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Abstract

We consider the problem of defining a strategy consisting of a set of facilities taking into

account also the location where they have to be assigned and the time in which they have to

be activated. The facilities are evaluated with respect to a set of criteria. The plan has to be

devised respecting some constraints related to different aspects of the problem such as prece-

dence restrictions due to the nature of the facilities. Among the constraints, there are some

related to the available budget. We consider also the uncertainty related to the performances

of the facilities with respect to considered criteria and plurality of stakeholders participating

to the decision. The considered problem can be seen as the combination of some prototypical

operations research problems: knapsack problem, location problem and project scheduling. In-

deed, the basic brick of our model is a variable xilt which takes value 1 if facility i is activated

in location l at time t, and 0 otherwise. Due to the conjoint consideration of a location and a

time in the decision variables, what we propose can be seen as a general space-time model for

operations research problems. We discuss how such a model permits to handle complex prob-

lems using several methodologies including multiple attribute value theory and multiobjective

optimization. With respect to the latter point, without any loss of the generality, we consider

the compromise programming and an interactive methodology based on the Dominance-based

Rough Set Approach. We illustrate the application of our model with a simple didactic example.
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1 Introduction

Operational Research (OR) has been developing around a certain number of prototypical problems

such as facility location, knapsack and scheduling (for a survey see Owen and Daskin (1998), Martello

et al. (2000), Hartmann and Briskorn (2010), respectively). The classical OR approach formulates

these problems in terms of optimization of a well defined objective function representing the prefer-

ences of a single Decision Maker (DM) in a deterministic context.

Despite a vast number of successful applications of OR techniques, we have to admit that real

world decision problems require a broader methodology than the classical OR approaches. In this

perspective one can observe that in OR it is more and more common to consider a plurality of

objective functions (see e.g., Deb and Deb. (2014)) taking into account preferences of a multiplicity

of stakeholders (see e.g., De Gooyert et al. (2017)) in an uncertain environment (see e.g., Gabrel et

al. (2014)).

We have to observe also that many real life problems present elements of more than one prototyp-

ical OR problem. Consider, for example, the design of an urban development project in which several

facilities have to be activated in different feasible locations in parallel or in a temporal sequence under

some budget constraints. You can see that such a problem presents:

• elements of the knapsack problem related to the facility to be selected,

• elements of the facility location related to the position where facilities have to be placed,

• elements of the scheduling problem related to the period in which the selected facilities have

to be activated.

In simple words, one can say that prototypical OR problems consider only one of the following

questions:

• “what?”, which is the case of knapsack problems answering the question “what items should

be selected?”,

• “where?”, which is the case of facility location problems answering the question “where facilities

should be located?”,

• “when?”, which is the case of scheduling problems answering the question “when activities

should take place?”.

Instead, complex real world decision problems consider simultaneously all the three above questions.

In the literature we can find models and methods to answer each of the single questions or pairs

of them but not the combination of all three. The “what?” question, generated a strand of research
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related to the knapsack problem where one has to select which items should be inserted in a knapsack

in order to optimize an objective function representing the overall profit of the items entering the

knapsack while keeping the total weight of the selected items within the limited knapsack capacity.

To solve the problem, in its multiobjective formulation, a good approximation of the set of solutions

covering all possible trade-offs between the different objectives is identified (e.g., Captivo et al. (2003),

da Silva et al. (2007), and Mavrotas et al. (2015)). This strand also includes the portfolio decision

problems Salo et al. (2011) in which, given a set of feasible projects evaluated on a set of criteria, the

choice of the projects to insert in the portfolio is guided by the maximization of a value function of

the portfolio. Several studies have been proposed as, for example, in Badri et al. (2001), Liesio et al.

(2007), Liesio et al. (2008) and Morton et al. (2016). Often the aim is to define a new methodology

to tackle these problems as in Argyris et al. (2011), Barbati et al. (2017) or Lourenço et al. (2017).

If we are attempting to answer the “where?” question, we are formulating a facility location

problem that consists in positioning a set of facilities in a given space. Usually the facilities have to

satisfy some demand from the customer and the position of the facilities is determined on the basis

of some objective functions representing the satisfaction of the demand Eiselt and Laporte (1995).

This strand of research is wide and many models concerning different aspects of the problems have

been proposed (for some interesting reviews see Drezner and Hamacher (2001), Laporte et al. (2016)

or Owen and Daskin (1998)). The classical objective is the minimisation of the sum of the distances

between the users and the facilities Hakimi (1964) but several other modifications have been proposed

taking into account a huge disparity of objectives and several different constraints modeling different

aspects of the problem (for a list see Farahani et al. (2010)).

Alternatively, considering the “when?” question, we are dealing with a scheduling problem con-

sisting in defining the time in which to start different activities. The classical objective is to find a

feasible schedule so that the project duration has to be minimized Habibi er al. (2018). Also in this

case many models have been proposed, considering different aspects of the problem such as capacity

constraints Koulinas et al. (2014) or robustness of the problem Abbasi et al. (2006).

In the literature combinations of two of the three questions have also been considered. For ex-

ample, combining the “what?” question and the “where?” question, Ishizaka er al. (2013) selected

the position for casinos in London, while Özcan et al. (201) dealt with a warehouse location selection

and Tzeng et al. (2002) with a restaurant location selection problem. Cheng and Li (2004) proposed

a binary integer linear programming model to determine the locations for fixed investment as con-

struction projects. Montibeller et al. (2009) dealt with this type of problem considering multiple

criteria and multiple stakeholders. Furthermore, the combination of the questions “when?” and

“where?” has originated a flourishing strand of research related to the dynamic facility location

problems (for a survey see Arabani and Farahani (2012)). In these problems the facilities are located
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in each time period of a finite planning horizon Kelly and Marucheck (1984). Many modifications

have been proposed as the possibility of relocating the facilities Melo et al. (2006) or the possibility

of both relocating and/or changing the activated facilities and their capacities through the time in

order to satisfy the customers demand Correia and Melo (2017). Finally, the combination of “what?”

and “when?” questions is modeled in several papers in which the portfolio decision problem con-

cerns also the timing in which each project should be developed Ghasemzadeh and Archer (2000).

Again, several algorithms and methods have been proposed. For example Dickinson et al. (2001)

and Zuluaga et al (2007) introduced the interdependency of the projects, while Doerner et al. (2006)

considered the benefits derived by the projects divided in categories. Furthermore, Ghorbani and

Rabbani (2009) supposed that the projects can start in some periods and continuing or not over

following periods in order to maximise the benefits derived from the portfolio and the balance of

the resources allocated in the different periods. Recently, Pérez et al. (2017) modeled synergies and

incompatibilities among projects and uncertainty in the parameters of the problem.

The above literature review shows that, despite very often the nature of real life problems is in

between of several prototypical OR problems, there is not a general model permitting a systematic

analysis of such complex problems. In view of this, we propose a general methodology permitting to

handle problems that have elements of the knapsack problem, of the facility location problem and

the scheduling problem at the same time. We adopt a multiobjective optimization approach to take

into account a plurality of criteria as it seems natural in this type of problems. Moreover, we consider

also the possibility to take into consideration uncertainty related to different potential scenarios and

the presence of a plurality of stakeholders, as this can be useful in several real life contexts.

Since the problem we are handling requires answers to the basic question “what?” of the knapsack

problem, considering also the questions “where?” and “when?”, the methodology we are proposing

defines a space-time model in which the activation of each facility is characterized not only in terms

of spatial coordinates typical of location problems, but also in terms of a time frame considered in

scheduling problems. From the formal point of view, the basic idea is to consider variables of the

type xilt taking value 1 if facility i is activated in location l at time t, and 0 otherwise. Observe that

our space-time model is not restricted to the above considered problems of facility location planning

Cheng and Li (2004), but it can be applied in other relevant situations such as, for example, a

project portfolio selection Montibeller et al. (2009) in which, beyond the set of selected projects,

it is considered the timing with which the projects have to be realized. Observe also, that, even

if the three prototypical OR problems we considered are of combinatorial optimization nature, one

can always relax the binary constraints permitting the decision variables to take a value on the non-

negative reals. In this way our space-time model can be applied in problems that do not require

combinatorial optimization, such as the typical problems of environmental planning Huang er al.
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(2011).

The paper is organized in the following way. In Section 2 we present the formulation of our

space-time model. In Section 4 we illustrate a didactic example for our model while in Section 5 we

apply two different multiobjective optimization methods. In Section 6 we explain how the model can

be used in presence of uncertainty and plurality of stakeholders, while Section 7 concludes the paper.

2 The proposed model

The considered problem concerns a set of facilities I = {1, . . . , i, . . . , n} to be placed in a set of

feasible locations L = {1, . . . , l, . . . ,m} in different periods T = {0, . . . , t, . . . , p}. Each facility is

evaluated with respect to a set of criteria J = {1, . . . , j, . . . , q}. The evaluation of facility i ∈ I

activated in location l ∈ L with respect to the criterion j ∈ J is denoted by yijl ∈ R+. For the sake

of simplicity, without the loss of generality, we suppose that all criteria j ∈ J are of the gain type,

that is, the greater yijl, the better the evaluation of facility i ∈ I on criterion j ∈ J in location l ∈ L.

For each period t ∈ T a discount factor v(t), with 0 ≤ v(t) ≤ 1 and v being a non increasing function

of t, is defined in order to discount the evaluation of performances yijl, i ∈ I, j ∈ J, l ∈ L in future

periods. The values v(t), t ∈ T , have to represent the intertemporal preferences of the DM. There

is a vast literature on discounting and time preference (see Frederick et al. (2002) for a survey) and,

of course, among the many models proposed, that one that can be considered the more convenient

with respect to the application at hand can be applied in our framework. In general, for the sake

of simplicity, in the rest of the paper, when we refer to a specific discount factor v(t) we consider

the model presented in Samuelson (1937) and characterized by a constant interest rate ρ, such that

v(t) = (1 + ρ)−t. Once defined the discounted factors v(t), t ∈ T , Vijlt = yijl · v(t) gives the value in

period 0 of the performance in period t of facility i ∈ I activated in location l ∈ L with respect to

criterion j ∈ J . Here we are supposing that the benefit of facilities with respect to considered criteria

does not depend on the time passed from their activation. Of course, this assumption is rather strong

and can be relaxed considering a benefit depending also on the time passed from the activation, so

that we have to consider an evaluation yijlr of facility i activated in location l with respect to the

criterion j after r, r = 1, . . . , p−1, periods from its activation. In this case, if the facility is activated

in period τ , the discounted value in 0 of the evaluation yijlr is given by Vijlτr = yijlr ·v(τ+r). Since we

need to aggregate performances on different criteria, we have to consider a weight wj ≥ 0 such that

w1 + . . .+wq = 1, for each criterion j ∈ J , to make homogeneous their performances and performing

their sum. Each facility i ∈ I has also a cost ci ∈ R+. The available budget for each period t ∈ T is

denoted by Bt.

The following decision variables can be considered to define the adopted strategy:
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xilt =

{
1, if facility i ∈ I is activated in location l in period t ∈ T − {p};
0, otherwise.

For example, having a set of facilities I = {1, 2}, a set of locations L = {1, 2} and a set of periods

T = {0, 1, 2} we have to consider the following vector decision variables:

x = [x110, x111, x120, x121, x210, x211, x220, x221].

If we have

x110 = x111 = x120 = 0, x121 = x210 = 1, x211 = x220 = x221 = 0,

then the adopted strategy consists in placing facility 1 in location 2 in period 1 and facility 2 in

location 1 in period 0. Observe that not all 0-1 vectors x = [xilt] are feasible. Indeed, some

constraints have to be satisfied such:

• budget constraints for which in each period t ∈ T the expenses cannot be greater than the

available budget Bt ∑
i∈I

ci
∑
l∈L

xilt ≤ Bt, ∀t ∈ T, (1)

• activation constraints for which each facility can be activated at most once∑
l∈L,t∈T

xilt ≤ 1, ∀i ∈ I. (2)

Of course, other constraints can be considered such as precedence constraints for which some facilities

cannot be activated before other related facilities have been activated. Moreover, also the budget

constraints and the activation constraints can be weakened or strengthened. For example, with

respect to the budget constraints, one can imagine that it is possible to lend some capital or to use

the monetary return of some facility already activated. Also activation constraints can have different

formulations such as no more than a fixed number of facilities of a given type can be activated.

Given a strategy x, the benefit of criterion j ∈ J in period t ∈ T − {0} from facility i ∈ I

is obtained if i has been activated not later than period t − 1, otherwise it is null. Therefore the

performance of facility i ∈ I with respect to criterion j ∈ J in location l ∈ L at time t ∈ T − {0} is

yIJLTijlt (x) =
t−1∑
τ=0

xilτyijl.
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Discounting the performance yIJLTijlt (x) we get

ŷIJLTijlt (x) = yIJLTijlt (x)v(t) =
t−1∑
τ=0

xilτyijlv(t).

Given a strategy x, from the values yIJLTijlt (x) other interesting values can be obtained. First, we

list the performances related to three elements among one facility i ∈ I, one criterion j ∈ J , one

location l ∈ L and one period t ∈ T − {0} as follows:

• the overall performance of criterion j ∈ J in location l ∈ L in period t ∈ T − {0}, that is

yJLTjlt (x) =
∑
i∈I

yIJLTijlt (x) =
∑
i∈I

t−1∑
τ=0

xilτyijl,

• the overall performance of facility i ∈ I in location l ∈ L in period t ∈ T − {0} taking into

account all criteria, that is

yILTilt (x) =
∑
j∈J

t−1∑
τ=0

wjxilτyijl,

• the overall performance of facility i ∈ I with respect to criterion j ∈ J in period t ∈ T − {0}
taking into account all locations, that is

yIJTijt (x) =
∑
l∈L

t−1∑
τ=0

xilτyijl,

• the overall performance of facility i ∈ I with respect to criterion j ∈ J in location l ∈ L taking

into account all periods t ∈ T − {0}, that is

yIJLijl (x) =
∑

t∈T−{0}

t−1∑
τ=0

xilτyijl.

In Table 1, for each of the above listed performances, we show for which set among I, J, L and T ,

one considers one element only and for which sets one instead considers all the elements, so that, for

example, with respect to performance yIJLijl (x), the facility i ∈ I, the criterion j ∈ J and the location

l ∈ L are fixed and, instead, all the periods t ∈ T are comprehensively considered. We name this

first set as performances of group A.

Second, we list the performances related to two elements among one facility i ∈ I, one criterion

j ∈ J , one location l ∈ L and one period t ∈ T − {0}, as follows:
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Table 1: Performances of group A.

Performance Facilities Criteria Locations Periods

yJLTjlt (x) All facilities Criterion j Location l Period t

yILTilt (x) Facility i All criteria Location l Period t

yIJTijt (x) Facility i Criterion j All locations Period t

yIJLijl (x) Facility i Criterion j Location l All periods

• the overall performance of the strategy x in location l ∈ L at time t ∈ T − {0}, that is

yLTlt (x) =
∑
i∈I

∑
j∈J

t−1∑
τ=0

wjxilτyijl

• the overall performance of strategy x with respect to criterion j ∈ J at time t ∈ T − {0}
considering all locations, that is

yJTjt (x) =
∑
i∈I

∑
l∈L

t−1∑
τ=0

xilτyijl,

• the overall performance of strategy x with respect to criterion j ∈ J in location l ∈ L taking

into account all periods t ∈ T − {0}, that is

yJLjl (x) =
∑
i∈I

∑
t∈T−{0}

t−1∑
τ=0

xilτyijl,

• the overall performance of facility i ∈ I in period t ∈ T −{0} considering all criteria j ∈ J and

all locations l ∈ L, that is

yITit (x) =
∑
j∈J

∑
l∈L

t−1∑
τ=0

wjxilτyijl,

• the overall performance of facility i ∈ I in location l ∈ L considering all criteria j ∈ J and all

periods t ∈ T − {0}, that is

yILil (x) =
∑
j∈J

∑
t∈T−{0}

t−1∑
τ=0

wjxilτyijl,

• the overall performance of facility i ∈ I with respect to criterion j ∈ J considering all locations
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l ∈ L and all periods from t ∈ T − {0}, that is

yIJij (x) =
∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

xilτyijl.

Table 2: Performances of group B.

Performance Facilities Criteria Locations Periods

yLTlt (x) All facilities All criteria j Location l Period t

yJTjt (x) All facilities Criterion j All locations Period t

yJLjl (x) All facilities Criterion Location l All periods

yITit (x) Facility i All criteria All locations Period t

yILil (x) Facility i All criteria Location l All periods

yIJij (x) Facility i Criterion j All locations All periods

In Table 2, with respect to the above introduced performances, it is showed for which two sets among

I, J, L and T , one considers one element only and for which two sets, instead, one considers all the

elements, so that, for example, with respect to performance yIJij (x), the facility i ∈ I and the criterion

j ∈ J are fixed and, instead, all the locations l ∈ L and all the periods t ∈ T are comprehensively

considered. We name this second set as performances of group B.

Third, we list all the performances related to one elements among one facility i ∈ I, one criterion

j ∈ J , one location l ∈ L and one period t ∈ T − {0}, as follows

• the overall performance in period t ∈ T − {0} considering all facilities i ∈ I, all criteria j ∈ J
and all locations l ∈ L, that is

yTt (x) =
∑
i∈I

∑
j∈J

∑
l∈L

t−1∑
τ=0

wjxilτyijl,

• the overall performances of strategy x in location l ∈ L considering all criteria j ∈ J and all

periods t ∈ T − {0}, that is

yLl (x) =
∑
i∈I

∑
j∈J

∑
t∈T−{0}

t−1∑
τ=0

wjxilτyijl,

• the overall performance with respect to criterion j ∈ J considering all facilities i ∈ I, all
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locations l ∈ L and all periods t ∈ T − {0}, that is

yJj (x) =
∑
i∈I

∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

xilτyijl,

• the overall performance of facility i ∈ I considering all criteria j ∈ J , all locations l ∈ L and

all periods t ∈ T − {0}, that is

yIi (x) =
∑
j∈J

∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

wjxilτyijl.

In Table 3, with respect to the above introduced performances, it is showed for which set among

I, J, L and T one considers one element only and for which three sets, instead, one consider all the

elements, so that, for example, with respect to performance yIi (x), the facility i ∈ I is fixed and,

instead, all the criteria j ∈ J , all the locations l ∈ L and all the periods t ∈ T are comprehensively

considered. We name this third set as performances of group C.

Table 3: Performances of group C.

Performance Facilities Criteria Locations Periods

yTt (x) All Facilities All criteria All locations Period t

yLl (x) All facilities All criteria Location l All periods

yJj (x) All facilities Criterion j All locations All periods

yIi (x) Facility i All criteria All locations All Periods

Finally, we can list the overall performance of strategy x taking into account all facilities i ∈ I,

all criteria j ∈ J , all locations l ∈ L and all periods t ∈ T − {0} as

y(x) =
∑
i∈I

∑
j∈J

∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

wjxilτyijl.

Let us point out that all the above performances can be discounted. For example the discounted

value at time 0 of yJLTjlt (x) is given by

ŷJLTjlt (x) = yJLTjlt (x)v(t) =
∑
i∈I

t−1∑
τ=0

xilτyijlv(t).

We shall denote by ŷsetsindices(x) the discounted value of the corresponding non-discounted performance
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ysetsindices(x), so that ŷJLTjlt (x) is the discounted value of yJLTjlt (x), ŷILTilt (x) is the discounted value of

yILTilt (x), and so on.

In the first instance, the problem is to define the strategy x giving the maximum overall discounted

performance ŷ(x) subject to the constraints of the problem such as the budget constraints and the

activation constraints.

However, the above model permits to take into account a great plurality of performances ysetsindices(x)

and ŷsetsindices(x) constituting a rich dashboard that can be very meaningful for the DM. In fact, the DM

can fix some constraints in terms of minimal requirements of performances ysetsindices(x) and ŷsetsindices(x).

More in general, we can handle the whole model in terms of optimization of performances ysetsindices(x)

and ŷsetsindices(x). We shall explore this possibility in Section 5.

2.1 A possible extension with continuous variables

Our model can work also when the variables xilt are defined in R+. In this case the variables can be

defined as the amount of budget that has been allocated to facility of type i in location l at period

t. In this case binary constraints (2) must not be considered, while to the original budget constraint

(1), we can add additional budget constraints. In particular, we can define:

• B≤it as the maximum budget to be allocated to facility i ∈ I in period t ∈ T ,

• B≥it as the minimum budget to be allocated to facility i ∈ I in period t ∈ T ,

• B≤lt as the maximum budget to be allocated to location l ∈ L in period t ∈ T ,

• B≥lt as the minimum budget to be allocated to location l ∈ L in period t ∈ T ,

so that for each of the above quantities we can define the additional constraints:

• in period t ∈ T , no more than the maximum budget B≤it can be allocated to facility i ∈ I:∑
l∈L

xilt ≤ B≤it , (3)

• in period t ∈ T , no less than the minimum budget B≥it must be allocated to facility i ∈ I:∑
l∈L

xilt ≥ B≥it , (4)

• in period t ∈ T , no more than the maximum budget B≤lt can be allocated to location l ∈ L:∑
i∈I

xilt ≤ B≤lt , (5)
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• in period t ∈ T , no less than the minimum budget B≥lt must be allocated to location l ∈ L:∑
i∈I

xilt ≥ B≥lt . (6)

Those budgets, and the associated constraints, are not necessarily defined for all the facilities

i ∈ I and for all the locations l ∈ L. To ensure the feasibility of the model, it should also be verified

that for each i ∈ I then B≤it ≤ Bt and for each l ∈ L then B≤lt ≤ Bt. Let us underline that also for

the continuous case we can handle the whole model in terms of multiobjective optimization of the

performances ysetsindices(x) and ŷsetsindices(x).

3 Potential Applications

In this section we aim to show the the strengths and the versatility of our model through the

description of some of its potential applications.

The typical application of our model is in urban planning problems, where it can be adopted to

plan the location and the time to build and to activate urban infrastructures devoted to provide the

necessary services to the citizens, e.g. leisure centres or healthcare services Farahani et al. (2018).

The decisions related to the location of urban services can be effectively supported by our model

at the point that it could be recognized as a useful tool of the so called computational urbanism

Verebes (2013), that is, the set of computational techniques adopted to assist urban planning. In

this perspective, different strength points of our approach can be identified as follows:

• the project portfolio formulation: the facilities to be located are often of different types and

the majority of the real case studies are related to the location of a portfolio of facilities instead

of one single facility Arabani and Farahani (2012).

• the multiobjective approach: the simultaneous decision of the location and the time in which

establish a facility, that is a characteristic of the dynamic facility location problem Chardaire

et al. (1996), can be expressed in a more realistic form by considering a plurality of objective

functions Nickel and da Gama (2015) including new type of objectives, rather than considering

the usual mono-objective approach Farahani et al. (2010);

• the consideration of the uncertainty and risk aspects: the capacity to allow for the unforeseen

circumstances required in the urban planning design Verebes (2013) can be taken into account

through the definition of different probabilistic scenarios;

12



• the handling of the dynamic aspects: the effects and consequences of urban projects are in

general not limited to a single time period Correia and Melo (2017) but they are distributed

on different periods, so that they can be very naturally represented in terms of multiperiod

contributions;

• the possibility to take into account constraints of different nature: for example, the need of

rationalizing the public services, always increasing due to the reduction of the available budgets

in the last years Cavola et al. (2018), can be modeled with constraints requiring the closure of

some facilities;

• the intrinsic interactivity of the procedure: beyond the potential adoption of a formal interactive

methodology (see Section 5.2) permitting the DM to construct the proposed strategy in a

participated way Edelenbos and Klijn (2005) even revising its own preferences during the

process, the consideration of so many performance indices permits the DM to take under

control the consequences of the decision with respect to different points of view, so that one

can become aware of possible modifications and improvements of the plan.

To discuss the application of our model in a real life problem, let us consider a typical problem

of urban design as the definition of a waste management system (for a review see e.g. Achillas et al.

(2006)). Recently, Eiselt and Marianov (2014) proposed a bi-objective model to choose the size and

the positions of landfills and transfer stations among a set of potential locations. Their problem could

be approached with our model considering facilities of different types (landfills, transfer stations or

recycling center or other facilities included in the waste management systems) and of different size.

In this perspective, using our model, dedicated and specialized constraints, related for example to

the consideration of special environmental zones and geology of the soil, could be easily added to the

budget constraints. Moreover, our space-time model permits to handle some issues not considered in

the original model. First, we can stress the importance of treating the whole system as a portfolio in

which the choices are made considering the interaction and the contribution of all type of facilities

Eiselt and Marianov (2014). Second, being our model multiobjective, we could include a variety

of objectives, as for example reduction of pollution or strengthening of the sustainability that are

vastly becoming the most important objectives to be considered Bing et al. (2017). Third, we could

deal with the uncertainty that such a problem presents in relation, for example, to the quantity and

the composition of the garbage produced Yadav et al. (2018). Fourth, our approach can model the

temporal distribution of the activation of facilities assuring that the required reliability of the long

term planning will be satisfied Wang et al. (2018). Fifth, our model can take into consideration

constraints and objectives related to the need for rationalizing the waste management services and

make them more affordable for the councils permitting to plan the closure of some of the facilities
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in order to make the management of the system more efficient Silva et al. (2017). Finally, the

introduction of interactive multiobjective methodologies can help to make a participated decision

taking adequately into account the perspectives of the different stakeholders in order to guarantee

openness and transparency to the public Eiselt and Marianov (2014).

Similar considerations can be carried out for the definition of an healthcare systems (for a review

see, e.g., Daskin and Dean (2005)). In this case several type of facilities need to be located ranging

from hospitals to the local surgeries. A variety of objectives can be considered in this application

in which often the location of the facilities is handled as a network Mousazadeh et al. (2018), or

adopting a hierarchical model Smith et al. (2013). Our model could be used in planning these

services given that it can deal with facilities of different types and levels. Several objectives could

be considered, including equal accessibility to the facilities for all the patients Hu et al. (2018).

In addition, probabilistic aspects can be taken into account especially in applications characterized

by a relevant uncertainty Dehe and Bamford (2015). Moreover, the dynamic nature of our model

permits to take into account the required adaptability through the time of the plan Ahmadi-Javid

et al. (2017), permitting to tackle scenarios where the number of healthcare facilities tends to be

rationalized Bruno et al. (2018) and a specific resilience to unforeseen changes is needed Hanefeld et

al. (2018). Finally, our model could help to deal with challenges derived by such a complex problem

Afshari (H.), providing a tool that allows the different stakeholders to single out the contribution of

the different facilities in the different areas and in the different periods.

Some other possible applications for our model could be:

• the definition of charging points for bikes, car, taxi and buses Liu et al. (2018) to locate in

several areas of the cities that could present a different demand Csonka and Csiszár (2017),

• the location of facilities in a supply chain system, especially to guarantee the required inte-

gration of the locations of the different types of facilities as portfolio of projects, to take into

consideration the multiplicity of objective functions and the scheduling constraints character-

izing such a problem Melo et al. (2009) and to integrate routing and stochastic considerations

in the decision model Govindan et al. (2017).

4 Illustrative example

We illustrate the proposed model with the following hypothetical decision problem. Let us suppose

that a council is expected to decide which public interest facilities should be activated in the next 5

years, choosing between two possible locations available for each of them. In particular, we consider

an example involving the following eight desirable facilities I = {1, . . . , 8}:
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Table 4: Evaluations on the three criteria in each location and associated costs for the eight facilities
considered in the illustrative example.

Facilities
EconomicImpact SocialImpact EnvironmentalImpact

Cost
North South North South North South

School 21 23 90 80 23 32 200
Leisure Centre 36 46 59 72 36 34 300
Council Offices 18 20 22 30 21 26 150
Recycling Centre 60 65 71 60 90 88 100
Start Up Incubator 80 82 12 12 15 12 150
Healthcare Centre 20 18 19 19 45 59 200
Community Centre 35 31 56 48 33 40 100
Social Housing 12 21 69 73 18 17 250

• School, i = 1,

• Leisure Centre, i = 2,

• Council Offices, i = 3,

• Recycling Centre, i = 4,

• Start Up Incubator, i = 5,

• Healthcare Centre, i = 6,

• Community Centre, i = 7,

• Social Housing, i = 8,

evaluated in terms of the following three criteria J = {1, . . . , 3}:

• Economic impact, j = 1,

• Social impact, j = 2,

• Environmental impact, j = 3.

We suppose to have two different locations L = {1, 2} in which the facilities can be sited, named

North (l = 1) and South (l = 2). For the sake of the simplicity, we give an evaluation of each

facility on each criterion and for each location on a scale [0,100] (see Table 4). We assume that

the evaluation does not depend on the period. Note, however, that our model can deal also with

evaluations that change through the time and with any type of quantitative evaluations. Moreover,
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Table 5: Budget available in each period

Year Budget
Start 400
First Year 100
Second Year 200
Third Year 200
Fourth Year 150

Figure 1: Optimal solution obtained by maximization of the overall performance.

each facility has an associated opening cost (in thousand Euro) which is also reported in Table 4.

The available budget (in thousand Euro) is given for each period as detailed in Table 5. In addition,

the interest rate is supposed to be equal to 0.1 for all the periods. The council is setting up the plans

for the next 5 years T = {0, 1, . . . , 5} deciding which investments pursuit. We define a weight for

each criterion and, in particular, w1 = 0.5 for the economic impact, w2 = 0.3 for the social impact

and w3 = 0.2 for the environmental impact.

Using the commercial software CPLEX v.12.1, we find the vector x that maximises the objective

function ŷ(x) subject to the budget constraint. We also suppose that each facility can be activated

only once, e.g., each facility cannot be activated in two different locations and in two different periods.

We obtain the following decision variables equal to 1: x112, x320, x410, x520, x623, x711, meaning that:

• The facility School is scheduled to be activated in location North at the beginning of the second

year;

• The facility Council Offices is scheduled to be activated in location South at the beginning of

the start year;

• The facility Recycling Centre is scheduled to be activated in location North at the beginning

of the start year;
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Figure 2: Distribution along the time of the performances for the optimal strategy in the two different
locations.

• The facility Start Up Incubator is scheduled to be activated in location South at the beginning

of the start year;

• The facility Healthcare Centre is scheduled to be activated in location South at the beginning

of the third year;

• The facility Community Centre is scheduled to be activated in location North at the beginning

of the first year.

The other facilities (Leisure Centre and Social Housing) have not been activated given the available

budget constraint. The optimal strategy is reported in Figure 1.

The performances ŷsetsindices(x) that we have described before can be summarized in a series of

graphs. These graphs can help understanding the solution and, especially, can help the DM to

visualize the performance corresponding to the optimal solution da Silva et al. (2017). Indeed, these

charts can be used to compare potential Pareto solutions in a multiobjective context, supporting

the intuition of the DM, and making the model more appealing even for high level managers often

inhibited from adopting more sophisticated and complex decision support models Ghasemzadeh and

Archer (2000). For the sake of space we present the most representative charts.

First, let us show in Figure 2 the performance of the strategy suggested to the council (i.e., the

optimal solution to our time - space model) in the two locations North and South. In this case we
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Figure 3: Time distribution of the performances for the optimal strategy with respect to each crite-
rion.
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Figure 4: Time distribution of the performances for the facilities in the optimal strategy.

are recording the ŷLTlt (x) (on the y − axis) in each period and in each location. It is possible to

note that the performance assumes a bigger value in the North than in the South. Also, there is an

increasing of the performance in the time at a greater pace in location North than in location South.

Note that the performances are defined excluding period 0, that represents the start of our planning

horizon. While at t = 0 we can define decision variables, the performance of the adopted plan will

be evaluated only at the beginning of the first year. Moreover, the performances are discounted so

that we can compare the contribution of performances obtained in different periods.

In Figure 3 we report the performance ŷJTjt (x) of the optimal strategy with respect to each criterion

and through the time. We can see that Economic impact has a greater importance for the solution

given the highest bars and its bigger increase through the time. Note that the performances in this

chart have not been weighted. This allows a neat comparison without the influence of particular

weights adopted. In Figure 4 we summarize the performance of each activated facility in the optimal

solution through the time. We are representing ŷITit (x), i.e., the performance of each activated facility

through the time. Indeed, the Recycling Centre is contributing more than the other facilities. The

DM could be interested in detailing the contribution of these facilities for each criterion, in the

location North where it has been activated (see Figure 5). The biggest contribution is provided by

the criterion Environmental Impact. In this case we are reporting the ŷJTjt (x410).
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Figure 5: Time distribution of the performances for the facility Recycling Centre with respect to
each criterion.

Figure 6: Time distribution of the overall performances.
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Table 6: Budget available for each facility in each period

Facilities
Start First Year Second Year Third Year Fourth Year

B≤i0 B≥i0 B≤i1 B≥i1 B≤i2 B≥i2 B≤i3 B≥i3 B≤i4 B≥i4
School - 10 50 - - 5 20 - - -
Leisure Centre 70 20 150 5 10 10 - - - 16
Council Offices - - - 3 8 8 - - - -
Recycling Centre 32 16 - - - - 2 2 260 5
Start Up Incubator - - 70 5 140 10 - 2 14 -
Healthcare Centre - 8 - - - 4 - - - 2
Community Centre 30 - - 5 - - 10 1 16 14
Social Housing - 16 60 - 180 10 - - - -

Table 7: Budget available for each location in each period

Locations
Start First Year Second Year Third Year Fourth Year

B≤l0 B≥l0 B≤l1 B≥l1 B≤l2 B≥l2 B≤l3 B≥l3 B≤l4 B≥l4
North 65 6 - 2 - - 4 4 13 10
South 21 3 10 7 6 6 20 5 - -

Finally, in Figure 6 we can summarize the overall performance of the optimal strategy provided

by the activated facilities through the time, indicating on the y − axis the ŷTt (x). This graph can

help DMs to visualize the increase through the time of the contribution of all facilities, for all criteria

and for each location. For this solution we can highlight that the increasing has a similar pace for

the first four years while is less strong in the final year.

4.1 Illustrative Example: Continuous case

For the continuous case, the values of B≥it , B
≤
it , B

≥
lt and B≤lt are reported in Tables 6 and 7, respectively.

Those budgets are not defined in all the cases (when no value is defined for the budget, and so no

associated constraint is defined, the symbol “−” is reported in the Tables). These values are used in

the formulation of constraints (5) and (6). Adopting, as before, the weighted approach, we obtain

the variables different from 0.

We obtain the temporal distribution of the budget between facilities and locations shown in Table

8. For example, the variable x110 = 10, means that 10 is the budget allocated for the activation of

School in location North at the start of the planning period; the variable x112 = 5 means that 5 is

the budget allocated to the activation of School in the first year in location South, and so on.

Graphs and charts analogous to those ones reported for the combinatorial model can be provided

also in this case.
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Table 8: Budget available for each location in each period

Decision Variables (DV) Values DV Values DV Values DV Values
x110 10 x321 3 x511 3 x624 2
x112 5 x322 8 x513 1 x711 5
x220 20 x410 32 x521 2 x713 1
x221 5 x411 82 x522 10 x714 14
x222 10 x412 153 x523 1 x810 15
x223 195 x413 2 x610 8 x820 1
x224 16 x414 118 x622 4 x822 10

5 Multiobjective methodologies for the space - time model

In this Section we propose to use two different multiobjective methodologies to find the most pre-

ferred solution for the DM to the space - time model. We first propose an introduction for the two

methodologies and their associated strengths and, after, we expose the results of the two methodolo-

gies when applied to our illustrative example introduced in Section 4. In this way, the reader can see

the advantages and the differences derived by the applications of these two methodologies. Several

algorithms, mainly exact, have been provided in the literature to find solutions to multi-objective

0-1 linear programming problems (for a review, see Ehrgott et al. (2016)). When dealing with small

problem instances, some algorithms can look for an approximation of the whole set of efficient solu-

tions. These include the branch and bound algorithms Przybylski and Gandibleux (2017) or the ε

constraint method Cohon (2013); Mavrotas and Florios (2013). Some interactive algorithms integrate

optimization procedures (i.e., Alves and Climaco et al. (2014); Argyris et al. (2011); Mavrotas and

Diakoulaki (1998)) with the aim of singling out the set (possibly a singleton) of the most preferred

solutions for the DM. In the same perspective, other methods suggest the adoption of a linear value

approach (see, e.g., Salo et al. (2011)) or the use of a goal programming procedure Jones and Tamiz

(2016). In what follows, we illustrate how our space - time model can be handled with two multiob-

jective methodologies. First we consider a classical approach called Compromise Programming (CP)

Romero (2001) adopted to solve several multiobjective optimization models. The second approach

is more recent and takes into account the preferences of the DM using an interactive procedure. It

has been proposed by Greco et al. (2008) and applied to portfolio decision problems in Barbati et al.

(2017).

5.1 Compromise Programming

In a CP approach the aim is to minimize the maximum deviation from the ideal point, i.e., the point

with the best evaluation. For our model we characterize three types of CP approaches considering
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three different ideal points.

First, in the Compromise Programming for Location (CPL) we characterize our target as the

vector ŷL
∗

= [ŷL
∗

l ] where, for each l ∈ L, ŷL∗l represents the best actualized performance that can be

attained by location l, that is

ŷL
∗

l = max
x

ŷLl (x) =
∑
i∈I

∑
j∈J

∑
t∈T−{0}

t−1∑
τ=0

wjxilτyijlv(t).

Different metrics can be adopted in order to define the closeness of the obtained strategy to the

ideal point. Following Drezner et al. (2006), in order to get a balanced solution, we minimize the

maximum relative deviation ∆L
l (x) on the set of locations l ∈ L, defined as

∆L
l (x) =

ŷL
∗

l − ŷLl (x)

ŷL
∗

l

.

Then, the distance of the strategy x from the ideal point is ∆L(x) = maxl∈L ∆L
l (x). This optimisation

strategy could suit several DMs. In our example the council could be interested in attempting to

minimize the differences among the locations so that the optimal solution is x∗ = arg min ∆L(x).

Second, we specify what we call the Compromise Programming for Objectives (CPO) where the

target is the vector ŷJ
∗

= [ŷJ
∗

j ] where for each j ∈ J , ŷJ
∗

j represents the best actualized performance

that can be attained on criterion j, that is,

ŷJ
∗

j = max
x

ŷJj (x) =
∑
i∈I

∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

wjxilτyijlv(t).

Analogously to the previous case, we shall minimize the maximum relative deviation ∆J
j (x), on the

set of criteria j ∈ J , defined as

∆J
j (x) =

ŷJ
∗

j − ŷJj (x)

ŷJ
∗

j

.

Then, the distance of the strategy x from the ideal point is ∆J(x) = maxj∈J ∆J
j (x). DMs adopting

such an optimization strategy would like to balance the importance of all the criteria so that the

optimal solution is x∗ = arg min ∆J(x).

Lastly, we can define what we call Compromise Programming for Objectives and Location

(CPOL) where our target is

ŷJL
∗

jl = max
x

ŷJLjl (x) =
∑
i∈I

∑
t∈T−{0}

t−1∑
τ=0

wjxilτyijlv(t).
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Table 9: Position and activation period of the facilities in the best solutions obtained with the
different CP approaches.

Facilities
CPL CPO CPOL

Location Period Location Period Location Period
School North 2 North 2 North 3
Leisure Centre - - - - South 0
Council Offices South 0 South 0 - -
Recycling Centre North 0 North 0 North 0
Start Up Incubator North 0 South 0 North 4
Healthcare Centre South 3 South 3 South 2
Community Centre North 1 South 1 South 1
Social Housing - - - - - -

Again, we shall minimize the maximum relative deviation ∆JL
jl (x), on the set of criteria j ∈ J and

on the set of locations l ∈ L, defined as

∆JL
jl (x) =

ŷJL
∗

jl − ŷJLjl (x)

ŷJL
∗

jl

.

Then, the distance of the strategy x from the ideal point is ∆JL(x) = maxj∈J,l∈L ∆JL
jl (x). This last

case is a combination of the first two compromise optimization approaches and attempts to balance

the differences from the ideal points for both the criteria and the locations x∗ = arg min ∆JL(x).

Illustrative Example: Compromise Programming

We apply the three compromise optimization approaches described above to our illustrative ex-

ample introduced in Section 4. We obtain the optimal compromised strategies reported in Table 9.

For each CP approach we noted the location and the period in which a facility has been activated;

the symbol “−” means that a facility has not been activated.

In Figure 7 we report the overall performance of the optimal strategy obtained with each of the

CP approaches with respect to each criterion, while, in Figure 8, we show the overall performance

with respect to each location. We can see that CPO gives quite balanced values with respect to

the overall performances ŷJj on considered criteria j ∈ J , while the performances ŷLl with respect

to locations l ∈ L result quite unbalanced. This is because this strategy does not search for a

compromise in the values of the differences between the two locations. Nevertheless, CPL and CPOL

have similar results. In particular, CPL obtains a solution with very balanced values ŷJj between

North and South, while CPOL shows a good balance for both criteria and locations.
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Figure 7: The performances ŷJj of the best strategies obtained for each CP approach.

Figure 8: The performances ŷLl of the best strategies obtained for each CP approach.
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5.2 A multiobjective interactive optimization approach

Interactive Multi-objective Optimization (IMO) methods (for a survey, see Miettinen et al. (2008))

look for a solution being as much as possible satisfactory for the DM through procedures alternating

computation phases (in which multiobjective optimization problems are solved), and dialogue phases

(in which preference information is collected from the DM). IMO methods are among the most

common used in the multiobjective theory. They are characterized by several strength points as:

• focusing only on solutions of interest for the DM reducing the computation effort Phelps and

Koksalan (2003);

• specifying and adjusting the DM preferences between each iteration throughout the whole

process Miettinen et al. (2008);

• integrating contrasting opinions from several stakeholders Soltani et al. (2015);

• adapting to disparate application contexts (e.g. data mining Bandaru et al. (2017), manufac-

turing Chica et al. (2016), chemical process design Miettinen and Hakanen (2017));

• the capability of readapting to the changing conditions or redefinition of some of them as can

be required, for example, when deciding to urban services location in a masterplan Verebes

(2013);

• the capability of these techniques to deal with uncertain contributions Jiang et al. (2018).

Among the many IMO methods proposed in the literature, we shall take into consideration a

method called IMO-DRSA Greco et al. (2008) but, of course, any other IMO method can be applied

as well. In the IMO-DRSA an interactive procedure is integrated in a multiobjective optimization

procedure with the use of the Dominance Based Rough Set Approach (DRSA) (see, e.g., Greco et

al. (2016, 2001, 2010)). The main idea is that the DM is provided with a list of feasible solutions

and he is asked to select one if he is convinced that it is completely satisfactory. In this case the

procedure ends. On the contrary, the DM is asked to indicate a set of relatively good solutions in

the list, so that a binary partition into classes “good” and “others” of the list of proposed solutions

is obtained. From such indirect preference information, using the DRSA, we induce a set of “if ...,

then ...” decision rules explaining the partition in “good” and “others” in terms of values gj(x)

taken for strategy x by the criteria gj, j = 1, . . . ,m, considered in the multiobjective optimization

(for example, in our space-time model performances of group A, B, C or the overall performance

y(x)). More precisely, supposing that all criteria gj have an increasing direction of preference, the

rules are logical statements of the type
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if gj1(x) ≥ ρj1 and gj2(x) ≥ ρj2 and . . . and gjr(x) ≥ ρjr , then x is a good strategy.

The decision rules so obtained are presented to the DM, that is asked to select the rule he considers

the most representative of his preferences. The selected decision rule gives a set of constraints

gj1(x) ≥ ρj1 , gj2(x) ≥ ρj2 , . . ., gjr(x) ≥ ρjr

to be added to the current set, so that the solution space is consequently reduced in a region of feasible

strategy being more appealing for the DM. From the current set of feasible strategies, another set of

representative strategies is built and presented to the DM, so that the cycle starts again, until the

DM finds a satisfactory strategy.

The IMO-DRSA allows to combine the advantages of an interactive method with the advantages

of the Dominance Rough Set Theory Greco et al. (2001) that has shown to be very effective in the

analysis of preference ordered data. Many times it has been proved that this is an effective method

that can deal with real world applications (e.g., chakar et al. (2016); Chen and Tsai (2016) especially

with the numerous extensions that have been proposed through the years (e.g. Luo et al. (2018)).

We can summarize the advantages derived by the application of this method as follows:

• the decision rules serve as synthetic description of the DM’s opinions expressed in simple and

understandable terms;

• a strategy is considered of a good quality only when a specific number of projects with a at

least a given evaluation on each criterion have been scheduled to be implemented;

• the clear language of the rules permits the DM to easily indicate those rules that best represent

his preferences;

• the final solution is found by a process of progressive inclusion of more and more demanding

thresholds that gradually constrain the set of strategies satisfying these requirements;

• the process continues until the DM considers a strategy as fully satisfactory in terms of the

quality of projects included.

To apply IMO-DRSA to the specific decision problem represented by our space time model,

following Barbati et al. (2017), the performances ŷsetsindices are all transformed in qualitative ordinal

evaluations by means of suitable thresholds. With this aim, for each j ∈ J and each l ∈ L, the DM

is asked to define a set Sj,l consisting of J(h) thresholds

Sj,l = {s1,j,l; . . . ; sJ(h),j,l : s1,j,l < s2,j,l < . . . < sJ(h),j,l},
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Table 10: Satisfaction levels for the three criteria in both the locations considered in the illustrative
example.

Satisfaction levels EconomicImpact SocialImpact EnvironmentalImpact

s1: Satisfactory 20 20 20
s2: Very satisfactory 35 35 35
s3: Extremely satisfactory 55 55 55

permitting to define a set Ch consisting of J(h) + 1 qualitative satisfaction classes Ca,j,l

Ch = {C1,j,l, . . . , CJ(h)+1,j,l}

such that the greater a = 1, . . . , J(h) + 1, the more preferred is the project from class Ca,j,l. The

facilities i ∈ I are assigned to satisfaction classes Ca,j,l ∈ Ch according to the following rule: for all

i ∈ I

• facility i is assigned to class C1,j,l if yijl < s1,j,l;

• facility i is assigned to class Ca,j,l with a = 2, . . . , J(h), if sa−1,j,l ≤ yijl < sa,j,l;

• facility i is assigned to class CJ(h)+1,j,l if sJ(h),j,l ≤ yijl.

Illustrative Example: definition of qualitative evaluations

The council has defined three satisfaction levels for each criterion (see Table 10). We suppose the

same levels are considered for all criteria in all the locations. In this way we can define our satisfaction

classes: “weakly satisfactory”, “satisfactory”, “very satisfactory”, and “extremely satisfactory”.

For each facility i ∈ I with respect to each location l ∈ L and to each criterion j ∈ J we have:

• facility i is “weakly satisfactory” if yijl < 20;

• facility i is “satisfactory” if 20 ≤ yijl < 35;

• facility i is “very satisfactory” if 35 ≤ yijl < 55;

• facility i is “extremely satisfactory” if 55 ≤ yijl.

For each strategy x, in each location l ∈ L, for each criterion j ∈ J , each satisfaction level

sa,j,l ∈ Sj,l, we consider the set of facilities attaining threshold sa,j,l:
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Pa,j,l(x) = {i ∈ I : yijl(x) ≥ sa,j,l}.

In simple words, considering the qualitative scale given in the above example, with respect to criterion

j, for the strategy x,

• P1,j,l(x) is the set of satisfactory facilities,

• P2,j,l(x) is the set of very satisfactory facilities,

• P3,j,l(x) is the set of extremely satisfactory facilities.

For the sake of simplicity, in what follows we shall write |Pa,j,l(x)|, as Fa,j,l(x).

We can consider the following three main formulations of our space-time multiobjective optimiza-

tion problem:

• a location-oriented multiobjective optimization in which the objective functions are the sums

on all considered criteria of the number of activated facilities attaining an evaluation of at least

level a, a = 1, . . . , h in a given location l ∈ L, that is, in the above example, for each facility

i ∈ I:

– the number of facilities at least satisfactory for the first criterion plus the analogous number

for the second criterion and so on until the last criterion;

– the number of facilities at least very satisfactory for the first criterion plus the analogous

number for the second criterion and so on until the last criterion;

– the number of facilities extremely satisfactory for the first criterion plus the analogous

number for the second criterion and so on until the last criterion.

Therefore the location oriented multiobjective optimization problem can be formulated as

max
∑
j∈J

Fa,j,l(x), ∀l ∈ L, ∀sa,j,l ∈ Sj,l

under the constraints (1) and (2), and the other possible constraints of the original problem;

• a criterion oriented multiobjective optimization in which the objective functions are the sums

on all considered locations of the number of activated facilities of at least level a, a = 1, . . . , h,

for a given criterion j ∈ J ; that is, in the above example, for each criterion j ∈ J :

– the number of facilities at least satisfactory in the first location plus the analogous number

in the the second location and so on until the last location;
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– the number of facilities at least very satisfactory in the first location plus the analogous

number in the the second location and so on until the last location;

– the number of facilities extremely satisfactory for the first location plus the analogous

number for the second location and so on until the last location.

Therefore the criterion oriented multiobjective optimization problem can be formulated as

max
∑
l∈L

Fa,j,l(x), ∀j ∈ J, ∀sa,j,l ∈ Sj,l,

under the constraints (1) and (2), and the other possible constraints of the original problem;

• a criterion and location oriented multiobjective optimization in which the objective functions

are combinations of one location l ∈ L, one criterion j ∈ J and the number of activated facilities

of at least level a, a = 1, . . . , h; that is, in the above example, for each criterion j ∈ J and

l ∈ L:

– the number of facilities at least satisfactory;

– the number of facilities at least very satisfactory;

– the number of facilities extremely satisfactory.

Therefore the criterion and location oriented multiobjective optimization problem can be for-

mulated as

maxFa,j,l(x), ∀j ∈ J,∀l ∈ L, ∀sa,j,l ∈ Sj,l

under the constraints (1) and (2), and the other possible constraints of the original problem.

5.3 Illustrative example: application of IMO-DRSA

Let us apply the IMO-DRSA to the decision problem introduced in Section 4. Taking into account the

evaluations of the projects with respect to considered criteria shown in Table 4 and the thresholds in

Table 10, we get the evaluations in ordinal qualitative terms shown in Table 11, where WS, S, VS and

ES are representing our satisfaction classes “weakly satisfactory”, “satisfactory”, “very satisfactory”,

and “extremely satisfactory”, respectively.

In a perspective of location oriented multiobjective optimization, each portfolio is evaluated in

terms of facilities at least satisfactory, at least very satisfactory and extremely satisfactory in the

North and in the South. In the first iteration, the six representative strategies presented in Table 12

are shown to the DM, where Fa,l(x) =
∑

j∈J Fa,j,l(x). For example F1,1(x) =
∑

j∈J F1,j,1(x) is the

number of all the facilities that have a contribution for each criterion at least satisfactory. In Table
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Table 11: Qualitative ordinal evaluations on three criteria in each location of the eight facilities
considered in the illustrative example.

Facilities
EconomicImpact SocialImpact EnvironmentalImpact
North South North South North South

School S S ES ES S S
Leisure Centre VS VS ES ES VS S
Council Offices WS WS S S S S
Recycling Centre ES ES ES ES ES ES
Start Up Incubator ES ES WS WS WS WS
Healthcare Centre WS WS WS WS VS ES
Community Centre S S ES VS S VS
Social Housing WS S ES ES WS WS

Table 12: The set of non-dominated strategies presented to the DM in the first iteration.

Strategy F1,1 F1,2 F2,1 F2,2 F3,1 F3,2 Class

ST 1 12 0 11 0 5 0 *
ST 2 0 14 0 9 0 6 Good
ST 3 12 0 11 0 5 0 *
ST 4 0 13 0 10 0 6 Good
ST 5 8 2 7 1 6 1 *
ST 6 1 12 1 9 0 6 Good

13 we report the corresponding strategies. Let us underline that to facilitate the understanding of

the solution for the DMs, each strategy could be presented to the DM with some graphs representing,

by means of histograms, the values of Fa,l(x) as shown in Barbati et al. (2017). For the sake of the

space we do not report here these representations.

The DM is asked if among the strategies shown to her there is one that she considers as completely

satisfactory. Since this is not the case, she was asked to select a set of strategies that can be considered

as relatively good. Consequently, she indicated strategies ST2, ST4 and ST6. Applying DRSA to

this preference information, the following decision rules were induced (among parentheses we provide

the strategies supporting the corresponding rule):

Rule 1.1: if F2,2(x) ≥ 9, then strategy x is “good”, (ST2, ST4, ST6)

(if there are at least 9 projects very satisfactory or better in location South with respect to all

criteria, then the portfolio is good);

Rule 1.2: if F3,2(x) ≥ 6, then strategy x is “good”, (ST2, ST4, ST6)

(if there are at least 6 projects extremely satisfactory in location South with respect to all

criteria, then the portfolio is good);
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Table 13: Position and period of the activated facilities for each strategy.

Facilities
ST 1 ST 2 ST 3 ST 4 ST 5 ST 6

Location Period Location Period Location Period Location Period Location Period Location Period

School North 3 South 3 North 3 South 3 North 2 South 3
Leisure Centre North 0 South 0 North 0 South 0 - - South 0
Council Offices - - South 2 - - - - North 4 North 4
Recycling Centre North 1 South 0 North 1 South 0 North 0 South 0
Start Up Incubator North 4 - - North 0 - 0 North 3 - 0
Healthcare Centre North 2 - - North 2 South 2 North 0 North 2
Community Centre North 0 South 1 North 0 South 1 South 0 South 1
Social Housing - - - - - - - - - - - -

Table 14: The set of non-dominated strategies presented to the DM in the second iteration.

Strategy F1,1 F1,2 F2,1 F2,2 F3,1 F3,2 Class

ST 1′ 2 12 1 7 0 3 *
ST 2′ 0 14 0 9 0 6 Good
ST 3′ 2 12 2 6 1 2 *
ST 4′ 0 13 0 10 0 6 Good
ST 5′ 1 12 1 8 1 5 *
ST 6′ 1 12 1 9 0 6 Good

Rule 1.3: if F1,2(x) ≥ 12, then strategy x is “good”, (ST2, ST4, ST6)

(if there are at least 12 projects very satisfactory or better in location South with respect to

all criteria, then the portfolio is good).

The DM selected Rule 1.3 as the most representative for her current aspirations, and the following

constraint was added to the original optimization problem:∑
j∈J

F1,j,2(x) ≥ 12.

Then, the second sample of weakly non-dominated strategies (shown in Table 14) was generated

and presented to the DM. For the sake of the space we do not report the correspondent strategies.

Again, the DM is asked if among the strategies shown to her there is one that she considers as

completely satisfactory. Since this is not the case, she was asked to select a set of strategies that can

be considered as relatively good. She indicated the strategies apart from ST2′, ST4′, ST6′. Applying

DRSA to this preference information the following decision rules were induced (among parentheses

we provide the strategies supporting the corresponding rule):

Rule 2.1: if F2,2(x) ≥ 9 , then strategy x is “good”, (ST2′, ST′4, ST′6)
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Table 15: A set of non-dominated strategies presented to the DM in the third iteration.

Strategy F1,1 F1,2 F2,1 F2,2 F3,1 F3,2 Class

ST 1′′ 1 12 1 9 0 6 Good
ST 2′′ 0 14 0 9 0 6 *
ST 3′′ 1 12 1 9 0 6 *
ST 4′′ 0 13 0 10 0 6 *
ST 5′′ 0 14 0 9 0 6 *
ST 6′′ 0 13 0 10 0 6 *

(if there are at least 9 projects very satisfactory or better in location South with respect to all

criteria, then the portfolio is good);

Rule 2.2: if F3,2(x) ≥ 6, then strategy x is “good”, (ST2′, ST′4, ST6′)

(if there are at least 6 projects extremely satisfactory in location South with respect to all

criteria, then the portfolio is good);

Rule 2.3: if F1,2(x) ≥ 13, then strategy x is “good”, (ST2′, ST4′)

(if there are at least 13 projects very satisfactory in location South with respect to all criteria,

then the portfolio is good).

The DM selected Rule 2.1 as the most representative for her current aspirations, and thus, the

following constraint was added to the original optimization problem and to the constraints added to

the previous interaction: ∑
j∈J

F2,j,2(x) ≥ 9.

Then, the third sample of weakly non-dominated strategies shown in Table 15 was generated and

presented to the DM.

At this point the DM declares to be satisfied by the strategy ST1′′ and the procedure stops.

6 Uncertainty and plurality of stakeholders

Two features that affect many real world problems are related to the uncertainty of the performances

expected from activation of facilities Mild et al. (2015); Vilkkumaa et al. (2018) and to the presence

of a plurality of stakeholders Salo and Hämäläinen (2001). When the criterion values are considered

stochastic variables, several tools can be employed as, for example, the stochastic multicriteria ac-

ceptability analysis Lahdelma and Salminen (2009), or the interval stochastic variables as in Jiang

et al. (2018).
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In the following we introduce these further elements in our model.

6.1 Uncertainty

We model the uncertainty related to the performances of facilities from I with respect to criteria

from J taking into account a set of states of nature related to the period t ∈ T and to the states of

nature realized in previous periods. Therefore we denote by

s(t,h1,...,ht), t ∈ T − {0}

a state of nature taking place in period t in the sequence of previous states of nature,

s(1,h1), s(2,h1,h2), . . . , s(t−1,h1,h2,...,ht−1).

For all t ∈ T − {0} and for all path s(1,h1), s(2,h1,h2), . . . , s(t−1,h1,h2,...,ht−1), let us denote by

pC(s(t,h1,h2,...,ht))

the probability of s(t,h1,h2,...,ht) conditioned to the path of previous states of nature

s(2,h1,h2), . . . , s(t−1,h1,h2,...,ht−1).

In other words, pC(s(t,h1,h2,...,ht)) is the probability of realization in period t of s(t,h1,h2,...,ht) if, in period

t−1 state of nature s(t,h1,h2,...,ht−1) is realized. Consequently, the (non conditioned) probability of the

state of nature s(t,h1,...,ht) is given by

p(s(t,h1,...,ht)) = pC(s(1,h1))× pC(s(2,h1,h2))× · · · × pC(s(t,h1,...,ht)).

For instance, let us consider the example in Figure 9 regarding the first facility, in the first

location and for the first period. We have 2 periods and, for each period, we have two possible states

of nature. Every state of nature is associated to a node of the diagram tree and the probability of

each state of nature pC(s(t,h1,h2,...,ht)) is reported on the arc entering each node.

In this context we denote by yijlt(s(t,h1,...,ht)) the performance of facility i ∈ I with respect to

criterion j ∈ J in location l ∈ L at time t ∈ T if the state of nature s(t,h1,...,ht) is realized.

Taking into account the probabilities p(s(t,h1,...,ht)), we can compute the expected value of the

performance of facility i ∈ I with respect to criterion j ∈ J in location l ∈ L at time t ∈ T − {0} as
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Figure 9: Example of a probability distribution of the performances.
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follows:

Ep(yijlt) =
∑

s(t,h1,h2,...,ht)
∈St

yijlt(s(t,h1,...,ht))× p(s(t,h1,...,ht)),

where St denotes the set of possible states of nature in period t.

In our didactic example, in Figure 9, the expected value Ep(yijl2) can be calculated as follows:

Ep(yijl2) = 0.06× 20 + 0.24× 40 + 0.42× 60 + 0.28× 50 = 50.

Given a strategy x, the expected value Ep(y
IJLT
ijlt (x)) of the performance of criterion j ∈ J in

period t ∈ T − {0} from facility i ∈ I is given by

Ep(y
IJLT
ijlt (x)) =

t−1∑
τ=0

xilτEp(yijlt).

Analogously, the expected value of the discounted performance yIJLTijlt (x) is the following

Ep(ŷ
IJLT
ijlt (x)) = Ep(y

IJLT
ijlt (x))v(t) =

t−1∑
τ=0

xilτEp(yijlt)v(t).

Moreover, the expected value of all the other interesting values obtained from the values yIJLTijlt (x),

can be easily obtained using Ep(y
IJLT
ijlt (x)) instead of yIJLTijlt (x), as well as the corresponding discounted

values can be obtained using Ep(ŷ
IJLT
ijlt (x)) instead of ŷIJLTijlt (x). For example the expected value of

the the global performance of the strategy x with respect to criterion j ∈ J in location l ∈ L at time

t ∈ T − {0} is

Ep(y
JLT
jlt (x)) =

∑
i∈I

Ep(y
IJLT
ijlt (x)) =

∑
i∈I

t−1∑
τ=0

xilτEp(yijlt)

and its discounted value is

Ep(ŷ
JLT
jlt (x)) =

∑
i∈I

Ep(ŷ
IJLT
ijlt (x)) =

∑
i∈I

t−1∑
τ=0

xilτEp(yijlt)v(t).

In first approximation, the problem to be handled is to select the strategy x maximizing the

expected value of the discounted overall performance taking into account all facilities i ∈ I, all

criteria j ∈ J , all locations l ∈ L and all periods t ∈ T − {0} that is

Ep(ŷ(x)) =
∑
i∈I

∑
j∈J

∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

wjxilτEp(yijlt)v(t).
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Figure 10: Probability distribution of the performances for the facility Social Housing with respect
to the economic aspects.

Of course, also in this case one can handle the selection of the most preferred strategy by defining

some compromise programming problem analogous to those ones illustrated in Section 5. One can use

also some interactive multiobjective optimization method, such as the IMO-DRSA, again introduced

in Section 4. In this perspective, to deal with uncertain performances and time preferences using

DRSA, one can follow the approach proposed in Greco et al. (2010).

Illustrative Example: Uncertainty

In order to show how uncertainty can be taken into account with the proposed approach, we

reconsider, for example, the performances related to the facility Social Housing, with respect to

the economic criterion, having a probability distribution in both the locations with two possible

alternative states of nature in each period. For the sake of space limit, we reported in Figure

10 only one branch of the tree. Following the path highlighted in bold black, we can compute

p(s(5,1,1,1,1,1)) = 0.80×0.65×0.30×0.60×0.25 = 0.023 to which the performance y811(s(5,1,1,1,1,1)) = 76

is associated. The other evaluations and the other probabilities are listed in Table 16.

The evaluations yijl of our illustrative example in Table 4 remain the same, apart from y811 and

y812 changed in Ep(y811) = 73 and Ep(y812) = 76, respectively. Maximizing the expected value of

the discounted overall performance Ep(ŷ(x)) we obtain the most preferred solution shown in Figure

11. We can note that the facility Social Housing has to be activated in the first period; in fact,

its economic evaluation is much improved in comparison to the not probabilistic scenario and this

determines its entrance in the optimal strategy; nevertheless some very low evaluations of the facilities

are taken into account also in our probabilistic scenario.
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Table 16: Performances y811(s(t,h1,...,ht)) and corresponding probabilities y812(s(t,h1,...,ht)) for each pos-
sible state of nature in the final period .

State of Nature
y811 y812

Probabilities Performances Probabilities Performances
s(5,1,1,1,1,1) 0.0234 76 0.0234 89
s(5,1,1,1,1,2) 0.0702 64 0.0702 92
s(5,1,1,1,2,1) 0.01872 96 0.01872 84
s(5,1,1,1,2,2) 0.04368 78 0.04368 95
s(5,1,1,2,1,1) 0.0364 81 0.0364 78
s(5,1,1,2,1,2) 0.1456 86 0.1456 93
s(5,1,1,2,2,1) 0.1092 66 0.1092 17
s(5,1,1,2,2,2) 0.0728 69 0.0728 99
s(5,1,2,1,1,1) 0.00819 78 0.00819 96
s(5,1,2,1,1,2) 0.04641 64 0.04641 88
s(5,1,2,1,2,1) 0.01764 81 0.01764 12
s(5,1,2,1,2,2) 0.01176 67 0.01176 78
s(5,1,2,2,1,1) 0.0196 90 0.0196 69
s(5,1,2,2,1,2) 0.0784 81 0.0784 87
s(5,1,2,2,2,1) 0.049 67 0.049 79
s(5,1,2,2,2,2) 0.049 95 0.049 94
s(5,2,1,1,1,1) 0.00612 39 0.00612 15
s(5,2,1,1,1,2) 0.02448 68 0.02448 92
s(5,2,1,2,2,1) 0.00162 76 0.00162 15
s(5,2,1,2,2,2) 0.00378 26 0.00378 77
s(5,2,1,1,1,1) 0.0084 80 0.0084 69
s(5,2,1,1,1,2) 0.0336 70 0.0336 67
s(5,2,1,2,2,1) 0.0252 94 0.0252 93
s(5,2,1,2,2,2) 0.0168 43 0.0168 12
s(5,2,2,1,1,1) 0.00432 62 0.00432 75
s(5,2,2,1,1,2) 0.01008 44 0.01008 88
s(5,2,2,2,2,1) 0.00384 65 0.00384 77
s(5,2,2,2,2,2) 0.00576 26 0.00576 10
s(5,2,2,1,1,1) 0.00448 66 0.00448 48
s(5,2,2,1,1,2) 0.01792 51 0.01792 87
s(5,2,2,2,2,1) 0.01176 42 0.01176 15
s(5,2,2,2,2,2) 0.02184 41 0.02184 96
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Figure 11: Optimal solution obtained by maximizing the expected value of the discounted overall
performance Ep(ŷ(x)).

6.2 Plurality of stakeholders

In planning problems we usually have a plurality of stakeholders such as municipality, building

companies, association of citizens, trade union and so on Montibeller et al. (2009). Therefore it is

reasonable to generalize our model to the presence of different perspectives and preferences expressed

by different stakeholders. Here we present a basic approach of group decisions to our space-time

model. Of course, more complex approaches can be considered. The basic idea is to assume a

different weights vector for each stakeholder. Let us suppose that we have K = {1, . . . , k, . . . , b}
stakeholders. We consider weights wjk ≥ 0, such that w1k + . . . + wqk = 1 and wjk represents the

weight assigned to criterion j by stakeholder k. We also introduce a central planner that defines a

compromise solution giving a weight zk ≥ 0 representing the importance of each stakeholder, such

that z1 + . . .+ zb = 1.

In this way, among the great plurality of performances ysetsindices(x) defined in Section 2 we can

reformulate some of them and add others as follows:

• the overall performance of facility i ∈ I in location l ∈ L in period t ∈ T − {0} taking into

account all criteria, for stakeholder k ∈ K is

yILTKiltk (x) =
∑
j∈J

t−1∑
τ=0

wjkxilτyijl,

• the overall performance of the strategy x in location l ∈ L in period t ∈ T −{0} for stakeholder

k ∈ K is

yLTKltk (x) =
∑
i∈I

∑
j∈J

t−1∑
τ=0

wjkxilτyijl

• the overall performance of facility i ∈ I in location l ∈ L in period t ∈ T − {0} taking into
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account all criteria and all stakeholders is

yILTilt (x) =
∑
k∈K

zk
∑
j∈J

t−1∑
τ=0

wjkxilτyijl,

• the overall performance of facility i ∈ I in period t ∈ T −{0} considering all criteria j ∈ J and

all locations l ∈ L for stakeholder k ∈ K is

yITKitk (x) =
∑
j∈J

∑
l∈L

t−1∑
τ=0

wjkxilτyijl,

• the performance of facility i ∈ I in location l ∈ L for stakeholder k ∈ K considering all criteria

j ∈ J and all periods t ∈ T − {0} is

yILKilk (x) =
∑
j∈J

∑
t∈T−{0}

t−1∑
τ=0

wjkxilτyijl,

• the overall performance of strategy x in period t ∈ T − {0} for stakeholder k ∈ K considering

all facilities i ∈ I, all criteria j ∈ J and all locations l ∈ L is

yTKtk (x) =
∑
i∈I

∑
j∈J

∑
l∈L

t−1∑
τ=0

wjkxilτyijl,

• the overall performances of strategy x in location l ∈ L for stakeholder k ∈ K considering all

criteria j ∈ J and all periods t ∈ T − {0} is

yLKlk (x) =
∑
i∈I

∑
j∈J

∑
t∈T−{0}

t−1∑
τ=0

wjkxilτyijl,

• the overall performance of the strategy x for all the stakeholders in location l ∈ L at time

t ∈ T − {0} is

yLTlt (x) =
∑
k∈K

zk
∑
i∈I

∑
j∈J

t−1∑
τ=0

wjkxilτyijl

• the performance of facility i ∈ I in period t ∈ T − {0} considering all criteria j ∈ J and all
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locations l ∈ L for all the stakeholders is

yITit (x) =
∑
k∈K

zk
∑
j∈J

∑
l∈L

t−1∑
τ=0

wjkxilτyijl,

• the performance of facility i ∈ I in location l ∈ L considering all criteria j ∈ J and all periods

t ∈ T − {0} for all stakeholders k ∈ K is

yILil (x) =
∑
k∈K

zk
∑
j∈J

∑
t∈T−{0}

t−1∑
τ=0

wjkxilτyijl,

• the performance of facility i ∈ I and for stakeholder k ∈ K with respect to all criteria j ∈ J ,

all location l ∈ L and all periods t ∈ T − {0} is

yIKik (x) =
∑
j∈J

∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

wjkxilτyijl,

• the overall performances of strategy x in location l ∈ L considering all criteria j ∈ J , all periods

t ∈ T − {0} and all stakeholders k ∈ K is

yLl (x) =
∑
k∈K

zk
∑
i∈I

∑
j∈J

∑
t∈T−{0}

t−1∑
τ=0

wjkxilτyijl,

• the overall performance of strategy x for stakeholder k ∈ K taking into account all facilities

i ∈ I, all criteria j ∈ J , all locations l ∈ L and all periods t ∈ T − {0} is

yKk (x) =
∑
i∈I

∑
j∈J

∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

wjkxilτyijl,

• the performance of facility i ∈ I with respect to all criteria j ∈ J , all location l ∈ L, all periods

t ∈ T − {0} and all stakeholders k ∈ K is

yIi (x) =
∑
k∈K

zk
∑
j∈J

∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

wjkxilτyijl,

• the overall performance in period t ∈ T − {0} considering all facilities i ∈ I, all criteria j ∈ J ,
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all locations l ∈ L and all stakeholders k ∈ K is

yTt (x) =
∑
k∈K

zk
∑
i∈I

∑
j∈J

∑
l∈L

t−1∑
τ=0

wjkxilτyijl,

• the overall performance taking into account all facilities i ∈ I, all criteria j ∈ J , all locations

l ∈ L, all periods t ∈ T − {0} and all stakeholders is

y(x) =
∑
k∈K

zk
∑
i∈I

∑
j∈J

∑
l∈L

∑
t∈T−{0}

t−1∑
τ=0

wjkxilτyijl.

As before, in the first instance, the problem is to define the strategy x giving the maximum overall

discounted performance ŷ(x) subject to the constraints of the problem such as the budget constraints

and the activation constraints. However, the definition of several ŷsetsindices(x) can be an even richer

dashboard that can be handled as a multiobjective optimization of performances ysetsindices(x) and

ŷsetsindices(x) for multiple stakeholders. In addition, to search for the most preferred solution adopting

the weighted approach, we can use a Compromise Programming approach dealing with multiple

stakeholders (see for e.g., Phua and Minowa (2005)).

In our case we characterize our target as the optimal performance

ŷK
∗

k = max
x

ŷKk (x) =
∑
i∈I

∑
j∈J

∑
t∈T−{0}

t−1∑
τ=0

wjkxilτyijlv(t)

that a strategy x can attain for stakeholder k ∈ K. Following Drezner et al. (2006), in order to get

a balanced solution, we minimize the maximum deviation ∆K
k , on the set of stakeholders k ∈ K,

defined as

∆K
k (x) =

ŷK
∗

k − ŷKk (x)

ŷK
∗

k

.

Then, the distance of the strategy x from the ideal point is ∆K(x) = maxk∈K ∆K
k (x). Consequently,

∆k(x) is the objective to be minimizied to get the compromise solution searched for. This compromise

optimisation strategy is particularly suitable in case the stakeholders need some reciprocal concessions

between them in order to reach a consensus on a shared decision.

Illustrative Example: Plurality of Stakeholders

We apply the utility approach to the initial problem defined in Section 4 considering three stake-

holders e.g., committees of the council with different interests: Development committee, Planning

committee and Government committee. The weights wjk and zk are reported in Table 17. Using a
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Table 17: Values for wjk and zk.

Economic Impact Social Impact Environmental Impact zk
Planning committee 0.1 0.1 0.8 0.5
Development committee 0.1 0.2 0.7 0.4
Government committee 0.4 0.3 0.4 0.1

Figure 12: Optimal solution obtained by maximizing the overall performance aggregating the pref-
erences of all the stakeholders with the weights of the central planner.

utility approach we find the optimal solution shown in Figure 12.

From Figure 13 we can see that Environmental Impact is largely more important than the other

two criteria because it has a very high weight for the first two committees which are also the most

important ones. This is even more evident if this optimal strategy is compared with the strategy

obtained with a single DM presented in Section 4 and shown in Figure 3.

7 Conclusions

In this paper we proposed a general model for combinatorial optimization problems that is based on

variables xilt which take value 1 if facility i is activated in location l at time t, and 0 otherwise. We

believe that the model we are proposing has two main merits:

• from a more theoretical point of view, our model is in the crossroad of the three following main

combinatorial optimization problems:

– knapsack problems, because our model helps to choose the facilities to be activated as well

as the knapsack algorithms determine the items to be selected,

– location problems, because our model suggests where the selected facilities have to be

activated,
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Figure 13: Time distribution of the performances for the optimal aggregating preferences of all
stakeholders, with respect to the considered criteria.

– scheduling problems, because our model suggests also when activating the selected facili-

ties, possibly taking into account some precedence constraints;

• from a more application oriented point of view, our model permits to handle complex urban and

territorial planning problems in a multiobjective perspective, taking into account a plurality

of stakeholders and policy makers, considering also the uncertainty related to the outcomes of

the decision to be taken.

Let us point out that our model not necessarily has to be applied to optimization problems with a

combinatorial nature. Indeed, for example, the variable xilt can assume also the meaning of capital

allocated to facility i in location l at time t. Therefore the most distinctive feature of our approach is

the simultaneous consideration of space and time, so that we refer to our model in terms of space-time

model. With respect to future developments of the research related to the model we are proposing,

the two following points seem to us the most promising:

• efficient exact, approximate or heuristic algorithms and procedures to handle problems of big

dimension with many facilities, many constraints and many locations,

• applications to real world decision problems in order to test the contribution that our model

can give in terms of decision support and to define its possible areas of improvement and

enhancement.
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Salo, A., and Hämäläinen, R.P. (2010). Multicriteria decision analysis in group decision processes.

In Handbook of group decision and negotiation (pp. 269-283). Springer, Dordrecht.

Salo, A., Keisler, J., and Morton, A. (Eds.). (2011). Portfolio decision analysis: improved methods

for resource allocation (Vol. 162). Springer Science & Business Media.

Samuelson, P.A. (1937). A note on measurement of utility. The Review of Economic Studies, 4(2),

155–161.

Silva, W.D.M.F., Imbrosi, D., and Nogueira, J.M. (2017). Municipal Solid Waste Management:

Public Consortia as an Alternative Scale-Efficient? Lessons from the Brazilian Experience. Current

Urban Studies, 5(02), 185.

Smith, H.K., Harper, P.R., and Potts, C.N. (2013). Bicriteria efficiency/equity hierarchical location

models for public service application. Journal of the Operational Research Society, 64(4), 500-512.

Soltani, A., Hewage, K., Reza, B., and Sadiq, R. (2015). Multiple stakeholders in multi-criteria

decision-making in the context of municipal solid waste management: a review. Waste Manage-

ment, 35, 318-328.

Tofighian, A.A., and Naderi, B. (2015). Modeling and solving the project selection and scheduling.

Computers & Industrial Engineering, 83, 30-38.

52



Tzeng, G.H., Teng, M.H., Chen, J.J., and Opricovic, S. (2002). Multicriteria selection for a restaurant

location in Taipei. International Journal of Hospitality Management, 21(2), 171-187.

Verebes, T. (2013). Masterplanning the adaptive city: Computational urbanism in the twenty-first

century. Routledge.

Vetschera, R., and De Almeida, A.T. (2012). A PROMETHEE-based approach to portfolio selection

problems. Computers & Operations Research, 39(5), 1010-1020.

Vilkkumaa, E., Liesi, J., Salo, A., and Ilmola-Sheppard, L. (2018). Scenario-based portfolio model

for building robust and proactive strategies. European Journal of Operational Research, 266(1),

205-220.

Yadav, V., Karmakar, S., Dikshit, A.K., and Bhurjee, A.K. (2018). Interval-valued facility location

model: An appraisal of municipal solid waste management system. Journal of Cleaner Production,

171, 250-263.

Jiang, Y., Liang, X., Liang, H., and Yang, N. (2018). Multiple criteria decision making with inter-

val stochastic variables: A method based on interval stochastic dominance. European Journal of

Operational Research, 271(2), 632-643.

Wang, S., Huang, G.H., and Yang, B.T. (2012). An interval-valued fuzzy-stochastic programming

approach and its application to municipal solid waste management. Environmental Modelling &

Software, 29(1), 24-36.

Zuluaga, A., Sefair, J.A., and Medaglia, A.L. (2007). Model for the selection and scheduling of

interdependent projects. In Systems and Information Engineering Design Symposium, 2007. SIEDS

2007. IEEE (pp. 1-7).

53


