684 research outputs found

    A hybrid intuitionistic fuzzy multi-criteria group decision making approach for supplier selection

    Get PDF
    Due to the increasing competition of globalization, selection of the most appropriate supplier is one of the key factors for asupply chain management’s success. Due to conflicting evaluations and insufficient information about the criteria, Intuitionisticfuzzy sets (IFSs) considered as animpressive tool and utilized to specify the relative importance of the criteria. The aim of this paper is to develop a new approach for solving the decision making processes. Thusan intuitionistic fuzzy multi-criteria group decision making approach is proposed. Interval-valued intuitionistic fuzzy ordered weighted aggregation (IIFOWA) is utilized to aggregate individual opinions of decision makers into a group opinion. A linear programming model is used to obtain the weights of the criteria.Then acombined approach based onGRAand TOPSIS method is introduced and applied to the ranking and selection of the alternatives. Finally a numerical example for supplier selection is given to illustrate the feasibility and effectiveness of the proposed method. A combined method based on GRA and TOPSIS associated with intuitionistic fuzzy set has enormous chance of success for multi-criteria decision-making problems due to containing vague perception of decision makers’ opinions. Therefore, in future, intuitionistic fuzzy set can be used for dealing with uncertainty in multi-criteria decision-making problems such as project selection, manufacturing systems, pattern recognition, medical diagnosis and many other areas of management decision problems

    A Multi-Criteria Neutrosophic Group Decision Making Method Based TOPSIS for Supplier Selection

    Get PDF
    The process of multi-criteria group decision making (MCGDM) is of determining the best choice among all of the probable alternatives. The problem of supplier selection on which decision maker has usually vague and imprecise knowledge is a typical example ofmulti criteria group decision-making problem. The conventional crisp techniques has notmuch effective for solvingMCDMproblems because of imprecise or fuzziness nature of the linguistic assessments. To find the exact values for MCGDM problems is both difficult and impossible in more cases in real world. So, it is more reasonable to consider the values of alternatives according to the criteria as single valued neutrosophic sets (SVNS). This paper deal with the technique for order preference by similarity to ideal solution (TOPSIS) approach and extend the TOPSIS method to MCGDM problem with single valued neutrosophic information. The value of each alternative and the weight of each criterion are characterized by single valued neutrosophic numbers. Here, the importance of criteria and alternatives is identified by aggregating individual opinions of decision makers (DMs) via single valued neutrosophic weighted averaging (SVNWA) operator. The proposed method is, easy use, precise and practical for solving MCGDM problem with single valued neutrosophic data. Finally, to show the applicability of the developed method, a numerical experiment for supplier choice is given as an application of single valued neutrosophic TOPSIS method at end of this paper

    Supplier evaluation and selection in fuzzy environments: a review of MADM approaches

    Get PDF
    In past years, the multi-attribute decision-making (MADM) approaches have been extensively applied by researchers to the supplier evaluation and selection problem. Many of these studies were performed in an uncertain environment described by fuzzy sets. This study provides a review of applications of MADM approaches for evaluation and selection of suppliers in a fuzzy environment. To this aim, a total of 339 publications were examined, including papers in peer-reviewed journals and reputable conferences and also some book chapters over the period of 2001 to 2016. These publications were extracted from many online databases and classified in some categories and subcategories according to the MADM approaches, and then they were analysed based on the frequency of approaches, number of citations, year of publication, country of origin and publishing journals. The results of this study show that the AHP and TOPSIS methods are the most popular approaches. Moreover, China and Taiwan are the top countries in terms of number of publications and number of citations, respectively. The top three journals with highest number of publications were: Expert Systems with Applications, International Journal of Production Research and The International Journal of Advanced Manufacturing Technology

    A hybrid neutrosophic group ANP-TOPSIS framework for supplier selection problems

    Get PDF
    One of the most significant competitive strategies for organizations is sustainable supply chain management (SSCM). The vital part in the administration of a sustainable supply chain is the sustainable supplier selection, which is a multi-criteria decision-making issue, including many conflicting criteria.</div

    Large-Scale Green Supplier Selection Approach under a Q-Rung Interval-Valued Orthopair Fuzzy Environment

    Get PDF
    As enterprises pay more and more attention to environmental issues, the green supply chain management (GSCM) mode has been extensively utilized to guarantee profit and sustainable development. Greensupplierselection(GSS),whichisakeysegmentofGSCM,hasbeeninvestigated to put forward plenty of GSS approaches

    A mathematical programming approach to multi-attribute decision making with interval-valued intuitionistic fuzzy assessment information

    Get PDF
    This article proposes an approach to handle multi-attribute decision making (MADM) problems under the interval-valued intuitionistic fuzzy environment, in which both assessments of alternatives on attributes (hereafter, referred to as attribute values) and attribute weights are provided as interval-valued intuitionistic fuzzy numbers (IVIFNs). The notion of relative closeness is extended to interval values to accommodate IVIFN decision data, and fractional programming models are developed based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method to determine a relative closeness interval where attribute weights are independently determined for each alternative. By employing a series of optimization models, a quadratic program is established for obtaining a unified attribute weight vector, whereby the individual IVIFN attribute values are aggregated into relative closeness intervals to the ideal solution for final ranking. An illustrative supplier selection problem is employed to demonstrate how to apply the proposed procedure

    A Multi-criteria Picture Fuzzy Decision-making Model for Green Supplier Selection based on Fractional Programming

    Get PDF
    Due to the increasing complexity in green supplier selection, there would be some important issues for expressing inherent uncertainty or imprecision of decision makers’ cognitive information in decision making process. As an extension of intuitionistic fuzzy sets (IFSs) and neutrosophic sets (NSs), picture fuzzy sets (PFSs) can better model and represent the hesitancy and uncertainty of decision makers’ preference information. In this study, an attempt has been made to present a multi-criteria picture fuzzy decision-making model for green supplier selection based on fractional programming. In this approach, the ratings of alternatives and weights of criteria are represented by PFSs and IFSs, respectively. Based on the available information, some pairs of fractional programming models are derived from the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and the proposed biparametric picture fuzzy distance measure to determine the relative closeness coefficient intervals of green suppliers, which are aggregated for the criteria to generate the ranking order of all green suppliers by computing their optimal degrees of membership based on the ranking method of interval numbers. Finally, an example is conducted to validate the effectiveness of the proposed multi-criteria decision making (MCMD) method
    corecore