5,125 research outputs found

    O-GlcNAcase contributes to cognitive function in Drosophila

    Get PDF
    Contains fulltext : 219183.pdf (publisher's version ) (Open Access

    Development of Integrated Machine Learning and Data Science Approaches for the Prediction of Cancer Mutation and Autonomous Drug Discovery of Anti-Cancer Therapeutic Agents

    Get PDF
    Few technological ideas have captivated the minds of biochemical researchers to the degree that machine learning (ML) and artificial intelligence (AI) have. Over the last few years, advances in the ML field have driven the design of new computational systems that improve with experience and are able to model increasingly complex chemical and biological phenomena. In this dissertation, we capitalize on these achievements and use machine learning to study drug receptor sites and design drugs to target these sites. First, we analyze the significance of various single nucleotide variations and assess their rate of contribution to cancer. Following that, we used a portfolio of machine learning and data science approaches to design new drugs to target protein kinase inhibitors. We show that these techniques exhibit strong promise in aiding cancer research and drug discovery

    Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine

    Get PDF
    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein sequence or structure. Finally, we review techniques to identify recurrent combinations of somatic mutations, including approaches that examine mutations in known pathways or protein-interaction networks, as well as de novo approaches that identify combinations of mutations according to statistical patterns of mutual exclusivity. These techniques, coupled with advances in high-throughput DNA sequencing, are enabling precision medicine approaches to the diagnosis and treatment of cancer

    Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis

    Get PDF
    Background A non-invasive method to grade the severity of steatohepatitis and liver fibrosis is magnetic resonance imaging (MRI) based corrected T1 (cT1). We aimed to identify genetic variants influencing liver cT1 and use genetics to understand mechanisms underlying liver fibroinflammatory disease and its link with other metabolic traits and diseases. Methods First, we performed a genome-wide association study (GWAS) in 14,440 Europeans in UK Biobank with liver cT1 measures. Second, we explored the effects of the cT1 variants on liver blood tests, and a range of metabolic traits and diseases. Third, we used Mendelian randomisation to test the causal effects of 24 predominantly metabolic traits on liver cT1 measures. Results We identified six independent genetic variants associated with liver cT1 that reached GWAS significance threshold (p<5x10-8). Four of the variants (rs75935921 in SLC30A10, rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in PNPLA3) were also associated with elevated transaminases and had variable effects on liver fat and other metabolic traits. Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and BMI were causally associated with elevated cT1 whilst favourable adiposity (instrumented by variants associated with higher adiposity but lower risk of cardiometabolic disease and lower liver fat) was found to be protective. Conclusion The association between two metal ion transporters and cT1 indicates an important new mechanism in steatohepatitis. Future studies are needed to determine whether interventions targeting the identified transporters might prevent liver disease in at risk individuals

    Systematic identification of novel cancer genes through analysis of deep shRNA perturbation screens.

    Get PDF
    Systematic perturbation screens provide comprehensive resources for the elucidation of cancer driver genes. The perturbation of many genes in relatively few cell lines in such functional screens necessitates the development of specialized computational tools with sufficient statistical power. Here we developed APSiC (Analysis of Perturbation Screens for identifying novel Cancer genes) to identify genetic drivers and effectors in perturbation screens even with few samples. Applying APSiC to the shRNA screen Project DRIVE, APSiC identified well-known and novel putative mutational and amplified cancer genes across all cancer types and in specific cancer types. Additionally, APSiC discovered tumor-promoting and tumor-suppressive effectors, respectively, for individual cancer types, including genes involved in cell cycle control, Wnt/β-catenin and hippo signalling pathways. We functionally demonstrated that LRRC4B, a putative novel tumor-suppressive effector, suppresses proliferation by delaying cell cycle and modulates apoptosis in breast cancer. We demonstrate APSiC is a robust statistical framework for discovery of novel cancer genes through analysis of large-scale perturbation screens. The analysis of DRIVE using APSiC is provided as a web portal and represents a valuable resource for the discovery of novel cancer genes
    • …
    corecore