5,533 research outputs found

    Modeling and analyzing variability for mobile information systems

    Get PDF
    Abstract. Advances in size, power, and ubiquity of computing, sensors, and communication technology made possible the development of mobile or nomadic information systems. Variability of location and system behavior is a central issue in mobile information systems, where behavior of software has to change and re-adapt to the different location settings. This paper concerns modeling and analysis of the complementary relation between software and location variability. We use graphical and formal location modeling techniques, show how to elicit and use location model in conjunction with Tropos goal-oriented framework, and introduce automated analysis on the location-based models.

    An Analysis of issues against the adoption of Dynamic Carpooling

    Full text link
    Using a private car is a transportation system very common in industrialized countries. However, it causes different problems such as overuse of oil, traffic jams causing earth pollution, health problems and an inefficient use of personal time. One possible solution to these problems is carpooling, i.e. sharing a trip on a private car of a driver with one or more passengers. Carpooling would reduce the number of cars on streets hence providing worldwide environmental, economical and social benefits. The matching of drivers and passengers can be facilitated by information and communication technologies. Typically, a driver inserts on a web-site the availability of empty seats on his/her car for a planned trip and potential passengers can search for trips and contact the drivers. This process is slow and can be appropriate for long trips planned days in advance. We call this static carpooling and we note it is not used frequently by people even if there are already many web-sites offering this service and in fact the only real open challenge is widespread adoption. Dynamic carpooling, on the other hand, takes advantage of the recent and increasing adoption of Internet-connected geo-aware mobile devices for enabling impromptu trip opportunities. Passengers request trips directly on the street and can find a suitable ride in just few minutes. Currently there are no dynamic carpooling systems widely used. Every attempt to create and organize such systems failed. This paper reviews the state of the art of dynamic carpooling. It identifies the most important issues against the adoption of dynamic carpooling systems and the proposed solutions for such issues. It proposes a first input on solving the problem of mass-adopting dynamic carpooling systems.Comment: 10 pages, whitepaper, extracted from B.Sc. thesis "Dycapo: On the creation of an open-source Server and a Protocol for Dynamic Carpooling" (Daniel Graziotin, 2010

    Simulation in Contexts Involving an Interactive Table and Tangible Objects

    No full text
    International audienceBy using an interactive table, it is possible to interact with several people (decision-makers) in a simultaneous and collaborative way, around the table, during a simulation session. Thanks to the RFID technology with which the table is fitted, it is possible to give tangible objects a unique identity to include and to consider them in the simulation. The paper describes a context model, which takes into consideration the specificities related to interactive tables. The TangiSense interactive table is presented; it is connected to a multi-agent system making it possible to give the table a certain level of adaptation: each tangible object can be associated to an agent which can bring roles to the object (i.e., the roles are the equivalent of a set of behaviors). The multi-agent system proposed in this paper is modeled according to an architecture adapted to the exploitation of tangible and virtual objects during simulation on an interactive table. A case study is presented; it concerns a simulation of road traffic management. The illustrations give an outline of the potentialities of the simulation system as regards the context-awareness aspect, following both the actions of the decision-makers implied in simulation, and the agents composing the road traffic simulation

    Urban Swarms: A new approach for autonomous waste management

    Get PDF
    Modern cities are growing ecosystems that face new challenges due to the increasing population demands. One of the many problems they face nowadays is waste management, which has become a pressing issue requiring new solutions. Swarm robotics systems have been attracting an increasing amount of attention in the past years and they are expected to become one of the main driving factors for innovation in the field of robotics. The research presented in this paper explores the feasibility of a swarm robotics system in an urban environment. By using bio-inspired foraging methods such as multi-place foraging and stigmergy-based navigation, a swarm of robots is able to improve the efficiency and autonomy of the urban waste management system in a realistic scenario. To achieve this, a diverse set of simulation experiments was conducted using real-world GIS data and implementing different garbage collection scenarios driven by robot swarms. Results presented in this research show that the proposed system outperforms current approaches. Moreover, results not only show the efficiency of our solution, but also give insights about how to design and customize these systems.Comment: Manuscript accepted for publication in IEEE ICRA 201

    Distributed UI on Interactive tabletops: issues and context model

    Get PDF
    International audienceThe User Interface distribution can also be applied on interactive tabletops which are connected and more or less remote. This distribution raises issues which concern collaboration (how to distribute the UI to collaborate?); besides, concerning the tangible interaction: which role and appearance (tangible or virtual) must have the objects? In this chapter we describe an extended context model in order to take into account both interactions on a single interactive tabletop and interactions which are distributed and collaborative. The model proposed can, from our point of view, be used to make sure that the usability of the interaction is guaranteed. Indeed, it is essential to know the interaction configuration in order to ensure the usability of the system. The model suggested is illustrated in a case study integrating collaboration and UI distribution. A conclusion gives the limits of the article before a presentation of prospects

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    • 

    corecore