887 research outputs found

    Examining the Lateral Displacement of HL60 Cells Rolling on Asymmetric P-Selectin Patterns

    Get PDF
    Author Manuscript 2011 July 4.The lateral displacement of cells orthogonal to a flow stream by rolling on asymmetrical receptor patterns presents a new opportunity for the label-free separation and analysis of cells. Understanding the nature of cell rolling trajectories on such substrates is necessary to the engineering of substrates and the design of devices for cell separation and analysis. Here, we investigate the statistical nature of cell rolling and the effect of pattern geometry and flow shear stress on cell rolling trajectories using micrometer-scale patterns of biomolecular receptors with well-defined edges. Leukemic myeloid HL60 cells expressing the PSGL-1 ligand were allowed to flow across a field of patterned lines fabricated using microcontact printing and functionalized with the P-selectin receptor, leveraging both the specific adhesion of this ligand−receptor pair and the asymmetry of the receptor pattern inclination angle with respect to the fluid shear flow direction (α = 5, 10, 15, and 20°). The effects of the fluid shear stress magnitude (τ = 0.5, 1, 1.5, and 2.0 dyn/cm[superscript 2]), α, and P-selectin incubation concentration were quantified in terms of the rolling velocity and edge tracking length. Rolling cells tracked along the inclined edges of the patterned lines before detaching and reattaching on another line. The detachment of rolling cells after tracking along the edge was consistent with a Poisson process of history-independent interactions. Increasing the edge inclination angle decreased the edge tracking length in an exponential manner, contrary to the shear stress magnitude and P-selectin incubation concentration, which did not have a significant effect. On the basis of these experimental data, we constructed an empirical model that predicted the occurrence of the maximum lateral displacement at an edge angle of 7.5°. We also used these findings to construct a Monte Carlo simulation for the prediction of rolling trajectories of HL60 cells on P-selectin-patterned substrates with a specified edge inclination angle. The prediction of lateral displacement in the range of 200 μm within a 1 cm separation length supports the feasibility of label-free cell separation via asymmetric receptor patterns in microfluidic devices.Deshpande Center for Technological InnovationNational Science Foundation (U.S.) (CAREER Award 0952493)National Institutes of Health (U.S.) (Grant DE019191)National Institutes of Health (U.S.) (Grant HL095722)National Institutes of Health (U.S.) (Grant HL097172)American Heart Association (Grant 0970178N

    P38 and JNK have opposing effects on persistence of in vivo leukocyte migration in zebrafish

    Get PDF
    The recruitment and migration of macrophages and neutrophils is an important process during the early stages of the innate immune system in response to acute injury. Transgenic pu.1:EGFP zebrafish permit the acquisition of leukocyte migration trajectories during inflammation. Currently, these high-quality live-imaging data are mainly analysed using general statistics, for example, cell velocity. Here, we present a spatio-temporal analysis of the cell dynamics using transition matrices, which provide information of the type of cell migration. We find evidence that leukocytes exhibit types of migratory behaviour, which differ from previously described random walk processes. Dimethyl sulfoxide treatment decreased the level of persistence at early time points after wounding and ablated temporal dependencies observed in untreated embryos. We then use pharmacological inhibition of p38 and c-Jun N-terminal kinase mitogen-activated protein kinases to determine their effects on in vivo leukocyte migration patterns and discuss how they modify the characteristics of the cell migration process. In particular, we find that their respective inhibition leads to decreased and increased levels of persistent motion in leukocytes following wounding. This example shows the high level of information content, which can be gained from live-imaging data if appropriate statistical tools are used

    PhagoSight: an open-source MATLAB® package for the analysis of fluorescent neutrophil and macrophage migration in a zebrafish model

    Get PDF
    Neutrophil migration in zebrafish larvae is increasingly used as a model to study the response of these leukocytes to different determinants of the cellular inflammatory response. However, it remains challenging to extract comprehensive information describing the behaviour of neutrophils from the multi-dimensional data sets acquired with widefield or confocal microscopes. Here, we describe PhagoSight, an open-source software package for the segmentation, tracking and visualisation of migrating phagocytes in three dimensions. The algorithms in PhagoSight extract a large number of measurements that summarise the behaviour of neutrophils, but that could potentially be applied to any moving fluorescent cells. To derive a useful panel of variables quantifying aspects of neutrophil migratory behaviour, and to demonstrate the utility of PhagoSight, we evaluated changes in the volume of migrating neutrophils. Cell volume increased as neutrophils migrated towards the wound region of injured zebrafish. PhagoSight is openly available as MATLAB® m-files under the GNU General Public License. Synthetic data sets and a comprehensive user manual are available from http://www.phagosight.org

    Cell adhesion mediated by the Integrin VLA-4

    Get PDF

    Novel descriptive and model based statistical approaches in immunology and signal transduction

    No full text
    Biological systems are usually complex nonlinear systems of which we only have a limited understanding. Here we show three different aspects of investigating such systems. We present a method to extract detailed knowledge from typical biological trajectory data, which have randomness as a main characteristic. The migration of immune cells, such as leukocytes, are a key example of our study. The application of our methodology leads to the discovery of novel random walk behaviour of leukocyte migration. Furthermore we use the gathered knowledge to construct the under- lying mathematical model that captures the behaviour of leukocytes, or more precisely macrophages and neutrophils, under acute injury. Any model of a biological system has little predictive power if it is not compared to collected data. We present a pipeline of how complex spatio- temporal trajectory data can be used to calibrate our model of leukocyte migration. The pipeline employs approximate methods in a Bayesian framework. Using the same approach we are able to learn additional information about the underlying signalling network, which is not directly apparent in the cell migration data. While these two methods can be seen as data processing and analysis, we show in the last part of this work how to assess the information content of experiments. The choice of an experiment with the highest information content out of a set of possible experiments leads us to the problem of optimal experimental design. We develop and implement an algorithm for simulation based Bayesian experimental design in order to learn parameters of a given model. We validate our algorithm with the help of toy examples and apply it to examples in immunology (Hes1 transcription regulation) and signal transduction (growth factor induced MAPK pathway)
    corecore