12,268 research outputs found

    SOLACE: A framework for electronic negotiations

    Get PDF
    Copyright @ 2011 Walter de Gruyter GmbHMost existing frameworks for electronic negotiations today are tied to specific negotiation systems for which they were developed, preventing them from being applied to other negotiation scenarios. Thus, the evaluation of electronic negotiation systems is difficult as each one is based on a different framework. Additionally, each developer has to design a new framework for any system to be developed, leading to a ‘reinvention of the wheel’. This paper presents SOLACE—a generic framework for multi-issue negotiations, which can be applied to a variety of negotiation scenarios. In contrast with other frameworks for electronic negotiations, SOLACE supports hybrid systems in which the negotiation participants can be humans, agents or a combination of the two. By recognizing the importance of strategies in negotiations and incorporating a time attribute in negotiation proposals, SOLACE enhances existing approaches and provides a foundation for the flexible electronic negotiation systems of the future

    Rational bidding using reinforcement learning: an application in automated resource allocation

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic resource provisioning and usage of computational resources, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a framework for supporting consumers and providers in technical and economic preference elicitation and the generation of bids. Secondly, we introduce a consumer-side reinforcement learning bidding strategy which enables rational behavior by the generation and selection of bids. Thirdly, we evaluate and compare this bidding strategy against a truth-telling bidding strategy for two kinds of market mechanisms – one centralized and one decentralized

    Q-Strategy: A Bidding Strategy for Market-Based Allocation of Grid Services

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational services is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic service provisioning and usage of Grid services, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a bidding agent framework for implementing artificial bidding agents, supporting consumers and providers in technical and economic preference elicitation as well as automated bid generation by the requesting and provisioning of Grid services. Secondly, we introduce a novel consumer-side bidding strategy, which enables a goal-oriented and strategic behavior by the generation and submission of consumer service requests and selection of provider offers. Thirdly, we evaluate and compare the Q-strategy, implemented within the presented framework, against the Truth-Telling bidding strategy in three mechanisms – a centralized CDA, a decentralized on-line machine scheduling and a FIFO-scheduling mechanisms

    Human-Agent Decision-making: Combining Theory and Practice

    Full text link
    Extensive work has been conducted both in game theory and logic to model strategic interaction. An important question is whether we can use these theories to design agents for interacting with people? On the one hand, they provide a formal design specification for agent strategies. On the other hand, people do not necessarily adhere to playing in accordance with these strategies, and their behavior is affected by a multitude of social and psychological factors. In this paper we will consider the question of whether strategies implied by theories of strategic behavior can be used by automated agents that interact proficiently with people. We will focus on automated agents that we built that need to interact with people in two negotiation settings: bargaining and deliberation. For bargaining we will study game-theory based equilibrium agents and for argumentation we will discuss logic-based argumentation theory. We will also consider security games and persuasion games and will discuss the benefits of using equilibrium based agents.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    Towards engineering ontologies for cognitive profiling of agents on the semantic web

    Get PDF
    Research shows that most agent-based collaborations suffer from lack of flexibility. This is due to the fact that most agent-based applications assume pre-defined knowledge of agents’ capabilities and/or neglect basic cognitive and interactional requirements in multi-agent collaboration. The highlight of this paper is that it brings cognitive models (inspired from cognitive sciences and HCI) proposing architectural and knowledge-based requirements for agents to structure ontological models for cognitive profiling in order to increase cognitive awareness between themselves, which in turn promotes flexibility, reusability and predictability of agent behavior; thus contributing towards minimizing cognitive overload incurred on humans. The semantic web is used as an action mediating space, where shared knowledge base in the form of ontological models provides affordances for improving cognitive awareness

    Adaptive Negotiation Model for Human-Machine Interaction on Decision Level

    Get PDF

    Context aware Q-Learning-based model for decision support in the negotiation of energy contracts

    Get PDF
    [EN] Automated negotiation plays a crucial role in the decision support for bilateral energy transactions. In fact, an adequate analysis of past actions of opposing negotiators can improve the decision-making process of market players, allowing them to choose the most appropriate parties to negotiate with in order to increase their outcomes. This paper proposes a new model to estimate the expected prices that can be achieved in bilateral contracts under a specific context, enabling adequate risk management in the negotiation process. The proposed approach is based on an adaptation of the Q-Learning reinforcement learning algorithm to choose the best scenario (set of forecast contract prices) from a set of possible scenarios that are determined using several forecasting and estimation methods. The learning process assesses the probability of occurrence of each scenario, by comparing each expected scenario with the real scenario. The final chosen scenario is the one that presents the higher expected utility value. Besides, the learning method can determine which is the best scenario for each context, since the behaviour of players can change according to the negotiation environment. Consequently, these conditions influence the final contract price of negotiations. This approach allows the supported player to be prepared for the negotiation scenario that is the most probable to represent a reliable approximation of the actual negotiation environme

    Three Decision-making Mechanisms to facilitate Negotiation of Service Level Agreements for Web Service Compositions

    Get PDF
    The negotiation of Service Level Agreements for composite web services is a very complex process. It involves the coordination of the negotiation process so that the end-to-end QoS requirements of the user request are satisfied while ensuring that the atomic QoS requirements are also simultaneously satisfied. This paper summarizes three decision-making mechanisms which support the process of Service Level Agreement negotiation for composite web services. The mechanisms include: the decomposition of the overall user preferences into the preferences of individual negotiation agents representing each atomic services within the composition; the selection of the prospective negotiation partners for the actual interaction from a list of potential service providers and finally the negotiation of Service Level Agreement with the selected provider agents while ensuring that the end-to-end QoS is satisfied
    corecore