feasible solutions for
1How can the iterative heuristic of Ahuja et al. (2005) be accelerated for solving European instances of

the locomotive assignment problem?
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the first time.

In Chapter 3 several additional real-life requirements were integrated to the flow for-

mulation of the LAP. This includes considering operating zones for locomotives, an ex-

act modeling of (dis-)connecting processes as well as (in-)compatibilities of locomotives.

Research Question Q22 could be solved successfully by integrating four strategies for

restricting the solution space into a generalized flow formulation (previous merging of

trains, using predefined locomotive combinations only, ignoring the (dis-)connecting pro-

cesses, restricting the free movement of locomotives). It has been shown that a combined

consideration of all variants leads to the best results. The design of the framework also

allows the identification of optimality gaps. Within 6 hours computing time, a gap of less

than 4 % was achieved for a real-life instance of an European rail freight operator.

Considering the crew scheduling problem with attendance rates, in Chapter 4 a sophisti-

cated column generation approach for solving large scale real-life instances was presented.

A novel three stage procedure for generating initial solutions, integrating a two point

crossover into the genetic algorithm for solving the pricing problem as well as removing

unnecessary columns from the solution pool are given as answers to research question

Q3.3 This enabled the solution of 12 real-life instances for the first time. Additionally,

optimality gaps could be created by solving a relaxed arc flow formulation of the entire

problem. An average value of less than 10 % was achieved. Due to the very complex plan-

ning problem and the enormous size of the considered instances, this can be assessed as

very well. To enable comparability for future research, anonymized and slightly modified

real-life instances were published in an xml-based data format.

The answer to research question Q44 is divided into three parts. First, it could be

shown that compared to attending every trip (i.e., classical crew scheduling problems),

demanding a distinct attendance rate leads to a cost ratio less or equal than the rate itself.

For example, for an attendance rate of 75 % the resulting costs are less or equal than 75 %

of the 100 % solution (i.e., each trip is attended). Second, for rates greater than 100 %,

the optimal solution does not consist of the sum of individual solutions. For example, the

costs of a 125 % solution are less or equal than the sum of the 100 % solution and the 25 %

solution. Finally, demanding a uniform distribution of attended trips during the planning

horizon leads to higher cost increases for smaller attendance rates than for higher rates.

These findings represent a considerable added value especially for public authorities (i.e.,

federal states or subsidiary transportation authorities) and can be used for future tenders.

2How does the reasonable restriction of the solution space allow an accelerated solution of the locomotive
assignment problem?

3How can real-world instances of railway crew scheduling problems with attendance rates be solved for
practical application?

4What cost effects result from the use of attendance rates?
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Chapter 5 focused on the random and therefore mostly uneven distribution of duties

over the planning horizon caused by the attendance rates. Since this uneven distribu-

tion can cause substantial challenges for crew rostering, this should be avoided as far as

possible in crew scheduling. Research question Q55 was answered by discussing suitable

measurements of a daily distribution first. Appropriate solutions can be gained by using

a depot based integrated approach which minimizes the weighted sum of costs and the

deviation from a targeted distribution during column generation. On the one hand, it

has been shown that with only very slight cost increases, a targeted distribution can be

achieved. On the other hand personnel can even be saved because the maximum number

of workers required on a single day can be reduced. Additionally, the automated planning

approach represents a significant reduction in workload for planners in practice.

Finally research question Q66 was answered in Chapter 6. Since integrating the opening

and closing of depots as well as limiting the number of used depots in a column generation

approach extremely slows down the solution process, the problem has to be tackled by

using a representative standard day. Further it has been shown that a decomposition of

the Big-M constraints for determining the opening or closing of a depot accelerates the

process of solving significantly. With the pre-selection of depots generated in this way, 14-

day crew schedules could subsequently be generated with almost identical personnel costs

compared to the case without pre-selection. Thus, on the one hand, depots can easily be

determined for newly tendered networks and, on the other hand, excessive administrative

effort (and the associated costs) for too many depots can be efficiently avoided without

significant changes of the personnel costs.

7.2 Critical Review and Further Research

The presented approaches for the two considered planning problems (LAP and CSPAR)

are able to generate solutions with very good quality for practical application. Neverthe-

less, there are many interesting questions for future research. First, these can be derived

directly for both problems from the presented approaches. Second, general research gaps

or meaningful research areas can be identified regarding both problems. Furthermore,

general statements on the state of research in the railroad sector can be made, especially

with regard to the planning process described in Section 1.2.1, and guidelines for future

research can be derived from these statements.

For the LAP, the LP-heuristic presented in Chapter 2 can be integrated into the MIP-

5How can the daily distribution of duties during solving crew scheduling problems with attendance rates
be controlled?

6How can suitable locations for crew bases of conductors be determined?
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framework of Chapter 3. A combined consideration with the Ignore-Heuristic, which

ignores (dis-)connecting processes between locomotives at first, would be useful. Analo-

gously, the interpretation of the LP-Heuristic would be to allow (dis-)connecting processes

only at ’useful’ points. It should be checked if such a stepwise release of the heuristic re-

strictions is also possible for the three other heuristics of the MIP framework. Besides

the integration of further variants of restricting and releasing the solution space, the run-

ning order of the MIP-framework has to be discussed in detail. The selection of a single

heuristic or a suitable combination of several ones with a preferable running order could

be done for example by a hyper-heuristic (Chakhlevitch / Cowling 2008).

In addition to a further speed up of the solution approach, it is also necessary to in-

tegrate further requirements necessary in practice into the automated planning process

(e.g., capacity limits at stations). Finally, it should be examined whether a column gen-

eration approach can be developed for this problem. Hereby, especially the integration

of (dis-)connecting processes between locomotives would be very challenging. Neverthe-

less, this approach should be tested because of the (very) good results in other planning

problems (e.g., crew scheduling).

With regard to the CSPAR, some aspects should be given special attention. Although

the genetic algorithm for the solution of the pricing problem delivers promising results,

a detailed consideration of suitable parameter settings should be made. In order to keep

the number of setting variants to be tested within limits, a design of experience approach

would be useful (Montgomery 2008; Ridge / Kudenko 2010). Another approach

would be to make the genetic algorithm self-adapting to identify the setting variants with

the fastest convergence (Meyer-Nieberg / Beyer 2007; Kostenko / Frolov 2015).

Especially the fact that the algorithm is used in a client-server architecture could be

exploited.

Furthermore, the integration of the arc flow formulation into column generation should

be pushed forward to solve the pricing problem exactly. On the one hand a suitable in-

terplay with the genetic algorithm must be realized and on the other hand a tailing-off

effect towards the end of the column generation must be avoided (Amor / Desrosiers /

Frangioni 2004). Besides removing unnecessary columns, the fixing of very promising

columns could also be implemented. Since the positioning of breaks within a duty (Hoff-

mann / Buscher 2019) complicates the use of effective dominance criteria for eliminating

paths in dynamic optimization, a regular end of column generation and thus an optimal

solution of the linear relaxation should be achieved with this interplay. The resulting

lower bounds are usually much better than those of the variant presented in Section 4.A.

In general, attendance rates lack on analysis from the point of view of the public

authorities (i.e., federal states or subsidiary transportation authorities). First of all, the
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determination of the attendance rates (for certain lines at certain times) and the goals to

be achieved with them should be discussed in detail. This can be followed by the question

of whether the kilometer-based calculation is a suitable measure of target achievement,

or whether there are more appropriate variants (e.g., transport performance).

Finally, it is important to strengthen comparability and the mutual research culture

that builds on each other. Comparisons of different solution approaches for almost iden-

tical planning problems can hardly be found in the literature. This is also due to the

almost non-existent published data sets from the individual publications. Publishing

(anonymous) benchmark instances even for real-life application should become common

practice. This is particularly important for the comparability and research validation

of integrated and robust planning approaches. On the one hand, integrated planning of

several problems enables the realization of further cost savings. On the other hand, this

also requires robust cross-problem planning in combination with integrated re-scheduling

approaches.
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