895 research outputs found

    Considering stakeholders’ preferences for scheduling slots in capacity constrained airports

    Get PDF
    Airport slot scheduling has attracted the attention of researchers as a capacity management tool at congested airports. Recent research work has employed multi-objective approaches for scheduling slots at coordinated airports. However, the central question on how to select a commonly accepted airport schedule remains. The various participating stakeholders may have multiple and sometimes conflicting objectives stemming from their decision-making needs. This complex decision environment renders the identification of a commonly accepted solution rather difficult. In this presentation, we propose a multi-criteria decision-making technique that incorporates the priorities and preferences of the stakeholders in order to determine the best compromise solution

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?†Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Characterizing Logistics Operations Within a Federal Staging Area for Hurricane Response: A Qualitative Analysis of Federal, State and Local Perspectives

    Get PDF
    A successful deployment of logistics operations following a disaster is a collective contribution of federal, state, and local entities to ascertain an efficient and effective response. This research analyzes data from interviews with disaster response logistics experts from these entities. The objective is to investigate the information sources and planning processes used in these organizations to plan vehicle routes for critical resource deliveries to impacted areas. Special attention is directed to the impacts of incomplete knowledge of infrastructure status, such as road disruptions due to debris or flooding. Supported by both qualitative and quantitative evidence, the study finds that incomplete knowledge of infrastructure status poses serious critical transportation risks such as delivery delays in disaster relief distribution. This research reveals both similarities and differences in logistical decision-making among these organization types and emphasizes the need for improved information sharing and coordination among emergency response organizations. The findings of this research are expected to guide future initiatives aimed at disaster relief routing thereby enhancing emergency response capabilities and outcomes

    Characterizing Logistics Operations Within a Federal Staging Area for Hurricane Response: A Qualitative Analysis of Federal, State and Local Perspectives

    Get PDF
    A successful deployment of logistics operations following a disaster is a collective contribution of federal, state, and local entities to ascertain an efficient and effective response. This research analyzes data from interviews with disaster response logistics experts from these entities. The objective is to investigate the information sources and planning processes used in these organizations to plan vehicle routes for critical resource deliveries to impacted areas. Special attention is directed to the impacts of incomplete knowledge of infrastructure status, such as road disruptions due to debris or flooding. Supported by both qualitative and quantitative evidence, the study finds that incomplete knowledge of infrastructure status poses serious critical transportation risks such as delivery delays in disaster relief distribution. This research reveals both similarities and differences in logistical decision-making among these organization types and emphasizes the need for improved information sharing and coordination among emergency response organizations. The findings of this research are expected to guide future initiatives aimed at disaster relief routing thereby enhancing emergency response capabilities and outcomes

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?” Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution

    A Computational Approach to Patient Flow Logistics in Hospitals

    Get PDF
    Scheduling decisions in hospitals are often taken in a decentralized way. This means that different specialized hospital units decide autonomously on e.g. patient admissions and schedules of shared resources. Decision support in such a setting requires methods and techniques that are different from the majority of existing literature in which centralized models are assumed. The design and analysis of such methods and techniques is the focus of this thesis. Specifically, we develop computational models to provide dynamic decision support for hospital resource management, the prediction of future resource occupancy and the application thereof. Hospital resource management targets the efficient deployment of resources like operating rooms and beds. Allocating resources to hospital units is a major managerial issue as the relationship between resources, utilization and patient flow of different patient groups is complex. The issues are further complicated by the fact that patient arrivals are dynamic and treatment processes are stochastic. Our approach to providing decision support combines techniques from multi-agent systems and computational intelligence (CI). This combination of techniques allows to properly consider the dynamics of the problem while reflecting the distributed decision making practice in hospitals. Multi-agent techniques are used to model multiple hospital care units and their decision policies, multiple patient groups with stochastic treatment processes and uncertain resource availability due to overlapping patient treatment processes. The agent-based model closely resembles the real-world situation. Optimization and learning techniques from CI allow for designing and evaluating improved (adaptive) decision policies for the agent-based model, which can then be implemented easily in hospital practice. In order to gain insight into the functioning of this complex and dynamic problem setting, we developed an agent-based model for the hospital care units with their patients. To assess the applicability of this agent-based model, we developed an extensive simulation. Several experiments demonstrate the functionality of the simulation and show that it is an accurate representation of the real world. The simulation is used to study decision support in resource management and patient admission control. To further improve the quality of decision support, we study the prediction of future hospital resource usage. Using prediction, the future impact of taking a certain decision can be taken into account. In the problem setting at hand for instance, predicting the resource utilization resulting from an admission decision is important to prevent future bottlenecks that may cause the blocking of patient flow and increase patient waiting times. The methods we investigate for the task of prediction are forward simulation and supervised learning using neural networks. In an extensive analysis we study the underlying probability distributions of resource occupancy and investigate, by stochastic techniques, how to obtain accurate and precise prediction outcomes. To optimize resource allocation decisions we consider multiple criteria that are important in the hospital problem setting. We use three conflicting objectives in the optimization: maximal patient throughput, minimal resource costs and minimal usage of back-up capacity. All criteria can be taken into account by finding decision policies that have the best trade-off between the criteria. We derived various decision policies that partly allow for adaptive resource allocations. The design of the policies allows the policies to be easily understandable for hospital experts. Moreover, we present a bed exchange mechanism that enables a realistic implementation of these adaptive policies in practice. In our optimization approach, the parameters of the different decision policies are determined using a multiobjective evolutionary algorithm (MOEA). Specifically, the MOEA optimizes the output of the simulation (i.e. the three optimization criteria) as a function of the policy parameters. Our results on resource management show that the benchmark allocations obtained from a case study are considerably improved by the optimized decision policies. Furthermore, our results show that using adaptive policies can lead to better results and that further improvements may be obtained by integrating prediction into a decision policy

    Review, challenges, design, and development

    Get PDF
    Peres, F., & Castelli, M. (2021). Combinatorial optimization problems and metaheuristics: Review, challenges, design, and development. Applied Sciences (Switzerland), 11(14), 1-39. [6449]. https://doi.org/10.3390/app11146449In the past few decades, metaheuristics have demonstrated their suitability in addressing complex problems over different domains. This success drives the scientific community towards the definition of new and better-performing heuristics and results in an increased interest in this research field. Nevertheless, new studies have been focused on developing new algorithms without providing consolidation of the existing knowledge. Furthermore, the absence of rigor and formalism to classify, design, and develop combinatorial optimization problems and metaheuristics represents a challenge to the field’s progress. This study discusses the main concepts and challenges in this area and proposes a formalism to classify, design, and code combinatorial optimization problems and metaheuristics. We believe these contributions may support the progress of the field and increase the maturity of metaheuristics as problem solvers analogous to other machine learning algorithms.publishersversionpublishe

    A general space-time model for combinatorial optimization problems (and not only)

    Get PDF
    We consider the problem of defining a strategy consisting of a set of facilities taking into account also the location where they have to be assigned and the time in which they have to be activated. The facilities are evaluated with respect to a set of criteria. The plan has to be devised respecting some constraints related to different aspects of the problem such as precedence restrictions due to the nature of the facilities. Among the constraints, there are some related to the available budget. We consider also the uncertainty related to the performances of the facilities with respect to considered criteria and plurality of stakeholders participating to the decision. The considered problem can be seen as the combination of some prototypical operations research problems: knapsack problem, location problem and project scheduling. Indeed, the basic brick of our model is a variable xilt which takes value 1 if facility i is activated in location l at time t, and 0 otherwise. Due to the conjoint consideration of a location and a time in the decision variables, what we propose can be seen as a general space-time model for operations research problems. We discuss how such a model permits to handle complex problems using several methodologies including multiple attribute value theory and multiobjective optimization. With respect to the latter point, without any loss of the generality, we consider the compromise programming and an interactive methodology based on the Dominance-based Rough Set Approach. We illustrate the application of our model with a simple didactic example
    corecore