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ABSTRACT 
 

Computational genomics and genetics of developmental disorders  
 

Hongjian Qi 
 
 

Computational genomics is at the intersection of computational applied physics, math, 

statistics, computer science and biology. With the advances in sequencing technology, large 

amounts of comprehensive genomic data are generated every year. However, the nature of 

genomic data is messy, complex and unstructured; it becomes extremely challenging to explore, 

analyze and understand the data based on traditional methods.  The needs to develop new 

quantitative methods to analyze large-scale genomics datasets are urgent.  By collecting, 

processing and organizing clean genomics datasets and using these datasets to extract insights 

and relevant information, we are able to develop novel methods and strategies to address specific 

genetics questions using the tools of applied mathematics, statistics, and human genetics. 

This thesis describes genetic and bioinformatics studies focused on utilizing and 

developing state-of-the-art computational methods and strategies in order to identify and 

interpret de novo mutations that are likely causing developmental disorders. We performed 

whole exome sequencing as well as whole genome sequencing on congenital diaphragmatic 

hernia parents-child trios and identified a new candidate risk gene MYRF. Additionally, we 

found male and female patients carry a different burden of likely-gene-disrupting mutations, and 

isolated and complex patients carry different gene expression levels in early development of 

diaphragm tissues for likely-gene-disrupting mutations. 

 To increase the power to detect risk genes and risk variants, we developed a deep neural 

network classifier called MVP to accurately predict the pathogenicity of missense variants. MVP 

implemented an advanced structure of ResNet model and based on two independent data sets, 



 

MVP achieved clearly better results in prioritizing pathogenic variants than other methods. 

Additionally, we studied the genetic connection between developmental disorders and cancer. 

We found that in developmental disorder patients predicted deleterious de novo mutations are 

more enriched in cancer driver genes than non cancer driver genes. A Hidden Markov Model 

was implemented to discover cancer somatic missense mutation hotspots and we demonstrated 

many cancer driver genes shared a similar mode of action in developmental disorders and caner. 

By improving ability to interpret missense mutations and leveraging cancer genomics data, we 

can improve risk gene inference in developmental disorders. 
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Chapter 1 
 

Introduction 
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1.1    Overview 

The richness of data science lies in its connection with real-world problems: its goal is to 

solve real problems, and to do so we have to develop new tools with models rooted in these 

domains. Computational genomic and genetics is at the intersection of computational applied 

physics, applied math, statistics, computer science and biology, it is also big data science as tens 

of Zeta bytes of genomics data have been generated every year trying to solve domain specific 

genetic problems1.  However, the genomics data is messy, unstructured and heterogeneous; it has 

become extremely challenging to understand, analyze, and interpret multi-dimensional genomics 

datasets with traditional methods. New technologies are needed to address the computational 

challenges and integrate various types of data from next generation sequencing experiments. 

Over the past few decades, technological and methodological advances in human genetics 

and genomics have allowed accurate identification of genetic mutations in patients that are 

involved in rare diseases2-7. One of the fundamental problems of medical genetics is to associate 

the patients’ genotype to the phenotype8, which is the clinical feature of the rare diseases. This 

problem is complicated by various factors, such as the large mount of mutations observed in each 

individual and diverse type of human genetic variations from large chromosome abnormality to a 

single nucleotide change. Additionally, the genetic architecture varies across different diseases; 

some diseases are monogenic and caused by high penetrance variants9 while some diseases are 

polygenic and involved combination actions of many genes with small effect size mutations10,11. 

Currently more than 1,500 genes have been found to cause a broad range of 

developmental disorder diseases12,13, while many more disease associated risk genes still 

remained to be discovered.  Unfortunately, for patient carries a rare developmental disorder, 

unless the patient does have a well-established pathogenic variant, it still remains a considerable 



 

 3 

challenge to make accurate diagnosis and establish the connection between the disease and the 

tens of thousands of variants identified in the individual. In these situations, mutations must be 

prioritized to make further investigation12.  

The primary focus of this thesis is to develop novel computational methods to aid 

prioritization of mutations that are likely to be contributing to the diseases and identify risk genes 

that are associated with the disease. 

 

 

1.2    Next generation sequencing  

Next generation sequencing (NGS) technologies, also known as high-throughput 

sequencing, have revolutionized human genetics through massively parallel sequencing of 

multiple genes simultaneously12,14,15. NGS technologies are particularly useful to identify small 

genetic variations such as single nucleotide variants (SNVs) or small insertions and deletions 

(indels) that might contribute to diseases15,16. The sensitivity to detect SNVs and indels is very 

high for NGS technologies and has been proved with superior quality to detect mutations17.  

With the advancement of parallel sequencing and continuous decreasing in cost per genome, it is 

feasible to perform large-scale sequencing on collected parents data, a typical research strategy is 

illustrated in Fig 1.1. 
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Fig1.1 Strategy and key steps to apply NGS to human genetics 

 

NGS can be used to sequence entire genomes. Whole genome sequencing (WGS) studies 

have proved fruitful in uncovering risk candidate genes and disease associated mutations.18 The 

strategy to sequence family members including the child and both of their unaffected parents 

offers the ability to identify de novo mutations that are only occurred in the child and filter out 

rare benign inherited variants from parents. Those de novo mutations are sufficiently rare and 

multiple mutations hits in a gene from unrelated patients provide strong evidence for a causal 

link to the diseases. Consequently, for families where the disease affects neither parent, 

sequencing of the parents-child trio rather than proband alone can dramatically increase the 

clinic diagnostics in individuals with potential genetic disorders. NGS can also sequence specific 

areas of interest of human genome, currently the most widely used targeted sequencing region is 

Patients 
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whole exome sequencing (WES)19. The creation of exome-capture kits allowed researchers to 

sequence only coding regions, such sequencing experiments is faster and cheaper than sequence 

the whole genome, therefore accelerating the discovery of protein-coding mutations that are 

associated with disease. NGS can also be used to detect large genetic variations including copy 

number variation (CNV)20, which includes amplification or deletions of segments with more than 

thousands of base pairs of DNA. Recently WGS and WES have become primary choices for 

CNV detection and for studying of human diseases. Researchers have demonstrated the large 

impact of CNVs on a wide collection of pediatric conditions21, including congenital heart disease 

and other various developmental disorders22.  

Successful application of sequencing technology studies can be used to diagnose rare, 

severe, and likely monogenic disorders, such as Kabuki syndrome where the missense mutations 

in KMT2B that were considered causal, usually occurred as de novo mutations in the affected 

individual23. Another example is the application of WES/WGS to epileptic encephalopathy, a 

severe brain disorder that can be caused by multiple variants in multiple genes, where 

researchers discovered 31 novel genes using WES technologies recently24. These studies proved 

that sequencing technology is especially useful and critical for identifying disease-associated 

genes and mutations.  

 

1.3    Interpretation of sequence variants 

Identification and interpretation of the genetic variants responsible for causing diseases 

can be very challenging in clinical genetic testing since many variants, even in well-established 

risk genes, are classified as variants of uncertain significance (VUS)25, unless they are highly 

recurrent in patients. Our current categorization of genetic mutation falls in a range given the 
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understanding from clinical significance. A variant is almost certainly pathogenic for a disorder 

disease if it is a mutation directly contributes to the development of disease and is well 

established as disease causing in the literature and databases with a wide consensus9,25, while a 

benign variant is considered not to be the cause of the disease26 and mostly likely having no 

effects on patients. 

 The genetic interpretation of missense variants is particularly challenging because   

missense variants are the most abundant type of coding mutations and play important roles in a 

wide range of human genetic diseases, there was often insufficient patients sample size to 

determine whether the amino acid change is either detrimental or neutral as variants that were 

likely to cause the tested disease are usually deleterious and had a low population frequency 

under severe selection27. In order to improve the power to identify damaging missense variants 

given the same sample size, many in silico methods such as CADD28, VEST329, metaSVM30, M-

CAP31, and REVEL32 have been developed to utilize information from allele frequency in 

population, protein structures, conservation and advanced machine learning model such as 

gradient boosted decision trees. Those methods facilitated the interpretation and predictions by 

defining damaging missense variants with prediction sore suppress certain threshold. 

Unfortunately, those methods sometimes yield discordant predictions and have limited 

performance in recent large scale sequencing data.  In Chapter 5, we proposed a new prediction 

method, MVP, which uses a deep learning approach to leverage large training data sets and 

achieved better performance in prioritizing pathogenic missense variants than previous methods. 
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1.4    Genetic basis of congenital diaphragmatic hernia 

Congenital diaphragmatic hernia (CDH) is a severe birth defect of the diaphragm and 

lungs affecting about 1 per 3,000 live births33,34. In infants with CDH, malformation of the 

diaphragm creates a hole in the corner that could allow the abdominal organs to push into the 

chest cavity and thus disrupt the normal lungs development. About half of CDH patients are 

syndromic cases with associated anomalies including pulmonary hypoplasia, pulmonary 

hypertension and heart failure35,36 while the remaining are isolated cases. Despite advances in 

prenatal and postnatal care, CDH is still a life-threatening pathology in infants with high 

mortality and morbidity. 

The etiology of CDH is largely unknown in most cases, but there is strong evidence that 

genetic factors play an important role in the development of CDH37. The genetic contribution can 

be established by familial aggregation37, rare disease associated with CDH38, chromosome 

abnormalities9. In about one third of CDH patients, potential genetic causes can be identified in a 

wide range of genetic defects, such as small genetic variations such as snps or indels, or large 

genetic variants like chromosomal anomalies or copy number variations. Trisomy 13, 18, 21 are 

the most frequent CDH-associated aneuploidies38. Most single genes identified in CDH through 

the analysis of recurrent chromosomal anomalies38. Individual genes implicated in CDH 

including GATA4, ZFPM2, NR2F2 and WT1, many of them encode transcription factors and are 

pleiotropic genes that effect diaphragm development and have also been associated with other 

congenital anomalies in heart, brain, and genitalia. 

CDH is usually a sporadic condition, which refers to that CDH occurs infrequently within 

families; the low reproductive fitness of CDH patients can led to the hypothesis that de novo 

mutations with large effect sizes may explain a significant fraction of CDH patients. In 2013, the 
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DHREAMS study recruited 39 trios of unaffected parents and CDH children and performed 

WES. They observed an excess burden of likely to be deleterious de novo mutations among 

genes highly expressed during diaphragm development7.  No recurrent gene is identified with 

more than two damaging de novo mutations, indicating the genetic heterogeneity and potentially 

big number of candidate genes that could cause CDH. In chapter 4, we replicated the results of 

an excess of de novo mutation burden with a cohort of 357 CDH trios and identified a new CDH 

risk gene MYRF. 

 

1.5    Thesis outline 

The remaining of this thesis will be organized into five chapters. 

In Chapter 2, we described the detail procedures and pipelines used to detect and 

characterize de novo mutation in parents-child trio studies.   

In Chapter 3, we described the genetic analysis of congenital diaphragmatic hernia 

(CDH). We complied genetic data from whole exome and genome sequencing of a cohort of 357 

child-parent trios and identified MYRF as a new candidate risk gene for CDH. MYRF harbored 

four deleterious de novo mutations in four unrelated CDH patients, which is more than expected 

significantly (p-value < 10-9). We had also demonstrated that there are different genetic 

architectures for female and male CDH patients without additional anomalies: female isolated 

cases carry a substantial contribution from de novo mutations in whereas male isolated cases 

carry little contribution from de novo mutations. A manuscript, Genetic analysis of de novo 

variants reveals sex differences in complex and isolated congenital diaphragmatic hernia and 

indicates MYRF as a candidate gene, is currently under review. 



 

 9 

In Chapter 4, we examined the link between the genetic component of developmental 

disorders and cancers through analyzing whether genes associated with cancer could affect genes 

contribute developmental disorders. We observed a significant enrichment of loss of function 

and predicted damaging missense variants in cancer driver genes among cases with 

developmental disorders; then we proposed a Hidden Markov Model to demonstrate that 

predicted damaging missense de novo mutations are enriched in cancer mutation hotspots, 

suggesting a similar mode of dysregulation of the mutated proteins. Results have been published 

in the paper: Deep genetic connection between cancer and developmental disorders.  

In Chapter 5 we developed a deep learning method called MVP to better predict and 

identify missense variants pathogenicity. MVP used advanced ResNet structure to train on large 

mounts of putative pathogenic variants aggregated from several curated clinical databases. To 

explicitly consider the difference in mode of action and genetic effect size of pathogenic 

missense variants, we trained MVP model for constrained genes and non constrained genes 

separately. We assessed the performance of MVP along with other methods using two 

independent datasets, de novo germline mutations from recent large-scale genetic studies and 

cancer somatic mutation hotspots, and showed that MVP achieved much better precision under 

similar sensitivity than previously published methods, especially in genes that are not severely 

constrained. The manuscript MVP: predicting pathogenicity of missense variants by deep 

learning is currently under review.  

Chapter 6 will present overall conclusions and discuss future research directions to better 

understand the genetics of developmental disorders.  
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Chapter 2 
 

Identification and characterization of de novo mutations 
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2.1    Introduction  

Next-generation sequencing (NGS) has become more affordable and accessible to 

researchers and clinical geneticists. As a result, our understanding of the genetics of 

developmental disorders has rapidly advanced over the past few years. A recent highlight is that 

de novo mutations play an important role in sporadic diseases such as autism spectrum disorder39 

and congenital heart disease5, those mutations are either newly formed during gamete formation 

or occur very early in embryonic development and, thus, are unique to the child when compared 

to the parent. New disease associated risk genes are discovered by the recurrent de novo 

mutations within same gene and excess of de novo mutations when compared to background led 

to the discovery of new pathways and prioritization of genes that relevant to the disease40.  

In principle, detecting de novo mutations is straightforward. We search for Mendelian 

error in the child genotype, which is an allele in the individual that could not have been inherited 

from either of its biological parents. One major issue in de novo mutation identification is to 

distinguish true positives from false positives, it is complicated by sequencing errors, sequence 

reads mapping errors as well as the rare occurrences of de novo mutations. Therefore, we needed 

to establish a pipeline with rigorous thresholds to determine high quality candidate de novo 

mutations.  
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2.2    Genetic variation data generation from child-parents family 

Identification of de novo mutations in one family requires the genetic information of the 

child and both parents. The study designs of finding de novo mutations that only exist in affected 

children but not in healthy parents using trio based sequencing data are similar for patients with 

severe early onset diseases.  In the work of congenital diaphragmatic hernia study, we performed 

whole exome sequencing (WES) at the University of Washington of 79 trios. We collected 

genomic DNA from whole blood or saliva and/or skin/diaphragm tissue samples from the 

affected patients and both parents. Genomic DNA (~3 µg) was extracted and sheared to 200-300 

base pairs using covaris acoustic adaptor, the fragments were end-repaired, adenylated, and 

sequencing adaptor oligonucleotides ligated for sequencing preparation. Libraries were barcoded 

using the Illumina index read strategy and was subsequently enriched for sequences with 5′ and 

3′ adapters by PCR amplification with primers complementary to the adapter sequences. Exon 

was captured with the Nimblegen SeqCap EZ Exome V2 exome capture reagent (Roche). 

Samples were multiplexed and sequenced with paired-end 75bp reads on Illumina HiSeq 2500 

platform according to the manufacturer’s instructions. The sequencer outputted the paired end 

raw sequencing data into two matching FASTQ format files. 

The exome sequencing variant calling pipeline was based on the Broad Institute’s best 

practices. Briefly, we aligned FASTQ files of raw sequence reads to the reference genome (build 

GRCh37) using BWA-mem software41, and then we used Picard (v1.67) software to mark PCR 

duplicates. Variants were jointly called using the Genome Analysis Toolkit (GATK) 

HaplotypeCaller in all WES samples42, and GATK generated a standard Variant Call Format 

(VCF) file with genetic variation information for the sequenced samples. We annotated the VCF 
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file using ANNOVAR software43 to have complete gene annotation as well as function 

annotation. Further downstream analyses such as identification of de novo mutation can be 

performed by in house scripts. Figure 2.1 provides an overview of the exome sequencing data 

processing pipeline.  

 

Figure 2.1 Exome sequencing variant calling pipeline 
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2.3    Pipeline to identify de novo mutations 

All candidate de novo mutations were called from child-parents sequencing data using 

customized scripts written in python. The scripts took two inputs, one GATK generated VCF file 

with genotype information for each individuals and one pedigree file, which described the family 

relationship.  To identify potential de novo mutations, we first selected the sites where the child 

had a heterozygous or homozygous alternative genotype and both parents had homozygous 

reference, then we filtered for high quality variants based on genotype information and various 

site-level annotations, which summarize context information from the samples as well as 

information from other databases.  

The filters we used to identify high confident de novo mutations are empirical optimized. 

In order to remove miscalled genotype in the proband, we first set a threshold of alternate allele 

balance (minimum 20% if alternate read depth greater than or equal to 10 or minimum 28% if 

alternate read depth less than 10). Ideally the child with a heterozygous mutation should have 

50% of the sequencing reads carrying the alternative allele, however, there is sequencing error 

and a slight bias towards reference since it is easier to capture sequences with the reference allele 

than the alternative allele, so we allowed the minimum allele balance of the child to be 20%. To 

avoid miscalling a homozygous genotype in the parents, we required the alternate allele balance 

to be less than 3.5% in the parents. We further filtered based on depth (minimum 10 reads total 

and 5 alternate allele reads) in proband and minimum depth of 10 reference read in parents, 

failing such requirements indicates the sites are poorly sequenced and we were under power to 

determine true genotype in the samples. We also filtered mutation based on PL, which is 

normalized Phred-scaled likelihoods of the possible genotypes considered in the variant record 
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for each sample and GQ, which is assigned genotype quality. The basic formula for calculating 

PL is:  

                 𝑃𝐿 = −10 ∗ log 𝑃(𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒|𝐷𝑎𝑡𝑎) 

where P(Genotype | Data) is the conditional probability of the Genotype given the sequence data 

that we have observed. For the typical case of a monomorphic site (one single alternative allele) 

in a human diploid cell, the PL field will contain three numbers, corresponding to the three 

possible genotypes (0/0, 0/1, and 1/1). The PL values are "normalized" so that the PL of the most 

likely genotype is 0 and all others are scaled relative to the most likely genotype. Therefore, we 

set a minimum PL of 60 in the proband which corresponds to the genotype in question being a 

million times less likely to be the true genotype than the reported most likely genotype. The 

value of GQ is simply the difference between the second lowest PL and the lowest PL (which is 

always 0), since we only want to keep the reference genotype in parents; we set the minimum 

GQ to be 30 in the parents.  

For site-level annotation filtering, we set the max Fisher Strand to 25 to reduce sequence 

bias and minimum Quality by Depth to 2 to reach a high variant confidence. We also required 

the max population frequency to be 0.1% from ExAC database44 and cohort allele count to be 6 

since given the size of the dataset, any mutation was seen multiple times in other individuals in 

population or the same data set was not likely to be a true de novo mutation.  Additionally, 

variants located in segmental duplication regions (maximum score 0.98) were excluded. 

 In the end, all candidate de novo variants were manually inspected in the Integrated 

Genomics Viewer45 (IGV, http://software.broadinstitute.org/software/igv/) to future remove false 

positive. 
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2.4    Quality control of de novo mutations 

The Sanger sequencing method was developed by Frederick Sanger and colleagues in 

197746, it was the most widely used sequencing method to sequence single strands of DNA with 

a high degree of certainty and had become the gold standard for DNA sequencing. It is widely 

accepted that variants found using NGS should be validated with Sanger confirmation. To 

support our choice of filters used to find de novo mutations identification, we submitted some of 

the identified de novo variants to Sanger confirmation. In a recent study of congenital heart 

disease, we submitted 409 de novo mutations for validation by Sanger sequencing, 394 of them 

were confirmed (specificity 96.3%)47.  In the study of congenital diaphragmatic hernia described 

in Chapter 3, we validated all the de novo likely gene disrupting (including frameshift, nonsense 

and splicing site) mutations by Sanger sequencing, all 40 were confirmed (specificity 100%). 

Overall, more than 95% of variants were confirmed to be de novo, indicating high precision and 

confirming the overall robustness of the approach.  

The average de novo mutation rate is estimated to be 1.2 x 10-8 per nucleotide per 

generation48, so we can estimated that about 1 de novo per trio will be observed in coding region. 

The overall de novo mutation rate in the 1213 probands with congenital heart disease (1.05 

events per proband on average) was consistent with a background de novo mutation rate47. 

Additionally, the average number of synonymous de novo variants per trio is comparable 

between cases and controls samples that are identified by similar pipelines. 

Given a particular de novo mutation rate, due to random variation, the frequency of de 

novo mutations detected per proband is expected to follow a Poisson distribution49. In the 

congenital heart disease study, the observed data in both case and controls is consistent with the 

Poisson process model (Fig. 2.2). 
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Figure 2.2 Distribution of de novo mutations per person follows an expected Poisson distribution 
from Homsy et al. 
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Chapter 3 
 

De novo mutations reveal sex differences in complex and isolated 

congenital diaphragmatic hernia and indicate MYRF as a candidate 

gene 
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3.1    Introduction  

Congenital diaphragmatic hernia (CDH) is an anatomical defect of the diaphragm that 

leads to the protrusion of abdominal viscera into the thoracic cavity, compressing the lungs in 

utero and resulting in lung hypoplasia. CDH affects approximately 1 in 3000 live births and is 

often lethal33-35. It can be isolated (50-60%) or associated with other birth defects and 

neurodevelopmental disorders35,36. Among these, cardiovascular malformations are the most 

common (~35% of CDH patients)50. Lung hypoplasia and the associated pulmonary hypertension 

are the main cause of the mortality and morbidity of CDH. Despite greatly improved survival 

rate with neonatal and surgical interventions, the overall mortality remains at  ~30%51-53. 

The diaphragm develops between the fourth and tenth weeks of human gestation and in 

mice between embryonic day (E) 10.5 and E15.554. Both environmental and genetic factors have 

been implicated. The mesenchymal-derived pleuroperitoneal folds (PPFs) play a key role in 

diaphragm development, and mutations in PPF-derived muscle connective tissue fibroblasts can 

result in CDH55. Most genes implicated in CDH have been identified through recurrent 

chromosomal anomalies and mutant mice54,56-61. The etiology is unclear for most CDH patients. 

The historical low reproductive fitness of CDH has limited the number of familial cases for 

genetic analysis. Others and we have reported an enrichment of de novo deleterious genetic 

events in sporadic CDH patients7,62,63, especially LGD (likely gene disrupting) variants in 

complex cases.  

To identify novel risk genes and compare the genetic architecture of complex and 

isolated cases, we performed whole exome sequencing (WES) in 79 proband-parent trios and 

whole genome sequencing (WGS) in 192 trios. Combined with previously published cases7,62, 

we analyzed a total of 357 trios (Table 3.1), including 148 complex and 209 isolated cases.  



 

 20 

Table 3.1 Summary of CDH WES/WGS data sets.  

Batch Phenotype Number of trios Total Previously 
published 

DHREAM_WES Complex 39 39 Yu et al 2015 

BOSTON_WES Complex 29 74 Longoni et al 
2017 Isolated 45 

DHREAM_WES 
II 

Complex 65 79   
Isolated 14 

DHREAM_WGS Complex 42 (27 with WES negative) 192   
Isolated 150 

Total Complex 148 357   
  Isolated 209 

 

We observed that there is different contribution from de novo variants in female and male 

CDH cases, and genes implicated by LGD variants in complex and isolated CDH cases have 

distinct expression patterns in early diaphragm development. Finally, we identified MYRF as a 

new candidate risk gene with de novo variants in four complex CDH patients. 

 

3.2    Results 

3.2.1    Clinical data of the cohort 

Patients were recruited from the multicenter, longitudinal DHREAMS study64 and from 

the Boston Children’s Hospital/Massachusetts General Hospital. In the combined cohort, there 

were 210 (59%) male and 147 (41%) female CDH patients. The gender distribution with increase 

male prevalence (1.4:1) is consistent with published retrospective and prospective studies53,65. 

Among the 148 complex cases, the most frequent anomalies were congenital heart disease 

(41%), but neurodevelopmental delay, gastrointestinal, and other malformations were common 

(Table 3.2). A total of 209 (59%) patients had isolated CDH without additional anomalies at last 

contact63. In the DHREAMS cohort of 283 patients, 229 were part of the neonatal cohort (with 

56% males), of which 152 had formal neurodevelopmental assessments at 2 years and/or 5 years. 
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Nine (5.9%) patients evaluated had neurodevelopmental delay (NDD) with scores greater than 2 

standard deviations below the mean. 

          Table 3.2 Clinical and phenotypic summary of CDH patients (n=357) 

Characteristics Number Percentage (%) 

Male/Female 210/147 59/41 

Left/Right/Other CDH location 269/56/32 75/16/9 

White/Asian/Black/Other or unknown 240/13/10/94 67/4/3/26 

Isolated cases 209 59 

Complex cases 148 41 

  congenital heart disease 60 41 

  gastrointestinal anomaly 14 10 

  structural brain anomaly 15 10 

  other congenital malformations 67 45 

  neurodevelopmental delay 14 10 

 

3.2.2    Significant enrichment of coding de novo variants in both complex and isolated 

CDH 

We identified 461 protein-coding de novo variants (~1.29 per patient), including 190 

damaging de novo variants in LGD and predicted deleterious missense variants (“D-mis” defined 

as CADD score ≥ 25). The overall de novo frequency in cases was 1.33 (255/192) in WGS and 

1.25 (206/165) in WES. 41.2% (147/357) of probands carried at least one damaging de novo 

variant, including one de novo LGD in 8.4% (30/357), one de novo D-mis in 22.7% (81/357), 

and two or more damaging de novos in 10.1% (36/357). 
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We observed an overall enrichment of damaging de novo variants (fold enrichment 

(FE)=1.7, P-value=4.2x10-4 for LGD, and FE=1.5, P-value=3.2x10-6 for D-mis, respectively) in 

all CDH patients based on the expected mutation rate calibrated by the method described in 

Samocha et al.40,66(Table 3.3). The positive predictive value (PPV) estimated from the 

enrichment rate for LGD and D-mis variants is 35%, which indicates about 67 damaging de novo 

variants contribute to CDH. The enrichment is still significant when stratifying complex and 

isolated CDH or by sex (Table 3.3). 22% of complex and 16% of isolated cases are explained by 

damaging de novo variants.  

 

Table 3.3 Enrichment of de novo variants in CDH cases. ^LGD: likely-gene-disrupting, including 
frameshift, stopgain, stoploss, and splicing variants; *D-mis: missense predicted to be damaging by 
CADD phred score >= 25; ~Background expectation calibrated based on Samocha et al 2014 and Ware et 
al 201540,66. 
 

We then tested whether the burden of damaging de novo variants were concentrated in 

constrained genes (defined as ExAC pLI≥0.5)67 across variant types and sub-phenotypes. 

Overall, the burden of LGD variants was concentrated in constrained genes for both complex and 

Case groups Variant type Number of 
variants 

Background 
expectation~ 

Fold 
enrichment P-value 

All (n=357) 
  

silent 108 109 0.99  5.37E-01 
missense 290 240 1.21  9.60E-04 
D-mis* 136 90 1.52  3.21E-06 
LGD^ 54 33 1.65  4.24E-04 
D-mis and LGD 190 123 1.55  9.81E-09 

Complex 
(n=148) 

D-mis* 61 37 1.64  2.08E-04 
LGD^ 23 13 1.69  1.23E-02 
D-mis and LGD 84 51 1.66  1.22E-05 

Isolated 
(n=209) 
  

D-mis* 75 53 1.43  2.02E-03 
LGD^ 31 19 1.61  8.03E-03 
D-mis and LGD 106 72 1.48  9.04E-05 

Female 
(n=147) 

D-mis* 64 37 1.71  4.84E-05 
LGD^ 26 13 1.89  2.02E-03 
D-mis and LGD 90 51 1.76  5.74E-07 

Male (n=210) 
  

D-mis* 72 52 1.38  5.53E-03 
LGD^ 28 19 1.47  3.25E-02 
D-mis and LGD 100 71 1.40  7.78E-04 
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isolated cases. The burden of D-mis variants was concentrated in constrained genes for complex 

cases, whereas for isolated cases, the burden of D-mis variants was concentrated in other genes 

(pLI<0.5 or not available) (Table 3.4). This suggests that de novo pathogenic variants in 

constrained genes are more likely to cause syndromic abnormalities while such variants in other 

genes are more likely to cause isolated cases. Since other genes are generally not dosage 

sensitive, the observed burden of D-mis in these genes suggests a role of dominant negative or 

gain of function in isolated CDH. 

 

Table 3.4 De novo enrichment based on geneset and sub-phenotype distribution. * Geneset was 

grouped as constrained gene (ExAC pLI>=0.5) and Other gene (ExAC pLI<0.5) 

Variant 
type 

Phenotyp
e Geneset* 

Number 
of 
variants 

Observat
ion  
rate 

Backgro
und 
expectati
on 

Expectati
on rate 

Fold 
enrichme
nt 

p-value 

LGD 
  
  
  

Complex 
(n=148) 
  

Constrain
ed 12 0.08  4.9 0.03  2.43  0.005 

Other 11 0.07  8.7 0.06  1.27  0.255 
Isolated 
(n=209) 
  

Constrain
ed 15 0.07  7 0.03  2.15  0.005 

Other 16 0.08  12.2 0.06  1.31  0.173 

D-mis 
  
  
  

Complex 
(n=148) 
  

Constrain
ed 31 0.21  15.2 0.10  2.04  0.0002 

Other 30 0.20  22 0.15  1.36  0.06 
Isolated 
(n=209) 
  

Constrain
ed 28 0.13  21.4 0.10  1.31  0.098 

Other 47 0.23  31.1 0.15  1.51  0.005 
 

3.2.3    Different contribution of de novo variants to male and female CDH cases 

Although CDH is more common in males, the enrichment of damaging de novo variants 

is higher in females than in males (FE=1.8 in female, FE=1.4 in male) (Table 3.3). We estimated 

that 27% of females could be explained by LGD or D-mis variants compared to 14% of males. In 
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female cases, the enrichment rate of LGD or D-mis is comparable between complex and isolated 

cases (Table 3.5). 

 

Table 3.5 De novo enrichment based on sex and sub-phenotype distribution 

Variant 
type Phenotype Gender Number of 

variants 
Observati
on rate 

Background 
expectation 

Expectatio
n rate 

Fold 
enrichment p-value 

LGD 
 
 
 

Complex 

Male 
(n=88) 14 0.16 8 0.09 1.75 0.0339 

Female 
(n=60) 9 0.15 5.6 0.09 1.61 0.115 

Isolated 

Male 
(n=122) 14 0.12 11.1 0.09 1.26 0.226 

Female 
(n=87) 17 0.20 8.1 0.09 2.09 0.0043

1 

D-
mis 
 
 
 

Complex 

Male 
(n=88) 36 0.41 21.9 0.25 1.64 0.0035 

Female 
(n=60) 25 0.42 15.3 0.26 1.64 0.0136 

Isolated 

Male 
(n=122) 36 0.30 30.4 0.25 1.19 0.174 

Female 
(n=87) 39 0.45 22.1 0.26 1.76 0.0007

5 
 

In contrast, in male cases, the enrichment rate is much higher in complex cases than 

isolated cases. In fact, there is essentially no enrichment of LGD or D-mis variants in male 

isolated cases (Figure 3.1a and Table 3.5). Furthermore, in isolated female cases, LGD variants 

are mainly enriched in constrained genes (FE=3.3, P=0.001, Figure 3.1a), and D-mis variants 

were mainly in other genes (FE=2.2, P=0.0002) (Supplementary Table 3.6, Figure 3.1a). In 

complex CDH, the difference in enrichment rate of LGD and D-mis de novo variants in 

constrained genes between female and male cases is much smaller; and there is no significant 

enrichment of D-mis in other genes in either female or male cases (Table 3.6, Figure 3.1b). 
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Table 3.6 De novo enrichment based on geneset in sex and sub-phenotype distribution.  
* Geneset was grouped as constrained gene (ExAC pLI>=0.5) and Other gene (ExAC pLI<0.5) 
 

Variant 
type 

Phenotyp
e 

Genese
t* 

Number 
of 
variants 

Observa
tion rate 

Backgro
und 
expectati
on 

Expectat
ion rate 

Fold 
enrichm
ent 

p-value 

LGD 

Complex 
male 
(n=88) 

Constra
ined 6 0.07  2.9 0.03  2.09  0.071 

Other 8 0.09  5.1 0.06  1.56  0.147 
Complex 
female 
(n=60) 

Constra
ined 6 0.10  2.1 0.03  2.91  0.019 

Other 3 0.05  3.5 0.06  0.85  0.686 

D-mis 

Complex 
male 
(n=88) 

Constra
ined 17 0.19  8.9 0.10  1.92  0.00964 

Other 19 0.22  13 0.15  1.46  0.0715 
Complex 
female 
(n=60) 

Constra
ined 14 0.23  6.3 0.11  2.22  0.00554 

Other 11 0.18  9 0.15  1.23  0.29 

LGD 

Isolated 
male 
(n=122) 

Constra
ined 5 0.04  4 0.03  1.26  0.366 

Other 9 0.07  7.1 0.06  1.27  0.285 
Isolated 
female 
(n=87) 

Constra
ined 10 0.12  3 0.03  3.34  0.00108 

Other 7 0.08  5.1 0.06  1.36  0.257 

D-mis 

Isolated 
male 
(n=122) 

Constra
ined 17 0.14  12.3 0.10  1.38  0.117 

Other 19 0.16  18.1 0.15  1.05  0.445 
Isolated 
female 
(n=87) 

Constra
ined 11 0.13  9.1 0.11  1.20  0.311 

Other 28 0.32  13 0.15  2.15  0.000204 
 
 

3.2.4    Genes implicated by de novo LGD variants in complex and isolated CDH cases have 

distinct expression patterns in early diaphragm development  

Genes associated with CDH are often expressed in pleuroperitoneal folds (PPF), an early 

structure critical in the developing diaphragm68,55. We analyzed the expression patterns of genes 

with LGD and D-mis variants using a mouse E11.5 PPF data set69. Isolated and complex cases 

have different patterns of LGD and missense variant burden. In complex cases, LGD de novo 

variants are dramatically enriched in genes in the top quartile of expression in developing 
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diaphragm (E11.5) (FE=4.7, P-value=7x10-7) (Table 3.7, Fig. 3.2). By contrast, in isolated cases, 

the burden of LGD de novo variants is distributed across genes with a broad range of expression 

in PPF (Table 3.7, Fig. 3.2).  

 

Table 3.7 The expression pattern of genes with damaging de novo variants in mouse embryonic day 
(E) 11.5  * Total of 18,000 genes were included for ranking in quartilation. 
 

Varian
t type 

Phenoty
pe 

Quartile
* 

Number 
of 
variants 

Observa
tion rate 

Backgro
und 
expectati
on 

Expectat
ion rate 

Fold 
enrichm
ent 

p-value 

LGD 

Complex  

Q1 16 0.11  3.4 0.02  4.67  0.000000
698 

Q2 3 0.02  3.5 0.02  0.87  0.67  
Q3 2 0.01  3.1 0.02  0.65  0.81  
Q4 2 0.01  2.6 0.02  0.78  0.73  

Isolated 

Q1 9 0.04  4.8 0.02  1.86  0.06  
Q2 11 0.05  4.9 0.02  2.25  0.01  
Q3 8 0.04  4.3 0.02  1.84  0.07  
Q4 2 0.01  3.6 0.02  0.55  0.88  

D-mis 

Complex  

Q1 22 0.15  9.2 0.06  2.39  0.000232 
Q2 17 0.12  10.5 0.07  1.62  0.04  
Q3 14 0.10  9.7 0.07  1.45  0.11  
Q4 7 0.05  6.3 0.04  1.12  0.43  

Isolated 

Q1 20 0.10  13 0.06  1.54  0.04  
Q2 21 0.10  14.8 0.07  1.42  0.08  
Q3 16 0.08  13.6 0.07  1.17  0.30  
Q4 16 0.08  8.8 0.04  1.81  0.02  
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Figure 3.1. Female and male CDH cases have different enrichment rate of damaging de novo 
variants. (a) Enrichment of LGD variants and D-mis in constrained or other genes in isolated female and 
male cases. Constrained genes with LGD variants and other genes with D-mis variants are mainly 
enriched in female isolated cases. There is no enrichment of damaging de novo variants in isolated male 
cases. (b) Enrichment of LGD and D-mis variants in constrained or other genes in complex female and 
male cases. Both LGD and D-mis de novo variants were mainly enriched in constrained genes in complex 
cases. P-values shown are from tests of enrichment analysis. Red dots represent female cases, blue dots 
represent male cases. Bars represent the 95% confidence intervals (CIs) of the point estimates. 
Constrained genes: genes with ExAC pLI≥0.5. Other genes: genes with pLI<0.5 or no pLI estimate from 
ExAC; D-mis are missense variants with CADD Phred score≥25. 
 
 

Figure 3.2. Isolated and complex cases have different enrichment patterns of LGD de novo variants. 
Enrichment rate of LGD de novo variants are shown in gene sets grouped by expression rank in E11.5 
pleuroperitoneal folds (PPFs). In complex CDH cases, LGD de novo variants are dramatically enriched in 
the genes within the top quartile (0-25%) of expression in developing diaphragm (E11.5), and show no 
trend of enrichment in other quartiles. In isolated cases, LGD de novo variants have similar enrichment 
(~2x) across the 0-75% range of PPF gene expression. P values shown are from a test of enrichment. Bars 
represent the 95% CIs of the point estimates.  
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3.2.5    MYRF is a novel candidate risk gene of CDH 

Two genes are observed with multiple damaging de novo variants. Wilms tumor 1 (WT1) 

has been previously implicated in CDH70 and has two D-mis variants. Myelin Regulatory Factor 

(MYRF), a transcription factor, has one de novo LGD and three D-mis variants (Fig. 3) in four 

complex CDH patients (p=2x10-10, based on comparison to expectation from background 

mutations 40,66) (Table 3.8). A recent study of congenital heart disease (CHD) 47,71 reported three 

additional damaging de novo missense variants (p.F387S, p.Q403H and p.L479V) in MYRF 

(Table 3.8, Fig 3.3). All four CDH patients had CHD (Table 3.8). The CHD patient with the 

MYRF p.Q403H variant had hemidiaphragm eventration. Genitourinary anomalies were present 

in six of the seven patients, a female had a blind-ending vagina with no internal sex organs and 

five males had ambiguous genitalia or undescended testes. MYRF is a constrained gene intolerant 

of loss of function variants in the general populations (ExAC67 pLI=1). Although it has not 

previously been implicated in CDH or CHD, it is highly expressed in developing diaphragm and 

heart (ranked top 21% and 14% in mice E11.5 PPF69  and E14.5 heart 5, respectively). Genital 

malformation may share developmental processes72 because PPF is physically connected 

dorsally to urogenital ridge. 

Table 3.8. De novo variants of MYRF identified in CDH and CHD patients. Abbreviation: 
CDH(Congenital diaphragmatic hernia) ; CHD (congenital heart disease); ASD (Atrial Septal Defect); 
VSD (Ventricular septal defect); TOF (Tetralogy of Fallot). The last three patients are ascertained by 
CHD as describe in Jin et al 2017 71 
 

Sample 
ID Sex Diaphragm 

defect Heart defect Genital defect Protein CADD 

01-1008 Male CDH ASD,VSD,TOF bilateral undescended 
testes 

p.G81Wfs
*45 27.3 

01-0429 Female CDH VSD 
no internal genital 
organs, external blind-
ending vagina 

p.G435R 32 

04-0042 Male CDH ASD,VSD NA p.V679A 25.9 
05-0050 Male CDH hypoplastic left heart syndrome ambiguous genitalia p.R695H 34 

1-02264 Male NA abnormal aorta 
ambiguous genitalia, 
hypospadias, 
undescended testis 

p.F387S 27.9 
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1-03160 Male 
right hemi-
diaphragm 
eventration 

abnormal atrial septum, pulmonary 
vein and arteries, systemic vein, 
aorta, aortic valve, mitral valve, 
ventricular septum 

undescended testis p.Q403H 27.6 

1-07403 Female NA abnormal aorta and aortic valve NA p.L479V 23.9 

 

The three variants identified in CHD patients and p.G435R are located in the conserved 

DNA binding domain (DBD) of MYRF (Fig. 3.3), and could alter DNA binding73. The other two 

D-mis variants (p.V679R and p.R695H) are located in the intramolecular chaperone auto-

processing domain (ICD) in a leucine zipper41. Mutations in the leucine zipper of the ICD 

domain may inhibit the trimerization of MYRF, resulting in the failure of formation of the N-

terminal trimer41 which is important for the transcription factor function74. MYRF is thought to 

be an essential transcription factor for oligodendrocyte differentiation and myelination75. 

Conditional deletion of Myrf impaired motor learning76,77 and the individual with the p.V679A 

variant we assessed at two years old had intellectual disability.  

 

Figure 3.3. De novo variants identified in MYRF. Schematic of the MYRF protein with predicted 
sequence features, including N-terminal Proline Rich region, DNA-binding domain (DBD) and 
intramolecular chaperone domain (ICD). Variants identified in CDH indicated as black arrow, variants 
identified in congenital heart disease cases indicated with red arrows. 

 

 

 

 

 

 

 



 

 30 

3.3    Discussions 

CDH is slightly more common in males. For the first time, our study suggests that male 

and female CDH may have a different genetic architecture, especially among isolated CDH 

cases. Damaging de novo variants with large effect have a substantial contribution to isolated 

female cases but little contribution to isolated male cases. Given the higher frequency of males 

among isolated cases, a plausible explanation is that polygenic risk from inherited variants alone 

can cause isolated CDH in males, but due to a female protective effect78, additional highly 

penetrant de novo variants are often required to cause CDH in females to pass the threshold of 

liability. This is similar to what has been observed in autism which is also more common among 

males 39. Since there is a similar male/female ratio in overall cohort and our neonatal cohort 

(1.4:1), this difference is unlikely due to ascertainment or survival bias. The parental ages for 

male and female probands were similar and cannot account for the differences we observed in de 

novo variants.  

Additionally, we found genes implicated in isolated and complex cases have distinct 

expression patterns in early development. In complex CDH, the burden of LGD and D-mis 

variants are concentrated in genes highly expressed in the FFP, an early embryonic diaphragm 

precursor, consistent with the pleiotropic effects of these genes on diaphragm and other 

organogenesis. By contrast, the burden of LGD variants in isolated cases is distributed across 

genes with a broader range of expression in PPF. Since the bulk expression data from PPFs is the 

sum of different cell types68, the lack of correlation of LGD enrichment and expression level in 

PPF suggests the possibility that a substantial portion of the implicated genes in isolated cases 

could be expressed only in sub populations of cells in the PPF that are not relevant to 

organogenesis in other parts of the body. Single-cell mRNA-sequencing will be necessary to 
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analyze gene expression pattern in specific cell types and further assess the cell type(s) 

responsible for isolated CDH.  

Finally, MYRF is a novel candidate risk gene of CDH. The four CDH patients carrying 

damaging de novo variants in MYRF all have congenital heart defects, genitourinary anomalies 

including ambiguous genital, and this likely represents a novel syndrome. As we identify larger 

numbers of patients with mutations in genes associated with CDH, we will be able to better 

describe the spectrum of disease associated with the gene as well as the clinical outcomes 

including risk of pulmonary hypertension and respiratory complications which are life 

threatening concerns for CDH patients. Identification of additional high risk CDH genes should 

elucidate the developmental biology and provide targets for treatment and prevention. 

 
 
 

3.4    Material and methods 

3.4.1    Patient cohorts 

A total of 357 CDH patients and their unaffected parents were recruited for analysis in 

this study, including 74 trios from Boston Children’s Hospital (BCH) and Massachusetts General 

Hospital (MGH)62 (Boston Cohort) and 39 trios from a previous study 7 (Table 4.1). Two 

hundred and eighty-three trios were recruited as part of the DHREAMS (Diaphragmatic Hernia 

Research & Exploration; Advancing Molecular Science) study (http://www.cdhgenetics.com/)63. 

Neonates, children and fetal cases with a diagnosis of diaphragm defects were eligible for 

DHREAMS. Clinical data were abstracted from the medical chart by study personnel at each of 

16 clinical sites. Data on prenatal history, neonatal outcome, and longitudinal follow-up data 

including Bayley III and Vineland II developmental assessments and a parent interview about the 

patient's health since discharge at 2 years of age and/or 5 years of age were gathered in our birth 
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cohort. A complete family history of diaphragm defects and major malformations was collected 

on all patients by a single genetic counsellor, and no patients had a family history of CDH.  

Patients without additional birth defects or neurodevelopmental disorder (NDD) at last 

contact were classified as isolated, and patients with the additional birth defects or NDD were 

classified as non-isolated (Details previously published7,63). The diaphragm lesion was classified 

as left, right, bilateral or central. Pulmonary hypoplasia, cardiac displacement and intestinal 

herniation were considered to be part of the diaphragm defect sequence and were not considered 

to be an additional malformation. Subjects from BCH and MGH were described previously62. A 

blood, saliva, and/or skin/diaphragm tissue sample was collected from the affected patient and 

both parents. All participants provided informed consent/assent for participation in this study, 

which was approved by the institutional review boards of each participate study site. 

 

3.4.2    Whole exome and whole genome sequencing of case trios 

We included previously two sets of WES data for analysis7,62. We performed whole 

exome sequencing (WES) at the University of Washington in 79 additional trios using genomic 

DNA largely from whole blood (73 trios, 93.4%), with a minority from saliva or tissues. DNA 

was processed with the Nimblegen SeqCap EZ Exome V2 exome capture reagent (Roche) and 

TruSeq DNA Sample Prep Kits (Illumina). Samples were multiplexed and sequenced with 

paired-end 75bp reads on Illumina HiSeq 2500 platform according to the manufacturer’s 

instructions (Illumina, Inc, San Diego, California, USA).  

 

We sequenced another 192 trios at Baylor College of Medicine using whole genome 

sequencing (WGS) as part of NIH Gabriella Miller Kids First Pediatric Research Program. 
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Among these, 27 trios that had no damaging de novo variants in previously published WES data 

were selected as “WES-negative” cases for WGS7. Genomic libraries were prepared by the 

Illumina TruSeq DNA PCR-Free Library Prep Kit. DNA was sheared into 350-bp average length 

using sonication on a Covaris LE220 instrument. The fragmented DNA was end-repaired, A-

tailed and indexed using TruSeq Illumina adapters with overhang-T added to the DNA. The 

libraries were validated on a Bioanalyzer DNA High Sensitivity chip by size and quality, then 

pooled in equal quantities and sequenced as paired-end reads of 150-bp lengths on an Illumina 

HiSeq X platform.  

 

3.4.3    Alignment and quality controls  

Mapping, alignment, and variant calling were done according to the Broad Institute’s best 

practices using Burrows-Wheeler Aligner (bwa-mem, version 0.7.10)79 and Genome Analysis 

Toolkit (GATK; version 3.3) (https://software.broadinstitute.org/gatk/best-practices/). Briefly, 

we mapped WES or reads to the reference genome (build GRCh37) using BWA-mem 79, mark 

PCR duplicates using Picard (v1.67), performed local realignment and quality recalibration using 

GATK42.We jointly called variants in all WES samples using the GATK HaplotypeCaller. The 

output file was generated in the universal variant call format (VCF). We used the same procedure 

to analyze WGS samples. 

Among new samples sequenced by WES, the mean depth of coverage is 59± 21 with 

93±2.5% bases read with at least 15x (DP15) in target regions. Among new samples sequenced 
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by WGS, the mean depth of coverage is 39±2, with 99±0.25% bases read at least 15x (Fig. 3.4).  

 

Figure 3.4 Depth of coverage quality for case cohorts. (a) Mean depth and DP10/DP15 percentage in 
WES case samples. (b) Mean depth and DP10/DP15 percentage in WGS case samples. DP10 is 
percentage of targeted bases that are covered by at least 10 reads. DP15 is percentage of targeted bases 
that are covered by at least 15 reads. Top panel is histogram of mean depth coverage. Right panel is 
DP10/DP15 histogram. 
 

We performed principal component analysis of common variants (allele frequency >5%) 

using Eigenstrat80  to determine the population structure and ancestry of both cases and controls, 

with HapMap 3 sample collection data81 as a reference.  

 

3.4.4    Detection of de novo snps and indels 

We used Plink82 (http://pngu.mgh.harvard.edu/purcell/plink/) to estimate Identity by 

Descent (IBD)83 to confirm the relatedness among familial trios. All trios were matched to 

parents-offspring with relatedness.  

A variant that presents as a heterozygous genotype in the offspring and homozygous 

reference genotypes in both parents was considered to be a potential de novo variant. We used an 

established stringent filtering method to identify de novo variants as described previously 7,40,47. 

a	 b	
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Briefly, we required the candidate variants have depth (minimum 5 alternate allele reads), 

alternate allele fraction (minimum 20%), Fisher Strand (FS) (maximum 25), Quality by depth 

(QD) (minimum 2), Phread-scaled genotype likelihood (PL) (minimum 60), population allele 

frequency(maximum 0.1% in ExAC), and parental read characteristics (minimum depth of 10 

reference reads; alternate allele fraction less than 5%, minimum GQ of 30) . Additionally, 

variants located in segmental duplication regions (maximum score 0.98) were excluded. All 

candidate de novo variants were manually inspected in the Integrated Genomics Viewer (IGV, 

http://software.broadinstitute.org/software/igv/). In addition, we validated all the de novo likely 

gene disrupting (LGD) (including frameshift, nonsense and splicing site) variants by 

dideoxynucleotide sequencing. Of 40 case variants that were submitted for validation by Sanger 

sequencing, all 40 were confirmed (precision =100%).  

Among the 27 “WES-negative” cases, there were 12 de novo variants identified by WGS 

that were not detected by WES7.  

 

3.4.5    Annotation of variants 

We used ANNOVAR43 to annotate variants and aggregate allele frequency and in silico 

functional predictions, then used average allele frequency in Exome Aggregation Consortium 

(ExAC) data to define rare variants (frequency < 1e-4). Rare de novo variants were classified as 

silent, missense, and likely-gene-disrupting (“LGD”, which includes stopgain, stoploss, 

canonical splicing site, or frameshift variants). In-frame insertions or deletions were not 

considered in the genetic analysis. We defined deleterious missense variants (“D-mis”) by 

CADD28 phred-scale score ≥25.  
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3.4.6    Global or gene set burden between case and mutation background rate 

Baseline rate for different classes of de novo variants in each GENCODE coding gene 

were calculated for the longest transcript using a previously described mutation model. The 

expected number of variants in different gene sets were based on the 3-nucleotide context-

specific mutation rate estimated by Samocha et al.40,66 and calculated by summing up the class-

specific variant rate in each gene in the gene set multiplied by twice the number of patients. The 

observed number of variants in each gene set and case group was then compared with the 

baseline expectation using Poisson test.  

We used Poisson test to assess the significance of excess of observed de novo variants 

over expectation which was defined as enrichment rate (r). The positive predictive value (PPV) 

for de novo variants in each class was calculated as (r−1)/r. The Estimated number of true risk 

variants in each class is the number of observed variants (m) in cases multiplied by PPV: m * 

(r-1)/ r. The most severe predicted functional effect variants (LGD and D-mis) were used in 

further burden analyses based on the different phenotype, gender, gene set, and expression 

data.  

 

3.4.7    Percent of CDH attributable to de novo variants 

We calculated the percent of CDH patients with pathogenic variants in isolated and 

complex CDH groups, in male and female case groups, respectively. The fraction of individuals 

carrying at least one damaging de novo variant was determined, by subtracting the expected rate 

of damaging de novo variants per individual.  

The formula is as follows: 

 
(𝑛1 –  𝑟 ∗ 𝑠1)

𝑠1 ∗ 100%   
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where n1 is the total number of sub-group CDH patients with at least one de novo deleterious 

variant, r is the expected rate per healthy individual with at least one de novo deleterious variant, 

where the rate was estimated by 10,000 simulations of Poisson distribution of variants per 

person, and s1 is the total number of sub-group CDH patients.  

 

3.4.8    Expression profile during diaphragm development  

Mouse developing diaphragm (MDD) gene expression datasets from the pleuroperitoneal 

folds (PPFs)69 at embryonic day 11.5 (E11.5) were used in this study. High diaphragm 

expression is defined as the top quartile of probe sets based on RMA (Robust Multi-Array 

Average)-normalized expression levels of microarray data7.  

 

3.4.9    Single genes with multiple de novo mutations 

For MYRF, the number of observed deleterious de novo mutations was compared to the 

expected deleterious mutation background using a Poisson test. The p-value passed Bonferroni 

correction with all protein-coding genes annotated in CCDS84. 

 
 
 
 
 
 
 
 
 
 
 
 



 

 38 

 
 
 
 
 
 
 
 

Chapter 4 
 

Genetic connections between developmental disorders and cancer 
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4.1    Introduction  

De novo or rare functional variants with large effect sizes have large contributions49 to 

developmental disorders (DDs), such as developmental delay, autism, intellectual disability, and 

epilepsy6,24,39,85,86. However, most of DDs risk genes are still unknown: there are about 100 to 

200 known candidate risk genes39,86 yet the estimated number of risk genes that contribute to 

DDs is about 1,00039. Additionally, it is challenging to clinically interpret de novo or rare 

variants, especially for missense variants, even in known risk genes.  

Cancer and DDs have common dysregulated cellular processes, such as proliferation, 

growth, and differentiation87-89. There are well-known genes and pathways implicated in both, 

with recurrent somatic mutations in cancer and highly penetrant germline de novo variants in 

DDs. Classic examples include PTEN 90 601728, a negative regulator in ALK pathway implicated 

in autism91 and many types of cancers92, and PTPN11 90 176876, a phosphatase in RAS/MAPK 

signal- ing pathway implicated in both Noonan syndrome and leukemia93. Recent large-scale 

genomic studies of cancer94,95 and DDs6,24,39,85,86,96-98 revealed a substantial number of genes 

implicated in both classes of diseases. There was reported increased burden of rare 

nonsynonymous variants in proto-oncogenes in autism patients99. Some of these genes share 

similar modes of action through cancer somatic mutations and DDs germline de novo variants100. 

For example, PTPN11 is known to harbor gain of function mutations that make it constitutively 

active in both cancer and Noonan syndrome patients; EP300 90 602700, a tumor suppressor, has a 

large fraction of likely-gene-disrupting (LGD) mutations that mostly likely lead to loss-of-

function in both diseases101.  

In this study, we aim to quantify the genetic connection between cancer and DDs, and 

investigate the feasibility of utilizing cancer genomics data to help improve risk gene and variant 
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discovery in genetic studies of DDs. Driver genes are much more frequently mutated in cancer, 

and with ongoing international efforts in cancer precision medicine, there is an accelerated 

accumulation of cancer somatic mutation data. Such data will provide an unprecedented 

opportunity to study empirical functional consequences of mutations at virtually every base in 

cancer driver genes. Elucidating such a connection could lead to a better understanding of 

molecular mechanisms of both cancer and DDs.  

We compiled data sets of de novo variants from recently published studies on 

DDs6,24,39,85,86,94,102, including autism, intellectual disabilities, epilepsy, and developmental 

delays. We also assembled a large number of candidate cancer driver genes from various 

sources, including Cancer Census, The Cancer Genome Atlas (TCGA), and The Candidate 

Cancer Gene Database (CCGD)94,103-105. We compared the burden of de novo variants in 

candidate cancer driver genes and non-driver genes among DD cases. We then estimated the 

fraction of DD risk genes that are also cancer drivers. Finally, we investigated whether germline 

de novo variants and cancer somatic mutations in this set of overlapping genes have similar 

modes of action. 

 

4.2    Results 

4.2.1    Burden of germline de novo variants in DD patients among candidate cancer driver 

genes 

To investigate the contribution of cancer driver genes to DDs, we compiled a large 

dataset of 6,294 germline de novo coding variants from 5,542 DD cases drawn from recent 

published studies, including 3,953 cases with autism spectrum disorder6,39, 1,133 cases with 

various DDs from Deciphering Developmental Disorders study86, 192 cases with epileptic 
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encephalopathies24, and 264 cases with intellectual disability85,96-98 (Table 4.1).  We used 1,911 

parents-unaffected sibling trios from the Simons Simplex Collection (SSC) as controls39. 

 

Table 4.1 Dataset of developmental disorders cases and parents-unaffected sibling trios from the 
Simons Simplex Collection. 
 

Disease Samples Reference 

Developmen
tal disorders 
(DD) cases 
Total: 5542 

Autism spectrum disorder (ASD) 3953 De Rubeis et al 2014 
Iossifov et al 2014 

Deciphering Developmental 
Disorders (DDD) 1133 DDD 2014 

Epileptic encephalopathies (EE) 264 Epi4K Consortium 2013 

Intellectual disability (ID) 192 

Hamdan et al 2014  
Rauch et al 2012 
de Ligt et al 2012 
Gilissen et al 2014 

Control Simons Simplex Collection 1911 Iossifov et al 2014 
 

Aggregating various DDs with shared but distinct genetic risk architectures can yield additional 

findings in risk genes47,86,106. We reannotated these variants using ANNOVAR software43, and 

predicted the functional consequences of missense variants in silico using meta-SVM30. The 

following analyses are focused on LGD (which includes stopgain, stoploss, frameshifting, and 

splicing variants) or predicted-damaging missense (D-mis, predicted by meta-SVM) variants. 

The overall rate of silent de novo variants is similar between cases and controls (0.25 per 

subject).  

To include a broad set of cancer driver genes107, we obtained 568 cancer census genes 

from COSMIC database105, 773 genes with MutSigCV108 q-value less than 0.1 from individual 

The Cancer Genome Atlas (TCGA) studies curated by cBioPortal94, and 325 candidate driver 

genes from forward genetic screens in mice by The Candidate Cancer Gene Database (CCGD)104 
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(see Materials and Methods section). In total, we compiled a list of 1,481 candidate cancer driver 

genes (Fig. 4.1), all other genes not classified as cancer driver genes were considered as non-

cancer driver genes.  

 

 
 

Figure 4.1 Venn diagram of cancer driver genes from three sources: cancer census genes from 
COSMIC, significantly mutated genes from individual TCGA studies curated by cBioPortal and 
candidate driver genes from forward genetic screens in mice by The Candidate Cancer Gene Database 
(CCGD) 

 

Among all candidate cancer driver genes, there is significant enrichment of LGD or D-

mis germline de novo variants in DD cases compared with controls (Table 4.2 (b)), and such 

enrichment is significant in both autism and other types of DD (Table 4.2 (c)). Moreover, among 

DD cases, candidate cancer driver genes show significantly higher enrichment of germline de 

novo variants than non-drivers (Table 4.2 (a); odds ratio = 2.0, P value = 4.5e–6). Such 

enrichment cannot simply be explained by known constrained genes in cancer driver genes, as 

we observed that among constrained genes67, there is still a significantly greater burden in 

drivers than in non-drivers (odds ratio = 2.1; Table 4.2 (d)). Based on fold enrichment of de novo 

Candidate cancer driver genes (N=1418) 

37 

Cancer Census genes 

Mouse candidate 
genes from CCGD   
http://ccgd-
starrlab.oit.umn.edu Significantly mutated  

genes from cBioPortal with 
MutSigCV q < 0.1 

33 

433 

13 

65 

658 242 
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variants in cases compared to controls, we estimate that there are about 391 causative LGD 

variants in total, of which 163 are in candidate cancer driver genes (42%), and that there are 

about 327 causative D-mis variants in total, of which 114 are located in cancer driver genes 

(35%). Therefore, about 38% (95% confidence interval (CI): [29%, 51%]) of all potentially 

causative damaging (LGD or D-mis) de novo variants observed in these DD cases are located in 

candidate cancer drivers.  

 

Table 4.2 Burden of de novo germline mutations in candidate cancer driver genes, non-cancer 
driver gene and all genes. Damage missense mutations are predicted by meta-SVM. Burden tests 
between case and control were performed using Binomial tests; Burden comparisons between cancer and 
non-cancer drivers were performed using Fisher’s exact test.  
 
(a) Burden of germline de novo variants in candidate cancer driver genes (N=1481) comparing to non-
driver genes (N=17396). The null hypothesis in Fisher’s exact test is that the fraction of germline de novo 
variants of each type located in cancer driver genes is the same between DD cases and controls.   

Type of de 

novo 

variants 

Number of de novo 

variants in 5542 DD 

cases  

Number of de novo 

variants in 1911 Controls  
Fisher's exact 

Cancer 

driver 

genes 

Non-cancer 

driver 

genes 

Cancer 

driver 

genes 

Non-cancer 

driver 

genes 

Odds ratio P-value 

LGD 233 671 24 153 2.2 3.3E-04 

missense 518 3412 132 1002 1.2 0.19 

D-mis 190 766 26 191 1.8 0.006 

LGD/D-

mis 
423 1437 50 344 2 4.5E-06 

silent 146 1238 52 427 1 0.86 

 

(b) Comparison between cases and controls among cancer driver genes, non-cancer driver genes, and all 
genes. 

Gene group Type of de novo 
variant  

Cases 
(N=5542) 

Controls 
(N=1911) 

Fold 
enrich-
ment 

P-value 
 

Cancer driver 
genes 

LGD 233 24 3.3 6.30E-11 
Missense 518 132 1.4 0.0016 
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(N=1481) Dmis  190 26 2.5 1.10E-06 
LGD/Dmis  423 50 2.9 3.20E-16 

silent 146 52 1 0.87 

Non-cancer 
driver genes 
(N=17370) 

LGD 671 153 1.5 1.90E-06 
Missense 3412 1002 1.2 6.30E-06 

Dmis 766 191 1.4 3.90E-05 
LGD/Dmis  1437 344 1.4 3.40E-10 

silent 1238 427 1 1 

All genes 
(N=18851) 

LGD 904 177 1.8 3.40E-13 
Missense 3930 1134 1.2 8.30E-08 

Dmis 956 217 1.5 8.10E-09 
LGD/Dmis 1860 394 1.6 2.90E-20 

silent 1384 479 1 0.93 
 
(c) Enrichment of LGD or D-mis de novo variants in various types of DD among candidate cancer driver 
genes.  

Type of NDD Type of 
variant 

Number 
of 
variants 
in cases 

Number of 
variants in 
controls 
(N=1911) 

Fold 
enrichment p-value 

Autism (N=3953) 

LGD 121 24 2.437 1.75E-05 
Missense 318 132 1.165 0.145 
Dmis 97 26 1.804 0.00681 
LGD/Dmis 218 50 2.108 4.27E-07 
silent 108 52 1.004 1 

Epileptic 
encephalopathies  
(N=264) 

LGD 1 24 0.302 0.355 
Missense 28 132 1.535 0.0513 
Dmis 13 26 3.619 0.000464 
LGD/Dmis 14 50 2.027 0.032 
silent 8 52 1.114 0.695 

Developmental 
delay or intellectual 
disability (N=1325) 

LGD 111 24 6.67 9.19E-23 
Missense 172 132 1.879 4.62E-08 
Dmis 80 26 4.438 6.23E-13 
LGD/Dmis 191 50 5.509 7.52E-34 
silent 30 52 0.832 0.435 

 
(d) Among constrained genes, cancer driver genes harbor greater burden of de novo variants than non-
cancer driver genes in case-control comparison. Constrained genes are defined as genes with pLI score >= 
0.9 from ExAC database. The null hypothesis of the Fisher’s exact test is that among constrained genes, 
the burden of de novo variants in cancer drivers comparing to non-drivers is independent of case/control 
status.  
 

 Cases (N=5542) Controls (N=1911) Fisher’s exact test 

 Constraine
d gene in 
driver 
N=507 

Constrained 
gene in non-
driver 
N=2619 

Constrained 
gene in 
driver 
N=507 

Constrained 
gene in non-
driver 
N=2619 

Odds 
ratio 

P-
value 

LGD 188 297 9 32 2.25 0.043 
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Missense 302 1004 59 255 1.3 0.11 
D-mis 133 300 13 53 1.8 0.08 
LGD/D-mis 321 597 22 85 2.1 0.002 
silent 82 314 21 98 1.2 0.515 

 

Among the candidate cancer drivers that harbor damaging de novo variants in DD cases, 

several pathways are enriched (Table 4.3), including transcriptional regulation (e.g., lysine 

degradation), core developmental pathways (e.g., Wnt and Hippo signaling), pathways related to 

cell junctions and adhesion, and ubiquitin mediated proteolysis.  

 

Table 4.3 Functional term enrichment analysis of all cancer driver genes with damaging (LGD or 
Dmis) de novo mutations in all DD cases. Adjusted p-values were calculated by Enrichr. 
 

Groups KEGG term 
Enrich
-ment 
rate 

Adjusted 
P-value Genes 

Tran-
scription 
regulation 

Lysine degradation 
(hsa00310) 16.06 5.44E-05 

KMT2E, KMT2D, SETD2, KMT2A, 
NSD1, KMT2C, ASH1L, WHSC1, 
WHSC1L1 

Transcriptional 
misregulation in cancer 
( hsa05202) 

6.70 8.40E-04 
DDX5, KMT2A, PAX3, PAX5, PBX1, 
MYCN, SIN3A, RARA, TCF3, WHSC1, 
MET, BIRC3, KDM6A 

Core 
develop-
mental 
pathways 

Wnt signaling pathway 
(hsa04310) 5.23 4.27E-02 TCF7L2, CREBBP, SMAD4, TBL1XR1, 

CUL1, CTNNB1, EP300, RAC1 

Hippo signaling pathway 
(hsa04390) 5.46 2.75E-02 

SMAD2, SOX2, TCF7L2, CRB1, 
SMAD4, WWC1, CTNNB1, ACTB, 
LLGL2 

Signaling pathways 
regulating pluripotency of 
stem cells (hsa04550) 

5.23 4.27E-02 SMAD2, SOX2, SMAD4, MAP2K1, 
KAT6A, CTNNB1, TCF3, FGFR2 

Cell 
adhesion 
and 
junctions 

Adherens junction 
(hsa04520) 12.54 6.44E-05 

SMAD2, TCF7L2, PTPRB, CREBBP, 
SMAD4, CTNNB1, EP300, RAC1, MET, 
ACTB 

Focal adhesion (hsa04510) 5.51 6.96E-03 
MAP2K1, HGF, KDR, PTEN, CTNNB1, 
BRAF, COL6A6, RAC1, ARHGAP5, 
MET, ACTB, BIRC3 

Rap1 signaling pathway 
(hsa04015) 4.84 2.45E-02 

GRIN2A, MAP2K1, HGF, KDR, GNAS, 
CTNNB1, BRAF, RAC1, MET, ACTB, 
FGFR2 

Tight junction (hsa04530) 6.01 1.68E-02 
MYH2, PTEN, MYH9, CTNNB1, 
MYH11, ASH1L, SPTAN1, ACTB, 
LLGL2 

Bacterial invasion of 7.14 3.53E-02 CTNNB1, CBLB, RAC1, CBL, MET, 



 

 46 

epithelial cells (hsa05100) ACTB 

Signaling 

cAMP signaling pathway 
(hsa04024) 5.60 6.73E-03 

CREBBP, GRIN2A, MAP2K1, CREB1, 
PTCH1, FSHR, GNAS, EP300, BRAF, 
CACNA1D, RAC1, ATP1A1 

Thyroid hormone signaling 
pathway (hsa04919) 9.44 7.94E-05 

MED12, CREBBP, MAP2K1, NOTCH1, 
MED13, SIN3A, TSC2, CTNNB1, 
EP300, ATP1A1, ACTB, MTOR 

Ubiquitin  Ubiquitin mediated 
proteolysis (hsa04120) 6.10 1.64E-02 MAP3K1, CUL3, UBR5, CUL1, CBLB, 

BIRC6, BRCA1, CBL, BIRC3 

Cancer  

Pathways in cancer 
(hsa05200) 5.84 1.37E-05 

PTEN, CBLB, CBL, SUFU, EP300, 
RAC1, SMAD2, TCF7L2, CREBBP, 
MAP2K1, HSP90AA1, SMAD4, PTCH1, 
HGF, BRAF, MLH1, MTOR, MSH6, 
MSH2, RARA, GNAS, CTNNB1, MET, 
FGFR2, BIRC3 

Colorectal cancer 
(hsa05210) 14.97 4.49E-05 

MSH6, SMAD2, TCF7L2, SMAD4, 
MAP2K1, MSH2, CTNNB1, BRAF, 
RAC1, MLH1 

Proteoglycans in cancer 
(hsa05205) 7.32 5.44E-05 

SMAD2, MAP2K1, DDX5, PTCH1, 
HGF, CBLB, BRAF, PTPN11, ANK3, 
CBL, ACTB, MTOR, KDR, CTNNB1, 
RAC1, MET 

Prostate cancer (hsa05215) 11.47 5.44E-05 
TCF7L2, HSP90AA1, CREBBP, 
MAP2K1, CREB1, PTEN, CTNNB1, 
EP300, BRAF, MTOR, FGFR2 

Renal cell carcinoma 
(hsa05211) 11.25 9.63E-04 CREBBP, MAP2K1, HGF, EP300, 

PTPN11, BRAF, RAC1, MET 
Endometrial cancer 
(hsa05213) 10.71 8.52E-03 TCF7L2, MAP2K1, PTEN, CTNNB1, 

BRAF, MLH1 

Melanogenesis (hsa04916) 6.50 2.88E-02 TCF7L2, CREBBP, MAP2K1, CREB1, 
GNAS, CTNNB1, EP300 

Chronic myeloid leukemia 
(hsa05220) 7.63 2.88E-02 SMAD4, MAP2K1, PTPN11, BRAF, 

CBLB, CBL 
Acute myeloid leukemia 
(hsa05221) 8.14 4.27E-02 TCF7L2, MAP2K1, RARA, BRAF, 

MTOR 
Thyroid cancer (hsa05216) 12.80 2.88E-02 TCF7L2, MAP2K1, CTNNB1, BRAF 
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4.2.2    Cancer driver genes comprise about a third of DD risk genes 

To identify a broad set of candidate risk genes of development disorders, we applied 

TADA6,109, a probabilistic method for identifying risk genes based on de novo or rare inherited 

variants. We used only de novo LGD and D-mis mutations in this analysis and gene-specific 

background mutation rate40,66. We ranked all genes by FDR, defined DD candidate risk genes 

using increasing thresholds of 10% bins, and then calculated the percentage of true DD risk 

genes that overlap with cancer driver genes (Table 4.4). The estimated overlap percentage is 45% 

at FDR 0.1; the ratio decreases at larger FDR values but is still significantly greater than what is 

expected by chance at FDR of 0.5. Overall, we estimate that cancer drivers comprise more than a 

third of risk genes contributing to developmental diseases. 

 

Table 4.4. Number of developmental disorder (DD) candidate risk genes at different FDR values 
estimated by TADA, and corresponding overlapping cancer driver genes. For each FDR threshold, 
number of true risk genes is estimated by FDR definition.  
 

FDR by 

TADA 

Number of 

candidate risk 

genes 

Estimated 

number of 

true risk genes 

Number of 

candidate risk 

genes that are 

cancer drivers 

Estimated 

number of 

true risk 

genes that 

are cancer 

drivers 

Estimated 

percentage of 

cancer drivers 

among true risk 

genes 

 

≤ 0.1 134 120.6 56 54.6 45% 

≤ 0.2 186 148.8 66 62.2 41% 

≤ 0.3 269 188.3 74 65.7 34% 

≤ 0.4 421 252.6 92 74.6 29% 

≤ 0.5 649 324.4 124 90.5 27% 
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4.2.3    Germline de novo variants disrupt DD risk genes through similar modes of action as 

somatic mutations in cancer drivers 

Cancer driver genes are generally categorized as tumor suppressors or oncogenes, with 

the exception of genes that play either role in different cancer types110. The molecular 

consequence of a driver somatic mutation is usually loss-of-function in a tumor suppressor gene 

and gain-of-function in an oncogene. There are a number of known DD risk genes disrupted by 

germline variants via similar modes of action as cancer driver genes disrupted by somatic 

mutations. For example, gain-of-function germline variants in SOS1 90 182530 and PTPN11 genes 

are implicated in Noonan syndrome111. Both genes are also oncogenes with gain-of-function 

somatic mutations in leukemia93. To quantify the similarity of modes of action between cancer 

and DDs in individual genes and pathways, we investigated the patterns of cancer somatic 

mutations and DD germline de novo variants. We made two assumptions: (a) loss-of-function 

mutations include both truncating mutations (LGD, including stop- gain, stoploss, splicing, and 

frameshifting), and a subset of missense mutations. Tumor suppressors tend to harbor both types 

of mutations, generally with a large fraction of LGD mutations112; (b) gain-of-function mutations 

are mostly composed of missense mutations. We note that genes with dominant negative 

mutations are often exceptions. 

We reasoned that tumor suppressors are likely haploinsufficient112 as DD risk genes. To 

test that, we identified likely tumor suppressor genes and likely non-suppressor genes based on 

the fraction of LGD mutations among all somatic SNVs and indels in a given gene, across all 

cancers. Specifically, we grouped the candidate cancer driver genes into four bins using data 

from COSMIC, with fractions of LGD mutations at 0%–5%, 5%–10%, 10%–15%, and ≥ 15%, 

respectively. Among these bins, the genes in the 0%–5% bin are likely non-suppressors, and the 
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ones in the 15% or larger bin are likely tumor suppressor genes. This tier classification is 

consistent with an independent study of predicted tumor suppressor genes112 using TCGA data. 

More than half of the likely tumor suppressor genes overlap with the predicted confident tumor 

suppressor genes; there is almost no overlap of likely non-suppressor with predicted confident 

tumor suppressor genes112 (Fig. 4.2). Compared with the number of germline LGD de novo 

variants expected from background mutation rate40,66 in DD cases, we observed a 2.4 enrichment 

in likely non-suppressor genes (Table 4.5), which, as expected, is below the overall enrichment 

in cancer driver genes (3.3×; Table 4.2). On the contrary, we observed more than 10-fold 

enrichment of LGD variants in likely-tumor suppressor genes than expected (Fig. 4.3; Table 4.5), 

representing a 4.2× greater enrichment than in likely non-suppressors. This indicates that tumor 

suppressor genes implicated in DD patients through germline de novo variants often confer 

disease risk via loss of function. 
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Figure 4.2 Percentage of cancer driver genes overlap with the predicted confident tumor 
suppressor genes. Green bar is likely tumor suppressor genes with more than 15% LGD variants in 
COSMIC, red bar (the left-most group) is likely non-suppressors with less than 5% LGD variants in 
COSMIC 
 
Table 4.5 (a) Enrichment of germline de novo variants in cases among cancer driver genes with different 
LGD% in COSMIC. 
 

LGD % in COSMIC 
Observed number of de 
novo LGD variants in 

NDD cases 

Expected number of de 
novo LGD variants in 

NDD cases 

Enrichme
nt 

p-value 

0-5% 31 13 2.4 1.8e-5 
5-10% 96 21.5 4.5 < 1e-20 

10-15% 36 8.4 4.3 1.5e-12 
>15% 70 6.97 10.0 < 1e-20 

 
(b) Cancer driver genes of different LGD% in COSMIC have different rate of de novo LGD variants in 
NDD cases. The table shows the number of genes that have at least one de novo coding variants among 
cases.  Comparison using Fisher’s exact test: odds ratio = 4.9, p-value = 1.1e-5.  
 

LGD % in COSMIC Genes with LGD variants Genes without LGD variants  
0-5% 18 104 
>15% 29 34 
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Figure 4.3 Enrichment of germline LGD de novo variants in DD patients and controls among 
candidate cancer driver genes and non‐cancer driver genes. Cancer driver genes are grouped based on 
fraction of LGD somatic mutations among all reported point mutations or small indels in COSMIC. The 
group with >15% of LGD mutations are likely tumor suppressors. Enrichment values were estimated by 
comparing observed number of germline de novo LGD variants to expectation from background mutation 
rate in cases or controls. Red bars represent DD cases, blue bars represent controls, error bars represent 
95% confident interval. P values (*** indicates P value < 0.001) were calculated using Poisson tests with 
expected value estimated from background mutation rate. 
 

Functional missense mutations, whether gain or loss of function, disrupt cellular 

processes in very specific ways. For example, these mutations can cause (gain or loss of) 

enzymatic activity or (loss of) regulation of protein stability/activity, or affect interaction with 

other proteins. Therefore, functional missense mutations tend to form clusters in specific regions. 

We denote these clusters as cancer mutation hotspots. We found that for amino acid positions 

where there were at least three reported somatic missense mutations in COSMIC, there are 34 de 

novo missense variants in cases and just 1 in controls (fold enrichment = 12, P value = 6.9e–4; 
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Table 4.6). There was a consistent trend among de novo D-mis variants at positions with 1 or 2 

reported somatic missense mutations (fold enrichment = 3.1, P value = 0.028; Table 4.6).  

 

Table 4.6 Enrichment of germline missense de novo variants in reported somatic missense mutation 
positions in COSMIC among all candidate cancer driver genes (N=1481). 

 
Number of somatic 
missense mutations 

reported in COSMIC 

5542 
cases 

1911 
controls 

Enrich-
ment P-value 

All missense de 
novo variants 

1-2 92 25 1.27 0.34 
>2 34 1 11.7 6.9E-04 

D-mis de novo 
variants 

1-2 36 4 3.1 0.028 
>2 21 0 NA 0.0041 

 

Several methods have been developed to find mutation hotspots for the purpose of 

finding cancer driver genes with a high accuracy113,114. Among the reported cancer mutation 

hotspots, we observed a similar trend of enriched de novo mutations in DD cases (Table 4.7).  

Table 4.7 Enrichment of germline de novo missense variants in NDD cases among cancer somatic 
missense hotspots reported in recent published studies  
 
a) Enrichment in hotspots from Chang et al., 2015 

Variant type in 
hotspots Case Control Fold enrichment p-value 

Missense 5 0 NA 1 

D-mis 3 0 NA 1 

 
b) Enrichment in hotspots from Yang et al., 2015 

Variant type in 
hotspots Case Control Fold enrichment p-value 

Missense 4 0 NA 0.211 

D-mis 2 0 NA 1 

 

To reach optimal power for this study with a balance of accuracy and sensitivity, we 

implemented a HMM to predict these hotspots (Materials and Methods section) in genes that are 
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already implicated as candidate drivers. We collected all somatic missense mutations from 

COSMIC for each gene and applied our HMM-based methods to detect missense mutation 

hotspots in all candidate cancer driver genes. Comparing DD cases with controls, we observed a 

16× fold enrichment (P value = 1.8e–5) of germline de novo D-mis variants in cancer mutation 

hotspots (Table 4.8), which indicates that almost all such mutations contribute to DDs and 

corresponds to a class vulnerability value of 90%39, much greater than D-mis variants (about 

25%) in non-cancer drivers (Fig. 4.4). Based on fold enrichment, the estimated number of DD-

causative de novo missense variants among all candidate cancer drivers is about 135, and the 

estimated number of such variants in cancer somatic mutation hotspots is 67. This suggests that a 

large portion (about 50%) of causative de novo missense variants in DD cases among cancer 

driver genes have similar modes of action as cancer somatic mutations. 

 

Table 4.8. Enrichment of germline de novo missense variants in NDD cases located in cancer 
somatic missense hotspots.   
 
(a) There are significantly more germline de novo missense variants located in hotspots in NDD case 
comparing to controls. 

Variant type in 

hotspots 
Case Control Fold enrichment P-value 

Missense 95 11 3 0.00013 

D-mis 47 1 16.2 1.8e-5 

 

(b) Among all germline de novo missense variants in cancer driver genes, the ones in NDD cases are 
more likely to be located at cancer somatic missense mutation hotspots than the ones in controls. 

Variant 

type in 

hotspots 

Case Control 

Odds ratio P-value 
Hotpots 

Not 

hotspots 
Hotpots 

Not 

hotspots 

Missense 95 391 11 102 2.3 0.01 

D-mis 47 138 1 23 7.8 0.02 
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Figure 4.4 Class vulnerability of de novo missense variants in different groups of genes. Class 
vulnerability is defined as the probability of a variant being associated with the disease. D‐mis is 
defined as missense predicted to be damaging by meta‐SVM. P values (*** indicates P value < 0.001; ** 
indicates P value < 0.01) were calculated using Binomial tests. 
 

Figure 4.5 shows a few representative genes. EP300, a known tumor suppressor, has one 

D-mis de novo variant at a cancer mutation hotspot in one DD patient (Fig. 4.5A), consistent 

with its implicated role through loss of function with other five LGD de novo variants in DD data 

sets. ARID2 90 609539 is another tumor suppressor and part of SWI/SNF chromatin remodeling 

complex. One autism patient had a germline de novo missense variant in ARID2 at a somatic 

mutation hotspot (Fig. 4.5B). DDX3X 90 300160, a tumor suppressor implicated in intellectual 

disability86, has three missense de novo variants in our compiled DD data sets and all located in 

cancer hotspots (Fig. 4.5C). MAP2K1 90 176872, a proto-oncogene, has a missense de novo variant 

located in a cancer hotspot (Fig. 4.5D) in an autism case, suggesting that the variant plays a 

similar role as gain-of-function mutations implicated in syndromes115 with ASD features. 

PPP2R1A 90 605983, a recently discovered DD risk gene86, harbors three missense de novo variants 
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in two cancer hotspots (Fig. 4.5E). PPP2R1A is likely an oncogene in ovarian clear cell 

carcinoma116, consistent with its gain of function roles in both cancer and DDs. CNOT3 90 604910, 

a tumor suppressor gene117, has two de novo LGD variants and two de novo D-mis variants, one 

of which is located in a mutation hotspot (Fig. 4.5F), indicating it is a potential DD risk gene. 

Not all driver genes have similar mode of action. CTNNB1 90 116806, a central player in Wnt 

signaling, is a proto-oncogene in various cancers118. It has a very small fraction (0.5%) of LGD 

somatic mutations in COSMIC, and most missense somatic mutations disrupt the 

phosphorylation sites at the N-terminal end that are required for phosphorylation- dependent 

degradation. In contrast to somatic mutations in cancer, it is usually haploinsufficient and 

harbors LGD variants in patients with neurodevelopmental syndromes119. In the DD data sets, we 

compiled there are seven LGD de novo variants, consistent with a haploinsufficiency 

mechanism. In addition, there is a missense variant in an autism case. This missense variant is 

not located in any somatic mutation hotspot (Fig. 4.5G), and is therefore unlikely to cause gain-

of-function in CTNNB1. This is consistent with the notion that, this variant is either implicated in 

autism via loss of function similar to other LGD variants, or not associated with the disease. 

SMARCA4 90 603254, a tumor suppressor gene120,121, harbors three deleterious missense de novo 

mutations in the DD cases, none of which is located in cancer mutation hotspots (Fig. 4.5H). 

This is consistent with previous report that SMARCA4 may have gain of function or dominant 

negative mutations in DDs122. 
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Figure 4.5 Examples of germline de novo missense variants in DD patients superimposed with 
cancer somatic mutation hotspots. Blue spike lines are somatic missense counts at each amino acid 
position in cancer. Red dashes indicate predicted hotspot positions by the Hidden Markov Model method. 
Filled diamonds show germline de novo variants that are located in somatic hotspots, and hollow 
diamonds represent germline de novo variants that are not located in somatic hotspots. The following 
genes are shown: A: EP300; B: ARID2; C: DDX3X; D: MAP2K1; E: PPP2R1A; F: CNOT3; G: CTNNB1; 
H: SMARCA4. 
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4.3    Discussion 

Recent large-scale exome sequencing studies of DDs uncovered many candidate risk 

genes and pathways through deleterious germline de novo mutations. Many of these genes and 

pathways have been previously implicated in cancer through somatic mutations. Such genetic 

connection is reasonable because both classes of diseases involve disruption of similar 

fundamental cellular processes such as growth, proliferation, and differentiation. In this study, 

we hypothesize that quantifying such connection between DDs and cancer would lead to better 

understanding of how genes are disrupted through mutations, and ultimately allow us to leverage 

the vast amount of caner mutation data to improve genetic discovery in DD studies. Based on 

data from recently published large-scale DD studies and cancer genomics resources, we found 

that in DD patients there is a significantly greater burden of functional de novo mutations in 

candidate cancer driver genes than in non-cancer driver genes. And such enrichment trend holds 

in both candidate tumor suppressors and oncogenes (Table 4.9). 

 

Table 4.9 Enrichment of damaging de novo variants in tumor suppressors and oncogenes. Tumor 
suppressors are defined as the cancer driver genes with fraction of LGD mutation reported in COSMIC > 
15% or p-value < 0.001 in Davoli et al 2013.  Oncogenes are defined the cancer driver genes with p-value 
< 0.001 in Davoli et al 2013. 
 

Gene group Type of de novo 
variant  

Cases 
(N=5542) 

Controls 
(N=1911) 

Fold 
enrich-
ment 

P-value 

Tumor 
suppressor 
genes 
(N=208) 

LGD 98 2 6.8 4.7E-8 

Missense 108 27 1.4 0.14 

D-mis 47 4 4.1 0.002 

Oncogenes 
(N=61) 

LGD 12 1 4.1 0.21 

Missense 34 8 1.5 0.38 
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D-mis 19 2 3.3 0.13 

 

Specifically, about 38% of all potentially causative damaging de novo mutations 

observed in these DD patients are located in cancer drivers, and about 27%–45% of DD risk 

genes are likely cancer driver genes. This indicates that we can prioritize known cancer driver 

genes to find candidate risk genes in DD studies. 

Additionally, we investigated whether driver somatic mutations in cancer and causative 

germline de novo variants in DDs have similar modes of action. We found that likely tumor 

suppressor genes, that is, the ones with larger fraction of LGD mutations (≥15%) reported in 

COSMIC, have a significantly higher burden of germline de novo LGD variants than likely non-

suppressors (somatic LGD fraction <5%) in DD patients, indicating that tumor suppressor genes 

often exert DD risk through loss of function germline de novo variants that disrupt molecular 

pathways in DD similar to the ones in cancer. Several well-known oncogenes have gain-of-

function germline de novo missense variants that cause DDs. However, in general it remains a 

challenge to infer whether a missense mutation causes gain or loss of function of the gene. We 

therefore asked whether missense mutations in cancer (somatic) driver genes and DD germline 

risk genes have similar modes of action. We hypothesized that in both tumor suppressors and 

oncogenes, functional somatic missense mutations in driver genes occur in “hotspots” in a driver 

gene. We indeed found a stronger enrichment of damaging de novo missense variants located in 

these hotspots in DD patients than in controls. Specifically, we estimated that about 48% of 

causative de novo missense variants observed in DDs among cancer driver genes are located in 

hotspots, indicating that missense mutations also often have similar mode of action in cancer and 

DDs. This ratio is likely an underestimate, since the power of detecting mutation hotspots is 

limited in many cancer driver genes due to relatively small number of mutations. We observed 
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this enrichment of hotspot variants in both tumor suppressors and oncogenes. Strikingly, the case 

control comparison indicates that when located in cancer mutation hotspots, most of the germline 

de novo missense mutations in DD patients are implicated with the disease. This suggests that in 

addition to using cancer driver genes to prioritize candidate risk gene in DD studies, we can 

leverage cancer somatic mutation data to improve functional assessment of germline rare or de 

novo variants in these genes observed in DD patients, potentially improving both risk gene 

discovery in genetic studies and genetic diagnosis in clinical testing. 

Based on the evidence of LGD variants in tumor suppressors and D-mis variants located 

in cancer somatic mutation hotspots, we identified two new candidate risk genes for DDs. The 

first is ARID2, which harbors a de novo D-mis variant in an autism patient. The variant is located 

at the second most recurrently mutated position reported in COSMIC. A potential role of ARID2 

in autism is consistent with its recently implicated role in causing intellectual disability with de 

novo LGD variants123. The second gene is CNOT3, which harbors two de novo LGD variants and 

two de novo D-mis variants in four different patients, including one with autism and three with 

undiagnosed DDs86. CNOT3 is a tumor suppressor117 with a very large fraction (~24%)105 of 

LGD mutations among all reported somatic mutations, indicating that its suppressor role is 

through haploinsufficiency112. One of the de novo D-mis variants is located at the most 

recurrently mutated site reported in COSMIC. CNOT3 is a component of CCR4–NOT complex, 

which is one of the major cellular mRNA deadenylases124 and has a broad role in post-

transcriptional regulation of gene expression125. Post-transcriptional regulation of gene 

expression has been implicated as a major pathway with neurodevelopment disorders6. This 

supports CNOT3 as a candidate risk gene of DDs. Future genetic and functional studies are 

required to confirm and validate these two candidate risk genes. 
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In summary, our results suggest that we can view tumors as natural laboratories for 

assessing the deleterious effects of mutations that are applicable to germline variants, which will 

enable us to improve identification of causal genes and variants in DDs. Our study is still limited 

by inadequate number of sequenced cancer genomes in a few ways. First, we have limited power 

to detect mutation hotspots in a substantial portion of cancer driver genes due to a relatively 

small number of mutations, especially among the genes that are mutated in a small fraction of 

cancer patients or cancer types. This lack of power leads to lower sensitivity and specificity. 

Recent works on clustering of somatic mutations in 3D126 or pooled homologous domains127 

present promising directions to improve the power. Second, many genes have a diverse set of 

functions, and clinically distinct types of cancer128,129 or diseases often involve disruption of 

different functions of the same gene. Categorizing these disruptions as gain or loss of function is 

overly simplification. Although our approach of detecting somatic mutation hotspots does not 

rely on such simplified assumption, the complexity does lead to decreased power in detection of 

somatic mutation hotspots, and increased difficulty in utilization and interpretation of the 

somatic mutation hotspots in DDs. Finally, we do not have a complete catalog of cancer driver 

genes, and our list of candidate cancer driver genes may contain a non-negligible number of false 

positives. Ongoing international efforts in cancer precision medicine are generating much larger 

cancer mutation data sets. With prudent data sharing practices, this will improve cancer driver 

genes and mutation hotspots detection in the future, and make cancer data more valuable to 

genetic studies and diagnosis of DDs. 
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4.4    Material and methods 

4.4.1    Candidate cancer driver genes 

The candidate cancer driver genes list is are comprised of census genes from COSMIC105, 

significantly mutated genes from TCGA studies curated by cBioPortal103 and candidate genes 

from forward genetic screens in mice in The Candidate Cancer Gene Database (CCGD)104 (Fig. 

4.1). For cBioPortal data, we included genes with MutSigCV q-value less than 0.1 in individual 

TCGA studies as significantly mutated genes. We excluded results from the Adrenocortical 

Carcinoma and Pancreatic Adenocarcinoma datasets because while these two cancer datasets 

have a moderate number of samples, many of these genes have q-values less than 0.1. For CCGD 

data, we only considered the genes with relative rank A104. We further filtered these CCGD 

genes based on mutation data in TCGA. Specifically, we counted the variants of various 

functional categories (LGD, missense, silent) reported in TCGA95, and tested whether there is 

significant excess (P < 0.05) of missense or LGD mutations compared with silent mutations 

based on germline gene-specific background mutation rates40. We note that the background 

somatic mutation rate is affected by various processes130,131 that are different to germline 

mutations. However, the usage of germline background in this study is justified by the 

observation that there is a very strong correlation between observed ratio of missense/silent (or 

LGD/silent) somatic mutations and ratio of missense/silent (or LGD/silent) germline background 

mutation rate among non-candidate cancer driver genes (correlation coefficient = 0.46; Fig. 4.6). 

All other genes not included in cancer driver genes are classified as non-cancer driver genes. 
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Figure 4.6 Observed cancer somatic missense/silent mutation ratio versus expected ratio using germline 
background de novo missense/silent mutation rate from Samocha et al 2014. We require the silent variants 
counts to be more than 5 and remove outliers.  The black line indicates equal value. Color bar indicates 
the probability density. 
 

4.4.2    Germline de novo mutations of DDs 

We compiled germline de novo variants from 5,542 DD cases in recent published studies, 

including 3,962 cases with autism spectrum disorder6,39, 1,133 cases from Deciphering 

Developmental Disorders study86, 191 cases with epileptic encephalopathies24, and 264 cases 

with intellectual disability85,96-98. We re-annotated these mutations using ANNOVAR43 software 

to have complete gene annotation as well as function annotation. The functional consequence of 

missense mutations is predicted in silico by meta-SVM. In this study, we only consider 

mutations in the exonic regions. 
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4.4.3    Burden test and estimation of number of causative damaging de novo mutations 

Burden test between case and control: Within gene sets, we counted the number of 

mutations inside the gene set of different functional categories (LGD, missense, silent) for both 

cases and controls. We assumed that de novo variants are sequences of individual Bernoulli trials 

and we used the portion of case trios as the success probability to calculate the two-side binomial 

distribution P value as well as fold enrichment. 

Burden comparison between cancer and non-cancer drivers: We counted the number 

of de novo variants in candidate cancer driver genes and non-cancer drivers of different 

functional categories (LGD, missense, silent) for both cases and controls. We used two-side 

Fisher’s exact test to test the null hypothesis that the case/control burden of various categories is 

the same among cancer driver genes and non-cancer driver genes. 

Estimation of number of causative de novo mutations and class vulnerability in gene 

sets: In a group of genes (e.g., cancer drivers), there are L1 LGD (or D-mis) mutations from n1 

cases and L2 LGD (or D-mis) mutations from n2 controls, we estimate the number of causative 

variants C by:  

𝐶 = 𝐿! −  
𝐿! ∗  𝑛!
𝑛!

 

and class vulnerability V by:  

𝑉 =
𝐶
𝐿!

 

Using the L1 and L2 as the Poisson distribution rate to simulate 10,000 trials, we can calculate the 

95% confident intervals of causative variants and class vulnerability. 

Estimation of percentage of causative mutations in cancer driver genes: We first 

counted the number of de novo LGD (or D-mis) variants in all genes and in candidate cancer 
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driver genes for both cases and controls, then we used the variant counts as the Poisson 

distribution rate to simulate 10,000 trials. Dividing the number of simulated causative variants in 

cancer drives genes by the simulated mutations in all genes, we obtain the expectation as well as 

a 95% confident interval.  

 

4.4.4    Infer candidate risk genes of DDs 

TADA (transmission and de novo association)6,109 is a Bayesian method for identification 

of risk genes using rare or de novo variants. We tallied the occurrence of de novo variants in two 

categories: LGD and D-mis. We used gene-specific mutation rate40 as the parameter for the 

Poisson distribution and calculated its corresponding false discovery rate (FDR) using other 

default parameters. 

We defined DD candidate risk genes using FDR calculated by TADA. With each FDR 

threshold, we obtained the number of candidate DD risk genes (N) and the number Nc of such 

genes that are also candidate cancer drivers. We estimated the number (F) of false positive DD 

risk genes by FDR definition:  

𝐹 =  𝑁 ∗  𝐹𝐷𝑅 

To estimate the fraction (f) of true DD risk genes that overlap with candidate cancer driver 

genes, we assumed false positive DD risk genes overlap with candidate cancer driver genes just 

by chance, which is determined by background germline de novo mutation rate. In most TADA 

FDR bins (FDR < 0.5), the false positive risk genes should have at least one damaging de novo 

variant (LGD or D-mis). By calculating the sum of germline damaging mutation rate in cancer 

driver genes divided by all genes, we determined that the overlap rate by chance is r = 10%. 
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Finally, for each TADA FDR bin, the fraction of true DD risk genes that are also candidate 

cancer driver genes was estimated by: 

𝑓 =
𝑁! − 𝐹 ∗  𝑟
𝑁 − 𝐹  

 

4.4.5    Hidden Markov Model to infer cancer somatic missense mutation hotspots 

We implemented a Hidden Markov Model (HMM) to predict somatic missense mutation 

hotspots in each candidate cancer driver gene. We assume that the background somatic mutation 

rate is uniform across a given gene. For each transcript in the given gene, we inspected the 

somatic missense mutations from COSMIC. We counted all missense mutations at each given 

amino acid site, regardless of actually amino acid changes, to identify mutation hotspots. We 

defined hotspots in two ways: (1) highly recurrent mutation sites and (2) sites with non-

background states prediction by HMM. Recurrent mutated positions were defined as having 

more than 3.5 median-absolute-deviation number of mutations. After excluding recurrent sites, 

we took a sliding window of size 8 and summed the number of mutations for each position to 

reduce the fluctuation of mutations in a neighborhood region. We used the smoothed position-

specific mutation counts as the input to a HMM with Poisson emission probability and three 

hidden states, including: (a) the “background” state, (b) possible mutation hotspot state, and (c) 

probable mutation hotspot state. We used germline mutation background to estimate the fraction 

of missense mutations that are drivers in each gene. This is based on the observation that, among 

non-cancer driver genes, the ratio of reported missense/silent somatic mutations is close to gene-

specific background mutation rate estimated by Samocha et al. 2014 (regression slope = 0.97 and 

intercept close to zero; Fig. 4.7). We simulated the missense mutation counts (S1) and silent 

mutation counts (S2) in each gene using the corresponding recorded COSMIC data (C1, C2) as 
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the Poisson distribution rate. With the missense/silent ratio from germline de novo background 

(R1), we estimated the mean and 95% confidence interval of the fraction of missense mutations 

(f) that are drivers in each gene by:  

𝑓 =
𝑆! − 𝑆! ∗ 𝑅!

𝑆!
 

We used the upper bound of 95% CI as the maximum allowed (M) percentage of missense 

drivers from HMM. To obtain reasonable initial values for HMM parameters, we then calculated 

the expected number of driver missense mutations per position (T) by: 𝑇 = !!∗(!!!)
!

 

L where L is the total transcript length. We set the lambda (mean of a Poisson distribution) for 

the background state to be at least T. To restrict the number of transitions between background 

and hotspot states, we took the average of the diagonal of the transition matrix of the Baum–

Welsh result with 0.99 if the corresponding transition matrix elements were smaller than 0.99 in 

each iteration. After convergence, we used the Viterbi algorithm to find the most probable state 

path and forward–background algorithm to calculate posterior marginal probabilities of hidden 

states for each position. To identify the hotspots, we took positions with the non-background 

states as the hotspots, with exception that if the fraction of somatic missense mutations in those 

hotspots exceeded M, we ranked those positions by their marginal probability of being 

background states (increasingly), and included such positions until the fraction of missense 

mutations in hotspots reached M. 
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Chapter 5 
 

Predicting pathogenicity of missense variants by deep learning 

  



 

 68 

5.1    Introduction  

Missense variants are the most common type of coding genetic variants and are a major 

class of genetic risk across a broad range of common and rare diseases. Previous studies have 

estimated that there is a substantial contribution from de novo missense mutations to structural 

birth defects47,71 and neurodevelopmental disorders6,13,39. However, only a small fraction of 

missense de novo mutations are pathogenic39. As a result, the statistical power of detecting 

individual risk genes based on missense variants or mutations is limited27. In clinical genetic 

testing, many of missense variants in well-established risk genes are classified as variants of 

uncertain significance, unless they are highly recurrent in patients. Previously published in silico 

prediction methods have facilitated the interpretation of missense variants, such as CADD28, 

VEST329, metaSVM30, M-CAP31, and REVEL32. However, based on recent de novo mutation 

data, they all have limited performance with low positive predictive value (Table 5.1), especially 

in non-constrained genes (defined as ExAC67 pLI<0.5).  

 

Table 5.1 Estimated number of pathogenic missense de novo mutations using published methods by 
recommended thresholds. The table indicates their thresholds, estimated number of risk variants and 
positive predictive values in Congenital heart disease and Autism spectrum disorder data.  
 

a) Evaluation among all genes 
  Congenital heart disease 

(CHD) 
Autism spectrum disorder 

(ASD) 
 Threshold  Estimated 

number of 
risk variants 

Estimated 
Precision 

Estimated 
number of 

risk variants 

Estimated 
precision 

All missense  N/A 264 0.17 264 0.13 
M-CAP > 0.025 219 0.26 202 0.18 
Meta-SVM > 0 115 0.31 105 0.22 
MutationTaster > 0.5 187 0.18 201 0.14 
Polyphen > 0.5 170 0.22 183 0.17 
SIFT < 0.05 151 0.17 183 0.15 
VEST3 > 0.8 115 0.28 134 0.24 
CADD > 15 195 0.17 237 0.15 
REVEL > 0.5 133 0.33 162 0.3 
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b) Evaluation among constrained genes (ExAC pLI≥0.5) 
  Congenital heart disease 

(CHD) 
Autism spectrum disorder 

(ASD) 
 Threshold  Estimated 

number of 
risk variants 

Estimated 
precision 

Estimated 
number of 

risk variants 

Estimated 
precision 

All missense  N/A 140 0.29 163 0.25 
M-CAP > 0.025 115 0.37 118 0.29 
Meta-SVM > 0 64 0.44 64 0.34 
MutationTaster > 0.5 102 0.25 134 0.23 
Polyphen  > 0.5 85 0.32 113 0.30 
SIFT < 0.05 90 0.29 107 0.24 
VEST3 > 0.8 83 0.44 96 0.39 
CADD > 15 106 0.27 147 0.26 
REVEL > 0.5 87 0.49 90 0.40 

 
c) Evaluation among non-constrained genes (ExAC pLI<0.5) 

  Congenital heart disease 
(CHD) 

Autism spectrum disorder 
(ASD) 

 Threshold  Estimated 
number of 
risk variants 

Estimated 
precision 

Estimated 
number of 

risk variants 

Estimated 
precision 

All missense  N/A 124 0.12 101 0.07 
M-CAP > 0.025 104 0.20 84 0.11 
Meta-SVM > 0 50 0.23 40 0.14 
MutationTaster > 0.5 85 0.13 66 0.07 
Polyphen > 0.5 84 0.17 70 0.10 
SIFT < 0.05 61 0.11 76 0.09 
VEST3 > 0.8 31 0.14 38 0.12 
CADD > 15 89 0.12 90 0.09 
REVEL > 0.5 45 0.2 71 0.21 

 

Here we hypothesize that missense variant pathogenicity prediction can be improved in a 

few dimensions. First, conventional machine learning approaches have limited capacity to 

leverage large amount of training data compared to recently developed deep learning methods132. 

Second, databases of pathogenic variants curated from the literature are known to have a 

substantial frequency of false positives133, which are likely caused by common issues across 

databases and therefore introduce inflation of benchmark performance. Developing new 
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benchmark data and methods can help to assess and improve real performance. Finally, previous 

methods do not consider gene dosage sensitivity67,134,  which can modulate the pathogenicity of 

deleterious missense variants, as hypomorphic variants are pathogenic only in dosage sensitive 

genes13. With recently published metrics of mutation intolerance, it is now feasible to consider 

gene dosage sensitivity in predicting pathogenicity. Based on these ideas, we developed a new 

method, MVP, to improve missense variant pathogenicity prediction. 

 

5.2    Results 

5.2.1    Derivation of the MVP score  

MVP uses many correlated predictors, which can be broadly grouped into two categories: 

(a) “raw” features computed at different scales, per base pair (e.g. amino acid constraint score 

and conservation), per local context (e.g. protein structure and modification) as well as per gene 

(e.g. gene mutation intolerance, sub-genic regional depletion of missense variants 135); (b) 

deleteriousness scores from selected previous methods. We reason that the variants in 

constrained genes (ExAC pLI≥0.5) and non-constrained genes (ExAC pLI<0.5) may have 

different modes of action of pathogenicity, therefore, trained our models for the two gene sets 

separately. We included 38 features for the constrained gene model, and 21 features for the non-

constrained gene where we removed most published prediction methods features due to limited 

prediction accuracy (Table 5.1).   

MVP uses a deep residual neural network (ResNet)136 model. There are two layers of 

residual blocks, consisting of convolutional filters and activation layers, and two fully connected 

layers with sigmoid output (Fig. 5.1). 
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Figure 5.1 The ResNet neural network architecture of MVP. Building blocks are arranged as shown in 
the figure. Parameters and dimensions of input and output are indicated in the boxes. Blue boxes are 
convolutional filters, green boxes are ReLU activation, yellow boxes are addition of output from 2 layers, 
orange boxes are fully connected layers. 
 

The convolutional filters can exploit spatial locality by enforcing a local connectivity pattern 

between “neurons” of adjacent layers and identify nonlinear interactions at higher levels of the 

network. To take advantage of this characteristic, we ordered the predictors based on their 

correlation, as highly correlated predictors are clustered together (Fig. 5.2). Notably, some 

protein-related predictors are weakly correlated with previous scores, suggesting that they may 

include additional information and can help improve the overall prediction accuracy. For each 

Input features
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Figure S1. ResNet architecture
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missense variant, we defined MVP score by the rank percentile of the ResNet’s raw sigmoid 

output relative to all 76 million possible missense variants.  

 

 
 
 
Figure 5.2 Correlation and hierarchical clustering of features and additional published methods. 
We calculated pairwise Spearman correlation of all features and additional published methods across data 
points used in the training. Color key indicates absolute value of Spearman correlation coefficient among 
features and predictors. Columns are ordered by hierarchical clustering. Published methods marked with * 
are not used in training. 
 

We obtained large curated datasets of pathogenic variants as positives and random rare 

missense variants from population data as negatives for training (Table 5.2). Using 6-fold cross-

validation on the training set, MVP achieved mean area under the curve 97 of 0.99 in constrained 

genes and 0.97 in non-constrained genes. 
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Table 5.2 Summary statistics of training and testing data sets 

Data sets Total 
variants 

Total genes 

Train
ing 
sets 

Positive HGMD positive variants 22390 1058 
Uniprot positive variants 12875 1070 
Clinvar pathogenetic variants 4424 813 
Total unique positive variants 32074 1914 

Negative Uniprot negative 5190 3240 
Human-derived changes 39593 11739 
Randomly selected DiscovEHR rare variants 42415 14311 
Total unique negative variants 86620 16786 

Testi
ng 
sets 

Curated 
benchmark 
datasets 

VariBench dataset 3333 459 
DiscovEHR rare variants excluded from training 3486 2960 

Cancer 
datasets 

Cancer hotspot  875 204 
DiscovEHR rare variants excluded from training 8771 4801 

De novo 
datasets 

Cases Autism spectrum disorder (ASD) 2133 1843 
Congenital heart disease (CHD) 1530 1373 

Controls Simons Simplex Collection 
unaffected siblings  

869 817 

 

5.2.2 Comparing MVP to different model structures 

We first compared MVP with a three layers feed forward network with 256 * 256 * 256 

neurons. The feed forward network has 637,534,208 parameters. Given the limited number of 

training dataset, it quickly go to over-fitting after two iterations and result in large fluctuation in 

performance. In the CNN framework, there are 12,416 parameters in the residual layers and total 

636,161 parameters in constrained model and 357,633 parameters in non-constrained model. In 

MVP model, we put highly correlated features closely so that first residual layers can capture 

local context interaction within groups while high order residual layers can capture non-linear 

interaction between groups. We then tested different model structure of various numbers of 

residual blocks to assess the performance. With all other parameter fixed, two residual blocks 

parameters has 12,544 parameters before fully connected layers, the model saturated around 20 

iterations. Adding a third residual block increases the number to 18,752 parameters and the 

model saturated around 8 iterations, which indicated over fitting quickly. The results indicated 
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that the model is sensitive to the parameters in early layers and larger as well as cleaner data set 

are needed to train a deeper network to fully utilize the power of deep learning model. We also 

tested model between 512 neurons and 1024 neurons in fully connected layers, 1024 neurons 

will double the number of parameters in the fully connected layers and results in over-fitting 

quickly. Other hyper parameters are kernel size of 3, pooling size of 2, depths with 32 and ReLu 

as activation functions are commonly used in deep learning model. 

 

5.2.3    Comparing MVP to published methods in synthetic data 

To evaluate predictive performance of the MVP and compare it with other methods, we 

evaluated the performance in an independent curated testing dataset from VariBench30,137 (Fig. 

5.3). MVP outperformed all other scores with an AUC of 0.96 and 0.92 in constrained and non-

constrained genes, respectively. A few recently published methods (REVEL, M-CAP, VEST3, 

and metaSVM) were among the second-best predictors and achieved AUC around 0.9.  
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Figure 5.3 Comparing MVP with previous methods by ROC curves using VariBench testing data. 
(A) Performance evaluation in constrained genes. (B) Performance evaluation in non-constrained genes. 
The performance of each method is evaluated by the ROC curve and AUC score indicated in parenthesis. 
Higher AUC score indicates better performance. 
 

Systematic false positives caused by similar factors across training and VariBench data 

sets could inflate the performance in testing. To address this issue, we obtained two additional 

types of data for further evaluation. First, we compiled cancer somatic mutation data, including 

missense mutations located in inferred hotspots based on statistical evidence from a recent 

study138 as positives, and randomly selected variants from DiscovEHR139 database as negatives. 

In this dataset, the performance of all methods decreased, but MVP still achieved the best 

performance of AUC of 0.91 and 0.85 in constrained and non-constrained genes, respectively 

(Fig. 5.4).  

A.   Constrained genes (pLI >= 0.5) B. Non-constrained genes (pLI < 0.5)
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Figure 5.4 ROC curves for existing prediction scores and MVP scores of cancer somatic mutation 
data sets. (A) Constrained genes:  evaluation of 699 cancer mutations located in hotspots from 150 genes, 
and 6989 randomly selected mutations from DiscovEHR database excluding mutations used in training. 
(B) Non-constrained genes:  evaluation of 177 cancer mutations located in hotspots from 55 genes and 
1782 randomly selected mutations from DiscovEHR database excluding mutations used in training. The 
performance of each method is evaluated by the ROC curve and AUC score indicated in parenthesis. 
Higher AUC score indicates better performance. 
 

Databases of pathogenic variants curated from the literature are known to have a 

substantial frequency of false positives. There are likely similar factors causing false positives 

across different databases. Therefore, dividing the datasets into training and testing data does not 

create truly independent data for performance assessment, and as a result, the AURC calculated 

from VariBench data is likely inflated for methods trained on these dataset, including MVP and 

other methods with best AUROC values. This is supported by results in Figure 5.5: using cancer 

somatic mutation hotspots as positives, and randomly selected rare variants from DiscovEHR as 

negatives, the area under receiver operating characteristic curve (AUROC) of all methods trained 

by HGMD or UniProt is substantially decreased (Figure 5.5). Notably, MPC, which was trained 

A.   Constrained genes (pLI >= 0.5) B. Non-constrained genes (pLI < 0.5)
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on a small set of high-confidence ClinVar data, saw increased performance in cancer data, 

especially in non-constrained genes.  

 
Figure 5.5. Comparison of AUC using VariBench data versus cancer mutation hotspots data for 
MVP and previous methods. X-axis indicates the AUC with VariBench data; y-axis indicates the AUC 
with cancer hotspots data. (A) Comparison in constrained genes. (B) Comparison in non-constrained 
genes. 

 

To investigate the contribution of features to MVP predictions, we performed cross-one-

group-out experiments and used the differences in AUC as an estimation of feature contribution 

(Fig. 5.6). We found that in constrained gene, conservation scores and published deleteriousness 

predictors have relatively large contribution, whereas in non-constrained genes, protein structure 

and modification features and published predictors are most important.   
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 78 

 
 

Figure 5.6 Measuring the contribution of features to MVP prediction performance in cancer 
mutation hotspots data. Performance contribution is measured by AUC reduction (ΔAUC) from 
excluding a group of features. Since features within a group are often highly correlated, we did measure 
the contribution of an entire group instead of individual features in the group. (A) Constrained genes; (B) 
Non-constrained genes. Error bar is estimated by subsampling of large number of negatives. 

 

5.2.4   Comparing MVP to published methods in de novo mutation data 

To test the utility in real genetic studies, we obtained germline de novo missense variants 

(DNMs) from 2645 cases in a congenital heart disease (CHD) study71, 3953 cases in autism 

spectrum disorder (ASD) studies6,39,71, and DNMs from 1911 controls (unaffected siblings) in 

Simons Simplex Collection6,39,71. Since genes with cancer mutation hotspots are relatively well 

studied in both constrained and non-constrained gene sets, assessment using de novo mutations 

can provide additional insight with less bias (Table 5.3). 

 
Table 5.3 Number and percentage of genes in testing datasets that are overlapped with genes used 
in training. 
 
  constrained genes  non-constrained genes 
dataset number 

of genes 
number of genes 
overlapped with 
training genes 

percentage 
of genes in 
training 

number 
of genes 

number of genes 
overlapped with 
training genes 

percentage 
of genes in 
training 

varibench 
positive 

149 112 0.75 310 227 0.73 

cancer 
hotspot 

149 67 0.45 55 21 0.38 

A.   Constrained genes (pLI >= 0.5) B. Non-constrained genes (pLI < 0.5)
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positive 
ASD de 
novo 

874 151 0.17 1359 183 0.13 

CHD de 
novo 

640 103 0.16 1007 139 0.14 

SSC 
control 
de novo 

372 59 0.16 641 77 0.12 

 

Because the true pathogenicity of most of the de novo mutations is unknown, we cannot 

directly evaluate the performance of prediction methods. To address this issue, we calculated the 

enrichment rate of predicted pathogenic DNMs by a method with a certain threshold in the cases 

compared to the controls, and then estimated precision and the number of true risk variants 

(Methods), which is a proxy of recall since the total number of true positives in all cases is a 

(unknown) constant independent of methods. We compared the performance of MVP to other 

methods by estimated precision and recall-proxy (Fig. 5.7). Based on the optimal thresholds of 

MVP in cancer hotspot ROC curves, we used a score of 0.7 in constrained genes and 0.75 in  

non-constrained genes to define pathogenic DNMs. In constrained genes, we observed an 

enrichment of 2.2 in CHD and an enrichment of 1.9 in ASD, achieving estimated precision of 

0.55 and 0.47 (Fig. 5.7A and 5.7D), respectively. This indicates that about 50% of the MVP-

predicted pathogenic DNMs contribute to the diseases. In non-constrained genes, we observed an 

enrichment of 1.9 in CHD and 1.4 in ASD, respectively, and 0.32 and 0.28 in estimated precision 

(Fig. 5.7B and 5.7E). In all genes combined, MVP achieved an estimated precision of 40% for 

both CHD and ASD (Fig. 5.7C and 5.7F). The next best methods reached 25% (M-CAP) and 

20% (MPC135 and REVEL) given the same recall-proxy for CHD and ASD, respectively. 
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Furthermore, the estimated precision of MVP with DNMs at optimal threshold is much 

closer to the expected precision based on ROC of cancer hotspots data than the value from 

VariBench data, supporting that there is less performance inflation in testing using cancer data.   

  
Figure 5.7. Comparison of MVP and previously published methods using de novo missense 
mutations from CHD and ASD studies by precision-recall-proxy curves. Numbers on each point 
indicate rank percentile thresholds, star points indicate thresholds recommended by publications. The 
positions of “All Mis” points are estimated from all missense variants in the gene set without using any 
pathogenicity prediction method. The point size is proportional to –log (p-value). P-value is calculated by 
binomial test, only points with p value less than 0.05 are shown. (A, B, C) Performance in CHD DNMs in 
constrained genes, non-constrained genes, and all genes, respectively. (D, E, F) Performance in ASD 
DNMs in constrained genes, non-constrained genes, and all genes, respectively. 
 

A. Constrained genes (pLI >= 0.5)         B. Non-constrained genes (pLI < 0.5)     C. All genes

D. Constrained genes (pLI >= 0.5)         E. Non-constrained genes (pLI < 0.5)     F. All genes
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Previous studies have estimated that deleterious de novo coding mutations, including loss 

of function variants and damaging missense variants, have a small contribution to isolated 

CHD71. Here, we used MVP to revisit this question. With the definition of damaging DNMs in 

Jin et al 201771 (based on metaSVM30), the estimated contribution of deleterious de novo coding 

mutations to isolated CHD is about 4.3%. With MVP score of 0.75, the estimation is 7.8%(95% 

CI = [6.5%, 9.1%]), nearly doubling the previous estimate.  

 

5.3    Discussion 

We developed a new method, MVP, to predict pathogenicity of missense variants. MVP 

is based on residual neural networks, a supervised deep learning approach, and was trained using 

a large number of curated pathogenic variants from clinical databases, separately on constrained 

genes and non- constrained genes. Using cancer mutation hotspots and de novo mutations from 

CHD and ASD, we showed that MVP achieved overall better performance than published 

methods, especially in non-constrained genes. Nevertheless, the fraction of pathogenic variants 

among de novo missense variants in non-constrained genes is low in both CHD and ASD, 

leading to relatively poor performance by all methods. MVP achieved substantially better 

performance than other methods in these genes, partly attributed to inclusion of protein structure-

based predictors (Figure 5.6B).  

Further improvement in protein structure prediction and the utilization of protein 

structure in the model93 would be the key to improve MVP. Finally, all methods are limited by 

the size and the potentially high false positive rate of the training data. Systematic efforts such as 

ClinVar140 will eventually produce better training data to improve prediction performance.  
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5.4    Material and methods  

5.4.1    Training and testing data sets 

Training data sets: We compiled 22,390 missense mutations from Human Gene 

Mutation Database Pro version 2013 (HGMD)141 database under the disease mutation 

(DM) category, 12,875 deleterious variants from UniProt30,142, and 4,424 pathogenic 

variants from ClinVar database140 as true positive (TP). In total, there are 32,074 unique 

positive training variants. The negative training sets include 5,190 neutral variants from 

Uniprot30,142, randomly selected 42,415 rare variants from DiscovEHR database139, and 

39,593 observed human-derived variants28. In total, there are 86,620 unique negative 

training variants (Table 5.2). 

 

Testing data sets: We have three categories of testing data sets (Table 5.2).  The 

three categories are: (a) Benchmark data sets from VariBench 30,137 as positives and 

randomly selected rare variants from DiscovEHR database139 as negatives; (b) cancer 

somatic missense mutations located in hotspots from recent study138 as positives and 

randomly selected rare variants from DiscovEHR database139 as negatives; (c) and de 

novo missense mutation data sets from recent published exome-sequencing studies6,39,71. 

All variants in (a) and (b) that overlap with training data sets were excluded from testing. 

We tested the performance in constrained genes (ExAC pLI ≥ 0.5) and non-constrained 

gene (ExAC pLI < 0.5)67 separately.  

 

To focus on rare variants with large effect, we selected ultra-rare variants with MAF 

<10-4 based on gnomAD database to filter variants in both training and testing data sets. 
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We applied additional filter of MAF < 10-6 for variants in constrained genes in both cases 

and controls for comparison based on a recent study 135,143.  

 

5.4.2    Features and architecture used in MVP deep learning model 

MVP uses many correlated features as predictors. There are six categories: (1) local 

context: GC content within 10 flanking bases on the reference genome; (2) amino acid 

constraint, including blosum62144 and pam250145; (3) conservation scores, including phyloP 

20way mammalian and 100way vertebrate146, GERP++147, SiPhy 29way148, and phastCons 

20way mammalian and 100way vertebrate149; (4) Protein structure, interaction, and 

modifications, including predicted secondary structures150, number of protein interactions from 

the BioPlex 2.0 Network151, whether the protein is involved in complexes formation from 

CORUM database152, number of high-confidence interacting proteins by PrePPI 153, probability 

of a residue being located the interaction interface by PrePPI (based on PPISP, PINUP, PredU), 

predicted accessible surface areas were obtained from dbPTM154, SUMO scores in 7-amino acids 

neighborhood by GPS-SUMO 155, phosphorylation sites predictions within 7 amino acids 

neighborhood by GPS3.0156, and ubiquitination scores within 14-amino acids neighborhood by 

UbiProber 157; (5) Gene mutation intolerance, including ExAC metrics67 (pLI, pRec, lof_z) 

designed to measure gene dosage sensitivity or haploinsufficiency, RVIS158, probability of 

causing diseases under a dominant model “domino”159, average selection coefficient of loss of 

function variants in a gene “s_het” 160, and sub-genic regional depletion of missense variants 135; 

(6) Selected deleterious or pathogenicity scores by previous published methods obtained through 

dbNSFPv3.3a161, including Eigen162, VEST329, MutationTaster163, PolyPhen2 164, SIFT 165, 

PROVEAN166, fathmm-MKL 167, FATHMM 167, MutationAssessor168, and LRT169. 
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For consistency, we used canonical transcripts to define all possible missense variants135. 

Missing values of protein complex scores are filled with 0 and other features are filled with -1. 

 

Since pathogenic variants in constrained genes and non-constrained genes may have 

different mode of action, we trained our models on constrained and non-constrained variants 

separately with different sets of features (38 features used in constrained model, 21 features used 

in non-constrained model).   

 

MVP is based on a deep residual neural network model (ResNet)136 for predicting 

pathogenicity using the predictors described above. To preserve the structured features in 

training data, we ordered the features according to their correlations (Fig. 5.2).  The model (Fig. 

5.1) takes a vector of the ordered features as input, followed by a convolutional layer of 32 

kernels with size 3 x 1 and stride of 1, then followed by 2 computational residual units, each 

consisting of 2 convolutional layers of 32 kernels with size 3 x 1 and stride of 1 and a ReLU170 

activation layer in between. The output layer and input layer of the residual unit is summed and 

passed on to a ReLU activation layer. After the two convolutional layers with residual 

connections, 2 fully connected layers of 320 x 512 and 512 x1 are used followed by a sigmoid 

function to generate the final output171. 

𝑆𝑖𝑔𝑚𝑜𝑑 𝑥 =
1

1+  𝑒!! 

 

In training, we randomly partitioned the synthetic training data sets into two parts, 

80% of the total training sets for training and 20% for validation. We trained the model 
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with batch size of 64, used adam172 optimizer to perform stochastic gradient descent173 

with logarithmic loss between the predicted value and true value. After one full training 

cycle on the training set, we applied the latest model weights on validation data to 

compute validation loss.  

 

To avoid over fitting, we used early stopping regularization during training. We 

computed the loss in training data and validation data after each training cycle and 

stopped the process when validation loss is comparable to training loss and do not 

decrease after 5 more training cycle, and then we set the model weights using the last set 

with the lowest validation loss. We applied the same model weights on testing data to 

obtain MVP scores for further analysis.  

 

5.4.3    Previously published methods for comparison 

We compared MVP score to 13 previously published prediction scores, namely, M-

CAP31, DANN174, Eigen162, Polyphen2164, SIFT165, MutationTaster163, FATHMM167, 

REVEL32, CADD28, metaSVM30, metaLR30, VEST329, and MPC135. 

 

5.4.4    Normalization of scores using rank percentile 

For each method, we first obtained predicted scores of all possible rare missense 

variants in canonical transcripts, and then sort the scores and converted the scores into 

rank percentile. Higher rank percentile indicates more damaging, e.g., a rank score of 

0.75 indicates the missense variant is more likely to be pathogenic than 75% of all 

possible missense variants.  
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5.4.5    ROC curves and optimal points estimation 

We plotted Receiver operating characteristic (ROC) curves and calculated Area 

Under the Curve 97 values in training data with 6-fold cross validation and compared 

MVP performance with other prediction scores in curated benchmark testing datasets 

(Fig. 5.3) and cancer hotspot mutation dataset (Fig. 5.4). For each prediction method, we 

varied the threshold for calling pathogenic mutations in a certain range and computed the 

corresponding sensitivity and specificity based on true positive, false positive, false 

negative and true negative predictions. ROC curve was then generated by plotting 

sensitivity against 1 – specificity at each threshold.  

We define the optimal threshold for MVP score as the threshold where the 

corresponding point in ROC curve has the largest distance to the diagonal line (Fig. 5.4). 

Based on the true positive rate and false positive rate at the optimal points in ROC curves, 

we can estimate the precision and recall in de novo precision-recall-proxy curves. 

 

5.4.6    Precision-recall-proxy curves 

Since de novo mutation data do not have ground truth, we used the excess of predicted 

pathogenic missense de novo variants in cases compared to controls to estimate precision and 

proxy of recall. For various thresholds of different scores, we can calculate the estimated number 

of risk variants and estimated precision based on enrichment of predicted damaging variants in 

cases compared to controls. We adjusted the number of missense de novo mutation in controls by 

the synonymous rate ratio in cases verses controls, assuming the average number of synonymous 
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as the data sets were sequenced and processed separately), which partly reduced the signal but 

ensures that our results were not inflated by the technical difference in data processing.  

 
Table 5.4. Comparison of cases and controls in rate of synonymous de novo variants  
 
 Number of 

synonymous variants  
Rate per cases compared 
to controls  

Autism spectrum disorder (ASD) 1026 1.027 
Congenital heart disease (CHD) 701 1.049 
Simons Simplex Collection unaffected 
siblings (controls) 483 N/A 

  
 

Denote the number of cases and controls as N1 and N0, respectively; the number of predicted 

pathogenic de novo missense variants as M1 and M0, in cases and controls, respectively; the rate 

of synonymous de novo variants as S1 and S0, in cases and controls, respectively; technical 

adjustment rate as 𝛼; and the enrichment rate of variants in cases compared to controls as R.  

 

We first estimate 𝛼 by: 

𝛼 =
𝑆!  
𝑆!  

Then assuming the rate of synonymous de novo variants in cases and controls should be 

identical if there is no technical batch effect, we use 𝛼 to adjust estimated enrichment of 

pathogenic de novo variants in cases compared to the controls by:  

𝑅 =   

𝑀!
𝑁!

𝑀!
𝑁!

×𝛼
 

Then we can estimate number of true pathogenic variants (𝑀!
!) by: 

𝑀!
! =

𝑀!(𝑅 − 1)
𝑅  
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And then precision by: 

 𝑃𝑟𝑒𝑐𝚤𝑠𝚤𝑜𝑛 =
𝑀!
!

𝑀!
 

 

5.4.7    Estimation of precision for a method at a certain threshold based on ROC 

curves 

Denote the number of all true positives (pathogenic variants in cases) in a de novo 

mutation data set as P, the estimated number of true positive detected by all methods at 

any threshold (including estimation from “all missense” without prediction methods) as a 

set 𝓟, the number of all negatives (non-pathogenic variants in cases) in the de novo 

mutation data as N, the number of true positives by a method at a threshold as TP, the 

number of false positives by a method at a threshold as FP, and the baseline precision as 

B, defined as: 

 

𝐵 ≡
𝑃

𝑃 + 𝑁 

 

P+N is just the total number of de novo mutations in cases. We can estimate B by:  

 

𝐵 =
max(𝓟)
𝑃 + 𝑁  

 

 Therefore, N/P can be estimated as: 

𝑁
𝑃 =

1
1/𝐵  − 1
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From the ROC curve, denote true positive rate (which is also called recall or sensitivity) 

as TPR, and false positive rate as FPR. We obtain FPR and TPR for a method at a certain 

threshold from cancer or VariBench ROC curves, and then use them to estimate number 

of true and false positives:  

 

𝑇𝑃 = 𝑃 ∙ 𝑇𝑃𝑅 

𝐹𝑃 = 𝑁 ∙ 𝐹𝑃𝑅 

 

Therefore, the estimated precision of a method at a threshold based on ROC curve is: 

𝑃𝑟𝑒𝑐𝚤𝑠𝚤𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

1

1+ 𝐹𝑃
𝑇𝑃

=
1

1+ 𝐹𝑃𝑅𝑇𝑃𝑅 ∙
𝑁
𝑃
=

1

1+ 𝐹𝑃𝑅𝑇𝑃𝑅 ∗ (
1
𝐵 − 1)
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Chapter 6 
 

Conclusions and future work 
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The primary goal of this thesis was to develop novel computational methods to 

analyze genomic data and facilitate gene discovery in genetic studies.  By establishing 

new methods of statistical genetics and integrating biological domain knowledge, we can 

identify a group of genes important in the etiology and improve the understanding of the 

genetic architecture of developmental disorder. A better understanding of genetic 

variations, especially the rare inherited or de novo coding mutations in patients, can help 

identify the genetic causes of diseases and guide clinic decisions to provide better 

treatment. 

Advances in sequencing technology have enabled the ability to identify major 

causes of severe developmental disorders. Large-scale whole exome sequencing as well 

as whole genome sequencing experiments are performed in congenital diaphragmatic 

hernia (CDH) patients. In this thesis, we combined samples from Boston Children’s 

Hospital, Massachusetts General Hospital and DHREAMS study to maximize our power 

to identify the pathogenic mutations in sporadic CDH cases. The combined cohort is one 

of the largest and most well characterized cohorts of patients with CDH in the world. In 

previous studies, a significant burden of damaging de novo coding variants was identified 

in CDH patients, we replicated this finding in our cohort and showed that female patients 

carried almost the entire burden in isolated CDH while females and males carried similar 

burden in complex CDH. Additionally complex CDH cases carried excess of de novo 

LGD variants mostly in genes highly expressed in developing diaphragm while isolated 

CDH cases had a broad range of gene expression levels for de novo LGD variants 

distribution. We also identified MYRF as a new candidate risk gene for CDH. MYRF is a 

transcription factor with high probability of mutations intolerance. All patients have 
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additional anomalies including congenital heart defects and genitourinary defects with 

MYRF mutations, this phenomenon is likely representing a novel syndrome; functional 

genomics studies using cell and animal models of MYRF are currently in progress.   

International efforts in cancer genomic studies have produced rich cancer somatic 

mutation data set and a great opportunity to investigate the functionality of cancer driver 

genes at variant level. Dysregulation of fundamental cellular processes, such as cell 

generation, cell division and growth, and cell differentiation, can cause cancer and 

developmental disorders. Integration of data sets from cancer can improve the 

interpretation of genetic data in developmental disorders studies. In this thesis, we studied 

the deep genetic relations between cancer and developmental disorders and gave a 

quantitative assessment of the shared mode of action of mutations and the total number of 

overlapping risk genes among cancer driver genes. Based on these results, we can 

leverage massive amounts of somatic mutation data in cancer studies to improve our 

understanding of variants conferring developmental disorders. 

To improve power in genetic studies and accurate interpretation of missense 

variants in clinical genetic testing, we developed MVP, a deep neural network based 

method, in order to achieve better prediction of the pathogenicity of missense variants.  

MVP uses a deep learning approach to leverage large training data sets and many 

correlated predictors. We compiled cancer somatic mutation hotspots dataset and de novo 

germline mutations from developmental disorders as benchmark data, MVP achieved 

overall superior performance in identifying and prioritizing pathogenic missense variants 

than previously published methods.  
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Recent whole exome sequencing studies have been designed to assess the relative impact 

of inherited variants on developmental disorders71,175,176. In recent studies of congenital heart 

disease (CHD), researcher identified an enrichment of rare inherited heterozygous loss of 

functions variants only in isolated CHD patients but not syndromic CHD patients, an aggregation 

analysis of de novo and rare inherited variants can reveal the distinct disease causation and 

genetic architectures for syndromic and isolated CHD. However, inherited variants are unlikely 

to be completely penetrant and each individual variant with small effect sizes contributes a little 

to the phenotype. Prioritization of inherited variants remains a serious challenge and large 

number of patients collections are required to provide statistical power for detecting risk variants 

with small effect sizes, continued efforts in large cohorts sequencing will contribute to a more 

complete picture of the pathogenesis of disease. Additionally, rare inherited dominant and 

recessive mutations in CDH patients has not been systematically studied due to low prevalence; 

further discovery of effect inherited mutations with impact requires a more comprehensive 

analytical strategies and larger cohorts 

In this thesis, we only focused on the analysis and interpretation of mutations 

located in the coding region and previously researcher has estimated that coding 

pathogenic de novo mutations13 can contribute to about half of the parents with severe 

developmental disorders. Many studies have been performance to understand the effects 

of the remaining 98% non coding DNA. Numerous GWAS studies177,178 have greatly 

improved our understanding in human diseases mostly from common noncoding variants, 

ENCODE project179,180 aimed to produce high-quality data to understand how noncoding 

DNA contribute to gene expression regulation.  Unfortunately it is still largely unknown 

which rare noncoding variants contribute to disease with large effect, as it is much harder 
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to assess the effects and interpret the DNA changes in noncoding regions than coding 

regions currently. Noncoding variants can be functional in many ways, such as disrupting 

DNA sequence motifs in enhancer or promoter regions, disrupting mRNA binding 

specificity and changing DNA accessibility179,181,182. Whole genome sequencing 

technology become affordable for large scale studies in recent years and provided an 

unprecedented opportunity to study the contribution of rare inherited mutations or de 

novo mutations in the noncoding region, it can interrogate more of the noncoding genome 

than whole exome sequencing with detection of a broader genetic variation types, 

including not only single-nucleotide variant (snv), small insertion and deletions (indels), 

but also structural variants such as copy number variants (CNV) as well as large 

translocations183. With a large cohorts and robust statistical methods, we can identify 

disease-associated regulatory elements and reveal the contributions of mutations in 

noncoding regions to developmental disorders.  
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