255 research outputs found

    CAPre: Code-Analysis based Prefetching for Persistent object stores

    Get PDF
    Data prefetching aims to improve access times to data storage systems by predicting data records that are likely to be accessed by subsequent requests and retrieving them into a memory cache before they are needed. In the case of Persistent Object Stores, previous approaches to prefetching have been based on predictions made through analysis of the store’s schema, which generates rigid predictions, or monitoring access patterns to the store while applications are executed, which introduces memory and/or computation overhead. In this paper, we present CAPre, a novel prefetching system for Persistent Object Stores based on static code analysis of object-oriented applications. CAPre generates the predictions at compile-time and does not introduce any overhead to the application execution. Moreover, CAPre is able to predict large amounts of objects that will be accessed in the near future, thus enabling the object store to perform parallel prefetching if the objects are distributed, in a much more aggressive way than in schema-based prediction algorithms. We integrate CAPre into a distributed Persistent Object Store and run a series of experiments that show that it can reduce the execution time of applications from 9% to over 50%, depending on the nature of the application and its persistent data model.This work has been supported by the European Union’s Horizon 2020 research and innovation program under the BigStorage European Training Network (ETN) (grant H2020-MSCA-ITN-2014- 642963), the Spanish Ministry of Science and Innovation (contract TIN2015-65316) and the Generalitat de Catalunya, Spain (contract 2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Partial Replica Location And Selection For Spatial Datasets

    Get PDF
    As the size of scientific datasets continues to grow, we will not be able to store enormous datasets on a single grid node, but must distribute them across many grid nodes. The implementation of partial or incomplete replicas, which represent only a subset of a larger dataset, has been an active topic of research. Partial Spatial Replicas extend this functionality to spatial data, allowing us to distribute a spatial dataset in pieces over several locations. We investigate solutions to the partial spatial replica selection problems. First, we describe and develop two designs for an Spatial Replica Location Service (SRLS), which must return the set of replicas that intersect with a query region. Integrating a relational database, a spatial data structure and grid computing software, we build a scalable solution that works well even for several million replicas. In our SRLS, we have improved performance by designing a R-tree structure in the backend database, and by aggregating several queries into one larger query, which reduces overhead. We also use the Morton Space-filling Curve during R-tree construction, which improves spatial locality. In addition, we describe R-tree Prefetching(RTP), which effectively utilizes the modern multi-processor architecture. Second, we present and implement a fast replica selection algorithm in which a set of partial replicas is chosen from a set of candidates so that retrieval performance is maximized. Using an R-tree based heuristic algorithm, we achieve O(n log n) complexity for this NP-complete problem. We describe a model for disk access performance that takes filesystem prefetching into account and is sufficiently accurate for spatial replica selection. Making a few simplifying assumptions, we present a fast replica selection algorithm for partial spatial replicas. The algorithm uses a greedy approach that attempts to maximize performance by choosing a collection of replica subsets that allow fast data retrieval by a client machine. Experiments show that the performance of the solution found by our algorithm is on average always at least 91% and 93.4% of the performance of the optimal solution in 4-node and 8-node tests respectively

    Prefetching techniques for client server object-oriented database systems

    Get PDF
    The performance of many object-oriented database applications suffers from the page fetch latency which is determined by the expense of disk access. In this work we suggest several prefetching techniques to avoid, or at least to reduce, page fetch latency. In practice no prediction technique is perfect and no prefetching technique can entirely eliminate delay due to page fetch latency. Therefore we are interested in the trade-off between the level of accuracy required for obtaining good results in terms of elapsed time reduction and the processing overhead needed to achieve this level of accuracy. If prefetching accuracy is high then the total elapsed time of an application can be reduced significantly otherwise if the prefetching accuracy is low, many incorrect pages are prefetched and the extra load on the client, network, server and disks decreases the whole system performance. Access pattern of object-oriented databases are often complex and usually hard to predict accurately. The ..

    On the classification and evaluation of prefetching schemes

    Get PDF
    Abstract available: p. [2

    Parallelizing Set Similarity Joins

    Get PDF
    Eine der grĂ¶ĂŸten Herausforderungen in Data Science ist heutzutage, Daten miteinander in Beziehung zu setzen und Ă€hnliche Daten zu finden. Hierzu kann der aus relationalen Datenbanken bekannte Join-Operator eingesetzt werden. Das Konzept der Ähnlichkeit wird hĂ€ufig durch mengenbasierte Ähnlichkeitsfunktionen gemessen. Um solche Funktionen als Join-PrĂ€dikat nutzen zu können, setzt diese Arbeit voraus, dass Records aus Mengen von Tokens bestehen. Die Arbeit fokussiert sich auf den mengenbasierten Ähnlichkeitsjoin, Set Similarity Join (SSJ). Die Datenmenge, die es heute zu verarbeiten gilt, ist groß und wĂ€chst weiter. Der SSJ hingegen ist eine rechenintensive Operation. Um ihn auf großen Daten ausfĂŒhren zu können, sind neue AnsĂ€tze notwendig. Diese Arbeit fokussiert sich auf das Mittel der Parallelisierung. Sie leistet folgende drei BeitrĂ€ge auf dem Gebiet der SSJs. Erstens beschreibt und untersucht die Arbeit den aktuellen Stand paralleler SSJ-AnsĂ€tze. Diese Arbeit vergleicht zehn Map-Reduce-basierte AnsĂ€tze aus der Literatur sowohl analytisch als auch experimentell. Der grĂ¶ĂŸte Schwachpunkt aller AnsĂ€tze ist ĂŒberraschenderweise eine geringe Skalierbarkeit aufgrund zu hoher Datenreplikation und/ oder ungleich verteilter Daten. Keiner der AnsĂ€tze kann den SSJ auf großen Daten berechnen. Zweitens macht die Arbeit die verfĂŒgbare hohe CPU-ParallelitĂ€t moderner Rechner fĂŒr den SSJ nutzbar. Sie stellt einen neuen daten-parallelen multi-threaded SSJ-Ansatz vor. Der vorgestellte Ansatz ermöglicht erhebliche Laufzeit-Beschleunigungen gegenĂŒber der AusfĂŒhrung auf einem Thread. Drittens stellt die Arbeit einen neuen hoch skalierbaren verteilten SSJ-Ansatz vor. Mit einer kostenbasierten Heuristik und einem daten-unabhĂ€ngigen Skalierungsmechanismus vermeidet er Daten-Replikation und wiederholte Berechnungen. Der Ansatz beschleunigt die Join-AusfĂŒhrung signifikant und ermöglicht die AusfĂŒhrung auf erheblich grĂ¶ĂŸeren Datenmengen als bisher betrachtete parallele AnsĂ€tze.One of today's major challenges in data science is to compare and relate data of similar nature. Using the join operation known from relational databases could help solving this problem. Given a collection of records, the join operation finds all pairs of records, which fulfill a user-chosen predicate. Real-world problems could require complex predicates, such as similarity. A common way to measure similarity are set similarity functions. In order to use set similarity functions as predicates, we assume records to be represented by sets of tokens. In this thesis, we focus on the set similarity join (SSJ) operation. The amount of data to be processed today is typically large and grows continually. On the other hand, the SSJ is a compute-intensive operation. To cope with the increasing size of input data, additional means are needed to develop scalable implementations for SSJ. In this thesis, we focus on parallelization. We make the following three major contributions to SSJ. First, we elaborate on the state-of-the-art in parallelizing SSJ. We compare ten MapReduce-based approaches from the literature analytically and experimentally. Their main limit is surprisingly a low scalability due to too high and/or skewed data replication. None of the approaches could compute the join on large datasets. Second, we leverage the abundant CPU parallelism of modern commodity hardware, which has not yet been considered to scale SSJ. We propose a novel data-parallel multi-threaded SSJ. Our approach provides significant speedups compared to single-threaded executions. Third, we propose a novel highly scalable distributed SSJ approach. With a cost-based heuristic and a data-independent scaling mechanism we avoid data replication and recomputation. A heuristic assigns similar shares of compute costs to each node. Our approach significantly scales up the join execution and processes much larger datasets than all parallel approaches designed and implemented so far

    Asynchronous Memory Access Chaining

    Get PDF
    In-memory databases rely on pointer-intensive data structures to quickly locate data in memory. A single lookup operation in such data structures often exhibits long-latency memory stalls due to dependent pointer dereferences. Hiding the memory latency by launching additional memory accesses for other lookups is an effective way of improving performance of pointer-chasing codes (e.g., hash table probes, tree traversals). The ability to exploit such inter-lookup parallelism is beyond the reach of modern out-of-order cores due to the limited size of their instruction window. Instead, recent work has proposed software prefetching techniques that exploit inter-lookup parallelism by arranging a set of independent lookups into a group or a pipeline, and navigate their respective pointer chains in a synchronized fashion. While these techniques work well for highly regular access patterns, they break down in the face of irregularity across lookups. Such irregularity includes variable-length pointer chains, early exit, and read/write dependencies. This work introduces Asynchronous Memory Access Chaining (AMAC), a new approach for exploiting inter-lookup parallelism to hide the memory access latency. AMAC achieves high dynamism in dealing with irregularity across lookups by maintaining the state of each lookup separately from that of other lookups. This feature enables AMAC to initiate a new lookup as soon as any of the in-flight lookups complete. In contrast, the static arrangement of lookups into a group or pipeline in existing techniques precludes such adaptivity. Our results show that AMAC matches or outperforms state-of-the-art prefetching techniques on regular access patterns, while delivering up to 2.3x higher performance under irregular data structure lookups. AMAC fully utilizes the available microarchitectural resources, generating the maximum number of memory accesses allowed by hardware in both single- and multi-threaded execution modes

    Accelerated Data Delivery Architecture

    Get PDF
    This paper introduces the Accelerated Data Delivery Architecture (ADDA). ADDA establishes a framework to distribute transactional data and control consistency to achieve fast access to data, distributed scalability and non-blocking concurrency control by using a clean declarative interface. It is designed to be used with web-based business applications. This framework uses a combination of traditional Relational Database Management System (RDBMS) combined with a distributed Not Only SQL (NoSQL) database and a browser-based database. It uses a single physical and conceptual database schema designed for a standard RDBMS driven application. The design allows the architect to assign consistency levels to entities which determine the storage location and query methodology. The implementation of these levels is flexible and requires no database schema changes in order to change the level of an entity. Also, a data leasing system to enforce concurrency control in a non-blocking manner is employed for critical data items. The system also ensures that all data is available for query from the RDBMS server. This means that the system can have the performance advantages of a DDBMS system and the ACID qualities of a single-site RDBMS system without the complex design considerations of traditional DDBMS systems
    • 

    corecore