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Abstract

One of today’s major challenges in data science is to compare and relate data of similar
nature. For example, web archives de-duplicate web crawls to present similar web pages
only once, data integrators use approximate string matching to relate data from different
sources, and online advertisers want to identify collaborative click fraud by finding users
with similar usage patterns. Using the join operation known from relational databases
could help solving these problems and related ones. Given a collection of records, the
join operation finds all pairs of records, which fulfill a user-chosen predicate. There are
efficient join methods for basic predicates, i. e., equality. However, real-world problems
could require more complex predicates: The previous examples require similarity. A
common way to measure similarity are set similarity functions, such as Jaccard. In order
to use set similarity functions as predicates, we assume records to be represented by sets
of tokens (i. e., words of a text). In this thesis, we focus on the set similarity join (SSJ)
operation.

The amount of data to be processed today is typically large and grows continually. On
the other hand, the SSJ is a compute-intensive operation. It has a quadratic time complex-
ity with respect to the input size. There are sophisticated methods to reduce the practical
compute effort if certain data properties are present. The most prominent method is the
filter-and-verification approach. However, this approach alone is not sufficient to compute
the SSJ on the amount of data, which is common today. To cope with the increasing size
of input data, additional means are needed to develop scalable implementations for SSJ. In
this thesis, we focus on parallelization. We make the following three major contributions
to SSJ.

First, we elaborate on the state-of-the-art in parallelizing SSJ. Existing methods use
shared-nothing parallelization on the MapReduce programming paradigm. We compare
ten approaches from the literature analytically and experimentally. We evaluate them by
setting up a fair benchmark and discuss their strengths and limits. Their main limit is
surprisingly a low scalability due to too high and/or skewed data replication. None of the
approaches could compute the join on large datasets.

Second, we leverage the abundant CPU parallelism of modern commodity hardware,
which has not yet been considered to scale SSJ. We propose a novel data-parallel multi-
threaded SSJ based on filter-and-verification methods. Our approach provides significant
speedups compared to single-threaded executions.

Third, we propose a novel highly scalable distributed SSJ approach. It overcomes the
limits and bottlenecks of existing MapReduce SSJ approaches. With a cost-based heuristic



and a data-independent scaling mechanism we avoid data replication and recomputation.
A heuristic assigns similar shares of compute costs to each node. A RAM usage estimation
prevents swapping, which is critical for the runtime. Our approach significantly scales up
the join execution and processes much larger datasets than all parallel approaches designed
and implemented so far.



Zusammenfassung

Eine der größten Herausforderungen in Data Science ist heutzutage, Daten miteinander in
Beziehung zu setzen und ähnliche Daten zu finden. Web-Archive deduplizieren beispiels-
weise Web-Crawls, um ähnliche Webseiten nur einmal auszugeben. In der Datenintegra-
tion wird approximatives String-Matching eingesetzt, um Daten von verschiedenen Quellen
zu vereinigen. Für Online-Werbetreibende ist es wichtig, kollaborativen Klickbetrug zu
erkennen, was durch das Finden ähnlicher Nutzungsstrukturen erreicht werden kann. Für
die genannten sowie verwandte Aufgaben kann der aus relationalen Datenbanken bekannte
Join-Operator eingesetzt werden. Der Join-Operator findet alle Record-Paare aus einer
Eingabemenge von Records, die ein benutzerdefiniertes Prädikat erfüllen. Für einfache
Prädikate, wie z. B. Gleichheit, existieren effiziente Berechnungsmethoden. Allerdings
erfordern reale Aufgabenstellungen mitunter komplexere Prädikate: So erfordern die ein-
gangs genannten Beispiele das Konzept der Ähnlichkeit. Ähnlichkeit wird häufig durch
mengenbasierte Ähnlichkeitsfunktionen, wie z. B. Jaccard, gemessen. Um mengenbasier-
te Ähnlichkeitsfunktionen als Prädikat nutzen zu können, setzt diese Arbeit voraus, dass
Records aus Mengen von Tokens (z. B. Worte eines Texts) bestehen. Die Arbeit fokussiert
sich auf den mengenbasierten Ähnlichkeitsjoin, Set Similarity Join (SSJ).

Die Datenmenge, die es heute zu verarbeiten gilt, ist groß und wächst weiter. Der
SSJ hingegen ist eine rechenintensive Operation. Er weist eine quadratische Komplexität
bezogen auf die Eingabedaten auf. Wenn bestimmte Voraussetzungen der Eingabedaten
erfüllt sind, existieren effiziente Ansätze, um den praktischen Berechnungsaufwand zu
reduzieren. Der wichtigste Ansatz ist der Filter-und-Verifikationsansatz. Dieser alleine ist
jedoch nicht ausreichend, um heutzutage gängige Datenmengen zu verarbeiten. Um mit
größeren Daten umgehen zu können, sind weitere neue Ansätze notwendig. Diese Arbeit
fokussiert sich auf das Mittel der Parallelisierung. Sie leistet folgende drei Beiträge auf
dem Gebiet der SSJs.

Erstens beschreibt und untersucht die Arbeit den aktuellen Stand paralleler SSJ-
Ansätze. Existierende Ansätze nutzen verteilte Parallelisierung auf Basis des MapRe-
duce Programmierparadigmas. Diese Arbeit vergleicht zehn Ansätze aus der Literatur
sowohl analytisch als auch experimentell. Sie stellt einen fairen experimentellen Bench-
mark vor und diskutiert Stärken und Schwächen der Ansätze. Der größte Schwachpunkt
aller Ansätze ist überraschenderweise eine geringe Skalierbarkeit aufgrund zu hoher Daten-
replikation und/ oder ungleich verteilter Daten. Keiner der Ansätze kann den SSJ auf
großen Daten berechnen.



Zweitens macht die Arbeit die verfügbare hohe CPU-Parallelität moderner Rechner
für den SSJ nutzbar. Sie stellt einen neuen daten-parallelen multi-threaded SSJ-Ansatz
basierend auf der Filter-und-Verifikations-Methode vor. Der vorgestellte Ansatz ermöglicht
erhebliche Laufzeit-Beschleunigungen gegenüber der Ausführung auf einem Thread.

Drittens stellt die Arbeit einen neuen hoch skalierbaren verteilten SSJ-Ansatz vor. Er
beseitigt Einschränkungen existierender MapReduce-basierter Ansätze. Mit einer kosten-
basierten Heuristik und einem daten-unabhängigen Skalierungsmechanismus vermeidet er
Daten-Replikation und wiederholte Berechnungen. Berechnungskosten werden heuristisch
möglichst gleich auf Berechnungsknoten verteilt. Eine Abschätzung des Hauptspeicherbe-
darfs vermeidet Swapping, was kritisch ist für die Laufzeit. Der Ansatz beschleunigt die
Join-Ausführung signifikant und ermöglicht die Ausführung auf erheblich größeren Daten-
mengen als bisher betrachtete parallele Ansätze.
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Chapter 1

Introduction

A major challenge in data science today is to compare and relate data of similar nature.
For example, web archives de-duplicate web crawls to present only relevant results to
users [TSP08]. Data integrators use approximate string matching to join data items from
different sources, which do not have a global join key [ABG10]. Online advertisers identify
collaborative click fraud by finding similar user behavior [MAEA07].

One way to approach these and related problems is to use the join operation known
from relational databases. The join operation finds all record pairs from two tables, which
fulfill a given predicate. For basic predicates, such as equality, there exist efficient methods
to compute the join. However, for the previously mentioned problems the predicate is
more complex: it involves similarity. If we assume that records are represented by sets, we
could use existing set similarity measures to compare them pairwise. Given a set similarity
measure and a user-chosen similarity threshold, the set similarity join (SSJ) finds all pairs
of records with a similarity above the threshold with respect to this measure.

A naive approach to compute the SSJ involves to compare all possible pairs. Since the
complexity of this approach is quadratic, it is not feasible even for small datasets. The most
prominent approach in the literature to compute the SSJ more efficiently is the filter-and-
verification framework. It does not reduce the worst-case complexity (which is quadratic),
but reduces the practical compute effort when favorable input data characteristics are
present. The framework first generates candidate pairs and verifies them in a second step.
Sophisticated filters keep the number of candidate pairs low. This approach is efficient on
single cores [MAB16]. However, it does not scale to large datasets.

To compute the SSJ on large datasets, various MapReduce-based distributed ap-
proaches based on the filter-and-verification framework evolved. The MapReduce pro-
gramming paradigm requires independently computable work shares. The approaches use
existing filters from the filter-and-verification framework to replicate and group data into
such independent shares. We describe existing approaches and analyze them theoretically
and practically. Our analysis and experiments show that the amount of data these ap-
proaches can process is limited. Users cannot shift the limit by adding more compute
nodes due to high and skewed data replication.

1



2 CHAPTER 1. INTRODUCTION

One of the most obvious parallelization opportunities, using multiple cores on one
computer, has not been considered for the SSJ problem so far. Arguably, the existing
MapReduce approaches can be used for intra-node parallelization by spawning multiple
executors on one node. However, the approaches replicate data, such as inverted indexes,
because they assume a shared-nothing architecture. On one node, multiple threads can
share the same data without replication, which is more RAM-efficient and opens caching
opportunities. Our novel multicore approach leverages the intra-node data sharing po-
tential. The approach efficiently uses multicore parallelization and achieves significantly
lower runtimes compared to single-core executions.

While multicore parallelization reduces the runtime of the SSJ, it cannot scale to
large datasets by adding more cores. Based on the knowledge of the shortcomings of the
existing MapReduce approaches, we propose a novel distributed SSJ approach. It is highly
scalable to hundreds of gigabytes of input. It uses intra-node multicore parallelization,
avoids data replication, and uses a cost-based heuristic as well as a data-independent
scaling mechanism to distribute the load to thousands of compute nodes if needed.

In the following, we define the problem we address in this thesis, summarize the main
contributions, outline the structure of the work, and give an overview on previous work
included.

1.1 Problem Definition

This thesis addresses the following question: How can the all-pairs SSJ be efficiently
computed on a potentially large input dataset given a large number of shared nothing nodes
of modern commodity hardware? We subsequently detail each part of this question.

Let us first formalize the SSJ. Given a collection of records (sets) R, formed over
the universe U of tokens (set elements), and a similarity function between two records,
sim : P(U) ×P(U) → [0, 1]; the set similarity self-join of R computes all pairs of sets
(r, s) ∈ R×R whose similarity exceeds a user-defined threshold θ, 0 < θ ≤ 1, i. e., all pairs
(r, s) with sim(r, s) ≥ θ. We require the result to be free of duplicates. Note that our
definition requires the join result to be complete (all-pairs or exact SSJ). Furthermore,
the definition requires a user chosen threshold θ (threshold-based SSJ). Without loss of
generality and following previous work on SSJ algorithms, we focus on the self-join using
the Jaccard similarity measure hereafter [MAB16].

Next, we define the properties of the input datasets we require the SSJ computation
to be compatible with. We focus on textual data as input for the SSJ. Such data usually
shows a roughly Zipfian token distribution and token universes up to several millions of
distinct tokens. These properties are important for the choice of a suitable SSJ approach.
Following previous work on single-threaded SSJs, we assume that input datasets are al-
ready tokenized and ignore the problem of efficient tokenization [AMNK14, MAB16]. All
our datasets are a single collection R of sets consisting of sorted tokens. We consider
finding exact duplicates an orthogonal problem and thus require input datasets to be free
of duplicates. By potentially large we refer to datasets of dozens or hundreds of gigabytes,
which have not been processed by any existing SSJ approach so far.
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By efficiently computing the SSJ we refer to the capability of the SSJ computation to
scale by using parallelization resources, such as CPUs and shared nothing compute nodes.
According to Amdahl’s Law, the speedup of a parallel program is limited by sequential
parts of it [Amd67]. We require such sequential parts to be minimal such that the user can
achieve desired small runtimes by adding more compute resources. Lastly, we require the
SSJ execution to be robust against unfavorable data characteristics, such as stop words.
Such data characteristics must not lead to straggling or other effects resulting in runtimes,
which are unacceptable to users.

By modern commodity hardware we refer to standard computers with dozens of cores,
dozens of gigabytes of RAM, sufficiently much harddisk space to hold the input and output
data, and a fast network interconnection. We consider the parallelization potential of
GPUs in this thesis out of scope. By a large number of compute nodes we refer to cloud
computing where it realistic today to temporarily obtain hundreds or even thousands of
nodes to compute one operation.

1.2 Contributions

The primary contributions of this thesis are:

• We analytically and experimentally compare ten MapReduce-based SSJ algorithms.
We provide a fair benchmark by (re-)implementing the algorithms and running them
on ten real-world and two synthetic datasets. We evaluate the algorithms vary-
ing parameters and discuss their strengths and limits. This work was published
in [FAB+18].

• We propose a novel multicore-parallel filter-and-verification-based SSJ approach,
which significantly speeds up the join runtime compared to using only a single core.
We experimentally evaluate the runtime and scalability of this approach using the
same datasets as in the MapReduce study. This work was published in [FWZF20].

• We propose a novel highly scalable distributed-parallel SSJ approach. It significantly
pushes the amount of input data that can be joined compared to the existing MapRe-
duce and the multicore approaches. It uses a data-dependent cost-based heuristic in
conjunction with a data-independent scaling mechanism. We evaluate the approach
using the same datasets as in the MapReduce study, enlarged artificially by a factor
up to 100. The outline for this approach was published in [Fie17].

1.3 Structure

This thesis is structured as follows. Chapter 2 provides the context of the SSJ we focus on.
It describes related set similarity problems, their applications, and their approaches. Fur-
thermore, this chapter describes basic filter-and-verification SSJ concepts and important
characteristics of twelve experimental datasets we use throughout this work.
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In Chapter 3 we review and analyze ten MapReduce-based SSJ algorithms. We focus
in particular on their scalability and runtime. By artificially enlarging the datasets we
additionally highlight the limits of the approaches regarding input dataset sizes and discuss
the related bottlenecks.

Chapter 4 introduces a novel filter-and-verification-based SSJ approach using multi-
cores. We experimentally show how existing filters affect the runtimes. Additionally, we
show the runtime effects of hardware-related implementation optimizations.

Motivated by the scalability limitations of the MapReduce and multicore approaches,
we propose a novel distributed SSJ approach in Chapter 5. This approach is based on the
insights of the MapReduce study and avoids replication. Based on a cost-based heuris-
tic and a data-independent scaling mechanism it partitions the compute load amongst
compute nodes.

This thesis concludes in Chapter 6 with a summary of the contributions. We discuss
how they can be used to further improve the SSJ computation in the future.

1.4 Own Prior Work

Chapter 3 presents an experimental study on existing MapReduce SSJ approaches, which
has been published in [FAB+18] with multiple authors. The authors’ roles can be assigned
as follows: Freytag supervised the work. All practical analysis was done by Fier, Fier wrote
the manuscript. The description and theoretical analysis of the existing algorithms and
the introduction is joint work of Augsten and Fier. The manuscript was critically revised
by Augsten, Leser, and Bouros.

Chapter 4 presents a multicore SSJ algorithm, which has been published in [FWZF20]
with multiple authors. The authors’ roles can be assigned as follows: Freytag supervised
the work. All analysis was done by Fier. Wang contributed the description of modern
multicore systems and parts of the parallel implementation. Fier wrote the manuscript,
which was critically revised by Wang and Zhu.



Chapter 2

Background

This chapter provides context for the set similarity join we focus on. We first give an
overview on related similarity problems and their approaches. Throughout this thesis, we
use the filter-and-verification approach. We subsequently review this approach including
its basic concepts, especially filters. Lastly, we describe experimental datasets and their
key characteristics we use for experiments throughout the thesis.

2.1 Related Similarity Problems

In Section 1.1 we defined the threshold-based all-pairs SSJ we focus on in this work. Other
problems are related to this SSJ. Differences mainly occur in the application and data
dimensions. Input data varies, i.e., in the way data is represented (set, multiset, string,
vector), the dataset size, or the dataset characteristics, such as the size of the token
universe. In the following, we give an overview on related problems, provide application
examples, and describe their main approaches. Subsequently, we relate them to the SSJ
we focus on.

Top-k Set Similarity Join. Given a collection of records R, the top-k set similarity
join computes the k most similar record pairs {(r, s)|r, s ∈ R} with respect to a given set
similarity measure. Users specify the number of desired results by k. One application of a
top-k set similarity join is, for example, near-duplicate web page detection [Hen06]. Xiao
et al. propose a top-k SSJ algorithm based on the prefix filter [XWLS09, CGK06].

Top-k Set Similarity Search. Given a query record q and a collection of records
R, the top-k set similarity search finds the k most similar records in R compared to q.
JOSIE applies this operation to the search for joinable tables in massive data lakes by
translating columns to sets [ZDNM19]. The query record q is a user-chosen column of
the query table. A special characteristic of this application is that the input datasets
have large dictionary sizes. Large dictionaries lead to large indexing structures in main
memory. JOSIE therefore focuses on techniques to skip reading parts of the index. The
method uses the prefix and position filters [CGK06, XWLS09].

Set Containment Join. Given a collection of set objects R, the set containment join
finds all pairs of objects {(r, s)|r, s ∈ R}, which contain each other r ⊆ s. For example, the

5
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set containment join could be used in traditional SQL database management systems to
evaluate complex SQL queries based on division. LIMIT+ advances the existing prefix tree
approach PRETTI by limiting the prefix tree, and by evaluating the join in a two-phase
process, candidate generation and verification [BMGT16, JP05]. The work of Kunkel et
al. advances this approach by intersecting prefix trees such that the operation can be
computed balance-aware in parallel [KRS+16].

Sliding Window Set Similarity Join. Given a collection of (multi-)set objects R,
a query document q, a window size w, and a threshold θ, the sliding window SSJ finds all
pairs of windows (x, y) such that x is a window of an object r ∈ R and y is a window of the
query object q. One application of a sliding window SSJ is plagiarism detection in texts
where parts are copied from other text sources with slight modifications. The approach
of Wang et al. uses an extended prefix filter (k-prefix with k > 1) to efficiently compute
this join [WXQ+16, WLF12].

Approximate/Probabilistic Set Similarity Join. Given a collection of records
R and a user-chosen similarity threshold θ, the approximate SSJ finds pairs of records
{(r, s)|r, s ∈ R} with a similarity above the threshold with a certain probability. One
application of this SSJ is plagiarism detection in textual documents. One approach to
compute the approximate SSJ is Locality-Sensitive Hashing (LSH). It uses hash functions
to replace the record tokens (or shingles) by much smaller signatures [LRU20]. This
approach chooses hash functions such that given two signatures, it could estimate the
similarity of the underlying records. The method to find such hashes is called minhashing.
Based on the signatures, the LSH approach generates candidate pairs, which are to be
verified subsequently. The LSH approach generates false negatives, so the candidate and
the result sets might be incomplete. Another approach to compute the approximate
SSJ is blocking [Chr07]. This approach creates a set of blocking keys for each record.
Subsequently, it matches records by key (using indexes) and verifies the candidates. This
method is approximate due to the creation of the blocking keys, which does not assure
that all matching records have a matching key.

Approximate String Search. Given a query string, a similarity threshold θ, and
a collection of strings, the approximate string search finds all strings in the collection,
which are similar to the query string relative to a similarity measure. One application
for approximate string search is spell checking. Given an input document, a spellchecker
searches for each word whether it is contained in a dictionary and if not, if there is a
similar one to recommend. Li et al. propose three algorithms to compute this operation
[LLL08]. The paper studies the influence of the common filters to efficiently compute the
operation [GIJ+01, CGK06].

Metric Space Similarity Joins. Given a collection of objects represented as vector
data in a metric space and a user-chosen similarity threshold θ, the metric space similarity
join computes all pairs of such objects, which are above the threshold with regard to a
similarity measure. One important prerequisite for this approach is that the similarity
measure is a metric and thus fulfills the triangular inequality. One application of this
operation is time series analysis, for example, the analysis of stock histories. QuickJoin
uses hyperplanes to break down the problem into independently computable pieces [JS08].
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Spatio-Textual Similarity Join. Given a collection of objects, which carry both
a textual (represented by sets) and a spatial information (represented by latitude and
longitude coordinates), a user-chosen textual threshold θ, and spatial threshold ϵ, the
spatio-textual join computes pairs of objects, which are spatially close and textually sim-
ilar with respect to a given set similarity measure. An application for such a join is, for
example, friendship recommendation in a social network. Bouros et al. propose ST-SJOIN
to compute this join [BGM12]. The approach uses spatial grids and introduces a grouping
mechanism to enhance the textual SSJ algorithm PPJoin+ [XWL+11].

All approaches mentioned have in common that they produce candidates before veri-
fying them in a second step. Additionally, top-k set similarity join and search, sliding
window set similarity join, and spatio-textual similarity join make use of one or more of
the common filters length filter, prefix filter, and position filter. We follow this approach
by using the filter-and-verification framework, which we describe subsequently.
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2.2 Filter-and-verification Framework

In the following, we describe the filter-and-verification framework for the SSJ, which we
use throughout this thesis. We begin with the concept of set similarity, revisit common
filters, and then describe the basic algorithmic approach to compute it.

2.2.1 Set Similarity

We require a similarity measure sim(r, s), which returns a value in [0, 1] for two input
records r, s. Common similarity measures are, for example, Jaccard, Cosine, and Overlap
(while the latter one is not normalized to [0, 1] here, but needed for our discussion):

• Jaccard(r, s) = |r∩s|
|r∪s|

• Cosine(r, s) = |r∩s|√
|r|·|s|

• Overlap(r, s) = |r ∩ s|.

Example 2.1. Consider the following records:
r = “do more with structured procrastination”
s = “do more by doing more”

The records from Example 2.1 can be transformed into:
r = {A, B, C, D, E}
s = {A, B, F, G, H}

using the following word-token mapping:

Word do more with structured procrastination by doing more2
Token A B C D E F G H
Token frequency 2 2 1 1 1 1 1 1

We emphasize that we replaced the second “more” of s with a different token than the first
occurrence. This string-to-set transformation is a common method referred to as counting
approach [AB13]. Considering the inverse global token frequency we can sort (canonical-
ize) the tokens within the records, which is an optimization we use in the filter discussion
subsequently:

r = {C, D, E, A, B}
s = {F, G, H, A, B}

We can now compute the similarities of the record pair as follows: Jaccard(r, s) = 2
8 =

0.25, Cosine(r, s) = 2√
5·5 = 0.4, Overlap(r, s) = 2. The choice of the similarity measure is

application-dependent and out of scope for this thesis. Let us consider Jaccard from now.
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Let us next derive important properties of the Jaccard similarity. We require the
Jaccard similarity measure of two records r, s to be larger or equal to the user-defined
threshold θ. We can formalize this requirement as follows:

Jaccard(r, s) = |r ∩ s|
|r ∪ s|

≥ θ (2.1)

Given that
|r ∪ s| ≥ |r| and |s| ≥ |r ∩ s|, (2.2)

we can infer:
Jaccard(r, s) ≥ θ ⇒ θ · |r| ≤ |s|. (2.3)

Equation 2.3 allows for filtering out records with non-matching lengths as we describe
in the following section.

2.2.2 Filters

In this section, we describe common existing filters we use throughout our work.

Length Filter. Arasu et al. first introduced this filter as part of the PartEnum algorithm
[AGK06]. Considering that two records r, s to be joined can have different lengths, we can
prune records, which do not fulfill the following prerequisite (inferred from Equation 2.3):

θ · |r| ≤ |s| ≤ |r|
θ

(2.4)

Example 2.2. Consider the following records and the threshold θ = 0.5:
r = {A, B, C, D, E}
s = {A, B}

Since θ · |r| = 0.5 · 5 ≰ |s| = 2 we can prune this record pair just by the knowledge of the
record lengths, but without accessing the actual record tokens.

Prefix Filter. Chaudhuri et al. first introduced this filter [CGK06]. Subsequently, further
SSJ algorithms integrated and refined it with tighter bounds [AGK06, BMS07, XWL+11,
MA14]. The prefix filter requires that tokens have an order, which we assume to be integer
values. The filter regards only subsets of tokens within each record, so-called prefixes to
decide if a record pair might be similar. If two records r, s fulfill the similarity threshold
Jaccard(r, s) ≥ θ then the overlap of their prefixes is not the empty set. The definition of
a prefix filter for Jaccard is as follows:

prefixLength(θ, r) = |r| − ⌈θ · |r|⌉+ 1 (2.5)

Example 2.3. Consider the following records:
r = {E, A, B, C, D}
s = {F, A, B, C, D}
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With Formula 2.5 we can compute the prefix lengths for an example similarity thresh-
old θ = 0.5: prefixLength(0.5, r) = prefixLength(0.5, s) = 5−3+1 = 3. Let us consider
the first three tokens of both records as their prefixes. The prefixes share the tokens A and
B, so we can consider both records as candidates ignoring their remaining tokens. The
actual Jaccard similarity of these two records is indeed Jaccard(r, s) = 4

6 = 0.7 > 0.5.
For another similarity threshold θ = 0.9, the prefix lengths are prefixLength(0.9, r) =
prefixLength(0.9, s) = 5− 5 + 1 = 1. The resulting prefixes of both records do not share
a common token, so we can safely prune the record pair without considering the rest of
their tokens.

Positional Filter. Gravano et al. first introduced this filter, focusing on string data
[GIJ+01]. PPJoin adapts the filter to sets [XWL+11]. The underlying idea of the filter is
a reasoning about positions over matching positions in the prefixes. We can translate the
Jaccard similarity into a minimum required overlap between the two records by rearranging
the similarity inequation:

Jaccard(r, s) = |r ∩ s|
|r ∪ s|

= |r ∩ s|
|r|+ |s| − |r ∩ s|

≥ θ (2.6)

|r ∩ s|
θ
≥ |r|+ |s| − |r ∩ s| (2.7)

(1 + θ) · |r ∩ s|
θ

≥ |r|+ |s| (2.8)

|r ∩ s| ≥ θ

(1 + θ) · (|r|+ |s|) (2.9)

Example 2.4. Let us consider a similarity threshold θ = 0.8 and the following records,
which passed the length and prefix filter. We can disregard tokens with a question mark:

r = {C, G, ?, ?, ?, ?, ?, ?, ?, ?}
s = {A, G, ?, ?, ?, ?, ?, ?, ?}

Given a threshold of 0.8, we compute the minimum required overlap between the two
records with Equation 2.9 resulting in the value of 9. The prefix length of s is 2, and the
one of r is 3. Now, we consider record s. The first matching token with r is at the second
position, leaving only seven tokens. Thus, the remaining tokens after the matching one
cannot reach the minimum required overlap of 9. Thus, we can prune these two records
disregarding further tokens.

In this section, we revisited three important filters commonly used in many SSJ ap-
proaches. We refer to the filters throughout the thesis. Next, we describe the basic
algorithmic approach, which facilitates the filters.
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2.2.3 Base Algorithm

In the following, we describe the basic algorithmic approach of the filter-and-verification
framework. The framework follows a two-stage process: candidate generation and can-
didate verification [BMS07, XWL+11]. A candidate is a pair of records that has the
potential to meet the similarity threshold. To generate candidate pairs, for each set r in
the input collection R, the filter-and-verification approach aims to find other sets s in R,
which contain tokens from r. An inverted index speeds up this process. The second stage
verifies the candidate pairs by computing their similarities. The verification only returns
the qualified pairs as final results.

To speed up the SSJ, a line of prior work focused on minimizing the number of candi-
dates, because the exact similarity computation could be expensive. To compute the SSJ
over R, |R| · |R| set comparisons need to be performed in the worst case. To reduce the
number of candidates, state-of-the-art algorithms typically use the length filter, the prefix
filter, and the position filter described in the previous section [AGK06, CGK06, XWL+11].
One important optimization related to the prefix filter is to pre-order the tokens in the
input records using the inverted global token frequency. The token order assures that the
prefixes contain only the least frequent tokens, but the result stays complete. This method
could reduce the number of candidates depending on input data characteristics.

Algorithm 1: Sequential AllPairs algorithm.
Data: R, invertedIndex, θ
Result: {(r, s)|(r, s) ∈ R×R, r ̸= s, sim(r, s) ≥ θ}

1 foreach r ∈ R do
2 candidates← {}
3 foreach token ∈ GetPrefix(r, θ) do
4 foreach s ∈ GetList(invertedIndex, token) do
5 candidates← candidates ∪ {s}

6 foreach s ∈ candidates do
7 Verify(r, s, θ)

Algorithm 1 shows the major steps of AllPairs, which is the foundation for other SSJ
algorithms [BMS07]. It assumes the inverted index on the prefix tokens of all records to
be computed beforehand. Lines 2–5 compute the candidates by probing the index for each
prefix token for each r ∈ R. Lines 6–7 compute the exact similarity of each candidate
pair. PPJoin extends AllPairs by using the position filter [XWL+11].

Various other single-core filter-and-verification-based SSJ algorithms emerged based on
the AllPairs approach. Since we focus on parallel SSJs, we refer to the experimental study
of Mann et al., which revisits single-core algorithms and compares them experimentally
[MAB16]. We follow this study and use the same experimental datasets. Subsequently,
we describe these datasets and their properties we use in our experimental discussions.
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2.3 Datasets

For our experiments, we use ten real-world and two synthetic datasets from the experi-
mental survey on single-core SSJs [MAB16].

We first describe the real-world datasets: AOL. This dataset results from a query log
of the AOL search engine [Aol]. One set represents a search string and one keyword is
represented by one token. BPOS. This dataset contains point of sale data [Bpo]. Each set
represents a purchase in a shop with tokens representing a product category. DBLP. This
dataset consists of articles from the DBLP bibliography [Dbl]. One set of tokens represents
one publication. Tokens represent q-grams of the concatenated title and author strings.
ENRO. This data contains e-mail data [Enr]. One set of tokens represents one e-mail
where each token represents one word as a concatenation of subject and body. FLIC. This
dataset contains metadata of images (the original source is not available anymore). One
set is a photography and one token is a word from the title or from a tag. KOSA. This
dataset contains click stream data [Kos]. One set of tokens represents one user interaction
recorded on a Hungarian online news portal with each token representing one link the user
clicked on. LIVE. This dataset contains social media data [Liv]. One token set represents
one user and tokens are user interests. NETF. This dataset contains social media data
[Net]. One set represents one user and tokens are movies rated by the user. ORKU.
This dataset contains data from a social network [Liv]. One set is one user and tokens are
group memberships of the user. SPOT. This dataset is from a music streaming service
[Spo]. One set is a user and tokens are tracks the user listened to.

Next, we describe the synthetically generated datasets. The tokens of the two synthet-
ically generated datasets are drawn from different distributions (Uniform and Zipfian).
The tokens are randomly assigned to the sets until the pre-computed set size (following
a Poisson distribution) is reached: UNI. This dataset uses a Zipfian token distribution
(z = 1) with an average record length of 50. ZIPF. This dataset uses a Uniform token
distribution with an average record length of 10.

Mann et al. preprocessed the datasets [MAB16]. The preprocessing includes integer-
tokenizing the datasets, which we consider out of scope for this work. Additionally, the
preprocessing orders records by ascending lengths, which is required by most SSJ ap-
proaches we consider. Lastly, the preprocessing canonicalizes the records such that the
tokens are sorted by increasing global token frequency. Canonicalized tokens are crucial
for the efficiency of the prefix filter (cf. Section 2.2.2).

There are four characteristics of these datasets we use throughout our experimental
discussions: dataset size, record length, token universe, and token distribution. Table 2.1
gives an overview on the first three of the characteristics. Column n = 1 refers to the
original sizes of the datasets, which vary between 17MB and 2.5GB. Single-threaded SSJ
algorithms efficiently compute the SSJ on such small datasets [MAB16]. Our work aims to
compute the SSJ on larger data using parallelism. We artificially increase the datasets by
factors s ∈ {5, 10, 25, 50, 100} (in the table we only show s ∈ {1, 10, 100} for brevity). We
adopt the procedure from Vernica et al. for the increase [VCL10]. The procedure preserves
the original universe sizes and the record lengths. It increases the number of similar record
pairs linearly with respect to the increase factor s. We refer to the enlarged datasets by,
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i. e., AOL×10 for the AOL dataset increased by s = 10. All datasets are free from exact
duplicates, because we consider exact duplicate elimination an orthogonal problem.

Table 2.1: Characteristics of experimental datasets.
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Figure 2.1: Length histograms of the datasets.

Figure 2.1 contains length histograms of the datasets. The x axis shows the record
lengths and the y axis shows the corresponding frequencies. Both axes are in log scale,
because all datasets reveal a skew towards many short records, especially AOL. Further-
more, most datasets exhibit a large tail with many different long records lengths, each
with only a low frequency.
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Figure 2.2: Token histograms of the datasets.

Figure 2.2 shows the token distribution of the datasets. Most datasets show a roughly
Zipfian distribution. Only BPOS, DBLP, and especially NETF reveal a more uniform
token distribution.



Chapter 3

Comparing MapReduce SSJ
Algorithms

In this chapter, we compare ten different MapReduce-based SSJ algorithms analytically
and experimentally (as published in [FAB+18]). Only little is known about their relative
runtime performance, strengths, and weaknesses. Previous comparisons are limited to
subsets of the algorithms. Furthermore, different test setups make them hard to compare.

We experimentally compare the ten algorithms in a uniform test environment. For the
experiments, we employ twelve input datasets with varying characteristics from a broad
range of applications (cf. Section 2.3). The results are surprising. All algorithms fail
to scale for at least one dataset due to sensitivity to long sets, frequent set tokens, low
similarity thresholds, or a combination thereof. Some algorithms even cannot compute the
SSJ on small datasets, which can be processed by single-threaded algorithms. We analyze
the algorithms to uncover the reasons for this limitation.

3.1 Background

A number of solutions for the distributed SSJ have been proposed, most of which are
based on the MapReduce paradigm. These solutions include (by publication year) Full-
Filtering [ELO08], VernicaJoin [VCL10], SSJ-2R [BDFML10], FuzzyJoin [ASM+12], V-
SMART [MF12], MRSim-Join [SR12], MG-Join [RLW+13], MAPPS [WMP13], Cluster-
Join [SHC14], Mass-Join [DLH+14], MRGroupJoin [DLWF15], FS-Join [RLS+17], and
DIMA [SSL+17, SSL+19]. Jiang et al. and Mann et al. compared non-distributed solu-
tions in their experimental studies [JLFL14, MAB16]. However, there is no comprehen-
sive comparison of distributed SSJ algorithms, except the work by Silva et al. [SRB+16],
which compares FuzzyJoin [ASM+12], MRThetaJoin [OR11], MRSimJoin [OR11], Ver-
nica [VCL10], and V-SMART [MF12]. However, the benchmark does not include several
important competing algorithms. Furthermore, the validity of the experiments is limited,
because the authors used only a single dataset. The empirical evaluations in the original
publications of the algorithms provide only an incomplete understanding (see Figure 3.1
on the right upper part).
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n
s→

MRGroupJoin [DLWF15] GJ >
FullFilteringJoin [ELO08] FF <
MGJoin MG > < >
MassJoin MJ > < > <
MRSimJoin [SR12] MR < < <
SSJ-2R [BDFML10] S2 < <
VernicaJoin [VCL10] VJ > > > > > > >
V-SMART [MF12] VS < < < <
FS-Join FS > < > < > > > < >

← Our Comparisons →

'=[SHC14] >[SHC14]

<[BDFML10] <[BDFML10]

[RLW+13] >[RLW+13]

[DLH+14] >[DLH+14] <[RLS+17]

>[BDFML10]

<[MF12] >[SHC14] <[RLS+17]

<[RLS+17]

[RLS+17]

Figure 3.1: Overview of previous (upper right triangle) comparisons and those performed
in this work (lower left triangle). A ”>” indicates that the algorithm in the row is faster
than the one in the column according to the respective publication.

In the following, we perform a comparative evaluation of ten distributed SSJ algorithms
as listed in Figure 3.1, which require the MapReduce programming framework [DG04]. To
provide a fair experimental setup, we do not tailor parameters, data preprocessing, im-
plementation details, or system configuration details to work especially well with one
algorithm. We do not include DIMA in our study since (i) it builds on top of Spark by ex-
tending the Catalyst optimizer and (ii) the proposed approach for similarity joins employs
offline distributed indexing [SSL+17, SSL+19]. We also exclude FuzzyJoin, which focuses
on string similarity measures; although Afrati et al. argue that the proposed methods can
be adapted for set similarity measures, they do not elaborate on this issue [ASM+12].
Furthermore, we do not consider MAPSS, which is tailored to dense vectors; note that
vector representations of sets are typically extremely sparse [WMP13]. Last, we exclude
HDSJ, which also focuses on vector data and on Euclidian distance rendering the proposed
techniques not applicable to set similarity measures [LTMN12, MMW16, MJZ17].

We base our comparison on twelve datasets (ten real-world and two synthetic datasets)
- as discussed before - of varying sizes and characteristics. All methods were reimplemented
or adapted to remove bias stemming from different code quality. We further removed pre-
and/or post-processing steps and thus reduced all methods to their core: the computation
of SSJ. Since all tested algorithms are based on the Hadoop implementation of MapReduce,
we run all comparisons on the same Hadoop cluster. We repeat experiments from the
original works and – where the results differ – discuss reasons for the deviations. We
further perform a qualitative comparison of all algorithms. We systematically discuss and
illustrate their map and reduce steps and provide an example for most algorithms. We
analyze their expected intermediate dataset sizes and distribution and other factors that
may have an impact on runtime and scalability. This analysis forms the basis for the
subsequent discussion and helps to explain our experimental results.

In this chapter, we do not introduce new approaches. Thus, we chose a setting that is
supported by all algorithms tested: self-join using Jaccard similarity. Figure 3.2 outlines
the typical workflow of an end-to-end set similarity self-join. The input is a collection
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Figure 3.2: Computation of a token-based SSJ. Our work focused on step (2), the actual
join.

of objects, i.e., documents. Step (1) transforms each object into a set of integer tokens.
The result is a record per object identified by a unique record ID (rid); the tokens in the
record are unique integer values. The similarity join Step (2) computes all similar pairs of
sets and outputs the respective record ID pairs. Step (3) joins the original objects to the
record IDs to produce pairs of objects as the final result.

We focus in our analysis on the join, Step (2), thus not measuring the pre- and post-
processing cost. The preprocessing step in our experiments is the same for all algorithms
to ignore the problem of efficient tokenization [AMNK14]. MassJoin does not require an
additional join to produce object pairs from ID pairs in Step (3) since the original objects
are already present in Step (2). We evaluate this effect in a separate test.

All algorithms we consider are based on the MapReduce framework [DG04] and are
implemented in Hadoop using its distributed file system HDFS [Whi12]. We focus on
comparing existing algorithms without introducing new approaches. Thus, we exclude
adaptations of the algorithms to other big data platforms, such as Flink or Spark. Such
adaptations would require non-trivial changes in the algorithms. We use Version 2 of
Hadoop, which is based on the resource manager YARN. The system creates containers on
each system node, which executes tasks, such as map or reduce. The number of containers
depends on user-defined memory settings. For example, if the user allows the system
nodes to use 10GB for Hadoop and sets the container size to 4GB, the system spawns two
containers on each node. By default, the number of map tasks is equal to the number of
HDFS data blocks of the input. The number of reduce tasks is user-defined. Both, the
concurrent map and reduce tasks are limited by the number of containers available.

We refer to each block of map, optionally followed by reduce, as a job; most algorithms
in our tests consist of multiple jobs. A map or reduce function may use a so-called setup
function, which Hadoop executes once at instantiation time. Such function is useful to
load global settings or data to each map/reduce task to make it available throughout the
lifetime of the task. In Figure 3.3, we provide a simplified overview of relevant data flows
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compute node HDFS

HDD
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task
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task
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 on other nodes 
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(network, from and to other nodes running HDFS)

Figure 3.3: Schematic dataflow between map, reduce, HDFS, RAM, and filesystem in one
Hadoop compute node. Dataflow from and to remote map, reduce, and HDFS instances.

in a MapReduce job. Map reads data blocks from HDFS (step 1 in the figure). The
system hashes each output record of a map by its key (step 2), buffers it on the map side
(spills it to disk if a buffer threshold is reached or if not enough reducers are free), and
then routes it to the reducer responsible for its key. An optional combiner groups the
map outputs by key and performs some pre-computations to reduce its size (omitted in
the figure for brevity). The system collects the input for each reducer from different map
tasks (which may be local or remote) and buffers it in RAM (step 3). When the buffer
is full, the systems spills data to local disk. Map-side buffers may also spill to disk, for
example, when the reduce-side buffers are full. After all map tasks have finished their
execution, the system sorts and groups the data at the reducers by key (shuffling phase,
step 4). Finally, the system calls the reduce function for each key (data group), and saves
its output to HDFS, possibly serving as an input for subsequent jobs.

3.2 Survey and Analysis

This section reviews the ten SSJ algorithms of Figure 3.1, and analyzes the size of the
intermediate data between maps and reduces. The size of the intermediate data is critical
since it often correlates to the I/O cost, which dominates the overall execution time.

We denote the input collection with R ⊆ {r | r ⊆ U}. The global token frequency
(GTF) of a token is the number of records containing this token. We provide the signatures
of the map and reduce functions and denote the mapper (combiner, reducer) of job i with
Mi (Ci, Ri). The input and output signatures are ⟨key, value⟩ pairs and a (non-empty)
list of values is denoted as value∗. Last, rid denotes the record ID, tok denotes a token,
and l represents the length (number of tokens) of a particular record.



3.2. SURVEY AND ANALYSIS 19

Example 3.1. We use the following records as a running example. R = {r1, r2, r3},
r1 = {A, B, C, D, E}, r2 = {B, C, D, E, F}, r3 = {A, B, C}, the similarity function is
sim(ri, rj) = |ri∩rj |/|ri∪rj | (Jaccard), and the threshold is θ = 0.65. With sim(r1, r2) =
2
3 , sim(r1, r3) = 3

5 , and sim(r2, r3) = 1
3 , the join result is (r1, r2).

3.2.1 Filter-and-verification based algorithms

FullFilteringJoin (FF). FF computes an inverted index over all tokens in Job 1 such
that each token maps to all records, which contain this token. The algorithm subsequently
uses the inverted lists in Job 2 to compute the pairwise record overlaps and the final join
result (cf. Figure 3.4).

We discuss Job 2 (cf. Figure 3.5). M2 processes the inverted list of a token by generating
all record pairs that share the token (i.e., all 2-combinations of the records in the list are
produced). The combiner C2 groups record pairs from different lists and computes their
partial overlap. Reducer R2 adds this partial overlap for each record pair to obtain the full
overlap. R2 further uses the record lengths, which are stored with the respective records,
to compute the Jaccard similarity and verify each record pair. Since each record pair is
verified by a single reducer, the output is duplicate-free.

Job 1 Job 2

Index
Map

Candidate
Map

Index
Reduce

Verific.
Reduce

Inverted
Index

Output 
Dataset

Input
Dataset

M1: ⟨rid, tok∗⟩ → ⟨tok, (rid, l)⟩
R1: ⟨tok, (rid, l)⟩ → ⟨tok, (rid, l)∗⟩ // inverted lists
M2: ⟨tok, (rid, l)∗⟩ → ⟨(rid1, rid2), (l1, l2, 1)⟩ // candidates
C2: ⟨(rid1, rid2), (l1, l2, 1)⟩ → ⟨(rid1, rid2), (l1, l2, par olap)⟩
R2: ⟨(rid1, rid2), (l1, l2, par olap)⟩ → ⟨rid1, rid2⟩ // verification

Figure 3.4: FullFilteringJoin Dataflow.

A|(r ,5),(r ,3)  (r ,r )|5,3,1   1 3 1 3

B|(r ,5),(r ,5),(r ,3)  (r ,r )|5,5,1 (r ,r )|5,5,2 (r ,r )|5,5,21 2 3 1 2 1 2 1 2

C|(r ,5),(r ,5),(r ,3)  (r ,r )|5,3,1 (r ,r )|5,3,3          5,5,2 (r ,r )1 2 3 1 3 1 3 1 2

D|(r ,5),(r ,5)  (r ,r )|5,3,1 (r ,r )|5,3,2 (r ,r )|5,3,3  1 2 2 3 2 3 1 3

E|(r ,5),(r ,5)  (r ,r )|5,5,11 2 1 2

   (r ,r )|5,3,11 3

   (r ,r )|5,3,12 3
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Figure 3.5: FullFilteringJoin, Job 2, Example.

Discussion. The output of both M1 and R1 is linear in the input data: M1 produces
|M1| =

∑︁
r∈R |r| = |R| · |r| records of three integers each (|r| is the average record length);
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R1 produces |R1| = |U | inverted lists L = (rid, l)∗. The maximum list length |L| is given
by the maximum GTF. The output of M2 is quadratic in the GTF: each input record
⟨tok, L⟩ ∈ R1 generates |M2| =

∑︁
⟨tok,L⟩∈R1

(︁|L|
2

)︁
records of four integers.

V-SMART (VS). VS extends FullFilteringJoin by splitting long inverted index lists and
replicating them to multiple nodes [ELO08]. Job 1 (cf. Figure 3.6) computes an inverted
index over all tokens. In contrast to FF, VS computes all candidates (2-combinations) for
short inverted lists already in this first step and materializes them to HDFS. On the other
hand, VS partitions and replicates long inverted lists and processes them in Job 2. The
mappers in Job 2 either generate candidates (long lists) or pass them on to the reducers
(short lists). A combiner pre-aggregates the candidates. Finally, a reducer verifies them.
Due to the similarity to FF we do not show an example.

Job 1

Job 2

Index
Map

Redirect
Map

Candidate
Map

Candidate
Reduce

Verific.
Reduce

Candidate
Pairs

(short)

Inverted
Index
(long)

Output 
Dataset

Input
Dataset

M1: ⟨rid, tok∗⟩ → ⟨tok, (rid, l)⟩
R1: ⟨tok, (rid, l)⟩ → ⟨(rid1, rid2), (l1, l2, 1)⟩ // short lists

⟨tok, (rid, l)⟩ → ⟨tok, (rid, l)∗⟩ // long lists
M2: ⟨tok, (rid, l)∗⟩ → ⟨(rid1, rid2), (l1, l2, 1)⟩ // long lists
C2/R2: see Figure 3.4

Figure 3.6: V-SMART Dataflow.

Discussion. Similar to FF, the quadratic number of candidates produced from long
inverted lists dominate the intermediate data exchange. Although multiple mappers gen-
erate the candidates for long lists, the overall burden on the reducers in Job 2 is the same
as for FF.
VernicaJoin (VJ). VJ is based on the prefix filter (cf. Section 2.2.2). Figure 3.7 gives
an overview on VJ. Jobs 1 and 2 count and sort (in a single task of R2) the tokens by
GTF, respectively. Mapper M3 loads the resulting sort order in the setup function and
creates the inverted index on the tokens in the prefix (we underline prefix tokens, tok);
R3 generates candidate pairs from the inverted lists that are immediately verified. Since
different reducers may generate identical result pairs, a final de-duplication step is required
(Job 4). Figure 3.8 illustrates Job 3 for our running example.

Similar to FF, VJ builds an inverted index on tokens and generates candidate pairs
from the records in the inverted lists. However, VJ differs as follows. First, VJ builds
the inverted index only on prefix tokens, thus reducing the length of the lists. Second,
VJ does not generate all possible pairs from an inverted list, but applies filters proposed
in the non-distributed PPJoin+ algorithm to reduce the candidate set (length, positional,
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and suffix filter) [XWL+11]. Third, the inverted lists store – in addition to the record ID
– all tokens of the original record, which is necessary for verification.

Job 1

Job 3

Job 2

Job 4

Freq.
Map

Prefix
Map

Swap
Map

Dedup
Map

Freq.
Reduce

Verific.
Reduce

Assign
Reduce

Dedup
Reduce

Input
Dataset

Tokens

Result w/
duplicates

Output
Dataset

Sorted
Tokens

(Setup)

M1: ⟨rid, tok∗⟩ → ⟨tok, 1⟩
R1: ⟨tok, 1⟩ → ⟨tok, count⟩ // global token frequency
M2: ⟨tok, count⟩ → ⟨count, tok⟩
R2: ⟨count, tok⟩ → ⟨tok⟩ // sorted list of tokens, single reducer
M3: ⟨rid, tok∗⟩ → ⟨tok, (rid, tok∗)⟩ // prefix inverted lists
R3: ⟨tok, (rid, tok∗)⟩ → ⟨rid1, rid2⟩ // verified pairs
M4: ⟨rid1, rid2⟩ → ⟨(rid1, rid2), null⟩
R4: ⟨(rid1, rid2), null⟩ → ⟨rid1, rid2⟩ // de-duplicated pairs

Figure 3.7: VernicaJoin Dataflow. Prefix tokens are underlined.

r  = {E,D,A,B,C}  E|r ,E,D,A,B,C A|r ,A,B,C1 1 3

r  = {F,E,D,B,C}  D|r ,E,D,A,B,C B|r ,A,B,C2 1 3

r  = {A,B,C}  F|r ,F,E,D,B,C  D|r ,E,D,A,B,C3 2 1

   E|r ,F,E,D,B,C  E|r ,E,D,A,B,C2 1

   A|r ,A,B,C     r ,F,E,D,B,C (r ,r )3 2 1 2

   B|r ,A,B,C      F|r ,F,E,D,B,C3 2
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Figure 3.8: VernicaJoin, Job 3, Example. Tokens are ordered by GTF, prefix tokens are
underlined.

Discussion. Job 3 dominates the amount of data exchanged. M3 generates an inverted
list entry ⟨tok, (rid, tok∗)⟩ for each token tok that appears in some prefix. With the prefix
length |r| − ⌈|r| · θ⌉ + 1 for Jaccard, |M3| = (1 − θ) · |R| · |r| + |R|. The list entry stores
all tokens of the original record and is of length |r|+ 2 for record r, thus the output size
of M3 is O(|R| · |r|2). The output of R3 is quadratic in the frequency of the tokens in the
prefix: for an inverted list L, VJ generates and verifies

(︁|L|
2

)︁
pairs in the worst case. This

upper bound is pessimistic since the filters may reduce the number of candidate pairs.
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MGJoin (MG). MG extends VJ twofold. First, in addition to GTF-ordered prefixes, MG
also applies other prefix orders: it indexes GTF-ordered prefixes to generate candidates
(similar to VJ). In addition, MG uses two prefix orders different from GTF to filter the
resulting candidates before verification. Second, a load balancing job groups the input
records into partitions with a similar length distribution before the inverted index on the
GTF prefixes is computed.
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(Setup)

M1/R1: see Figure 3.7 // compute global token frequency
M2: ⟨rid, tok∗⟩ → ⟨rid, tok∗⟩ // balance records by length
M3: ⟨rid, tok∗⟩ → ⟨tok/l, (rid, tok∗, tok∗)⟩ // prefix inv. lists
R3: ⟨tok/l, (rid, tok∗, tok∗)⟩ → ⟨rid1, rid2⟩ // verification
M4/R4: see Figure 3.7 // de-duplication

Figure 3.9: MGJoin Dataflow.

r  = {E,D,A,B,C}  E|r ;B,A,D,C,E;C,B  A|r ;[...]1 1 3

r  = {F,E,D,B,C}  D|r ;B,A,D,C,E;C,B  B|r ;[...]2 1 3

r  = {A,B,C}  F|r ;B,D,C,F,E;C,B  D|r ;[...]3 2 1

   E|r ;B,D,C,F,E;C,B  E|r ;[...]2 1

   A|r ;B,A,C;C,B     r ;[...]          (r ,r )3 2 1 2

   B|r ;B,A,C;C,B      F|r ;[...]    3 2
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Figure 3.10: MGJoin, Job 3, Example. Prefix tokens are underlined. Indexed prefix
ordered by GTF, non-indexed prefix by reverse GTF, random order is B,A,D,C,F,E.

Figure 3.9 illustrates MG. Job 1 counts token frequencies to establish a global order,
which is loaded in the setup function of Job 3. Job 2 (map-only) distributes the records
to HDFS files such that each file contains a mixture of short and long records. Subsequent
mappers of Job 3 use the file boundaries as input split (by system default), so each mapper
operates on a mixture of short and long records for load balancing. Job 3 (mapper) creates
an inverted index on the GTF-ordered prefixes. A ⟨tok/l, (rid, tok∗, tok∗)⟩ list entry stores
the record ID (rid), all tokens of the record in random order, and finally the prefix in
reverse GTF. The record length l is used as a secondary key to sort the tokens within each
inverted list; the reducer generates candidate pairs from the inverted lists using a length
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filter (i.e., pairs that cannot reach the similarity threshold based on their length difference
are not considered). Before verifying a pair, the overlap of the random prefixes and the
reverse GTF prefixes is computed. A candidate pair needs verification only if all prefixes
have non-zero overlap. Job 4 removes duplicates.

Discussion. MG exchanges an amount of data similar to VJ, except that the entries
in the inverted lists are larger since they contain an additional prefix.
SSJ-2R (S2). Similar to VJ, S2 uses a prefix index to generate candidates, but addresses
the problem of large entries in the inverted lists. VernicaJoin must replicate the entire
record in each entry of the inverted list for verification. S2 splits the records into a prefix
and a residual (mapper M1 in Figure 3.11). S2 indexes prefixes with inverted list entries
containing the record IDs, the last tokens in the prefix, and the record lengths. Mapper
MC 2 generates candidate pairs (rid1, rid2) such that the last prefix token in rid1 is larger
than the last prefix token in rid2. Mapper MI 2 reads all input records and a group step
before R2 joins the candidate pairs on rid1. For rid2 only the residuals are required:
the overlap between record rid1 and the prefix of rid2 is the number of candidates pairs
(rid1, rid2). A setup function loads the residuals to each reducer.

Job 1 Job 2

Index
Map

Candidate
Map MC

Verific.
Reduce

Input 
Map MI

Index

Residual

Output
Dataset

Index
Reduce

(Setup)

Input
Dataset

M1: ⟨rid, tok∗⟩ →
{︄
⟨rid, tok∗⟩ // residuals
⟨tok, (rid, tok, l)⟩ // inv. list entries

R1: ⟨tok, (rid, tok, l)⟩ → ⟨tok, (rid, tok, l)∗⟩ // prefix index
MC 2: ⟨tok, (rid, tok, l)∗⟩ → ⟨(rid1, rid2), (rid2, tok, l2)⟩

// candidates generated from index
MI 2: ⟨rid, tok∗⟩ → ⟨(rid, null), tok∗⟩ // load input for join
R2: ⟨(rid1, rid2|null), tok∗|(rid2, tok, l2)⟩→⟨rid1, rid2⟩

Figure 3.11: SSJ-2R Dataflow.

Discussion. R2 generates an index with the same cardinality as the index in VJ, but
each list entry consists of only four integers such that the overall index size is limited to
O(|R| · |r|). The mapper MC 2 outputs all 2-combinations of an inverted list L, i.e., the
number of candidates for L is quadratic in |L| (similar to VJ). The residuals consist of
|R| records of average length θ · |r|; for large similarity thresholds θ the residuals may be
almost as large as the input dataset. Each task of R2 must load the residuals, which is
infeasible for large datasets.
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Figure 3.12: SSJ-2R, Job 2, Example.

MassJoin (MJ). MJ uses signatures based on the pigeon-hole principle and extends the
non-distributed Pass-Join [LDWF11]. For each record, MJ generates a set of signatures
such that two matching records must share at least one signature. Record pairs with a
common signature are candidates. Mapper M1 (cf. Figures 3.13) computes an inverted
index on signatures. The list entries are record IDs with some additional information for
pruning. Reducer R1 generates candidate pairs (all 2-combinations) from an inverted list.
It leverages the pruning information to decrease the candidate set. The output format is
a record ID with a list of candidates (in Figure 3.14 the candidate lists are of length 1).
Jobs 2 and 3 join the input to the candidate pairs to verify the candidates in R3.
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Candidate
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M1: ⟨rid, tok∗⟩ → ⟨signature, (rid, pruneinfo)⟩ // inverted list entry
R1: ⟨signature, (rid, pruneinfo)⟩ → ⟨rid1, rid∗

2⟩ // candidate list of rid1
M2: (identity)
R2: ⟨rid1, (rid∗

2|tok∗)⟩ → ⟨rid1, (rid∗
2, tok∗)⟩ // obtain tokens of rid1

M3a: ⟨rid1, (rid∗
2, tok∗)⟩ → ⟨rid2, (rid1, tok∗)⟩ // prepare join on rid2

M3b: (identity)
R3: ⟨rid2, (rid1, tok∗)|tok∗⟩ → ⟨rid1, rid2⟩ // obtain tokens of rid2, verify

Figure 3.13: MassJoin Dataflow.
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r |A,B,C,D,E A;0|r ,[...] A;*|r ,[...] 1 1 1

  B,C;0|r ,[...]        r ,[...]1 3

  D,E;0|r ,[...]        r ,[...]1 3

  A,B;1|r ,[...] B,C;*|r ,[...]1 1

  B,C;1|r ,[...]           r ,[...]1 1

  C,D;1|r ,[...]           r ,[...] r |r1 2 1 2

  D,E;1|r ,[...]           r ,[...]1 3

r |B,C,D,E,F B;0|r ,[...]           r ,[...]2 2 3

  C,D;0|r ,[...] D,E;*|r ,[...]2 1

  E,F;0|r ,[...]           r ,[...]2 1

  B,C;1|r ,[...]           r ,[...]2 2

  C,D;1|r ,[...] A,B;*|r ,[...]2 1

  D,E;1|r ,[...]           r ,[...]2 3

  E,F;1|r ,[...] C,D;*|r ,[...]2 1

r |A,B,C  A;0|r ,[...]           r ,[...]3 3 2

  B,C;0|r ,[...]           r ,[...]3 2

  A;1|r ,[...] B;*|r ,[...] r |r3 2 1 2

  A,B;1|r ,[...]       r ,[...]3 3

  B;1|r ,[...] E,F;*|r ,[...]3 2

  B,C;1|r ,[...]          r ,[...]3 2

  C;1|r ,[...] C;*|r ,[...]3 3
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Figure 3.14: MassJoin, Job 1, Example.

Discussion. The output of M1 dominates the amount of data exchanged. Deng at
al. show that M1 generates |M1| =

∑︁
r∈R

(1+θ3)(1−θ)3

θ3 · |r| · C + 1−θ
θ · |r| (C is a constant)

signature records of |r|
1−θ

θ
·|r|+1 + 35 integers each [DLH+14]. The size of M1’s output grows

with the record length and decreasing similarity thresholds.
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MRGroupJoin (GJ). GJ groups records by length and partitions the records in each
group into subrecords containing a disjunctive subset of the tokens. To generate candi-
dates, GJ probes a record r against all groups of records containing subrecords of poten-
tially matching lengths. A candidate record s must share at least one subrecord with r,
which is ensured by the pigeonhole principle. GJ requires only a single MapReduce job
(cf. Figures 3.15, 3.16). M1 partitions a record r into sub-partitions par for the index
length len = |r| and the probe lengths len ∈ [θ ∗ |r|, |r|]. The key is the pair (par, len), the
value is the record r and an index/probe flag. R1 computes and verifies candidates. To
compute the candidates, the reducer creates the cross product on all index records with
all probe records for a given key (par, len).

Job 1

Index+
Probe
Map

Join
Reduce

Output 
dataset

Input
Dataset

M1: ⟨rid, tok∗⟩ → ⟨(par, len), (rid, tok∗, f lag)⟩
R1: ⟨(par, len), (rid, tok∗, f lag)⟩ → ⟨rid1, rid2⟩

Figure 3.15: MRGroupJoin Dataflow.

Figure 3.16: MRGroupJoin, Example. Index keys are underlined. Non-underlined keys
are probe keys.

Discussion. The mapper produces |M1| =
∑︁

r∈R (1−θ
θ · |r|+

∑︁
θ·|r|≤s≤|r| (1−θ

θ · s))
records. The record size is |r|+ 4 integers.
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FS-Join (FS). FS-Join sorts the input records in GTF order and splits them into dis-
joint segments using so-called pivot tokens as separators (vertical partitioning). The order
number of a segment is its key. FS groups all segments with the same key into fragments.
Segments from different fragments have zero overlap. Thus, FS joins each fragment inde-
pendently and produces a set of record ID pairs with a partial overlap. The fragment join
uses the prefixes of the input records, the length filter, and some segment specific pruning
techniques to decrease the output. To verify a record pair, FS sums up the partial overlaps
of all its segments. An optional length-based horizontal partitioning allows distributing a
fragment to different nodes at the cost of replicating data. Job 1 (cf. Figures 3.17, 3.18)
computes the global token frequency, which is used in M3 to choose good pivot tokens. R3
loads the prefixes (computed in Job 2), joins the fragments, and outputs candidate pairs.
Job 4 verifies the candidate pairs.

M1/R1: see Figure 3.7 // compute global token frequency
M2: ⟨rid, tok∗⟩ → ⟨(rid, len), tok∗⟩ // compute prefixes
R2: (identity)
M3: ⟨rid, tok∗⟩ → ⟨frag, (rid, tok∗)⟩ // compute segments
R3: ⟨frag, (rid, tok∗)⟩→⟨(rid1, l1, rid2, l2), par olap⟩ // seg. overl.
M4: (identity)
R4: ⟨(rid1, l1, rid2, l2), par olap⟩ → ⟨rid1, rid2⟩ // aggreg. & verify

Figure 3.17: FS-Join Dataflow. Prefixes and segments underlined.

Discussion. Job 3 dominates the runtime. M3 produces |M3| = |R| · (p + 1) segments,
where p is the number of pivots; the overall output size is |R| · (|r|+ p + 1) integers since
each segment has a key and no data is replicated. |R3| = (p + 1) · |R|2 records of length
five in the worst case. This upper bound is pessimistic since the data is sparse and filters
reduce the output size. Each task of R3 must load the prefixes of all records.
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r |A,B,C,D,E 1|r ,[...] 1|r ,[...] r ,5,r ,3|1 1 1 3 1 3

  2|r ,[...] 1|r ,[...] r ,5,r ,5|11 1 1 2

  3|r ,[...] 1|r ,[...] r ,5,r ,5|11 2 1 2

  4|r ,[...] 2|r ,[...]1 1

r |B,C,D,E,F 0|r ,[...] 2|r ,[...] 2 2 2

  1|r ,[...] 3|r ,[...]2 3

  2|r ,[...] 3|r ,[...]2 1

  3|r ,[...] 3|r ,[...] r ,5,r ,3|12 2 1 3

  4|r ,[...] 4|r ,[...] r ,5,r ,5|12 3 1 2

r |A,B,C  1|r ,[...] 4|r ,[...] r ,5,r ,3|13 3 1 1 3

  3|r ,[...] 4|r ,[...] r ,3,r ,5|13 2 1 2

  4|r ,[...] 0|r ,[...]3 2

R
e
d

M
a
p G
ro
u
p

R
e
d

M
a
p

Figure 3.18: FS-Join, Job 3, Example. Pivots are B,D,E, and F.

3.2.2 Metric partitioning based algorithms

MRSimJoin (MR). MR parallelizes the non-distributed QuickJoin algorithm [JS08],
which uses pivots to partition the metric space with hyperplanes. MR joins resulting
partitions independently in main memory. If a partition does not fit into main memory,
MR partitions it further, i.e., by a hash function. The approach replicates records that fall
into border areas into dedicated window partitions to be joined separately. Figure 3.19
illustrates MR. Before Job 1 starts, MR draws random pivot records. The mapper M1
uses the pivots to assign each input record to its base partition. If a record is too close to
another partition, the mapper replicates it to the respective window partition. Reducer
R1 processes and joins the partitions that fit into main memory and outputs the other
partitions (that are too large) to HDFS. MR calls itself recursively on the intermediate
partitions until no partition is left.

Job 1

Base/
Window

Map

Base/
Window
Reduce

intermed./
output 
dataset

Input/
intermed.
Dataset

M1: ⟨rid, tok∗⟩ → ⟨partition, (rid, tok∗)⟩
R1: ⟨partition, (rid, tok∗)⟩ → ⟨rid1, rid2⟩

Figure 3.19: MRSimJoin Dataflow.

Discussion. MR assigns each record to one of the p base partitions. In addition, it
might replicate the record to at most p − 1 window partitions, so the maximum number
of intermediate records is |M1| = p · |R|. The output records of M1 contain a partition ID,
the ID of a record r, and all tokens of r.
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ClusterJoin (CJ). Similar to MR, CJ uses random pivots to split the data into disjoint
partitions and to replicate border objects to window partitions. But, to avoid iterations
for large partitions, CJ estimates the partition sizes in a preprocessing step, and then
replicates partitions that exceed a user-defined threshold, following the Theta-Join ap-
proach [OR11]. For Jaccard similarity, the authors discuss a length filter to reduce the
candidate size [SHC14]. Similar to MR, CJ uses random pivots to split the data into
disjoint partitions and to replicate border objects to window partitions.

Figure 3.20 illustrates the dataflow of MR. Before Job 1 starts, random pivot records
and random sample records are drawn. Job 1 estimates the partition cardinalities from
these two datasets. Mapper M2 assigns the records to their partitions. If the estimated
partition size exceeds a user-defined threshold, CJ hashes and replicates records into sub-
partitions such that all record pairs appear in at least one sub-partition. R2 verifies the
pairs that can be formed within each (sub-)partition.

Job 1 Job 2

Draw 
random
pivots

Draw 
random
samples Partition.

Map
Card.Est.
Reduce

Verific.
Reduce

Partition
size

estim.

Output
Dataset

(Setup)

Input
Dataset

(Setup)

(Setup)

M1: ⟨rid, tok∗⟩ → ⟨partition, size⟩ // esti-
mate partition sizes

M2: ⟨rid, tok∗⟩ → ⟨partition, (rid, tok∗)⟩
R2: ⟨partition, (rid, tok∗)⟩ → ⟨rid1, rid2⟩

Figure 3.20: ClusterJoin Dataflow until no intermediate data is left.

Discussion. The size of the intermediate results is at least M2 = |R| (if no records
fall into a window partition and all partitions are small). In addition, there may be at
most (p− 1) · |R| records in window partitions. Finally, the approach splits and replicates
large partitions; the size of all sub-partitions is quadratic in the partition size, which may
substantially increase the intermediate result size.

3.3 Experiments

For our experimental analysis, we implemented1 all algorithms from Section 3.2 (FF, GJ,
MG, MJ, VS) or adapted existing code if available (CJ, FS, MR, S2, VJ). We evaluated the
algorithms using 12 datasets (cf. Section 2.3). Our analysis focuses on runtime. However,
we also discuss data grouping, data replication, and cluster utilization.

1Our implementation is available at https://github.com/fabiyon/ssj-vldb.

https://github.com/fabiyon/ssj-vldb
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Table 3.1: Hadoop configuration.

Parameter Value Parameter Value
Map task memory 4GB Min vcores/container 1
Reduce task mem. 8GB Max vcores/container 32
Reduce tasks/node 4 Min mem/container 2GB
Compute nodes 12 Max mem/container 8GB
HDFS replication 3 times Speculative task exec. disabled
HDFS block size 10MB Map output compr. disabled

3.3.1 Setup

Hadoop. We deployed all methods on Hadoop 2.7 (using YARN, cf. Section 3.1). The
experiments run on an exclusively used cluster of 12 nodes equipped with two Xeon E5-
2620 2GHz of 6 cores each (with Hyper-threading enabled, i.e., 24 logical cores per node),
24GBs of RAM, and two 1TB hard disks. All nodes are connected via a 10GBit Ethernet
connection. We configured Hadoop according to Table 3.1. We assigned twice as much
memory to reduce compared to map tasks, because a reducer needs to buffer data. The
number of mappers is limited to the number of HDFS blocks of the input; by default,
the HDFS block size is 64MBs or 128MBs, but as our input data is usually smaller, we
set this value to 10MBs. The maximum number of reduce tasks is set to four reducers
per node, which underutilizes the available memory slightly. This setup is recommended,
because other Hadoop system tasks (especially HDFS) need memory as well. We vary
these memory settings and the number of reducers in our experiments. The speculative
task execution allows Hadoop to start an already running part of a job (for example, a
reduce task) on another node in parallel. The faster job wins, the slower one is killed.
Since we run each test three times and report the mean of the measured runtimes, we
disable this feature to ensure consistent results. By default, we also disable map output
compression since the bottleneck turns out to be reduce-side buffering, not network traffic;
we run a separate experiment to test the effect of enabling compression.
Datasets. We use 10 real-world and 2 synthetic datasets from the non-distributed exper-
imental survey in [MAB16]. We describe them in Section 2.3.
Tests. To compare the performance of the investigated algorithms, we conducted three
types of tests. First, we applied all methods to compute a self-join of the datasets in
Table 2.1. Second, we investigated the scalability of the algorithms by artificially increasing
the size of the datasets. Third, we describe the effects when varying other parameters,
such as memory settings, which determine the number of YARN containers. Subsequently,
we discuss how the algorithms replicate and distribute intermediate data, show results of
repeated experiments from the literature, and summarize our findings for each algorithm.

3.3.2 Performance and Robustness

Performance. Table 3.2 reports the join runtime of the examined algorithms while vary-
ing the Jaccard similarity threshold inside {0.6, 0.7, 0.8, 0.9, 0.95}. For practical reasons,
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we consider a timeout of 30 minutes after which the execution of an algorithm is ter-
minated. Our timeout is higher than 3 times the highest runtime amongst the winners
over all datasets and all thresholds of the non-distributed study (494 seconds for NETF
threshold 0.6) [MAB16]. Inside each table cell, we report the lowest observed runtime in
seconds followed by the corresponding algorithm (underlined); note that below this “win-
ner”, we also list the algorithms (if any) that came out as at most 10% slower. We mark
the enforcement of the timeout by the letter “T”. We observe that VJ is the clear winner
of the tests; VJ reported the lowest runtime 27 times, followed by GJ with 15, FS with 9,
and MG with 6. Notice that neither the filter-and-verification algorithms FF, VS, S2 nor
the metric-based algorithms MR, CJ ever appear in Table 3.2, as they failed to produce
competitive runtimes (i.e., at most 10% above the best) or timed out. We elaborate on
the reasons behind this behavior in Section 3.3.5.

Figure 3.1 summarizes our findings on the relative performance of the algorithms com-
pared to the results reported on the corresponding publications. Our experiments confirm
that VJ is faster than FF [BDFML10], VJ is faster than VS [SHC14], and FS is faster
than VS [RLS+17]. However, in our experiments, VJ is faster than CJ (equal runtime in
[SHC14]), VJ is faster than MG (contrary to [RLW+13]), VJ is faster than MJ (contrary
to [DLH+14]), VJ is faster than S2 (contrary to [BDFML10]), VJ is faster than VS (con-
trary to [MF12]), and VJ is faster than FS (contrary to [RLS+17]). In Section 3.3.6, we
investigate these inconsistencies by repeating experiments from the original publications.
Robustness. We next analyze the robustness of the algorithms; we omit the results
on CJ, FF, MR, S2, VS, which timed out on more than 60% of our experiments. We
adopt the notion of the gap factor employed in [MAB16]; more specifically, we measure
the average, median, and maximum deviation of an algorithm’s runtime from the best
reported runtime. Table 3.3 reports the deviation factors for FS, GJ, MG, MJ, and VJ
over all datasets and all thresholds θ ∈ {0.6, 0.7, 0.8, 0.9, 0.95}. We excluded experimental
runs with timeouts in the calculation. The most robust algorithm is VJ. On average,
it shows 1.18 times the runtime of the winner (including the cases when VJ records the
best runtime), 1.0 time in the median, and only 2.67 times maximum. The second most
robust algorithm is MG, which in the worst case has 3.65 times the runtime of the fastest
algorithm. Finally, Table 3.4 summarizes for which combinations of algorithm, threshold,
and dataset, a timeout occurred.

3.3.3 Scalability

State-of-the-art non-distributed algorithms can process the SSJ on our datasets in memory.
Mann et al. provide a competitive experimental analysis under this setup [MAB16]. In
fact, non-distributed algorithms outperform Hadoop-based solutions in the majority of the
datasets (cf. Table 4 in [MAB16]). This behavior comes as no surprise due to the overhead
induced by the MapReduce framework for starting/stopping jobs and transferring data
between the cluster nodes. Figure 3.21 reports this data-independent overhead for all
algorithms using a sample of 100 records of AOL.

However, distributed algorithms should be able to process much larger datasets than
non-distributed ones. In this spirit, we report on the scalability of the algorithms in
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Table 3.2: Fastest algorithms; runtime in seconds, timeout 30 minutes. Fastest algorithm
underlined.

Jaccard thresholdDataset 0.6 0.7 0.8 0.9 0.95

AOL 166 155 84 68 64
VJ VJ GJ GJ GJ
MG MG

BPOS 123 116 101 101 106
VJ VJ GJ GJ VJ
MG MG GJ, MJ

DBLP 342 174 129 112 111
VJ VJ VJ VJ FS

MG VJ

ENRO 323 230 161 130 127
VJ MG MG FS FS

VJ FS MG VJ MG, VJ

FLIC 234 163 119 86 85
MG MG GJ GJ GJ
VJ VJ MG

KOSA 138 121 117 113 112
VJ VJ VJ VJ VJ
MG MG MG FS, MG FS, MG

LIVE 313 285 278 254 243
VJ VJ VJ VJ VJ

MG MG GJ, MG

NETF T T 527 215 161
VJ VJ VJ

ORKU T 1592 941 761 681
MG VJ GJ VJ

MG VJ

SPOT 128 120 119 118 114
MG FS FS FS FS
FS MG MG MG, VJ MG, VJ

UNI 89 74 70 45 39
GJ GJ GJ GJ GJ

ZIPF 114 109 105 103 59
VJ VJ FS FS GJ
MG FS, MG MG, VJ, GJ, MG

VJ
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Table 3.3: Gap factors: deviation from best runtime.

FS GJ MG MJ VJ
mean 3.85 4.91 1.31 8.32 1.18
median 1.97 2.21 1.07 2.52 1.00
maximum 21.63 16.59 3.65 139.19 2.67

Table 3.4: Timeouts (30mins) per algorithm, dataset, and threshold.

FS 0.6 0.7 0.8 0.9 0.95
AOL, DBLP, LIVE, UNI T
ORKU T T
NETF T T T
GJ 0.6 0.7 0.8 0.9 0.95
DBLP T T
KOSA, LIVE T T T
ENRO, NETF, ORKU, SPOT T T T T T
ZIPF T
MJ 0.6 0.7 0.8 0.9 0.95
DBLP, FLIC, ZIPF T
ENRO, NETF, ORKU T T T T
KOSA, LIVE T T
MG 0.6 0.7 0.8 0.9 0.95
NETF T T T T
ORKU T
VJ 0.6 0.7 0.8 0.9 0.95
ORKU, NETF T T
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Figure 3.21: Data-independent overhead for θ ∈ {0.5, 0.7, 0.9}; number of MapReduce
steps given in brackets. For small datasets and high similarity thresholds the overhead
takes a large share of the overall runtime (cf. Table 3.2).
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Table 3.5: Timeouts (120mins) on scalability tests; Jaccard similarity threshold θ = 0.95.

FS GJ MG MJ VJDataset 1× 5× 10× 1× 5× 10× 1× 5× 10× 1× 5× 10× 1× 5× 10×
AOL T
BPOS
DBLP
ENRO T T T
FLIC
KOSA
LIVE T
NETF T T T
ORKU T T T T T T T T T
SPOT T T T
UNI
ZIPF

settings that justify the need for MapReduce. We focus only on FS, GJ, MG, MJ, and
VJ as the other methods failed to handle even the small datasets of Table 2.1. For our
scalability tests, we artificially increased the size of our datasets by factors s = 5 and 10
(cf. Section 2.3). Furthermore, we use a high Jaccard threshold θ = 0.95.

Figure 3.22 reports the runtimes of the algorithms for each dataset. Table 3.5 shows
for which combinations of algorithm and dataset timeouts (120 minutes in this setting)
occurred. We observe that VJ, MJ, and MG better coped with the size increase for the
majority of the datasets; an exception rises only for ORKU, where all algorithms timed
out. FS and GJ also timed out on a number of other datasets. In Section 3.3.5, we discuss
reasons for these results.

3.3.4 Varying the Cluster Configuration

In the following, we report results when varying parameters, such as map size compression
and memory settings.

Compression. We test the effect of enabling map output compression. On the small
datasets (1×, Table 2.1), VJ, FS, and MG benefit from compression (13-19% shorter
runtime), while the runtimes of GJ and MJ do not change. The runtime advantages
occur in the join phases of the algorithms (job 3 of VJ and MG, jobs 3 and 4 of FS). On
larger datasets (5×, 10×), enabling compression increases the runtimes of all algorithms
except MJ (same runtime). Compression decreases the network load, but the bottleneck
for large datasets is the reducer memory. When the transferred data does not fit the
reducer memory, Hadoop spills it to disk such that increasing the network transfer rate
does not help. The increase in runtime can be attributed to the overhead of compression.
MJ produces smaller data groups per reducer and is not affected.

Number of reducers. The number of reducers depends on the configured memory per
reducer and on the parameter max for the maximum number of reducers. We decrease
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Figure 3.22: Runtimes on scalability tests; Jaccard similarity threshold θ = 0.95; timeouts
excluded.

the memory per reducer from 8 GB (our default) to 4 GB, max = 48. With these settings,
the utilization reaches the maximum of 48 reducers. For the small datasets, all algorithms
profit from the larger number of reducers (17-26% shorter runtimes). With the 5× dataset
sizes, VJ, MJ, and MG gain performance (resp. 30%, 30%, and 17%), while GJ runs
slower by 9-17%. Increasing the maximum number of reducers to max = 60 increases the
utilization up to 60, but does not change the runtimes. Further decreasing the available
memory per reducer to 2 GB does not affect the runtimes of VJ, GJ, MG, and MJ. On
the other hand, it negatively affects the runtime of FS. On the 10× datasets, only VJ and
MG gain from setting the reduce memory to 4 GB (14-25%), all other algorithms show
similar (FS, GJ) or worse runtimes (MG 14%). Overall, we note that the memory per
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reducer (and the resulting number of reducers) has some impact on the runtime, but the
effect is small compared to the differences resulting from the use of different algorithms.

3.3.5 Analysis and Discussion

We next analyze the distributed execution of the algorithms and provide insights for
their runtime behavior observed in the previous sections. We discuss intermediate data
replication and distribution relative to characteristics of the input data and the similarity
threshold, how well the computation load is distributed over time (cluster utilization), and
specific limitations of each algorithm.

Hadoop-style MapReduce requires intermediate data to be buffered on the reducers
until all mappers finish their execution (Figure 3.3). For the runtime, it is crucial that
none of the reduce buffers spill to disk. The execution time of only one straggling reducer
can dominate the overall runtime. All algorithms presented in Section 3.2 use replication to
achieve a high level of parallelization. Furthermore, they attach a key to every intermediate
record; these records are then grouped and each reducer is assigned a particular set of keys
(and corresponding records). This key assignment is also crucial for the runtime, because
it determines whether all reduce tasks obtain a balanced share of the overall computation.
For most algorithms, the key generation and the replication depend on data characteristics,
such as the maximum global token frequency without considering memory restrictions of
the execution system.

We consider our experimental results and the intermediate data exchange discussions
in Section 3.2. In our setup, each reducer has 8GBs of memory and so, the total amount of
main memory (TMM) is 48 · 8 = 384GBs. Recall that the number of map tasks depends
on the number of HDFS input blocks, and the number of reduce tasks is at most 12 ·4 = 48
for 12 nodes with 4 reducers per node. Figure 3.23 reports our measurements on cluster
utilization. We show only a fraction of the conducted tests and focus on FS, GJ, MG, MJ,
and VJ; recall that the other algorithms timed out on more than 60% of our tests.
VJ. The replication and verification step (Job 3, Figure 3.7) dominates the runtime of
VJ. The utilization graphs for VJ follow the pattern of Figure 3.23(i). Recall that VJ
replicates the full input records for each prefix token. Low similarity thresholds and long
records lead to more prefix tokens. For NETF×1 and a similarity threshold of 0.6, the
amount of intermediate data already grows up to approximately 212GBs. Since the local
inverted indices on the reducers additionally buffer this data, memory overload occurs
in the execution phase of reduce after shuffling, which is captured by a high utilization,
which decreases slowly in Figure 3.23(j). The combination of similarity threshold and
record lengths decides on the size of intermediate data. The execution of VJ is only
efficient if the intermediate data does not exceed roughly half of the TMM. Adding more
nodes could solve this issue, because it increases the TMM. However, each intermediate
data group size depends on the frequency its key token occurs within all prefixes. This
frequency is likely to grow for increasing dataset sizes so that data groups hit the memory
limit of single reducers. The resulting memory usage imposes a hard limit, which users
cannot push by adding more nodes.
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Figure 3.23: Cluster utilization for each algorithm. Vertical lines divide jobs as described
in Section 3.2. Runtimes relative to each job; absolute runtimes not shown for brevity.
The number of tasks is the sum of map and reduce tasks. Grey areas mark the map share
of the tasks.
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Figure 3.24: Data grouping and replication (number of records or groups ×1000) at the
reduce step computing the join; sim. threshold θ = 0.95; all datasets 10× synthetically
enlarged.
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To summarize, our tests suggest that VJ is both the fastest and the most robust
technique for distributed set similarity joins. Still, VJ is sensitive to long records and/or
frequent tokens, where the memory on individual reducers becomes a bottleneck and limits
scalability.
GJ. GJ consists of only one MapReduce job. We observe a high and stable cluster utiliza-
tion for large values of the similarity threshold on most datasets (Figure 3.23(c)). The level
of utilization decreases sharply at the end of the join evaluation, which reflects positively
on the total runtime. On the other hand, Figure 3.23(d) illustrates the straggling reducer
effect, which occurs on the AOL, DBLP, ENRO, LIVE datasets for a similarity threshold
below 0.7. On ORKU and NETF, GJ runs into timeouts. Figure 3.24 shows the data
distribution of GJ for varying datasets (omitting datasets where timeouts occurred). The
minimum and maximum number of records per reducer considerably varies, which explains
the straggler effect. Recall that GJ splits the input records into subgroups and matches
them by a group key in the reducer. The size of these groups depends on the order and
distribution of the tokens in the input records, which is not discussed in [DLWF15]. GJ is
thus limited to input datasets with a “good” token order that does not lead to overloaded
reducers. Furthermore, the algorithm replicates each input record 1−θ

θ · |r|+ 1 times (for
indexing) and roughly |r| − θ · |r| times (for probing). Each intermediate record contains
approximately four integers plus the original data. Now, consider a Jaccard similarity
threshold of 0.6 and ORKU×10, which consists of 2.7 · 107 records with an average length
of 120. Every record is roughly replicated 1−0.6

0.6 · 120 + 1 + 120 − 0.6 · 120 = 129 times,
which results in 2.7 · 107 · 120 · 129 ≈ 390GBs of intermediate data exceeding TMM. The
high replication limits the applicability of GJ to short input records and high similarity
thresholds.

To summarize, GJ is the runner-up in the number of wins on the tested dataset/thresh-
old settings. The algorithm benefits from high similarity thresholds and datasets with
short records. However, GJ is not robust: it times outs even for small datasets when the
similarity threshold is small or the records are long. Note that we are the first to test
GJ under a distributed setup since the original paper evaluates only the non-distributed
scenario [DLWF15].
S2 and FS. Recall from Section 3.2 that one reducer on both algorithms needs to load
the prefix/residual file into main memory; the size of this file grows linear with the input
cardinality. This step limits the applicability of S2 and FS. Consider for example, S2 on
ORKU×10, which contains 2.7 · 107 records with an average record length of 120 and
assume a similarity threshold of 0.9. The residual length is 0.9 ·120 = 108 and the residual
file roughly occupies 2.7 · 107 · 108 · 4 ≈ 11GBs (with 4 bytes for an integer), which exceeds
the available memory on a reducer. Another limitation specific to FS is the fragment
size (=number of intermediate records per reducer), as each reducer computes the costly
(despite all filters) cross join on its fragment.

In Figure 3.23(a), we show a typical execution of FS without overload, while (b) shows
the effect of (evenly) overloaded reducers in Job 3. Fragment sizes in our setup are 30-40%
of the number of input records for SPOT (runtime winner, short input records of length
13 on average), 87-95% for ENRO (good runtimes, medium large records of length 135),
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and 80-90% for NETF (timeouts, long records of length 210). These results indicate that
increasing record lengths has a negative impact on the runtime. The fragment sizes could
decrease by adding more pivots and reduce nodes, but the authors of FS suggest to use the
number of nodes minus one as the number of pivots, so that each reducer obtains exactly
one fragment. Furthermore, the token order determines whether a record participates in
a fragment. The algorithm uses the inverse GTF, which does not explicitly optimize the
fragment assignment. In the worst case, each record participates in every fragment.

To summarize, FS was the third fastest algorithm. The novel vertical partitioning
manages to reduce data replication. However, the prefix list must be loaded into the main
memory of each reducer, which limits the scalability of FS. In contrast to VJ, S2 does not
replicate the input records in the inverted list index. Unfortunately, each reducer must
load the entire residual file to the main memory, which limits the scalability of S2.
MG. Recall that MG works similar to VJ, but balances input records by length and
transfers multiple prefixes in intermediate data to accelerate the verification, leading to
larger records. Job 3 (Figure 3.9), which replicates the input and verifies candidates,
dominates the runtime. For the majority of our tests, MG demonstrates a stable and
high utilization in this phase (Figure 3.23(g)). We observe that the number of tasks
remains constant while only the range of this constant utilization in the join phase varies
(Figure 3.23(h)). Compared to VJ, the reduce compute load is distributed more evenly,
so the additional balancing step of MG has a positive impact on the even distribution of
the compute load. The distribution of the compute load is only loosely coupled with the
distribution of the intermediate records.

Figure 3.24 shows the number of records and data groups per reducer for MG and VJ;
both algorithms show a comparably even intermediate data distribution. Yet, MG does
not solve the limitations described for VJ previously.

To summarize, MG sticks out as a robust algorithm. Although it is usually slower
than VJ, MG is often among the fastest algorithms and wins for low similarity thresholds
on some datasets.
MJ. For the majority of our experiments, MJ exhibited a utilization level similar to
Figure 3.23(e). But, on datasets of long records (NETF) or of high maxFreq (AOL, BPOS,
DBLP, ENRO, FLIC, KOSA, LIVE, NETF, ORKU) combined with a similarity threshold
below 0.7, some reducers in Job 2 straggle (Figure 3.23(f)). A low value of maxFreq as in
SPOT can compensate for a high maximum record length. Our experiments on ENRO×10
showed that MJ is able to evaluate the join for a similarity threshold of θ = 0.95, but times
out when θ < 0.9. To investigate this behavior, we experimented with more threshold
values inside [0.9, . . . , 0.99]. The lowest runtime was recorded for a threshold of 0.93.
Most importantly though, the volume of the intermediate data increases roughly from
110GBs to 259GBs within the [0.9, . . . , 0.99] interval, which means that intermediate data
is not the dominating factor for the overall runtime. Figure 3.24 shows data grouping and
replication for MJ. Despite the even distribution of intermediate records and keys among
the reduce tasks, straggling reducers occur as shown in Figure 3.23 (f). For a similarity
threshold above 0.93, the execution of the reducers dominates the entire join computation,
while for thresholds below 0.93, signature creation in the mappers takes increasingly more
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time. We repeated our experiments on MJ with more compute nodes (24 nodes). In this
setup, map congestion disappears, but straggling reducers are still present. The main
reason is that the signature creation assures only a good intermediate data distribution,
which does not necessarily lead to an even distribution of the compute load.

To summarize, MJ scales to large datasets, but fails to compete with the previous
algorithms on performance and robustness, due to its expensive signature creation and
verification. Although MJ evenly distributes the number of intermediate data records, the
workload still varies among the nodes, which leads to straggling reducers.
FF and VS. Consider AOL×1. From Table 2.1, maxFreq = 4.2 · 105, hence, for the
most frequent token, a particular candidate mapper (Job 2 in Figure 3.4 and 3.6) emits(︁4.2·105

2
)︁

= 88 · 109 records. Each record contains four integers for FF or five for VS, all
of four bytes, so the mapper produces overall 88 · 109 · 4 · 4 ≈ 1,311GBs or 88 · 109 · 5 ·
4 ≈ 1,639GBs of data, respectively. The volume of intermediate data already exceeds
the TMM without considering the remaining universe tokens. Although both algorithms
use combiner functions, in practice they fail to shrink the intermediate data sent to the
subsequent reducer sufficiently. Increasing the number of cluster nodes does not address
this problem, because the volume of the intermediate data grows quadratic with maxFreq.
As a result, both FF and VS can process only datasets of low maxFreq.

To summarize, FF and VS operate in a similar manner; their data replication factor
is quadratic, i.e., the algorithms are sensitive to frequent tokens. They cannot compete
with the other filter-and-verification methods, time out frequently, and do not scale.
MR and CJ. Both algorithms draw a number of |P | random pivots from the dataset
and then replicate every input record up to |P | times; in fact the replication factor can
be even higher for CJ in case the hash-based replication is additionally used. Con-
sider NETF×10 and assume that 1000 pivot elements are selected. Each intermediate
record contains |r| + 7 integers, so based on Table 2.1, the intermediate data occupies
1000 · 4.8 · 106 · (210 + 7) · 4 ≈ 3,880GBs, which exceeds our TMM by one order of mag-
nitude. There is additional replication for the window partitions in the same order of
magnitude for our (high-dimensional) datasets, as the hyperplanes do not partition the
high-dimensional space effectively; the data points are too close. The tests in Das Sarma
et al. and Deng et al. suggest that the algorithms perform better on data with a low
number of dimensions [SHC14, DLWF15].

To summarize, the metric-based approaches did not perform well in our tests. Due to
their high level of data replication, CJ and MR often time out even for small inputs.

3.3.6 Reproducing Previous Results

We repeated core experiments for VJ, S2, MJ, and FS. It was not possible to repeat tests
for the remaining algorithms. The authors auf CJ do not specify the experimental setup
(parameters of the method, hardware setting) and use a non-public dataset [SHC14]. Sim-
ilarly, the necessary experimental parameters for FF are missing [ELO08]. For VS, a larger
cluster than ours and a publically unavailable dataset were used [MF12]. The authors of
MG also used a larger cluster and a DBLP dataset, which was tokenized/preprocessed
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in a way we could not reproduce, leading to large deviations in maxFreq [RLW+13]. GJ
has not been tested on a distributed setup so far [DLWF15]. The authors of MR use a
different similarity function (Euclidean) [SR12].

Unless stated otherwise, our Hadoop cluster is configured according to Table 3.1. Our
tests can reproduce the results of VJ and S2. We report only on algorithms with deviating
results.
Algorithm MJ. Contrary to the original paper, our experiments showed that VJ is faster
than MJ. The authors compare MJ to VJ on ENRO with a 10 node cluster, varying the
Jaccard similarity threshold [DLH+14]. As MJ computes an end-to-end non-self R×S
join, the dataset is split into two subsets of equal size. Figure 3.25 reports the results of
this comparison. On the other hand, our focus is on self-joins; hence, we generated an
input by sampling 50% of ENRO. Also, we join only record IDs as our focus is not on
an end-to-end computation. Figure 3.26 reports our results. Our implementation of both
MJ and VJ recorded lower absolute runtimes compared to [DLH+14]. Lower runtimes are
expected as we do not compute an end-to-end join. We also observe that VJ outperforms
MJ in our test, which contradicts the original results. There are two potential reasons
for this behavior. First, as already discussed, MJ is optimized for non-self joins. Second,
MJ is designed to perform an end-to-end join; reporting full records in the results comes
for free as MJ needs the full records to perform the verification step. In an effort to
conduct a fairer comparison, we repeated this test as an end-to-end non-self R×S join.
Our VJ implementation labels each input record by “R” or “S”, while during the join
phase, record pairs of the same label are pruned. Further, VJ involves an additional layer,
which joins the record ID based results with the input records. With these modifications,
although VJ’s runtime increased compared to the self-join, VJ remained faster than MJ
for similarity thresholds below 0.9.

Discussion. We could not reproduce the runtimes of MJ; in our experiments the
runtimes are higher for a threshold of 0.75 and lower for 0.8 and 0.85. The competing
VJ shows runtimes of nearly one magnitude more in the original experiments, which are
unclear us.
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Figure 3.26: Our results.

Algorithm FS. Contrary to the original paper, our experiments show that VJ is faster
than FS. The authors compared FS to VJ on ENRO varying the Jaccard similarity thresh-
old [RLS+17]. The test ran on an 11 node cluster; each node had 15GBs of RAM while 3
reduce tasks were allowed per node. Figure 3.27 reports the results. To repeat this exper-
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iment, we considered a similar cluster setup of 12 nodes with 12GBs of RAM each and 4
reducers per node. However, there is a difference in the employed tokenization strategy.
The input dataset contains 517k records, while the record length varies from 51 to 148k
tokens [RLS+17]. With our tokenizer, a record contains from 1 to 3k tokens; we refer to
this tokenization setup as E1. To address this issue, we used the tokenizer offered by the
authors in their publicly available source code. Yet, we were not able to reproduce exactly
the same ENRO dataset used; this setup (named E2) contains records of 37-76k tokens.
Figure 3.28 reports our results for setups E1 and E2. Regarding E1, the runtime of FS
is similar to the original result (Figure 3.27), but VJ is at least one order of magnitude
faster in our experiments. This result is expected as VJ’s prefix filter benefits from the
shorter records of E1. Regarding E2, surprisingly, FS is slower than in the original result,
while VJ is again faster.

Discussion. We could reproduce the runtimes of the original experiment using the
publicly available dataset and our tokenizer. However, the characteristics of our tokenized
data differs from the original paper; we were not able to reproduce the same characteristics
by using the publicly available tokenizer of the original paper. The high runtimes of VJ
in the original experiments remain unclear.
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Figure 3.28: Our results.

3.4 Summary

We conducted an experimental study on ten recent Hadoop-based SSJ algorithms focusing
on runtime. We considered a fair experimental environment with a harmonized problem
statement, common Hadoop settings, input preprocessing, and equal implementation opti-
mizations. The winning algorithm concerning runtime and robustness w.r.t. various data
characteristics is VJ. This result refutes experimental results of previous papers, which
claim to outperform VJ. We repeated experiments from previous papers and discussed
reasons for the diverging results. Winner number two is GJ, which was not compared to
any other algorithm so far. Number three is the FS algorithm.

The motivation to use distributed computing for the SSJ problem are large data vol-
umes, which a single node cannot handle. None of the algorithms considered in this
chapter scales to large input datasets. We analyzed the reasons both analytically and
based on measurements. The main bottleneck are straggling reducers due to high and/or
skewed data replication between the map and the reduce tasks. Specific characteristics
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of the input data trigger this effect. Adding more nodes does not solve this problem.
These shortcomings motivate us to utilize local resources more efficiently with a novel
multicore-parallel SSJ we introduce in the following chapter. Subsequently, we propose a
novel highly scalable distributed SSJ, which avoids intra-node replication and computes
the SSJ on hundreds of GB of input data.



Chapter 4

Exploiting Multicore
Parallelization

Modern hardware consists of multiple processors with many cores. Machines with dozens
or even hundreds of CPUs are affordable and common. However, existing SSJ algorithms
do not exploit this parallelization potential. In this chapter, we study how local paral-
lelization can significantly speed up existing single-threaded approaches (as published in
[FWZF20]). To the best of our knowledge there is no prior work on parallelizing the SSJ
on multicores. We adapt existing sequential filter-and-verification SSJ approaches to run
on one single multicore machine. Such an adaptation is not trivial. Modern hardware usu-
ally comprises multiple CPU sockets with non-uniform memory access (NUMA). Memory
access speeds depend on thread placement on different CPUs. Furthermore, optimizations
of single-threaded approaches, such as filters, do not necessarily have the same impact on
the runtime in the multicore case.

In the following, we describe the NUMA architecture, our data-parallel adaptation
of the sequential filter-and-verification SSJ approaches, technical details regarding the
implementation, and our experimental evaluation.

4.1 Modern Multicore Systems

In this chapter, we target single-node shared memory systems with multiple processors
consisting of a large number of cores. Figure 4.1 shows the architecture of such a system
with four processors. All processors are connected through an interconnect. Each pro-
cessor accesses its local memory through an integrated memory controller (cf. the four
“memory” blocks in Figure 4.1). Local memory access is fast, while accessing memory
attached to other processors on the same machine, comes with additional latency. The
different access speeds are referred to as “NUMA effect”.

Modern processors use multiple levels of caches for performance improvements. Proces-
sors implement cache coherence protocols to ensure that threads on different cores access
consistent data. Another important technique for improving performance is prefetching.
Processors probabilistically read data from main memory, which is likely to be used by a

45
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Figure 4.1: Architecture of a modern multi-socket machine. Each processor has local
memory attached. All processors are interconnected.

running program subsequently. Prefetching can hide memory stalling, i.e., a core waiting
for data to arrive from main memory. Prefetching is done automatically or explicitly as
instructed by software.

Operating systems (together with the hardware) decide about thread placement, i.e.,
on which core a thread runs and migrate them to other cores to during execution. Re-
garding the runtime of one thread, moving it to a different core, especially if it is on a
different processor, causes overhead. Even worse, if this thread shared cached data with
other threads on the same processor, moving it to a different processor can significantly
slow down execution, because this data has to be loaded there again. Modern processors
usually provide hyperthreading [SMD+10]. This technique aims to better utilize a proces-
sor by allowing two processes to concurrently access different resources of one core, i.e.,
the arithmetic logic unit (ALU) or the floating point unit.

The properties of modern processors affect the runtime of multi-threaded programs
in a non-trivial fashion [KLH+99]. We subsequently show how the runtimes of our SSJ
implementations behave under varying conditions.

4.2 Related Work

In Chapter 2 we described the single-core SSJ algorithms AllPairs and PPJoin, which
form the basis for our multicore SSJ. Besides the CPU-based algorithms, some recent work
focuses on speeding up SSJ using different hardware platforms, notably GPUs. Quirino
et al. proposed a standalone GPU algorithm that runs both candidate generation and
verification within GPU using a block-based probing approach [QRRM17]. Bellas et al.
proposed a different framework that uses GPUs for candidate verification, while keeping
candidate generation a CPU task [BG19]: considering limited GPU memory, GPUs verify
candidate pairs in chunks. The experimental result of Bellas et al. indicates that the
CPU-GPU solution outperforms the standalone GPU algorithm of Quirino et al. [BG19,
QRRM17]. It batches candidate pairs for verification when the number of candidates
are large, which is the case for low similarity thresholds. Bellas et al. argue that the
bottleneck in SSJ is often the candidate generation rather than candidate verification,
thus the acceleration provided by GPUs is limited [BG19]. In comparison, our work
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exclusively focuses on the parallelization potential of multicore hardware in combination
with existing filtering approaches and implementation optimizations – it is orthogonal to
recent work on GPU-based SSJ.

4.3 Parallelizing Filter-and-verification-based SSJ

We use the AllPairs algorithm as a basis, because it is fundamental for filter-and-verification
algorithms as we discussed in Section 2.2. AllPairs uses the prefix and length filters. We
furthermore consider the position filter from PPJoin as the single-threaded SSJ study of
Mann et al. showed that this filter is efficient [MAB16]. We do not consider filters the
study proved to be inefficient, i.e., the suffix filter.

Subsequently, we discuss the execution model (i.e., how to assign tasks to threads),
discuss the design considerations in the context of multicores, and describe our algorithm.
We show how different design decisions impact the runtimes in Section 4.4.

4.3.1 Execution Model

SSJ algorithms could be parallelized using data parallelization or pipelining. Figure 4.2
shows the basic idea of each design choice. In data parallelization, the input data is
partitioned into disjoint batches consisting of a tunable number of records. Each thread
then runs the AllPairs algorithm (or PPJoin when the position filter is activated) on
a different batch. Multiple threads can proceed in parallel without conflicts. Practical
implementations create a pool of threads upon system start. After a batch is processed,
the thread continues with the next batch, avoiding the cost of creating and destroying
threads at runtime.

Figure 4.2: Data-parallel (a) vs. pipelined (b) execution models.

Apart from data parallelization we also considered pipelined execution (Figure 4.2b).
We subdivided the SSJ task into sub-tasks, each of which is executed on a dedicated thread.
The entire join algorithm finishes cooperatively by multiple threads, which communicate
through message passing. Compared to data parallelization, this pipelined approach re-
quires frequent inter-thread communication and synchronization using message queues.
We experimentally verified that such overhead was too high to make our parallel SSJ
approach efficient. Therefore, we focus on data parallelization in the rest of the chapter.
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4.3.2 Design Considerations

In the following, we discuss design considerations of our parallel SSJ approach. Our dis-
cussion involves the algorithm and implementation. Algorithmically, we are interested
in the efficiency of existing filters in the multi-threaded case. Implementation-wise, we
explore if implementation optimizations achieve runtime benefits over straightforward im-
plementations.

Filters. We are interested in how filter techniques used in single-core algorithms
behave on multicores. As a base algorithm we use AllPairs, which contains the length and
prefix filters. By default, our parallel SSJ algorithm ignores the entries in the inverted
index, which cannot be similar due to length differences. This approach is comparable to
the deletion filter of MPJoin, which deletes entries in the inverted index, which cannot
pass the position filter for following probe records [RH11]. Since the approach to skip
non-matching records when probing the inverted index has a significant positive impact in
all our experimental cases, we decided to use this optimization by default. Furthermore,
we explore the use of PPJoin’s position filter (cf. 2.2.2). It shows differences compared to
the single-core case as we show in the experiments.

Record Inlining. By inlining, we refer to a C/C++-specific implementation opti-
mization. Records consist of a record ID (integer) and a variable number of integer tokens.
A straightforward record implementation is to use a struct, which contains the id and a
pointer to an array of integer tokens. To access the tokens, the pointer has to be deref-
erenced first, which often incurs expensive cache misses and CPU stalls as the processor
waits for data to be fetched from memory to CPU caches. By inlining, we co-locate the
tokens with the record ID without such extra layer of indirection. We expect inlining
to be more efficient as it avoids pointer-chasing during record access. AllPairs reads the
records including their tokens one-by-one in the filter phase, so we expect a positive ef-
fect on runtime. On the other hand, inlining introduces overhead when accessing records
randomly due to the variable-length tokens. For random reads, we introduce a pointer
array that maps token IDs to the location of the corresponding record in the record array.
AllPairs accesses records randomly in the probe phase. As a result, in the probe phase,
both variants (with and without inlining) do pointer chasing once per record.

Thread Affinity. We found that the operating system scheduler often migrates SSJ
tasks amongst cores during the execution of our parallel SSJ. We assume that thread
migrations can degrade runtime performance due to the NUMA effect in case a thread
is migrated to a socket but the data it is accessing is on another socket. We implement
two versions of the parallel SSJ. One allows thread migration and the other one pins the
threads to cores at thread creation time.

Batching. In the data-parallel execution model, each thread runs the SSJ algorithm
on batches (partitions). The batch size controls the number of records joined on one thread
without synchronizing with other threads. Thus, we expect the batch size to influence the
runtime.
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4.3.3 Algorithm

Our algorithm consists of a non-parallel main function and a worker function, which
computes the SSJ in parallel. The main function reads the input data R, creates the
inverted index, and initializes the variable nextRid with 0. nextRid is synchronized such
that multiple threads can concurrently access it. The synchronized property allows reading
and updating the variable only as a single atomic operation. The atomicity assures that
two threads do not recompute the same part of the join. Furthermore, the main function
spawns the user-configured number of threads, starts the worker function on each of the
threads, and waits until all threads are finished. Algorithm 2 provides pseudocode for the
worker function.

Lines 1–3 implement the batching mechanism. Line 1 checks if the next record ID to
be processed is within the limits of the input dataset R. If not, there is no record left to
join and the function terminates. If the condition of Line 1 is true, we copy nextRid into
startRid and increment nextRid with the batch size.

Line 4 iterates over all records within the current batch. Lines 5–12 represent the
AllPairs algorithm we described in Section 2.2.3. We added the position filter in Line 9.
The user can configure if it is active or not. In the previous section we discussed that we
ignore inverted list entries, which cannot be similar due to length differences. For brevity,
we did not include this index position optimization in Algorithm 2. The optimization
works as follows. Each worker function initializes a local nulled array for each token
contained in the input dataset (before Line 1). Before each index probe (Line 8), we check
if the token is contained in the array and if so, we access the corresponding postings list
entries only starting from the start value in the array. Within the probe iteration, we
check if a probed record is larger than r and if so, we update the index starting positions.

Algorithm 2: Worker function.
Data: R, invertedIndex, θ, nextRid, batchSize
Result: {(r, s)|(r, s) ∈ R×R, r ̸= s, sim(r, s) ≥ θ}

1 while nextRid < maxRid(R) do
2 startRid← nextRid
3 nextRid← nextRid + batchSize
4 for rid = startRid; rid < startRid + batchSize; rid + + do
5 r ← R[rid]
6 candidates← {}
7 foreach token ∈ GetPrefix(r, θ) do
8 foreach s ∈ GetList(invertedIndex, token) do
9 if PositionFilter(r, s) then /* if pos. filter active */

10 candidates← candidates ∪ {s}

11 foreach s ∈ candidates do
12 Verify(r, s, θ)
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4.4 Experiments

In this section, we empirically quantify the impact of the design considerations discussed
in the previous section.

4.4.1 Setup

Our implementation1 uses C++11 and allows tuning of various parameters as described
in the previous section. We compile the code with gcc using optimization level 3 (-O3).
Lower optimization levels lead to significantly higher runtimes. For worker threads, we
use C++11 std::thread. We run our experiments on Linux, so std::thread acts as a
lightweight wrapper for POSIX threads. POSIX threads allow to have the core affinity set
so that the OS should not interfere with the physical thread placement. We run experi-
ments on a server with two Intel(R) Xeon(R) CPU E5-2620 processors clocked at 2.0GHz
and 32 GB of DRAM. Each CPU has six cores (12 hyperthreads) and 32KB/256KB/15MB
of L1/L2/L3 caches. We use the machine exclusively for the experiments. Since system
processes and hardware events (network etc.) can influence the measurements, we repeat
each experiment three times and report the average to even out such effects.

Inverted index. We implement the inverted index using a hash table mapping token
IDs to an array of pointers. Each index entry contains a record pointer and token position
(for the position filter). A C++11 unordered map implements the hash table and a C++
vector implements the array. The index is read-only and accessed randomly. We optimize
the index access such that the SSJ only considers entries of records with a potentially
matching length for the probe. This optimization requires the input to be ordered by
ascending record lengths and also the index holding the record IDs in the order of their
lengths. In each iteration of the candidate generation we keep the starting position for
each token ID in a variable. When we probe a token and find a record ID in the index not
fulfilling the length filter, we can disregard this record ID for all subsequent (equal length
or larger) records.

Candidate generation. Candidate generation involves the counting of overlaps of
records. We save overlap information in a hash table (C++ unordered map) mapping
a record pointer to an integer indicating the overlap count. Every iteration updates the
overlaps. Note that we use only integer record IDs and do not pass the entire records
including their tokens. During verification, we access the record list stored in main mem-
ory. Sharing data is an advantage over MapReduce-based approaches (cf. Chapter 3)
where the complete records have to be copied for the verification, even if the two verifying
processes are on the same physical node and access the same records.

Datasets. We use ten real-world and two synthetic datasets as described in Sec-
tion 2.3. We also use artificially increased versions of the datasets up to the factor 10.

Number of threads. We set the number of threads to 1, 2, 4, 8, 12, 16, 24, 32,
and 64. Besides the powers of two we chose 12 and 24, because our hardware has 12
physical CPUs, which support 2 physical threads concurrently. For a thread number of

1Our implementation is available at https://github.com/fabiyon/ssj-sisap.

https://github.com/fabiyon/ssj-sisap
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1 we execute a non-parallelized implementation of AllPairs, which does not spawn any
additional threads besides the main thread.

Metrics. We vary the Jaccard similarity threshold among 0.6, 0.75, and 0.9. We
assume these are sensible values for many SSJ applications. Thresholds below 0.6 reveal
a high number of result pairs on our datasets, which we assume is not intended. On the
contrary, thresholds above 0.9 lead to few results. We measure the runtime within our
program from including the index build until the join computation is completed. We do
not store the join result itself, only its size. We run our code with all combinations of
variables described in the previous section and report on the results in the following. In
each run, we also profile the execution using perf to gather metrics, such as cache misses.
Using perf adds a small and constant amount of overhead. However, it does not affect
relative runtimes, which are important in our discussion.

4.4.2 Speedups and Scalability

We first investigate how the number of threads affects runtime.
Speedup over Single-Core Execution. Using multithreading is beneficial for the
SSJ runtime under all combinations of our input datasets and thresholds. We observed
speedups of roughly 2-10 times on our hardware. For detailed results, please refer to Table
A.1 in the appendix. The absolute runtimes of the multi-threaded version vary between
roughly 0.2 and 262 seconds for all datasets and thresholds. For each combination of input
and threshold, we evaluated the parameter combination of number of threads, core affinity,
position filter, inlining, and batch size leading to the lowest runtime. Overall, the best
runtimes were achieved by using 24 or 32 threads. 70% of the best runtimes were achieved
for a batch size of 125 or 250. The position filter is effective for most (70%) of the cases.
However, we did not find an optimal parameter configuration for all the combinations of
dataset and threshold. In the following, we discuss the influence and interdependencies of
and between the variables and draw conclusions, under which conditions which variable
values are favorable.
Scalability. Figure 4.3 shows the speedup of our experiments relative to the number of
threads. Without loss of generality, we consider only results with the following parameters:
no inlining, batch size 500, no CPU affinity, and no position filter. Other parameter
combinations show a similar behavior, so we omit them here. For the majority of results,
the speedup increases linearly up to 12 threads (number of physical cores). Starting with
16 threads, we record decreasing speedups. The optimal runtime is achieved at 24 threads
for all datasets except ORKU and LIVE (0.75 and 0.9 similarity thresholds), and ENRO
(0.9 similarity threshold). Since the machine has 12 physical cores, this result shows that
our data-parallel SSJ algorithm benefits from hyperthreading, which can hide memory
access latency caused by cache misses. The result is not trivial, as hyperthreading is
benefitial only in a limited range of cases [Dre07].

The results show that the scalability varies depending on the input dataset, the thresh-
old, and the number of threads. Note that SPOT is an exception showing a hard limit at a
speedup of 2, independent of the threshold and the number of threads. We found that the
scability behavior is related to index lengths (the number of record IDs for each token).
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Figure 4.3: Speedup under various datasets and similarity thresholds.
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Table 4.1: Average number of index entries per input dataset and threshold. Low numbers
marked bold lead to a low scalability.

input 0.6 0.75 0.9
AOL 3.54 2.74 2.60
BPOS 570.48 360.56 213.48
DBLP 310.18 180.46 71.81
ENRO 7.59 4.39 1.69
FLIC 4.79 3.08 1.74
KOSA 52.84 32.96 19.41
LIVE 3.98 2.36 1.02
NETF 1430.47 823.21 311.87
ORKU 9.56 5.53 2.15
SPOT 2.19 1.41 0.82
UNI 1494.23 959.54 481.51
ZIPF 12.89 7.58 3.09

Table 4.1 shows the average index lengths for each input and threshold. For SPOT, the
average index length varies between 2.19 and 0.82 (for thresholds 0.6 and 0.9, respectively).
The index lengths of other datasets and thresholds vary between roughly 1500 (for UNI
and threshold 0.6) and 2.6 (AOL, threshold 0.9). Only ENRO, FLIC, LIVE and ORKU
reveal comparably short index lengths for a threshold of 0.9. The low speedup of SPOT
can be explained by data access patterns, which can improve or prevent prefetching. Our
implementation probes the inverted index for each prefix token in each record. If there
are sufficiently many entries in the postings list, the CPU can guess that they are needed
subsequently. If there is only a small number contained, prefetching does not apply and
wait can occur. Longer postings lists in the inverted index give better scaleups as we show
in the following subsection.

4.4.3 Impact of Dataset Size

We increase our datasets synthetically by factors 5 and 10 as described in Section 2.3.
Figure 4.4 shows the best runtimes for all increased datasets and all thresholds in relation
to the best runtime of the corresponding non-increased dataset. For detailed results please
refer to Table A.2 in the appendix. With 5× larger data, the runtimes increase between
3.6× and 44×; the numbers for 10× larger data are 6.1× and 182×. In most cases, the
runtime does not increase linearly with respect to the data size. The non-linear increase of
runtimes is expected, because the SSJ is a quadratic operation. The filter-and-verification
framework optimizes the operation only depending on favorable data characteristics.

Only ENRO, FLIC, LIVE, ORKU, SPOT, and ZIPF show roughly a linear runtime
increase for a threshold of 0.9; for SPOT we observe linear runtime increases under thresh-
olds 0.75 and 0.6. As we have shown in the previous section with the original datasets,
SPOT was not well parallelizable. The relative runtime increase for 5/10× larger data is
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below 5/10× for all thresholds, hence the scalability is better for the enlarged datasets.
With larger datasets, the postings list lengths in the inverted index also increase. We
suspect that the larger SPOT datasets enable prefetching.

4.4.4 Impact of Inlining

Inlining has a positive impact on runtime only for a minority of our experiments, except
for the AOL dataset. The boxplots2 in Figures 4.5-4.6 show the runtime gain of AOL com-
pared to the non-inlined version relative to the parameters method (single-threaded [allp],
multi-threaded [allph], multi-threaded with CPU affinity [allps]) and threshold. There are
no clear interdependencies to the other parameters number of threads, batching, and po-
sition filter. The figures show that the largest runtime benefit occurs at a threshold of
0.6. Furthermore, only the multicore implementations profit from inlining. BPOS behaves
similar to AOL. DBLP shows only small positive effects using inlining. The largest run-
time gain occurs for a threshold of 0.9. For KOSA, there is only a positive effect at 0.6.
SPOT shows a positive effect only for a threshold of 0.9. Inlining has a neutral or negative
effect on the runtimes of ENRO, FLIC, LIVE, NETF, ORKU, UNI, and ZIPF.

We expected inlining to have a positive effect on the filter phase, because it saves
pointer chasing to obtain the prefix tokens. It helps the CPUs to perform prefetching.
However, if prefixes are much shorter than the complete records, many tokens must be
skipped to read the next record. As shown in Table 2.1, AOL has the smallest average
record size of 3. For such short lengths, the prefix is usually not much shorter than the
record. Thus, prefetching might increase the runtime if there are many short records in
the input dataset.

4.4.5 Impact of Batching

We grouped the experimental results by all variables except the batch size and computed
the percentaged difference between the lowest and the highest runtime. It varies between
0.7% and 1%. Thus, we consider the impact of batching on the runtime as rather low.
Our runtime experiments suggest that the batch size of 125 is the best in most cases (23
times) and 250 is the second best (10 times). We could not find a pattern under which
conditions which batch size is optimal. We suspect a complex relation with other variables
and with the data characteristics.

4.4.6 Impact of Position Filter

Using position filter is benefitial in most cases with thresholds of 0.6 and 0.75. Figure 4.7
shows the relative runtime gains using the position filter grouped by threshold. For a
threshold of 0.6 the runtime gain varies between 20-50% except for SPOT, where the
median is close above zero. The position filter has a small impact only on SPOT for

2The solid middle line is the median (50% quantile), the box boundaries mark the 25% and the 75%
quantile, and the whisker length is 1.5 times the difference between the 75% and the 25% quantile. If the
minimum (or maximum) value is larger (or smaller), the whisker ends at that point instead. Points above
and below the whiskers show outliers.
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Figure 4.4: Runtimes for increased datasets n ∈ {5, 10} relative to the best runtime for
n = 1.
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Figure 4.5: AOL: Runtime gain of inlin-
ing relative to single-threaded (allp), multi-
threaded without (allph), and with CPU
affinity (allps).

Figure 4.6: AOL: Runtime gain of inlining
relative to thresholds.

all thresholds, which can be explained by the number of candidates (cf. Table A.3 in
the appendix). For SPOT and the threshold 0.6 the position filter saves roughly 8% of
candidates, or in absolute numbers 50 000. The verification of this number of additional
candidates is cheaper than to filter them out before. For other datasets this filter saves 28%
of candidates on average. Only for AOL, the savings with the position filter are equally
low with 7%. However, the absolute number of saved candidates is orders of magnitude
higher with 86 600 000, so the position filter pays off for AOL. The maxFreq of tokens
(cf. Table 2.1) gives a hint on the effectiveness of the prefix filter. The most frequent
token in SPOT occurs roughly 9 700 times, which is low compared to all other datasets.
A low maxFreq implies that the prefix filter generates few candidates. The position filter
only pays off if the prefix filter is less effective, which is the case for all other datasets
and thresholds below 0.9. For a threshold of 0.75, the gain varies between 5-50% for all
datasets except for SPOT (as discussed before) and AOL. For AOL the number of saved
candidates relative to the number of candidates without position filter is 0.3% and thus
comparably low. For a threshold of 0.9, all gains are close to zero except for DBLP and
NETF where there is still a gain of 40% to 50%. One explanation is also the number of
saved candidates.

Table 4.2 shows the effect of the position filter between the single-threaded SSJ vs. the
multi-threaded (using average runtimes). The effect is the same for the majority of cases.
However, for AOL 0.75, FLIC 0.9, KOSA 0.9, ORKU 0.9, and SPOT 0.6 and 0.75 the
position filter has a positive effect in the multicore case, while it does not have a positive
effect in the single-core case. This observation suggests that the overhead of the position
filter pays off more often in the multicore case.

There is no obvious relationship between the runtimes using the position filter and the
remaining parameters inlining, batching, the number of threads, and CPU affinity.
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Figure 4.7: Runtime gain/loss of using the position filter grouped by similarity threshold.
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Table 4.2: Comparing the effects of position filter on runtime for single-thread and
multiple-thread SSJ execution. + stands for a positive (less runtime), - for a negative
effect (more runtime).

0.6 0.75 0.9
input single multi single multi single multi
AOL + + - + - -
BPOS + + + + + +
DBLP + + + + + +
ENRO + + + + + +
FLIC + + + + - +
KOSA + + + + - +
LIVE + + + + + +
NETF + + + + + +
ORKU + + + + - +
SPOT - + - + + +
UNI + + + + - -
ZIPF + + + + + +

Figure 4.8: Runtime gain/loss of using CPU
affinity on the ENRO dataset.

Figure 4.9: Reduction of LLC misses using
CPU affinity on the ENRO dataset.
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4.4.7 Impact of Thread Placement

By statically assigning the CPU affinity we expected a more optimal use of the cores and
prevent thread migrations. However, our experiments reveal that statically assigning the
CPU affinity is benefitial for the runtime only in a minority of cases. Figure 4.8 shows
the performance gain using CPU affinity for ENRO exemplarily. There is a performance
gain from 2 to 4 threads. From there, the gain decreases until reaching 12 threads, stays
nearly the same up to 24 threads, and decreases for more threads. This behavior can be
explained by the saved cache misses. Figure 4.9 shows the percentage of saved last-level
cache (LLC) misses with CPU affinity. The runtime is generally the best from a number
of threads starting from 24. Our results suggest that manually setting CPU affinity is not
helpful for optimizing SSJ algorithms.

4.5 Summary

Multi-threading has not been systematically considered for filter-and-verification-based
SSJ algorithms so far, leaving much computing capability provided by multicore proces-
sors unused. In this chapter, we fill the gap to explore the potential of parallelizing SSJ
on multicores. We propose a data-parallelization execution model along with various de-
sign considerations, including the use of filters, CPU affinity, record inlining and batching.
Experiments using real-world datasets revealed several important insights. Using multi-
threading improves SSJ runtime by 2–10× on a 12-core machine; the optimal number of
threads is often the number of hardware threads (hyperthreads). Surprisingly, unlike in
other workloads, using hand-crafted data structures (e. g., inlining) or CPU affinity do not
always lead to significantly lower runtimes. We also find that the position filter is more
effective than in the single-core scenario and should generally be used for parallel SSJ.

By running experiments on enlarged datasets up to 25 GB we showed the limitations of
parallelizing the SSJ on multicores. Albeit using sophisticated parallelization, it inherently
remains a quadratic operation with high runtimes on (arguably) large datasets. To push
the limit further and allow for even larger datasets, we propose a distributed SSJ framework
in the following chapter.



Chapter 5

Exploiting Distributed
Parallelization

Existing parallel SSJ approaches are limited regarding the amount of input data they
can process. In Chapter 3, we show that common MapReduce-based approaches exhibit
high runtimes on only moderately enlarged input datasets. The main reason for the high
runtimes is data skew leading to straggling reducers. The maximum amount of input data
we were able to join with the MapReduce approaches was 12.5GB (ORKU×5). Adding
more nodes does not resolve this issue. In Chapter 4, we scale up existing single-core SSJ
approaches using multicores. On our hardware, this approach is able to compute the join
on up to 25GB of input data (ORKU×10). Multicore parallelization improves the SSJ
runtime. However, the number of cores in one computer is limited. We cannot scale the
computation to larger input datasets or decrease the computation runtime by adding more
cores.

The input dataset size and scalability limitations of the previously mentioned ap-
proaches motivate our novel distributed-parallel SSJ approach, which pushes these limits
significantly. We experimentally show that our new approach scales to hundreds of gi-
gabytes and that it is robust against unfavorable data characteristics. We use existing
filter-and-verification techniques as a basis and leverage intra-node multicore paralleliza-
tion by default. The major advances compared to existing distributed approaches are as
as follows. First, our approach avoids replication since replication is the main bottleneck
of the MapReduce approaches we analyzed previously. Our approach assures that each
record is present only once in the main memory of each node. Furthermore, we spawn only
one single multi-threaded SSJ instance per node to be able to efficiently share commonly
used data structures, such as the inverted index. Second, it avoids recomputation, i. e., the
repeated validation of the same candidate record pair. Third, it removes algorithmic data
dependencies that lead to a skewed execution load as observed in MapReduce approaches
using prefix filtering.

As a distributed execution environment our approach solely requires a standard shared
nothing architecture. Our approach is generic so that it is independent of a specific
distributed system. The quadratic nature of the SSJ problem implies that scaling up

60
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to larger input dataset sizes may require adding a quadratic number of nodes in the
worst case. To avoid the worst case our distributed-parallel approach uses techniques to
keep the number of candidates low and to distribute the remaining compute load evenly
among nodes. However, depending on the dataset size, token distribution, and similarity
threshold, the demand for compute nodes can still be high. Modern cloud computing
allows to obtain a high number of compute nodes for a limited timeframe. Thus, we can
safely assume that it is realistic today to have hundreds or even thousands of compute
nodes available for just one operation. Furthermore, we regard only input datasets without
exact duplicates (cf. Section 1.1) as we consider finding exact duplicates an orthogonal
problem.

Our approach uses a cost-based data-dependent heuristic to break down the SSJ com-
putation into pieces to be computed independently in parallel. The approach does not
compare records with non-matching lengths relative to the similarity measure and thresh-
old. Additionally, we provide a data-independent scaling mechanism that allows to sub-
divide each piece if necessary. Users can reduce the join runtime to an acceptable one by
adding more compute nodes.

The main contributions of this chapter are:

• We introduce a novel distributed-parallel SSJ approach, which is capable of comput-
ing the SSJ on hundreds of gigabytes of input data;

• The approach is highly scalable. It uses a cost-based heuristic in conjunction with
a data-independent mechanism to split the compute load among nodes;

• The approach is generic and thus potentially applicable to common distributed sys-
tems.

In the following, we give an overview on related work. Subsequently, we introduce
our approach in detail and experimentally show its behavior on large datasets and high
compute node counts. Finally, we conclude the chapter.

5.1 Related Work

In our previous paper we outline our initial approach of a robust cost-based SSJ frame-
work [Fie17]. This initial approach advances existing MapReduce SSJ algorithms by bal-
ancing the compute load evenly among the nodes using a cost function and data statistics.
The distributed SSJ approach in this chapter is based on our paper. However, in contrast
to our initial approach, we removed the assumption of data replication during the exe-
cution, because it turned out to be practically infeasible. Furthermore, we removed the
system dependency of MapReduce/Hadoop to create a generic approach.

Using statistics for load balancing in distributed systems has been discussed in the
literature before. The TopCluster algorithm is an online approach, which includes cardi-
nality estimations at runtime [GARK12]. Our approach on the other hand needs exact
data statistics before the join execution. Our approach is comparable to the one by Kolb
et al., which also involves a preprocessing MapReduce job to collect data statistics and



62 CHAPTER 5. EXPLOITING DISTRIBUTED PARALLELIZATION

Figure 5.1: Schematic dataflow of our distributed-parallel SSJ approach.

a join job, which uses the statistics for an optimal data grouping [KTR12]. However, in
contrast to the solution there, we refrain from data replication.

The authors of DIMA use Apache Spark to compute the SSJ in a distributed fash-
ion [SSL+19]. DIMA creates signatures for each record, such that the SSJ compute load
is balanced among the existing nodes. To find such signatures, it partitions the tokens
comparable to FS-Join [RLS+17] and MRGroupJoin [DLWF15] (cf. Section 3.2.1), but
additionally uses dynamic programming to group them to achieve the balance property.
The approach uses distributed and local indexes to speed up the computation. This work
is orthogonal to our work by using the execution environment of a specific distributed
system, especially its data structures.

5.2 Distributing Filter-and-verification-based SSJ

Figure 5.1 gives an overview on our distributed-parallel SSJ approach. Step (1) prepro-
cesses and tokenizes the raw input data. In addition, we require this step to compute a
length statistic. The length statistic consists of tuples {(l, |Rl|)} where l is a record length
and |Rl| is the number of the records with this length. Step (2), which we refer to as
optimizer, contains the major part of our distributed SSJ approach. It generates parame-
ters for each node to distribute the compute workload. Step (3) is the actual distributed
join. We require the tokenized input data and the length statistics to be available on
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every compute node. The join is an extension of the multicore SSJ from Chapter 4. The
extension includes the set of parameters from the optimizer. The parameters limit the
records to be indexed and joined on each node such that the result is complete and free
of duplicates.

Our approach assumes that each node runs exactly one instance of the multicore SSJ,
exclusively using the nodes’ hardware resources. By instance, we refer to the main thread of
our multicore SSJ together with the worker threads it spawns during execution. We choose
this setup to avoid the unnecessary replication of data, such as inverted indexes, which can
be shared by all threads. As it is common in MapReduce-based distributed systems, SSJ
instances cannot communicate with each other and do not share data during execution.
The instances have all information for the execution available before the beginning of the
join computation. Each instance indexes and probes only subsets of the input dataset to
independently compute a partial join result.

In the following, we introduce the optimizer. It runs before the actual join computation
and divides the SSJ computation into independently computable pieces. The optimizer
consists of a data-dependent cost-based heuristic and a data-independent scaling mecha-
nism. Furthermore, we provide estimations of RAM demand and cost distribution and a
heuristic to find suitable optimizer parameters. We first describe the cost-based heuristic.

5.2.1 Data-Dependent Cost-Based Heuristic

One aim of the cost-based heuristic is to avoid the cross product by only regarding record
pairs with matching lengths, i.e., which survive the AllPairs length filter (cf. Section
2.2.2). This filter is effective on datasets with varying lengths and cheap to apply by using
the length statistic computed beforehand. As discussed in Section 1.1, we focus on the
Jaccard similarity function and the self-join.

Figure 5.2: Example join matrix for θ = 0.7. Squares with the same index length compose
one slice.
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Note that records with differing lengths can be similar. For Jaccard, matching lengths
for a record r are in the interval [⌈θ · |r|⌉; ⌊ |r|

θ ⌋]. In the self-join case, the probe record
set is equal to the index record set. To avoid duplicates and unnecessary recomputation,
we subsequently consider only probe records larger than the length of an index record r:
[|r|; ⌊ |r|

θ ⌋]. Figure 5.2 shows this length relationship for a similarity threshold of θ = 0.7.
For each record length on the y axis, it shows on the x axis, which record lengths have to
be considered as join candidates. Now consider that we index the lengths on the y axis and
probe the lengths on the x axis. Then each square in the figure represents a pair of index
and probe lengths (i, p), which has to be joined for a complete result without duplicates.
Each square can potentially be joined independently. However, for our heuristic, we choose
to group squares with the same index lengths together and refer to them as slices. For
each slice i, we estimate the probe costs C(i) as follows:

C(i) = P(i) ∗ |Ri| ∗
⌊ i

θ
⌋∑︂

p=i

P(p) ∗ |Rp| (5.1)

Table 5.1 serves as a symbol reference for the symbols we use in the equation and
throughout this chapter. The basic assumption of the cost estimation is that each probe
of the inverted index causes a cost of the length of the postings list. We do not know the
concrete lengths of the postings lists a priori, because they are dependent on the token
distribution. Instead, we assume the worst case, where all index records of the probed
length are contained in the postings list. With regard to an index length i, the possible
probe lengths p are in [i, ⌊ i

θ⌋]. The total number of probes of one slice is the sum over the
prefix of p (denoted as P(p)) multiplied by the number of records with this length |Rp|
for all probe lengths. The number of index tokens of the slice is computed the same way
and multiplied.

Table 5.1: Symbol reference.

R input dataset
θ similarity threshold
|r| number of tokens in r
|Rl| number of records with length l
P(l) prefix length of length l: P(l) = l − ⌈θ ∗ l⌉+ 1
i index prefix length
p probe prefix length
rid record ID
n node parameter for cost-based heuristic
m modulo: data-independent scaling parameter
modgroup group parameter to check if a record is in a sub slice
indexLengths set of index lengths for one SSJ instance
probeLengths set of probe lengths for one SSJ instance
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Table 5.2: Example of input data lengths, matching probe lengths, number of records,
and corresponding slice costs for θ = 0.7.

index length i probe lengths {p} |Ri| C(i)
1 1 10 100
2 2 30 900
3 3,4 80 86 400
4 4,5 500 1 800 000
5 5,6,7 400 1 416 000
6 6,7,8 200 568 000
7 7,8 190 581 400
8 8 150 202 500

Example 5.1. Table 5.2 shows the cost computation for a hypothetical dataset. The
dataset has eight length values as shown in the first column. The second column shows
matching probe lengths for each index length. |Ri| shows the hypothetical length count
per index length. Column C(i) shows the resulting slice costs.

Example 5.1 highlights that slices can exhibit uneven costs. Thus, we assign sets of
slices to compute nodes with the intention to distribute the costs evenly. To achieve an
even cost distribution, we use a greedy heuristic. We assume that the user chooses a seed
number of compute nodes n (the total number of compute nodes for the SSJ computation
can be higher depending on further parameters). We sort the slice costs C(i) in ascending
order. We then assign each slice to each node round robin. So the first node receives the
slice with the largest cost, the second node receives the second-largest, and when the last
node is reached, the first node obtains the next slice again. The following example shows
our greedy cost distribution heuristic:

Example 5.2. Consider again Table 5.2 and n = 2. The highest cost appears for i = 4,
so we assign this slice to the first node. The next highest cost appears for i = 5, so we
assign it to the second node. The third one is i = 7, assigned to node 1, and so on. This
approach generates the following index and probe lengths:

Node 1: index lengths 2,4,7,8, probe lengths 2,4,5,7,8, total costs 2 584 800 and
Node 2: index lengths 1,3,5,6, probe lengths 1,3,4,5,6,7,8, total costs 2 070 500.

As discussed before, our cost estimation cannot consider the concrete lengths of the
postings lists. It assumes all records with matching lengths to be present in it, which is
only the worst case. In this regard, it is pessimistic. On the other hand, the heuristic
ignores the costs for the verification. The verification is dependent on the number of
candidates, which we cannot estimate a priori without actually computing the join. Thus,
our heuristic potentially underestimates the costs if a dataset has many candidates. In
our experiments, we show the strengths and limits of this approach. Next, we introduce
the second part of the optimizer, the data-independent scaling mechanism.
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5.2.2 Data-Independent Scaling Mechanism

The scaling mechanism subdivides each slice by partitioning its probe records. Our join
computation assigns subsequent integer record IDs (rids) to each input record. We use
the modulo function to assign a probe record to one partition as shown in the following
equation:

isRecordInProbeSubset(rid, m, modgroup) = rid%m
?= modgroup (5.2)

The user-defined parameter m sets the number of sub slices to generate. The modgroup
is in the interval [0, m−1] and determines the sub slice a record is assigned to. The following
example illustrates how our scaling approach assigns records to sub slices:

Example 5.3. Assume m = 2. One sub slice receives all records where the function
returns true for modgroup = 0 and another sub slice obtains the ones for modgroup = 1.
Recall that we ordered the records in our input datasets by ascending record lengths (cf.
Section 2.3). Thus, we expect this approach to be robust against length skew in the input
data. It assigns records of all probe lengths to each sub slice round robin.

The scaling mechanism together with the cost-based heuristic form the main building
blocks of the optimizer of our SSJ approach. To find suitable parameter values for m and
n, we next discuss how to evaluate the quality of concrete instances of these parameters.
We start with an estimation of RAM demand.

5.2.3 RAM Demand

Our heuristic and the scaling mechanism do not assure that the computation of one (sub)
slice stays within the RAM size of a given compute node. If the SSJ computation allocates
more memory than the system physically provides, swapping occurs. Swapping leads to
severe runtime penalties, which we must avoid. The main idea to avoid RAM overutiliza-
tion is to find optimization parameters m and n such that the RAM usage stays within
system limits. With the heuristic from Section 5.2.1, a concrete value for n, a similarity
threshold θ, and the length statistics of a concrete dataset {(r, |Rl|)} we compute sets of
lengths indexLengths and probeLengths for each node. We use these length sets for RAM
demand estimations subsequently.

We use an extension of the multicore SSJ from Chapter 4 on each compute node. The
extension includes the parameters indexLengths, probeLengths, m, and modgroup to limit
the index and probe records. Considering the extended multicore SSJ, the inverted index,
probe records, and candidates demand the largest parts of the main memory. Without
loss of generality, we estimate the three demands for our concrete SSJ implementation.
The estimation is applicable to possible other join implementations by adjusting the size
factors of the employed data structures.

First, we focus on the inverted index. Our implementation of the inverted index holds
the postings list entries in a struct of 12 Bytes. The number of postings list entries is
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the prefix length times the number of records P(l) ∗ |Rl| for each index length l. We can
estimate the size of the inverted index (in Bytes) as follows:

indexRamDemand(indexLengths) =
∑︂

l∈indexLengths

P(l) ∗ |Rl| ∗ 12 (5.3)

Similarly, we estimate the RAM demand for the probe records. One record in our
implementation uses 60 Bytes plus each token stored as 4 Byte integer. We estimate the
space requirement for the probe records (in Bytes) as follows:

probeRamDemand(probeLengths, m) =
∑︂

l∈probeLengths

|Rl| ∗ (60 + l ∗ 4)
m

(5.4)

Lastly, we focus on the candidate size. Our AllPairs-based SSJ approach uses 12 Bytes
to store each candidate record in main memory until verification. Each thread keeps a
local list of candidates for its subset of probe records. In the worst case, all indexed records
are candidates. However, it is pessimistic to assume that all threads hold all index records
as candidates at the same time. In our experiments, we found that it is safe to assume 1

3
to 2

3 of the index records to be present on each thread at a time on our datasets. Thus, we
include a candidate factor candFact in our estimation. We estimate the candidate RAM
demand (in Bytes) as follows:

candidateRamDemand(indexLengths, numberThreads, candFact) =∑︂
l∈indexLengths

|Rl| ∗ 12 ∗ numberThreads ∗ candFact (5.5)

To avoid swapping, the sum of all demands must stay below the system limit of a
compute node leaving space for other storage needs and the operating system. We found
the static space demand to be below 4GB on the system we run our experiments on and
thus consider this value in the following.

Example 5.4. Consider the dataset ORKU with scaling factor 100, θ = 0.6, m = 64,
n = 8, and numberThreads = 24. Over all slices, we can compute a maximum index RAM
demand of 21GB, 2GB for the probe records, and up to 10GB for candidates. We estimate
the total demand including the static demand to be 37GB. In fact, on our system with
32 GB RAM, this parameter combination leads to heavy swapping. The runtime of each
slice is above 12 hours. When we changed the parameters to m = 16 and n = 32 (which
equals the total number of nodes in the previous configuration, 512) the total estimated
RAM demand decreases to 24GB. The maximum runtime per slice in this configuration
is 300 seconds and no swapping occurs. The example motivates that it is crucial to find
a suitable parameter configuration, which keeps the memory demand below the system
limit to achieve an acceptable join runtime.

Note that our data-independent scaling approach focuses only on probe records. In case
the set of indexLengths contains solely one length and the corresponding indexRamDemand
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exceeds the available main memory, our approach does not provide a means to further
reduce the index size. However, if an index exceeds available main memory it is possible
to partition the index records, i.e., with a modulo function in the same way as we applied
it to the probe records. We do not elaborate on further reducing the index size, because
we cannot observe such an extreme index skew within our experiments even on highly
enlarged datasets. Next, we discuss the cost distribution among the compute nodes.

5.2.4 Cost Distribution Quality

Even without swapping, the choice of parameter n might be crucial for the runtime depend-
ing on the length distribution of the input dataset. Example 5.5 illustrates and motivates
the need for an appropriate parameter choice.

Figure 5.3: AOL×10 runtimes. Figure 5.4: ENRO×10 runtimes.

Example 5.5. Figures 5.3 and 5.4 visualize the runtimes of AOL and ENRO, both in-
creased with scaling factor 10, for θ = 0.6 varying both parameters m and n. The circle
sizes represent the runtime. The same color marks combinations of parameters with the
same total number of nodes. For example, the parameter combination m = 8 and n = 4
uses 32 nodes in total. Parameter combination m = 4 and n = 8 also uses 32 nodes and
therefore has the same color assigned. The numbers above the circles are the maximum
runtimes over all slices in seconds followed by the total number of nodes in brackets. For
ENRO×10 a higher n is beneficial for an improved runtime. That is, the runtime with
parameters m = 2 and n = 16 is lower than with parameters m = 8 and n = 4 for the
same total amount of nodes of 32. On the other hand, for AOL×10, a higher value of n
does not lead to improved runtimes. A higher m parameter is effective for both datasets.
The effectiveness of parameter m on both datasets is expected, because it linearly scales
the number of probe records.
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In Example 5.5, the length distributions of the datasets are essential for the efficiency of
parameter n. Figure 2.1 shows the length frequencies of the datasets with scaling factor 1.
The enlarged datasets exhibit a corresponding distribution with frequencies roughly times
the increase factor. AOL shows significantly more short records than ENRO. For example,
in AOL there are 1.4 to 2.7 million records with the lengths 1 to 4, which corresponds
to roughly 80 percent of the total number of records in AOL. ENRO has only 149 to 814
records in this length range, which corresponds to less than 1 percent of the records in
ENRO. Table 5.3 lists matching probe lengths and record counts of AOL and ENRO for
a low similarity threshold θ = 0.6. The slices of AOL for i ∈ 1, 2, 3, 4 are large in relation
to the number of total records, while the slices of ENRO remain small. The cost-based
heuristic is less effective for AOL due to its skewed record lengths. Furthermore, depending
on the choice of n, this length skew results in cost skew over the slices. In this example,
the costs for AOL are less skewed for n = 4 compared to higher values of n.

Table 5.3: Example for input data length skew. Columns show hypothetical input data
lengths, matching probe lengths, and the number of records for AOL and ENRO for
θ = 0.6.

index length i probe lengths {p} AOL |Ri| ENRO |Ri|
1 1 2705785 149
2 2,3 2026952 361
3 3,4,5 2051010 594
4 4,5,6 1457075 814
5 5,6,7,8 849944 1029
6 6,7,8,9,10 445489 1141
7 7,8,9,10,11 225401 1301
8 8,9,10,11,12,13 117962 1386

To evenly distribute the compute costs over the nodes, we aim to find the best n out of
a given value range regarding a distribution quality function. Given one n, we can compute
the maximum cost deviation over all slices with max{C(i)}÷min{C(j)} for i, j ∈ [0; n−1].
Given a valueRange for n, we can then minimize this deviation as follows:

min
n∈valueRange

=
{︃

max
i∈[0;n−1]

{C(i)} ÷ min
j∈[0;n−1]

{C(j)}
}︃

(5.6)

Example 5.6. Consider AOL×10, θ = 0.6, and n ∈ {4, 8, 16, 32}. Using Equation 5.6,
n = 4 has the lowest maximum cost deviation of 4.16. For higher values of n the deviation
varies between 200 and 230 000. For ENRO×10 and the same parameters, the lowest
deviation is 1.02 for n = 4, followed by 1.05 for n = 8, 1.09 for n = 16, and 1.21 for
n = 32. For both datasets, our cost distribution quality estimation chooses a good value
for parameter n. Our estimation might not necessarily lead to the optimal parameter
value regarding runtime, but it avoids unfavorable values.

In the following subsection, we discuss how to use these cost distribution considerations
together with the RAM estimation to find suitable parameter values m and n.
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5.2.5 Finding Suitable Parameter Values

Our approach uses the two parameters m and n. Based on the previous discussion about
RAM demand and cost distribution we propose the following strategy to determine pa-
rameter values, which avoid RAM overutilization and cost skew. We assume that the user
chooses a total number of compute nodes t as a seed, which should preferably be a power
of two for practical reasons. For each possible m and n (such that m · n = t) we compute
the estimated demand for RAM (cf. Section 5.2.3) and the minimum and maximum cost
over all slices (cf. Section 5.2.4). We can prune all parameter combinations with a RAM
demand above the system limit. We then choose the parameter combination (m, n) with
the lowest cost deviation. In case all parameter combinations are pruned, we set the total
number of nodes t = t ∗ 2 and re-run the previous computation until a suitable combi-
nation is found. If the resulting t is above the number of available compute nodes, the
computation should be split into subsequent phases. The described strategy finds only
the minimum m parameter value with respect to t. Users may increase m to achieve lower
runtimes. In our experiments, we show the applicability of our approach to find suitable
parameters.
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5.3 Experiments

This subsection presents our experimental analysis. We focus on scalability, varying the
parameters m and n, the input dataset sizes, and the similarity threshold θ. Based on the
shortcomings of manually choosing parameter values, we subsequently discuss our strategy
to find suitable parameter values m and n.

To compute the join on one slice we use the multicore C++ SSJ implementation
from Chapter 4 running it on each compute node by extending the multicore SSJ with
the parameters indexLengths, probeLengths, m, and modgroup1. By default, we run
the multicore SSJ with the optimal parameters identified in the previous chapter. We
enable the position filter and set the number of threads to 24, which is optimal on our
hardware: Each node is equipped with two Xeon E5-2620 2GHz of 6 cores each (with hyper-
threading enabled, i. e., 24 logical cores per node), 24GBs of RAM, and two 1TB hard
disks. Whenever we report runtimes, we refer to the maximum runtime over all slices since
the maximum runtime determines the overall runtime. To keep the experimental results
comparable to the ones from the previous chapter, we exclusively report the runtimes of
the index build and the join (filter and verification).

As input datasets, we continue to use the 10 real-world and two synthetic datasets we
described in Section 2.3. Since we focus on larger datasets, we use only increased datasets
with the scaling factors 10, 25, 50, and 100. We start our experiments with a scaling factor
of 10, because these are the largest datasets joinable with both the MapReduce and the
multicore approaches so far. Our novel distributed approach is able to compute the join
on much larger datasets as we show subsequently.

5.3.1 Impact of Cost-based Heuristic

In this experiment, we show how the runtimes develop varying parameter n. We do not
set parameter m. Thus, the probe records per slice remain complete with regard to the
probeLengths computed with the heuristic from Section 5.2.1. Figure 5.5 shows the max-
imum runtimes over all slices for all datasets scaled by factor 10 and θ ∈ {0.6, 0.75, 0.9}.
We choose n ∈ {4, 8, 16, 32} and compare it to the non-distributed multicore SSJ, which
is represented by n = 1 in Figure 5.5.

For all datasets and all thresholds, n = 4 significantly reduces the runtimes compared
to n = 1. The speedups vary between 1.8 (AOL×10, θ = 0.75) and 13.9 (ORKU×10,
θ = 0.6). The average speedup over all datasets and thresholds is 3.7. For higher values
of n the speedups decrease. Adding more than 8 or 16 nodes leads to only small runtime
decreases for most datasets and thresholds. This effect is due to the nature of our heuristic.
Recall that one slice consists of an index length and all its possible probe lengths. The
length skew of the input datasets (cf. Figure 2.1) and the similarity threshold determine
the largest and potentially slowest slice, which cannot be further partitioned with the
heuristic. AOL×10 is exemplary for this circumstance. As we discussed in Section 5.2.4,
AOL has roughly 80 percent of its records within the length range 1 to 4. n values

1Our implementation is available at https://github.com/fabiyon/dist-ssj-sisap.

https://github.com/fabiyon/dist-ssj-sisap
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Figure 5.5: Maximum runtimes over all slices for n ∈ {4, 8, 16, 32}. n = 1 represents the
multicore SSJ without distributed parallelization. Thresholds θ ∈ {0.6, 0.75, 0.9}.
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higher than 4 are not beneficial for this dataset. Other datasets show different length
distributions, which lead to optimal n values higher than 4.

KOSA×10 also shows a limited scalability for θ = 0.6, but for a different reason than
length skew. We observe that amongst all slices for each n there exists one slice with a
runtime between 130 and 150 seconds, while all other slices have lower runtimes. Figure 5.8
visualizes the runtime distributions over all slices of each n. Outliers are marked as points
outside the whiskers. Note that there are outliers for n ∈ {8, 16, 32}. The highest outlier
runtime is close to the highest runtime for n = 4. For reference, Figure 5.6 shows the
corresponding runtimes for DBLP×10, where such outliers do not occur. The reason for
the outlier slices in KOSA×10 are their high number of candidates compared to all other
slices. Figures 5.7 and 5.9 show the respective candidate distributions, which explain the
runtimes. The runtimes of KOSA×10 show a limitation of our heuristic. It optimizes the
runtime based on length information and is thus not robust against candidate skew by
design.

Figure 5.6:
DBLP×10
Runtimes.

Figure 5.7:
DBLP×10

Candidates.

Figure 5.8:
KOSA×10
Runtimes.

Figure 5.9:
KOSA×10
Candidates.

5.3.2 Impact of Data-independent Scaling Mechanism

In this experiment, we study how the scaling parameter m influences the runtimes. We
continue to use the datasets using scaling factor 10 and fix parameter n to 8, since this
parameter setting showed good runtimes in the previous experiment. We again use θ ∈
{0.6, 0.75, 0.9} and vary m ∈ {2, 4, 8}; results for m = 1 represent the runtimes from the
previous experiment with scaling factor 1. Figure 5.10 shows the maximum runtimes over
all slices for each m. The results indicate that m ≥ 2 is beneficial to achieve a lower
runtime for all datasets and thresholds, including AOL×10 and KOSA×10, which showed
scalability boundaries for n ≥ 4 in the previous experiment.

Since the modulo function evenly distributes different probe lengths among sub slices
we expect the runtimes to scale linearly with m, which experimental results partially
confirm. Table 5.4 shows the minimum, maximum, and average speedups for m ∈ {2, 4, 8}
in relation to m = 1, grouped by θ. For each threshold group, there is a maximum
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Figure 5.10: Maximum runtimes over all slices for n = 8, θ ∈ {0.6, 0.75, 0.9}, m ∈ {2, 4, 8}.
m = 1 indicates runtimes without the scaling mechanism.
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speedup close to the optimum m. The averages over all thresholds for m = 2 are close to
the optimum 2. The average speedups for larger values for m decrease.

We made three observations related to dataset/threshold combinations leading to a
suboptimal scalability with respect to m. First, the scalability is better for lower val-
ues of θ. The highest scalability values occur for θ = 0.6 with BPOS-10, DBLP×10,
NETF×10, and UNI×10. On the opposite, the lowest scalability values occur for θ = 0.9
with FLIC×10, LIVE×10, ORKU×10, SPOT×10, and ZIPF×10. Second, the scalabil-
ity is better for datasets, which exhibit a more uniform token distribution rather than a
Zipfian one. BPOS×10, DBLP×10, NETF×10, and UNI×10 show a roughly uniform dis-
tribution (cf. Figure 2.2) and are well scalable. On the other hand, FLIC×10, ORKU×10,
SPOT×10, LIVE×10, and ZIPF×10 show a more Zipfian distribution and are less scal-
able. Lastly, if the runtimes are already low (below one second) as for SPOT×10 under
all θ values and FLIC×10 with θ = 0.9, the scalability towards m is suboptimal, which
can be explained by static overhead.

Table 5.4: Aggregated speedups relative to m = 1 over all datasets grouped by threshold.

m = 2 m = 4 m = 8
θ min max avg min max avg min max avg
0.6 1.28 2.04 1.80 1.62 4.03 3.31 1.83 8.11 5.97
0.75 1.20 1.99 1.71 1.42 3.97 2.95 1.58 7.86 5.04
0.9 1.19 2.04 1.60 1.33 4.03 2.58 1.38 7.94 4.10

5.3.3 Impact of Dataset Size

In this subsection, we investigate how the runtimes evolve from increasing the dataset size
by scaling factors s ∈ {10, 25, 50, 100}. We statically set n = 8 and m = 64. Figure 5.11
shows the maximum runtimes per slice for s ∈ {25, 50, 100} relative to maximum runtime
for s = 10. For detailed runtime results, we refer to Table A.4 in the appendix.

In many cases, the runtime does not increase linearly with the dataset size. A non-
linear runtime increase is expected, because the SSJ has a quadratic complexity. A per-
fectly linear runtime relative to s = 10 would be s

10 for s ∈ {25, 50, 100}. Only few
combinations of datasets, θ, and s fall in this category. For ENRO and θ = 0.9, ORKU
and θ = 0.9, and SPOT (all thresholds) the relative runtimes for s ∈ {25, 50, 100} are
better than linear. ENRO and θ = 0.75, FLIC and θ ∈ {0.75, 0.9}, LIVE and θ = 0.9,
ZIPF and θ ∈ {0.75, 0.9} are close to linear. We can observe that the runtimes of higher
thresholds increase more linearly than the ones of lower thresholds relative to s. This
runtime behavior can be explained by the prefix filter, which is more effective for higher
thresholds.

With our approach, it is possible to compute the SSJ on all datasets of all sizes in
our evaluation and all thresholds except ENRO-100 and θ = 0.6. We manually stopped
the computation after 12 hours. In Section 5.2.3, we discussed that for ORKU×100 the
parameter combination n = 8 and m = 64 is not optimal, because it causes swapping. We
next discuss our proposed parameter finding strategy.
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Figure 5.11: Maximum runtimes per slice for n = 8 and m = 64, varying the dataset
increase factor s ∈ {25, 50, 100} relative to the max. runtimes per slice for s = 10.



5.4. SUMMARY 77

5.3.4 Discussion of Parameter Finding Strategy

The previous experiment on enlarged datasets highlights that the manually assigned pa-
rameters m = 64 and n = 8 are not suitable for ORKU×100 and θ = 0.6, because the
runtime becomes large exceeding 12 hours. In Section 5.2.3, we discussed the same ex-
ample and concluded that swapping occurs. We first show that our parameter finding
strategy from Section 5.2.5 can avoid this worst case. When we apply the parameter
strategy to an equal number of total nodes as before (t = 8 ·64 = 512), it suggests m = 32
and n = 16. The runtime of this parameter combination is 1314 seconds, so the strategy
avoids the worst case.

We furthermore expect the strategy to choose the parameter combination with the
smallest cost deviation. In the example in Section 5.2.4, we discussed that for AOL×10
θ = 0.6 n = 4 is better than a larger n. Running the parameter finding strategy for t = 16,
it indeed suggests the parameter value n = 4.

5.4 Summary

In this chapter, we introduced our novel distributed SSJ approach. We showed experimen-
tally that it scales the computation to potentially hundreds of compute nodes if needed.
Our method computes the SSJ on datasets much larger than the ones which could be
computed with existing parallel methods so far.

Our approach requires parameters. We discussed how to a priori estimate limits of
parameter values from which we cannot expect an efficient execution, especially regard-
ing main memory usage. We proposed a parameter finding strategy, which avoids poor
parameter values leading to either RAM overutilization or a skewed cost distribution.
One remaining challenge is to better estimate or manipulate the maximum number of
candidates of each slice, which occur at one instance of time.

For the future, it would be interesting to combine our SSJ approach with machine learn-
ing techniques. Given a target runtime by the user, such techniques could find matching
parameters to compute the SSJ within the desired runtime. Another interesting direction
of research would be data representation. With increasing dataset sizes, the efficient stor-
age and retrieval to the RAM of the compute nodes becomes crucial. It might be beneficial
for the SSJ runtime efficiency if there would be ways to compress the data losslessly such
that potentially matching records (or groups of them) can still be filtered. Also the in-
tegration into a concrete Big Data system with dedicated data structures and concurring
processes would be interesting.



Chapter 6

Conclusions

In this thesis, we investigated the parallelization of algorithms for computing the set
similarity join (SSJ) on multicores and shared-nothing compute nodes:

• We analytically and experimentally compared existing MapReduce-based SSJ algo-
rithms. We evaluated the algorithms and discussed their strengths and limits;

• We proposed a novel multicore-parallel filter-and-verification-based SSJ approach.
We experimentally evaluated the runtime and scalability of this approach;

• We proposed a novel highly scalable distributed-parallel SSJ approach. We evaluated
the approach using enlarged datasets.

This thesis makes an important contribution to the SSJ research with a detailed analy-
sis on the unexpected scalability limits of existing MapReduce approaches. It significantly
improves the scalability of SSJ algorithms and their implementation in a multicore and
multi-node execution environment. With the novel multicore SSJ we utilize modern hard-
ware to achieve significantly better runtimes than single core SSJ approaches. Our novel
distributed SSJ approach is independent from specific Big Data systems and proposes a
generic way to partition the SSJ. We introduce cost models and resource estimations to
evenly distribute compute load and avoid swapping. Our highly scalable approach pushes
the input dataset size limits of existing parallel approaches significantly.

6.1 Future Work

Interesting directions of future work are:

• Using GPU in conjunction with CPU and distributed parallelization for the SSJ. It
could be investigated under which conditions and how GPUs can be efficiently used
to enhance the scalability of the SSJ;

• Applying machine learning techniques to optimize the parameters for the execution
of our distributed SSJ approach. It would be especially beneficial to find a way to
estimate candidates a priori;

78
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• Adapt the distributed SSJ approach to a concrete Big Data system. Especially the
efficient usage of existing data structures might be challenging and interesting.

The overall goal of future work should be to keep it comparable to previous work
and benchmark against it. Also robustness against data characteristics was important
throughout this thesis and should be regarded for future work on SSJs.
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Appendix

A.1 Tables

Table A.1: Multicore: Best runtimes for each input dataset and threshold comparing
multicore and single-core executions. Parameters: number of threads thr., CPU affinity
aff., use of position filter (posf.), use of inlining (inline), and batch size. rm are the best
average multicore runtimes, r1 the best average single-core runtimes (both in seconds).

input θ thr. aff. posf. inline batch rm (S) r1 (S) speedup
AOL 0.60 24 0 1 1 500 22.83 235.48 10.31
AOL 0.75 24 1 0 1 250 6.57 35.02 5.33
AOL 0.90 24 0 0 0 250 2.71 9.21 3.40
BPOS 0.60 32 1 1 1 250 6.06 39.22 6.47
BPOS 0.75 32 1 1 1 250 1.44 10.71 7.44
BPOS 0.90 32 0 0 1 250 0.22 1.78 8.20
DBLP 0.60 24 0 1 1 125 29.80 227.42 7.63
DBLP 0.75 24 1 1 1 125 5.88 56.95 9.69
DBLP 0.90 24 1 1 1 125 0.43 4.57 10.53
ENRO 0.60 24 0 1 1 125 7.13 43.52 6.10
ENRO 0.75 24 1 1 1 125 2.07 8.70 4.19
ENRO 0.90 24 0 1 1 1000 0.66 1.62 2.45
FLIC 0.60 24 1 1 0 125 2.55 12.87 5.05
FLIC 0.75 24 0 1 0 125 1.16 4.68 4.01
FLIC 0.90 24 1 0 1 125 0.42 0.85 2.02
KOSA 0.60 24 1 1 1 125 3.75 21.62 5.77
KOSA 0.75 24 1 1 1 125 0.57 3.24 5.70
KOSA 0.90 24 1 1 1 125 0.17 0.64 3.85
LIVE 0.60 32 1 1 0 250 32.46 259.23 7.99
LIVE 0.75 24 1 1 0 250 10.57 46.11 4.36
LIVE 0.90 24 1 1 1 125 4.08 8.16 2.00
NETF 0.60 24 1 1 0 125 262.46 1265.62 4.82
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input θ thr. aff. posf. inline batch rm (S) r1 (S) speedup
NETF 0.75 24 0 1 1 125 41.49 438.55 10.57
NETF 0.90 24 1 1 1 250 2.90 21.52 7.42
ORKU 0.60 32 0 1 0 125 65.63 342.40 5.22
ORKU 0.75 24 1 1 0 250 29.94 121.86 4.07
ORKU 0.90 24 1 1 1 250 10.72 20.33 1.90
SPOT 0.60 24 1 1 1 125 0.58 1.25 2.16
SPOT 0.75 24 0 1 1 125 0.39 0.71 1.82
SPOT 0.90 24 0 1 1 500 0.21 0.42 2.00
UNI 0.60 24 0 1 0 125 13.42 78.51 5.85
UNI 0.75 24 0 1 0 125 3.82 28.48 7.46
UNI 0.90 24 1 0 1 125 0.55 5.25 9.47
ZIPF 0.60 24 0 1 1 125 0.50 2.78 5.60
ZIPF 0.75 32 1 1 1 125 0.23 0.97 4.32
ZIPF 0.90 24 1 1 1 125 0.09 0.26 2.80

Table A.2: Multicore: Best average absolute runtimes rn on increased datasets with in-
crease factor n in seconds and relative runtimes rr5 = r5

r1
and rr10 = r10

r1
.

input θ r1 r5 r10 rr5 rr10
AOL 0.60 22.83 668.17 3367.58 29.26 147.47
AOL 0.75 6.57 135.28 595.89 20.59 90.68
AOL 0.90 2.71 34.97 143.28 12.90 52.86
BPOS 0.60 6.06 205.78 1019.95 33.97 168.35
BPOS 0.75 1.44 39.39 177.83 27.36 123.52
BPOS 0.90 0.22 4.94 21.05 22.75 97.00
DBLP 0.60 29.80 1087.32 4831.31 36.49 162.12
DBLP 0.75 5.88 179.74 845.07 30.59 143.84
DBLP 0.90 0.43 8.63 34.52 19.90 79.61
ENRO 0.60 7.13 137.30 603.54 19.25 84.60
ENRO 0.75 2.07 17.34 54.08 8.36 26.07
ENRO 0.90 0.66 3.00 6.28 4.53 9.48
FLIC 0.60 2.55 26.27 89.07 10.30 34.94
FLIC 0.75 1.16 7.75 20.73 6.65 17.80
FLIC 0.90 0.42 1.76 4.11 4.19 9.77
KOSA 0.60 3.75 78.26 356.09 20.89 95.03
KOSA 0.75 0.57 8.73 34.24 15.33 60.18
KOSA 0.90 0.17 1.48 5.21 8.99 31.58
LIVE 0.60 32.46 452.08 1878.60 13.93 57.87
LIVE 0.75 10.57 66.21 191.27 6.26 18.09
LIVE 0.90 4.08 15.25 32.22 3.74 7.90
NETF 0.60 265.67 8256.49 35918.50 31.08 135.20
NETF 0.75 42.27 1179.56 5325.16 27.90 125.97
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input θ r1 r5 r10 rr5 rr10
NETF 0.90 2.99 51.22 199.02 17.15 66.64
ORKU 0.60 65.63 593.31 3039.43 9.04 46.31
ORKU 0.75 29.94 165.48 519.44 5.53 17.35
ORKU 0.90 10.72 49.70 96.53 4.64 9.00
SPOT 0.60 0.58 2.42 5.20 4.18 8.98
SPOT 0.75 0.39 1.39 2.96 3.56 7.62
SPOT 0.90 0.21 0.76 1.29 3.59 6.14
UNI 0.60 13.42 593.10 2443.45 44.20 182.10
UNI 0.75 3.82 138.01 600.85 36.15 157.39
UNI 0.90 0.55 15.06 58.49 27.18 105.58
ZIPF 0.60 0.50 7.44 28.92 14.96 58.20
ZIPF 0.75 0.23 1.91 6.32 8.48 28.03
ZIPF 0.90 0.09 0.46 1.11 4.93 11.85

Table A.3: Multicore: Number of candidates without position filter and the number of
saved candidates using the position filter.

0.6 0.75 0.9
input # cand # saved # cand # saved # cand # saved
AOL 1 308 195 395 86 604 209 477 737 983 1 462 862 118 099 782 1 425
BPOS 224 417 691 43 406 692 77 689 193 6 636 410 13 719 100 215 952
DBLP 156 143 630 51 875 687 41 437 407 14 854 689 4 716 630 1 476 104
ENRO 22 809 972 10 237 840 5 312 895 1 986 620 723 727 280 488
FLIC 72 361 084 14 893 299 28 601 771 2 613 289 5 386 489 179 509
KOSA 146 607 084 27 617 867 24 508 507 1 157 877 3 889 750 40 059
LIVE 358 213 341 107 366 064 76 240 199 11 666 792 9 137 126 160 393
NETF 506 267 551 288 259 041 98 457 108 55 148 405 7 354 527 3 640 376
ORKU 26 475 950 11 385 557 4 595 978 1 660 877 476 480 78 329
SPOT 625 364 50 032 197 035 6 433 102 457 123
UNI 452 910 564 110 484 321 183 463 661 28 514 181 36 770 329 469
ZIPF 2 050 369 638 168 429 949 127 164 71 315 15 419

Table A.4: Distributed: Max. runtimes rs on increased datasets with increase factor s in
seconds, n = 8 and m = 64. Relative runtimes rr25 = r25

r10
, rr50 = r50

r10
, and rr100 = r100

r10
.

dataset θ r10 r25 r50 r100 rr25 rr50 rr100
AOL 0.60 26.67 203.91 939.59 4071.52 7.65 35.23 152.66
AOL 0.75 7.65 47.88 249.86 1105.99 6.26 32.66 144.57
AOL 0.90 2.51 12.57 44.91 198.99 5.01 17.89 79.28
BPOS 0.60 2.91 22.07 100.44 482.86 7.58 34.47 165.70
BPOS 0.75 0.57 3.76 18.43 90.42 6.59 32.27 158.35
BPOS 0.90 0.13 0.69 2.69 12.27 5.11 20.07 91.57
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dataset θ r10 r25 r50 r100 rr25 rr50 rr100
DBLP 0.60 7.09 49.28 211.34 1067.66 6.95 29.80 150.57
DBLP 0.75 1.57 9.48 40.36 198.20 6.03 25.69 126.16
DBLP 0.90 0.19 0.73 2.54 8.98 3.82 13.23 46.79
ENRO 0.60 3.04 11.52 37.61 145.76 3.79 12.37 47.95
ENRO 0.75 1.32 4.09 8.42 19.49 3.09 6.35 14.71
ENRO 0.90 0.56 1.44 2.69 5.28 2.60 4.86 9.51
FLIC 0.60 1.33 4.92 13.75 48.31 3.71 10.35 36.35
FLIC 0.75 0.63 1.88 4.10 11.07 2.97 6.48 17.49
FLIC 0.90 0.31 0.75 1.54 3.05 2.40 4.93 9.74
KOSA 0.60 3.49 18.94 64.96 189.06 5.43 18.63 54.22
KOSA 0.75 0.33 1.55 5.67 16.85 4.71 17.28 51.38
KOSA 0.90 0.15 0.53 1.64 5.44 3.47 10.75 35.56
LIVE 0.60 14.81 53.27 189.97 694.14 3.60 12.82 46.85
LIVE 0.75 7.01 19.62 45.76 125.35 2.80 6.53 17.89
LIVE 0.90 3.04 6.45 13.85 30.91 2.12 4.56 10.17
NETF 0.60 56.34 409.64 1836.40 7321.80 7.27 32.60 129.96
NETF 0.75 10.39 62.39 272.06 1192.07 6.01 26.19 114.75
NETF 0.90 1.50 5.28 15.21 52.11 3.52 10.15 34.79
ORKU 0.60 61.48 147.92 338.83 inf 2.41 5.51 inf
ORKU 0.75 26.69 69.41 141.71 38050.00 2.60 5.31 1425.47
ORKU 0.90 10.98 22.51 41.31 2953.43 2.05 3.76 268.88
SPOT 0.60 0.41 0.89 1.68 3.53 2.15 4.07 8.55
SPOT 0.75 0.27 0.61 1.02 1.99 2.22 3.74 7.27
SPOT 0.90 0.18 0.33 0.61 1.18 1.86 3.44 6.73
UNI 0.60 7.37 39.49 117.05 318.30 5.36 15.89 43.21
UNI 0.75 1.89 10.31 34.96 98.68 5.46 18.53 52.30
UNI 0.90 0.43 1.56 5.77 17.21 3.66 13.54 40.40
ZIPF 0.60 0.40 1.17 3.33 10.77 2.95 8.42 27.20
ZIPF 0.75 0.19 0.49 1.06 2.92 2.51 5.46 15.04
ZIPF 0.90 0.09 0.19 0.35 0.75 2.11 4.03 8.49
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[ABG10] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. The pq-gram dis-
tance between ordered labeled trees. ACM Transactions on Database Systems
(TODS), 2010.

[AGK06] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-
similarity joins. Proceedings of the International Conference on Very Large
Data Bases (PVLDB), 2006.

[Amd67] Gene M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. Proceedings of the Joint Computer Conference,
1967.

[AMNK14] Nikolaus Augsten, Armando Miraglia, Thomas Neumann, and Alfons Kem-
per. On-the-fly token similarity joins in relational databases. Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2014.

[Aol] AOL Dataset. http://www.cim.mcgill.ca/˜dudek/206/Logs/
AOL-user-ct-collection/. [Online; accessed January 2021].

[ASM+12] Foto N Afrati, Anish Das Sarma, David Menestrina, Aditya Parameswaran,
and Jeffrey D Ullman. Fuzzy joins using MapReduce. International Confer-
ence on Data Engineering (ICDE), 2012.

[BDFML10] Ranieri Baraglia, Gianmarco De Francisci Morales, and Claudio Lucchese.
Document similarity self-join with MapReduce. International Conference on
Data Mining (ICDM), 2010.

[BG19] Christos Bellas and Anastasios Gounaris. Exact set similarity joins for large
datasets in the GPGPU paradigm. Proceedings of the International Workshop
on Data Management on New Hardware, 2019.

[BGM12] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. Spatio-textual similarity
joins. Proceedings of the International Conference on Very Large Data Bases
(PVLDB), 2012.

84

http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection/
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection/


BIBLIOGRAPHY 85

[BMGT16] Panagiotis Bouros, Nikos Mamoulis, Shen Ge, and Manolis Terrovitis. Set
containment join revisited. Knowledge and Information Systems, 2016.

[BMS07] Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all
pairs similarity search. Proceedings of the International Conference on World
Wide Web, 2007.

[Bpo] BPOS Dataset. https://www.kdd.org/kdd-cup/view/kdd-cup-2000/
Data. [Online; accessed January 2021].

[CGK06] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive op-
erator for similarity joins in data cleaning. International Conference on Data
Engineering (ICDE), 2006.

[Chr07] Peter Christen. Performance and scalability of fast blocking techniques for
deduplication and data linkage. Proceedings of the International Conference
on Very Large Data Bases (PVLDB), 2007.

[Dbl] DBLP Dataset. https://dblp.uni-trier.de/. [Online; accessed February
2014].

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Operating Systems Design and Implementation (OSDI),
2004.

[DLH+14] Dong Deng, Guoliang Li, Shuang Hao, Jiannan Wang, and Jianhua Feng.
MassJoin: A MapReduce-based method for scalable string similarity joins.
International Conference on Data Engineering (ICDE), 2014.

[DLWF15] Dong Deng, Guoliang Li, He Wen, and Jianhua Feng. An efficient partition
based method for exact set similarity joins. Proceedings of the International
Conference on Very Large Data Bases (PVLDB), 2015.

[Dre07] Ulrich Drepper. What every programmer should know about memory. 2007.

[ELO08] Tamer Elsayed, Jimmy Lin, and Douglas W Oard. Pairwise document simi-
larity in large collections with MapReduce. Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics on Human Language
Technologies, 2008.

[Enr] ENRO Dataset. https://www2.cs.sfu.ca/˜jnwang/projects/adapt/.
[Online; accessed January 2021].

[FAB+18] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and Johann-
Christoph Freytag. Set similarity joins on MapReduce: an experimental
survey. Proceedings of the International Conference on Very Large Data
Bases (PVLDB), 2018.

https://www.kdd.org/kdd-cup/view/kdd-cup-2000/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2000/Data
https://dblp.uni-trier.de/
https://www2.cs.sfu.ca/~jnwang/projects/adapt/


86 BIBLIOGRAPHY

[Fie17] Fabian Fier. Distributed similarity joins on big textual data: toward a robust
cost-based framework. Proceedings of the VLDB PhD Workshop co-located
with the International Conference on Very Large Databases, 2017.

[FWZF20] Fabian Fier, Tianzheng Wang, Erkang Zhu, and Johann-Christoph Freytag.
Parallelizing filter-verification based exact set similarity joins on multicores.
Proceedings of the International Conference on Similarity Search and Appli-
cations (SISAP), 2020.

[GARK12] Benjamin Gufler, Nikolaus Augsten, Angelika Reiser, and Alfons Kemper.
Load balancing in MapReduce based on scalable cardinality estimates. In-
ternational Conference on Data Engineering (ICDE), 2012.

[GIJ+01] Luis Gravano, Panagiotis G Ipeirotis, Hosagrahar Visvesvaraya Jagadish,
Nick Koudas, Shanmugauelayut Muthukrishnan, Divesh Srivastava, et al.
Approximate string joins in a database (almost) for free. Proceedings of the
International Conference on Very Large Data Bases (PVLDB), 2001.

[Hen06] Monika Henzinger. Finding near-duplicate web pages: a large-scale evalua-
tion of algorithms. Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2006.

[JLFL14] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. String similarity
joins: an experimental evaluation. Proceedings of the International Confer-
ence on Very Large Data Bases (PVLDB), 2014.

[JP05] Ravindranath Jampani and Vikram Pudi. Using prefix-trees for efficiently
computing set joins. International Conference on Database Systems for Ad-
vanced Applications, 2005.

[JS08] Edwin H Jacox and Hanan Samet. Metric space similarity joins. ACM
Transactions on Database Systems (TODS), 2008.

[KLH+99] Hantak Kwak, Ben Lee, Ali R Hurson, Suk-Han Yoon, and Woo-Jong Hahn.
Effects of multithreading on cache performance. IEEE Transactions on Com-
puters, 1999.

[Kos] KOSA Dataset. http://fimi.uantwerpen.be/data/. [Online; accessed
January 2021].

[KRS+16] Anja Kunkel, Astrid Rheinländer, Christopher Schiefer, Sven Helmer, Pana-
giotis Bouros, and Ulf Leser. PIEJoin: towards parallel set containment
joins. Proceedings of the International Conference on Scientific and Statisti-
cal Database Management (SSDBM), 2016.

[KTR12] Lars Kolb, Andreas Thor, and Erhard Rahm. Load balancing for MapReduce-
based entity resolution. International Conference on Data Engineering
(ICDE), 2012.

http://fimi.uantwerpen.be/data/


BIBLIOGRAPHY 87

[LDWF11] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. Pass-join: a
partition-based method for similarity joins. Proceedings of the International
Conference on Very Large Data Bases (PVLDB), 2011.

[Liv] LIVE and ORKU Datasets. http://socialnetworks.mpi-sws.org/
data-imc2007.html. [Online; accessed January 2021].

[LLL08] Chen Li, Jiaheng Lu, and Yiming Lu. Efficient merging and filtering algo-
rithms for approximate string searches. International Conference on Data
Engineering (ICDE), 2008.

[LRU20] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of
massive data sets. Cambridge university press, 2020.

[LTMN12] Wuman Luo, Haoyu Tan, Huajian Mao, and Lionel M. Ni. Efficient simi-
larity joins on massive high-dimensional datasets using MapReduce. IEEE
International Conference on Mobile Data Management (MDM), 2012.

[MA14] Willi Mann and Nikolaus Augsten. PEL: position-enhanced length filter for
set similarity joins. In Grundlagen von Datenbanken. 2014.

[MAB16] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. An empirical evalu-
ation of set similarity join techniques. Proceedings of the International Con-
ference on Very Large Data Bases (PVLDB), 2016.

[MAEA07] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Detectives: de-
tecting coalition hit inflation attacks in advertising networks streams. Pro-
ceedings of the International Conference on World Wide Web, 2007.

[MF12] Ahmed Metwally and Christos Faloutsos. V-SMART-Join: a scalable MapRe-
duce framework for all-pair similarity joins of multisets and vectors. Proceed-
ings of the International Conference on Very Large Data Bases (PVLDB),
2012.

[MJZ17] Youzhong Ma, Shijie Jia, and Yongxin Zhang. A novel approach for high-
dimensional vector similarity join query. Concurrency and Computation:
Practice and Experience, 2017.

[MMW16] Youzhong Ma, Xiaofeng Meng, and Shaoya Wang. Parallel similarity joins
on massive high-dimensional data using MapReduce. Concurrency and Com-
putation: Practice and Experience, 2016.

[Net] NETF Dataset. https://www.cs.uic.edu/˜liub/
Netflix-KDD-Cup-2007.html. [Online; accessed January 2021].

[OR11] Alper Okcan and Mirek Riedewald. Processing theta-joins using MapReduce.
Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2011.

http://socialnetworks.mpi-sws.org/data-imc2007.html
http://socialnetworks.mpi-sws.org/data-imc2007.html
https://www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html
https://www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html


88 BIBLIOGRAPHY

[QRRM17] Rafael David Quirino, Sidney Ribeiro-Júnior, Leonardo Andrade Ribeiro,
and Wellington Santos Martins. Efficient filter-based algorithms for exact
set similarity join on GPUs. In International Conference on Enterprise In-
formation Systems (ICEIS), 2017.

[RH11] Leonardo Andrade Ribeiro and Theo Härder. Generalizing prefix filtering to
improve set similarity joins. Information Systems, 2011.

[RLS+17] Chuitian Rong, Chunbin Lin, Yasin N Silva, Jianguo Wang, Wei Lu, and
Xiaoyong Du. Fast and scalable distributed set similarity joins for big data
analytics. International Conference on Data Engineering (ICDE), 2017.

[RLW+13] Chuitian Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du, Yueguo Chen, and An-
thony KH Tung. Efficient and scalable processing of string similarity join.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2013.

[SHC14] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. ClusterJoin: a simi-
larity joins framework using Map-Reduce. Proceedings of the International
Conference on Very Large Data Bases (PVLDB), 2014.

[SMD+10] Angela C Sodan, Jacob Machina, Arash Deshmeh, Kevin Macnaughton, and
Bryan Esbaugh. Parallelism via multithreaded and multicore CPUs. Com-
puter, 2010.

[Spo] SPOT Dataset. https://dbis-informatik.uibk.ac.at/
context-aware-music-recommendation. [Online; accessed January
2021].

[SR12] Yasin N Silva and Jason M Reed. Exploiting MapReduce-based similarity
joins. Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, 2012.

[SRB+16] Yasin N Silva, Jason Reed, Kyle Brown, Adelbert Wadsworth, and Chuitian
Rong. An experimental survey of MapReduce-based similarity joins. Proceed-
ings of the International Conference on Similarity Search and Applications
(SISAP), 2016.

[SSL+17] Ji Sun, Zeyuan Shang, Guoliang Li, Dong Deng, and Zhifeng Bao. Dima: a
distributed in-memory similarity-based query processing system. Proceedings
of the International Conference on Very Large Data Bases (PVLDB), 2017.

[SSL+19] Ji Sun, Zeyuan Shang, Guoliang Li, Dong Deng, and Zhifeng Bao. Balance-
aware distributed string similarity-based query processing system. Proceed-
ings of the International Conference on Very Large Data Bases (PVLDB),
2019.

https://dbis-informatik.uibk.ac.at/context-aware-music-recommendation
https://dbis-informatik.uibk.ac.at/context-aware-music-recommendation


BIBLIOGRAPHY 89

[TSP08] Martin Theobald, Jonathan Siddharth, and Andreas Paepcke. Spotsigs: ro-
bust and efficient near duplicate detection in large web collections. Proceed-
ings of the International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2008.

[VCL10] Rares Vernica, Michael J Carey, and Chen Li. Efficient parallel set-similarity
joins using MapReduce. Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2010.

[Whi12] Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[WLF12] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix
filtering? An adaptive framework for similarity join and search. Proceedings
of the ACM SIGMOD International Conference on Management of Data,
2012.

[WMP13] Ye Wang, Ahmed Metwally, and Srinivasan Parthasarathy. Scalable all-pairs
similarity search in metric spaces. In Proceedings of SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2013.

[WXQ+16] Pei Wang, Chuan Xiao, Jianbin Qin, Wei Wang, Xiaoyang Zhang, and Yoshi-
haru Ishikawa. Local similarity search for unstructured text. Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2016.

[XWL+11] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang.
Efficient similarity joins for near-duplicate detection. ACM Transactions on
Database Systems (TODS), 2011.

[XWLS09] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. Top-k set simi-
larity joins. International Conference on Data Engineering (ICDE), 2009.

[ZDNM19] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. JOSIE:
overlap set similarity search for finding joinable tables in data lakes. Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data, 2019.


	1 Introduction
	1.1 Problem Definition
	1.2 Contributions
	1.3 Structure
	1.4 Own Prior Work

	2 Background
	2.1 Related Similarity Problems
	2.2 Filter-and-verification Framework
	2.2.1  Set Similarity
	2.2.2 Filters
	2.2.3 Base Algorithm

	2.3 Datasets

	3 Comparing MapReduce SSJ Algorithms
	3.1 Background
	3.2 Survey and Analysis
	3.2.1 Filter-and-verification based algorithms
	3.2.2Metric partitioning based algorithms

	3.3 Experiments
	3.3.1 Setup
	3.3.2 Performance and Robustness
	3.3.3 Scalability
	3.3.4 Varying the Cluster Configuration
	3.3.5 Analysis and Discussion
	3.3.6  Reproducing Previous Results

	3.4 Summary

	4 Exploiting Multicore Parallelization
	4.1 Modern Multicore Systems
	4.2 Related Work
	4.3 Parallelizing Filter-and-verification-based SSJ
	4.3.1 Execution Model
	4.3.2 Design Considerations
	4.3.3 Algorithm

	4.4 Experiments
	4.4.1 Setup
	4.4.2 Speedups and Scalability
	4.4.3 Impact of Dataset Size
	4.4.4 Impact of Inlining
	4.4.5 Impact of Batching
	4.4.6 Impact of Position Filter
	4.4.7Impact of Thread Placement

	4.5 Summary

	5 Exploiting Distributed Parallelization
	5.1 Related Work
	5.2 Distributing Filter-and-verification-based SSJ
	5.2.1 Data-Dependent Cost-Based Heuristic
	5.2.2 Data-Independent Scaling Mechanism
	5.2.3 RAM Demand
	5.2.4 Cost Distribution Quality
	5.2.5 Finding Suitable Parameter Values

	5.3 Experiments
	5.3.1 Impact of Cost-based Heuristic
	5.3.2 Impact of Data-independent Scaling Mechanism
	5.3.3 Impact of Dataset Size
	5.3.4 Discussion of Parameter Finding Strategy

	5.4 Summary

	6 Conclusions
	6.1 Future Work

	A Appendix
	A.1 Tables


