199 research outputs found

    Двухэшелонная зеленая цепь поставок для городских перевозок грузов

    Get PDF
    In recent years the urbanization to affect many countries of the world has made the significant changes to the material flow at all levels of the supply chain. The last mile logistics operating in the urban area has also changed notably. An increase in the volume of material flow within cities has led to a growth in the number of deliveries and the freight turnover, accordingly. The above-stated processes greatly reduce the sustainability of cities, which while keeping the urbanization trend, can lead to the serious negative results of the social and environmental nature not only for the cities, but also for the countries. One way to solve this problem is to create the green supply chains from the multi-echeloning principles. In the paper, the authors have presented a two-echelon green supply chain using the zero transport emissions within the second echelon. A multi-criteria function has been developed to assess the rational location of a transfer point in order to reduce the negative environmental impact from the transportation system. With the PTV Visum software product, a simulation has been conducted to evaluate the alternative scenarios for generating a green supply chain.Процессы урбанизации, которые в последние годы затронули многие страны мира, внесли значительные изменения в продвижение материальных потоков на всех эшелонах цепи поставки. Особые изменения претерпела логистика последней мили, которая выполняется непосредственно на городской территории. Увеличение объема материального потока в пределах городов привело к росту количества поставок и соответственно транспортной работы. Эти процессы значительно снижают устойчивость городов, что при сохранении тенденции урбанизации может вызывать серьезные негативные последствия социального и экологического характера не только в городах, но и в странах. Одним из путей решения данной проблемы является построение зеленых цепей поставок на принципах мультиэшелонирования. В работе предложена двухэшелонная зеленая цепь поставок с использованием транспорта с нулевым выбросом СО2 в рамках второго эшелона. Разработана многокритериальная функция оценки рационального расположения перегрузочного пункта для снижения негативного влияния на окружающую среду транспортной системы. Проведено имитационное моделирование в программном продукте PTV Visum для оценки альтернативных сценариев построения зеленой цепи поставки

    Urban Logistics in Amsterdam: A Modal Shift from Roadways to Waterway

    Full text link
    The efficiency of urban logistics is vital for economic prosperity and quality of life in cities. However, rapid urbanization poses significant challenges, such as congestion, emissions, and strained infrastructure. This paper addresses these challenges by proposing an optimal urban logistic network that integrates urban waterways and last-mile delivery in Amsterdam. The study highlights the untapped potential of inland waterways in addressing logistical challenges in the city center. The problem is formulated as a two-echelon location routing problem with time windows, and a hybrid solution approach is developed to solve it effectively. The proposed algorithm consistently outperforms existing approaches, demonstrating its effectiveness in solving existing benchmarks and newly developed instances. Through a comprehensive case study, the advantages of implementing a waterway-based distribution chain are assessed, revealing substantial cost savings (approximately 28%) and reductions in vehicle weight (about 43%) and travel distances (roughly 80%) within the city center. The incorporation of electric vehicles further contributes to environmental sustainability. Sensitivity analysis underscores the importance of managing transshipment location establishment costs as a key strategy for cost efficiencies and reducing reliance on delivery vehicles and road traffic congestion. This study provides valuable insights and practical guidance for managers seeking to enhance operational efficiency, reduce costs, and promote sustainable transportation practices. Further analysis is warranted to fully evaluate the feasibility and potential benefits, considering infrastructural limitations and canal characteristics

    On the medication distribution system for home health care through convenience stores, lockers, and home delivery.

    Full text link
    Medication distribution service can be delivered based on a combination of home delivery and customer pickup. That is, medications are delivered either to customers' homes directly or to the pickup facilities (e.g. lockers) close to customers' homes. In Taiwan, there are more than 11,000 convenience stores that provide a 24-h service for customers to pick up the ordered items from e-commerce, which is unique to the world. In the medication distribution system, convenience stores can provide a unique opportunity for customers to more conveniently collect medications at stores, and also can reduce the operating cost for a logistics company providing the medication delivery service. Therefore, this work proposes a medication distribution system through convenience stores, lockers, and home delivery. Under this system, this work investigates how to simultaneously determine employment of convenience store chains, the convenience store locations to be visited, locations of lockers, vehicle routes for convenience stores and lockers, and vehicle routes for customers' homes, so that the total operating cost is minimized. This work further proposes a genetic algorithm to solve the medication distribution problem. Through simulation, the experimental results show that the proposed algorithm is able to solve the problem efficiently

    Multitrip vehicle routing with delivery options: a data-driven application to the parcel industry

    Get PDF
    To make the last mile of parcel delivery more efficient, service providers offer an increasing number of modes of delivery as alternatives to the traditional and often cost-intensive home delivery service. Parcel lockers and pickup stations can be utilized to reduce the number of stops and avoid costly detours. To design smart delivery networks, service providers must evaluate different business models. In this context, a multitrip vehicle routing problem with delivery options and location-dependent costs arises. We present a data-driven framework to evaluate alternative delivery strategies, formulate a corresponding model and solve the problem heuristically using adaptive large neighborhood search. By examining large, real-life instances from a major European parcel service, we determine the potential and benefits of different delivery options. Specifically, we show that delivery costs can be mitigated by consolidating orders in pickup stations and illustrate how pricing can be applied to steer customer demand toward profitable, eco-friendly products

    The electric two-echelon vehicle routing problem

    Get PDF
    Two-echelon distribution systems are attractive from an economical standpoint and help to keep large vehicles out of densely populated city centers. Large trucks can be used to deliver goods to intermediate facilities in accessible locations, whereas smaller vehicles allow to reach the final customers. Due to their reduced size, pollution, and noise, multiple companies consider using an electric fleet of terrestrial or aerial vehicles for last-mile deliveries. Route planning in multi-tier logistics leads to notoriously difficult problems. This difficulty is accrued in the presence of an electric fleet since each vehicle operates on a smaller range and may require planned visits to recharging stations. To study these challenges, we introduce the electric two-echelon vehicle routing problem (E2EVRP) as a prototypical problem. We propose a large neighborhood search (LNS) metaheuristic as well as an exact mathematical programming algorithm, which uses decomposition techniques to enumerate promising first-level solutions in conjunction with bounding functions and route enumeration for the second-level routes. These algorithms produce optimal or near-optimal solutions for the problem and allow us to evaluate the impact of several defining features of optimized battery-powered distribution networks. We created representative E2EVRP benchmark instances to simulate realistic metropolitan areas. In particular, we observe that the detour miles due to recharging decrease proportionally to 1/ρx with x ≈ 5/4 as a function of the charging stations density ρ; e.g., in a scenario where the density of charging stations is doubled, recharging detours are reduced by 58%. Finally, we evaluate the trade-off between battery capacity and detour miles. This estimate is critical for strategic fleet-acquisition decisions, in a context where large batteries are generally more costly and less environment-friendly

    Enabling the freight traffic controller for collaborative multi-drop urban logistics: practical and theoretical challenges

    Get PDF
    There is increasing interest in how horizontal collaboration between parcel carriers might help alleviate problems associated with last-mile logistics in congested urban centers. Through a detailed review of the literature on parcel logistics pertaining to collaboration, along with practical insights from carriers operating in the United Kingdom, this paper examines the challenges that will be faced in optimizing multicarrier, multidrop collection, and delivery schedules. A “freight traffic controller” (FTC) concept is proposed. The FTC would be a trusted third party, assigned to equitably manage the work allocation between collaborating carriers and the passage of vehicles over the last mile when joint benefits to the parties could be achieved. Creating this FTC concept required a combinatorial optimization approach for evaluation of the many combinations of hub locations, network configuration, and routing options for vehicle or walking to find the true value of each potential collaboration. At the same time, the traffic, social, and environmental impacts of these activities had to be considered. Cooperative game theory is a way to investigate the formation of collaborations (or coalitions), and the analysis used in this study identified a significant shortfall in current applications of this theory to last-mile parcel logistics. Application of theory to urban freight logistics has, thus far, failed to account for critical concerns including (a) the mismatch of vehicle parking locations relative to actual delivery addresses; (b) the combination of deliveries with collections, requests for the latter often being received in real time during the round; and (c) the variability in travel times and route options attributable to traffic and road network conditions

    E-Fulfillment and Multi-Channel Distribution – A Review

    Get PDF
    This review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of multi-channel e-fulfillment and to identify gaps between relevant managerial issues and academic literature, thereby indicating directions for future research. One of the recurrent patterns in today’s e-commerce operations is the combination of ‘bricks-and-clicks’, the integration of e-fulfillment into a portfolio of multiple alternative distribution channels. From a supply chain management perspective, multi-channel distribution provides opportunities for serving different customer segments, creating synergies, and exploiting economies of scale. However, in order to successfully exploit these opportunities companies need to master novel challenges. In particular, the design of a multi-channel distribution system requires a constant trade-off between process integration and separation across multiple channels. In addition, sales and operations decisions are ever more tightly intertwined as delivery and after-sales services are becoming key components of the product offering.Distribution;E-fulfillment;Literature Review;Online Retailing
    corecore