368 research outputs found

    Passive optical network (PON) monitoring using optical coding technology

    Get PDF
    Les réseaux optiques passifs (PON) semblent être la technologie gagnante et ultime du futur pour les "fibres jusqu'au domicile" ayant une haute capacité. L'écoute de contrôle de ce genre de système est nécessaire pour s'assurer un niveau de qualité de service prédéterminé pour chaque client. En outre, l'écoute de contrôle réduit considérablement les dépenses en capital et de fonctionnement (CAPEX et OPEX), tant pour le fournisseur du réseau que les clients. Alors que la capacité des PON est croissante, les gestionnaires de réseau ne disposent pas encore d'une technologie efficace et appropriée pour l'écoute de contrôle des réseaux de capacité aussi élevée. Une variété de solutions a été proposée. Toutes ces dernières solutions ne sont pas pratiques à cause de leur faible capacité (nombre de clients), d'une faible évolutivité, d'une grande complexité et des défis technologiques. Plus important encore, la technologie souhaitable pour l'écoute de contrôle devrait être rentable car le marché des PON est très sensible aux coûts. Dans cette thèse, nous considérons l'application de la technologie du codage optique passif (OC) comme une solution prometteuse pour l'écoute de contrôle centralisée d'un réseau optique ramifié tels que les réseaux PON. Dans la première étape, nous développons une expression pour le signal détecté par l'écoute de contrôle et étudions ses statistiques. Nous trouvons une nouvelle expression explicite pour le rapport signal utile/signal brouillé (SIR) comme outil de mesure métrique de performance. Nous considérons cinq distributions PON géographiques différentes et étudions leurs effets sur l'SIR pour l'écoute de contrôle d'OC. Dans la prochaine étape, nous généralisons notre modèle mathématique et ses expressions pour le contrôle des signaux détectés par un détecteur quadratique et des paramètres réalistes. Nous évaluons ensuite les performances théoriques de la technologie basée sur l'écoute de contrôle selon le rapport signal/bruit (SNR), le rapport signal/bruit plus coefficient d'interférence (SNIR), et la probabilité de fausse alarme. Nous élaborons l'effet de la puissance d'impulsion transmise, la taille du réseau et la cohérence de la source lumineuse sur le rendement des codes unidimensionnels (ID) et bidimensionnels (2D) de l'écoute de contrôle d'OC. Une conception optimale est également abordée. Enfin, nous appliquons les tests de Neyman-Pearson pour le récepteur de notre système d'écoute de contrôle et enquêtons sur la façon dont le codage et la taille du réseau affectent les dépenses de fonctionnement (OPEX) de notre système d'écoute de contrôle. Malgré le fait que les codes ID et 2D fournissent des performances acceptables, elles exigent des encodeurs avec un nombre élevé de composants optiques : ils sont encombrants, causent des pertes, et ils sont coûteux. Par conséquent, nous proposons un nouveau schéma de codage simple et plus approprié pour notre application de l'écoute de contrôle que nous appelons le codage périodique. Par simulation, nous évaluons l'efficacité de l'écoute de contrôle en terme de SNR pour un PON employant cette technologie. Ce système de codage est utilisé dans notre vérification expérimentale de l'écoute de contrôle d'OC. Nous étudions expérimentalement et par simulation, l'écoute de contrôle d'un PON utilisant la technologie de codage périodique. Nous discutons des problèmes de conception pour le codage périodique et les critères de détection optimale. Nous développons également un algorithme séquentiel pour le maximum de vraisemblance avec une complexité réduite. Nous menons des expériences pour valider notre algorithme de détection à l'aide de quatre encodeurs périodiques que nous avons conçus et fabriqués. Nous menons également des simulations de Monte-Carlo pour des distributions géographiques de PON réalistes, avec des clients situés au hasard. Nous étudions l'effet de la zone de couverture et la taille du réseau (nombre d'abonnés) sur l'efficacité de calcul de notre algorithme. Nous offrons une borne sur la probabilité pour un réseau donné d'entraîner l'algorithme vers un temps exorbitant de surveillance du réseau, c'est à dire le délai d'attente de probabilité. Enfin, nous soulignons l'importance du moyennage pour remédier aux restrictions budgétaires en puissance/perte dans notre système de surveillance afin de supporter de plus grandes tailles de réseaux et plus grandes portées de fibres. Ensuite, nous mettrons à niveau notre dispositif expérimental pour démontrer un m PON avec 16 clients. Nous utilisons un laser à modulation d'exploitation directement à 1 GHz pour générer les impulsions sonde. Les données mesurées par le dispositif expérimental est exploité par l'algorithme de MLSE à détecter et à localiser les clients. Trois déploiements PON différents sont réalisés. Nous démontrons une surveillance plus rigoureuse pour les réseaux ayant une répartition géographique à plusieurs niveaux. Nous étudions aussi le budget de la perte de notre dispositif de soutien plus élevés de capacités du réseau. Enfin, nous étudions le budget total admissible de la perte d'exploitation du système de surveillance dans la bande de fréquences à 1650 nm en fonction des spécifications de l'émetteur/récepteur. En particulier, la limite totale de la perte de budget est représentée en fonction du gain de l'amplicateure de transimpédance (TIA) et le résolution de la conversion analogique-numérique (ADC). Par ailleurs, nous enquêtons sur le compromis entre la distance portée et la capacité (taille de fractionnement au niveau du noeud distant) dans notre système de suivi

    Security performance and protocol consideration in optical communication system with optical layer security enabled by optical coding techniques

    Get PDF
    With the fast development of communication systems, network security issues have more and more impact on daily life. It is essential to construct a high degree of optical layer security to resolve the security problem once and for all. Three different techniques which can provide optical layer security are introduced and compared. Optical chaos can be used for fast random number generation. Quantum cryptography is the most promising technique for key distribution. And the optical coding techniques can be deployed to encrypt the modulated signal in the optical layer. A mathematical equation has been derived from information theory to evaluate the information-theoretic security level of the wiretap channel in optical coding schemes. And the merits and limitation of two coherent optical coding schemes, temporal phase coding and spectral phase coding, have been analysed. The security scheme based on a reconfigurable optical coding device has been introduced, and the corresponding security protocol has been developed. By moving the encryption operation from the electronic layer to the optical layer, the modulated signals become opaque to the unauthorised users. Optical code distribution and authentication is the one of the major challenges for our proposed scheme. In our proposed protocol, both of the operations are covered and defined in detail. As a preliminary draft of the optical code security protocol, it could be a useful guidance for further research

    Monitoring of passive optical networks utilising an optical coding technique

    Get PDF
    Passive Optical Networks (PONs) have become the most popular fibre based access networks over the last decade. They are widely deployed for use in Fibre-to-the-Premises (FTTP) scenarios. PON is a point-to-multipoint connection (P2MP) between an optical line terminal (OLT) located at the central office (CO) and multiple optical network units (ONU) at the customer premises. The next generation of PONs (NG-PON) are likely to deploy a ring-and-spur long reach PON (LR-PON). NG-PON aims to accommodate more ONUs, extend the network coverage out to 100 km, minimize complexity and improve operational outcomes. An all fibre access network, operating over extended distances, presents a reliability risk, thereby increasing the need for a reliable and cost-effective monitoring system to enhance protection and reduce restoration time. Among existing monitoring techniques, attention is focused on approaches that use optical code division multiplexing (OCDM), also known as optical coding (OC). The OC is applied to a signal that is sent from the network management system (NMS) to the ONUs. The monitoring signal is transmitted onto a fibre and split into a number of sub-signals that are equal in number to the ONUs. Each one of the ONUs receives a sub-signal, encodes it, and then reflects it back to the NMS. The NMS has the capability to identify faulty ONUs by examining the code received from the ONUs. A review of the literature has shown that the use of OCs does improve system performance, especially in the timely detection of faults. Many of the studies, found in the literature, focus on how to implement optical spreading codes that are used in OCDM Access (OCDMA) systems and currently the optical orthogonal code (OOC) is the dominant code implemented for time-domain coding. Although the OOC code performs well, its construction is relatively complex. The available code-words (cardinality) that are offered by OOC are proportional to the code length. Implementing OOC in a high capacity PON requires a long code length causes an inevitable degradation of system performance. Therefore, an improved optical coding technique for PONs should provide code-words that conform to PON split ratios. The main objective of the research was to develop an optical spreading code, based on a prime code family for OCDMA systems, that has the capability to accommodate different PON split ratios and with characteristics that improve transmission system performance when compared to existing prime code families. The novel code presented in this thesis is identified as the extended grouped new modified prime code (EG-nMPC). The number of code-words generated by the proposed codes are substantially higher than those generated by the existing code families and more compatible to the different PON splitting ratios. In addition, with a low code weight, both power consumption and hardware complexity decreases. The code performance was evaluated using mathematical models for two transmission formats - pulse position modulation (PPM) and on-off keying (OOK) modulation. The performance of EG-nMPC was compared to other prime codes, and the results show that the proposed code improves the performance of OCDMA in terms of bit-error rate (BER). As PON is a point-to-multipoint connection oriented access network, downstream traffic is encrypted and broadcast to all ONUs, while the unencrypted upstream traffic from each ONU terminal occurs in a burst mode. The OLT carries out a ranging process to determine transmission delays between ONUs, to prevent collisions between the burst mode traffic from each of the ONUs. In this research, the burst mode traffic ranging process has been replicated in the monitoring system, with this replication providing a fixed equalization delay time for the monitoring transmissions. To investigate the ring-and-spur LR-PON reliability several protection architectures were evaluated, in term of cost and availability, to determine the optimal protection architecture. In this thesis, the reliability parameter Failure Impact Robustness (FIR), has been used to calculate the failure impact of the different components in ring-and-spur LR-PON, hence selecting the optimal protection scheme. A PON-based optical communication system model was developed and the proposed EG-nMPC code was incorporated. Fibre split ratios of 32, 64 and 128, were considered in this study. The simulation results show that the EG-nMPC code improves the performance, efficiency and accuracy of the PON transmission monitoring system. To conclude, this research aims to enhance the PON performance by a fast detection of the fault and quick restoration. This research has contributed to knowledge by identifying a new and novel spreading code that is compatible with the different PON splitting ratios for OC monitoring techniques. By using the ranging process, a fixed equalization delay time has been assigned to each ONU to manage the upstream burst traffic. The spreading code has been implemented in a real-time simulation to show the status of each fibre link. The implementation was carried out based on 1-D tree topology system. However, the proposed EG-nMPC can be exploited to enable network monitoring that is based on hybrid 1D/2D coding. This coding is complementary with the structure of LR-PON as explained in section ‎8.2.3. In addition, with the use of the FIR parameter for the different components in the ring-and-spur architecture, an optimal protection scheme for both OLT and the ring (feeder fibre), has been nominated. This protection scheme ensures that protection, availability and cost are at their optimal values

    Advanced Equalization Techniques for Digital Coherent Optical Receivers

    Get PDF

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    High-speed low-power modulator driver arrays for medium-reach optical networks

    Get PDF
    The internet is becoming the ubiquitous tool that is changing the lives of so many citizens across the world. Commerce, government, industry, healthcare and social interactions are all increasingly using internet applications to improve and facilitate communications. This is especially true for videoenabled applications, which currently demand much higher data rates and quality from data networks. High definition TV streaming services are emerging and these again will significantly push the demand for widely deployed, high-bandwidth services. The current access passive optical networks (PONs) use a single wavelength for downstream transmission and a separate one for upstream transmission. Incorporating wavelength-division multiplexing (WDM) in a PON allows for much higher bandwidths in both directions. While WDM technologies have been successfully deployed for many years in metro and core networks, in access networks they are not commonly used yet. This is mainly due to the high costs associated with deploying entire WDM access networks. However, the present optical networks cannot be simply and cost-effectively scaled to provide the capacity for tomorrow’s users. As an effect there is a strong need for new WDM access components which are compact, cost-competitive and mass-manufacturable. Increasing the number of wavelengths for WDM-PON automatically leads to an increase in the number of single pluggable transceivers, which brings substantial design challenges and additional costs. The multitude of TXs and RXs for different wavelength channels increases the total footprint considerably. Photonic integration of transceivers into arrays will significantly reduce the footprint and cost. However, the total power consumption of an array device is an issue. To avoid the use of a thermoelectric cooler, the integration density of components is severely limited by the heat dissipating capabilities offered by their package. As a result the WDM-PON philosophy necessitates the reduction of the transceiver’s power dissipation. From this plea it is apparent that the main technology challenges for realizing future-proof optical (access) networks are reducing active component power consumption, shrinking form factors and lowering assembly costs. In this perspective an over 100 Gb/s throughput component, composed of 10 channels at 11.3 Gb/s per wavelength channel would be a great contribution to the expansion of customer bandwidth. It can provide increased line rates to the end users at speeds of 10 Gb/s per wavelength. As RXs typically consume much less power than externally modulated TXs, they can relatively easily be integrated into an array. Mainly high speed optical transmitters have significant power consumptions and the heat generation caused by power dissipation forms a critical obstacle in the development of a 10-channel transmitter, which again underlines the importance of power reduction. Alongside the introduction of WDM in access networks, also inter-office point-to-point connections in data center environments could benefit from the WDM philosophy. As data center operators often suffer from fiber scarcity or do not own their fiber infrastructure, WDM technologies are essential to deliver reach and capacity extension for these scenarios. Interdata center communication also benefits from cost-, footprint- and energyefficient components operating at high speed to maximize the throughput. As an effect integrated over 100 Gb/s transceivers, such as 4 channels at 28 Gb/s, are highly desirable. The research described in this dissertation was partly funded by the European FP7 ICT project C3PO (Colourless and Coolerless Components for low Power Optical Networks) and the UGent special research fund. The C3PO project aimed to develop a new generation of green Si-photonic compatible components with record low power consumption, that can enable bandwidth growth and constrain the total cost. C3PO envisioned building high-capacity access networks employing reflective photonic components. To achieve this, cost-competitive reflective transmitters based on electroabsorption modulators (EAM) needed to be closely integrated into arrays. A multi-wavelength optical source provides the required wavelength channels for both downstream and upstream signals in the WDM-PON. Chapter 1 gives a short overview of a PON and describes the main implementations of a WDM-PON access network. It introduces integrated low power transmitter arrays for a cost-effective architecture of WDM-PONs and inter-data center communication. Chapter 2 compares different optical transmitters and gives a short overview of their most important characteristics. External modulation through both Mach-Zehnder modulators (MZMs) and EAMs is described. It shows that EAMs are the best choice for low power transmitter array integration, thanks to their lower drive voltage and smaller form factor, compared to MZMs. To achieve a reduced consumption, the electronic modulator driver topology is studied in chapter 3. The challenge in designing modulator drivers is the need to deliver very large currents in combination with high voltage swings. Four distinct output configurations are compared and techniques to reduce the power consumption of the drivers are described. Chapter 5 presents duobinary (DB), a modulation scheme that is gaining interest in today’s optical transmission. As the required bandwidth is about half that of NRZ, it softens the constraints on the transmitter bandwidth. Thanks to its narrow optical spectrum, it has an improved tolerance to dispersion in long haul single mode links and it can improve the spectral efficiency in WDM architectures. For optical DB a precoder is necessary to assure the received signal is equal to the original binary signal. The conducted research that resulted in this dissertation produced 2 low power EAM driver arrays: A 10-channel 113 Gb/s modulator driver array with state-of-the art ultra-low power consumption. A 2-channel 56 Gb/s duobinary driver array with a differential output with low power consumption. Both designs are elaborately analyzed in chapter 4 and 6 respectively. To the best of our knowledge the 10-channel EAM driver array is the first in its kind, while achieving the lowest power consumption for an EAM driver so far reported, 50% below the state of the art in power consumption. The 2-channel EAM driver array is the fastest modulator driver including on-chip duobinary encoding and precoding reported so far. The final chapter provides an overview of the foremost conclusions from the presented research. It is concluded with suggestions for further research

    Reconfigurable High Performance Secured NoC Design Using Hierarchical Agent-based Monitoring System

    Get PDF
    With the rapid increase in demand for high performance computing, there is also a significant growth of data communication that leads to leverage the significance of network on chip. This paper proposes a reconfigurable fault tolerant on chip architecture with hierarchical agent based monitoring system for enhancing the performance of network based multiprocessor system on chip against faulty links and nodes. These distributed agents provide healthy status and congestion information of the network. This status information is used for further packet routing in the network with the help of XY routing algorithm. The functionality of Agent is enhanced not only to work as information provider but also to take decision for packet to either pass or stop to the processing element by setting the firewall in order to provide security. Proposed design provides a better performance and area optimization by avoiding deadlock and live lock as compared to existing approaches over network design

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well
    corecore