30,689 research outputs found

    Developing BP-driven web application through the use of MDE techniques

    Full text link
    Model driven engineering (MDE) is a suitable approach for performing the construction of software systems (in particular in the Web application domain). There are different types of Web applications depending on their purpose (i.e., document-centric, interactive, transactional, workflow/business process-based, collaborative, etc). This work focusses on business process-based Web applications in order to be able to understand business processes in a broad sense, from the lightweight business processes already addressed by existing proposals to long-running asynchronous processes. This work presents a MDE method for the construction of systems of this type. The method has been designed in two steps following the MDE principles. In the first step, the system is represented by means of models in a technology-independent manner. These models capture the different aspects of Web-based systems (these aspects refer to behaviour, structure, navigation, and presentation issues). In the second step, the model transformations (both model-to- model and model-to-text) are applied in order to obtain the final system in terms of a specific technology. In addition, a set ofEclipse-based tools has been developed to provide automation in the application of the proposed method in order to validate the proposal.Torres Bosch, MV.; Giner Blasco, P.; Pelechano Ferragud, V. (2012). Developing BP-driven web application through the use of MDE techniques. Software and Systems Modeling. 11(4):609-631. doi:10.1007/s10270-010-0177-5S609631114Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language for Web services version 1.1 (May 2003)Barna, P., Frasincar, F., Houben, G.J.: A workow-driven design of Web information systems. In: Wolber, D., Calder, N., Brooks, C., Ginige, A. (eds.) ICWE, ACM, pp. 321–328Bakshi, K., Karger, D.R.: Semantic Web applications. In: Proceedings of the ISWC 2005 Workshop on End User Semantic Web Interaction (November 2005)Brambilla M., Ceri S., Fraternali P., Manolescu I.: Process modeling in Web applications. ACM Trans. Softw. Eng. Methodol. 15(4), 360–409 (2006)Brambilla, M., Preciado, J.C., Trigueros, M.L., SĂĄnchez-Figueroa F.: Business process-based conceptual design of rich internet applications. In: ICWE, pp. 155–161 (2008)Brambilla, M., Butti, S., Fraternali, P.: Webratio bpm: a tool for designing and deploying business processes on the Web. In: ICWE, pp. 415–429 (2010)Business process modeling notation (BPMN). OMG final adopted specification. dtc/06-02-01 (February 2006)Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (Webml): a modeling language for designing Web sites. In: Proceedings of the 9th international World Wide Web conference on Computer networks : the international journal of computer and telecommunications networking, Amsterdam, The Netherlands, pp. 137–157. North-Holland Publishing Co., The Netherlands (2000)Davis J.: Open Source SOA. Manning Publications Co, Greenwich (2009)Distante, D.: Reengineering legacy applications and Web transactions: an extended version of the UWA transaction design model. Ph.D. thesis, University of Lecce, Italy (2004)Distante D., Rossi G., Canfora G., Tilley S.R.: A comprehensive design model for integrating business processes in Web applications. Int. J. Web Eng. Technol. 3(1), 43–72 (2007)Duhl, J.: Rich internet applications. Technical report, IDC (November 2003)Fons, J.: OOWS: A model driven method for the development of web applications. Ph.D. thesis, Universidad PolitĂ©cnica de Valencia (2008)Fons, J., Pelechano, V., Pastor, O., Valderas, P., Torres, V.: Applying the OOWS model-driven approach for developing web applications. The internet movie database case study. In: Web Engineering: Modelling and Implementing Web Applications. Human–Computer Interaction Series, pp. 65–108. Springer, London (2008)Fowler, M.: Inversion of control containers and the dependency injection pattern. http://martinfowler.com/articles/injection.html (January 2004)Gershenfeld N., Krikorian R., Cohen D.: The internet of things. Sci Am 291(4), 76–81 (2004)Giner P., Cetina C., Fons J., Pelechano V.: Developing mobile business processes for the internet of things. IEEE Pervasive Comput. 9, 18–26 (2010)GĂłmez J., Cachero C., Pastor O.: Extending a conceptual modelling approach to Web application design. In: Wangler, B., Bergman, L. (eds) CAiSE. Lecture Notes in Computer Science, vol. 1789, pp. 79–93. Springer, London (2000)Goth G.: The task-based interface: not your father’s desktop. IEEE Software 26(6), 88–91 (2009)Holmes, T., Tran, H., Zdun, U., Dustdar, S.: Modeling human aspects of business processes—a view-based, model-driven approach. In: ECMDA-FA, pp. 246–261 (2008)Kappel, G., Pröll, B., Reich, S., Retschitzegger, W. (eds): Web Engineering—The Discipline of Systematic Development of Web Applications. Wiley, England (2006)Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference Model, Modeling Techniques and Development Process. Ph.D. thesis, Ludwig-Maximilians-University Munich, Germany (2001)Koch N., Kraus A., Cachero C., MeliĂĄ S.: Integration of business processes in Web application models. J. Web Eng. 3(1), 22–49 (2004)Limbourg, Q., Vanderdonckt, J.: Usixml: a user interface description language supporting multiple levels of independence. In: ICWE Workshops, pp. 325–338 (2004)Linaje M., Preciado J.C., SĂĄnchez-Figueroa F.: Engineering rich internet application user interfaces over legacy Web models. IEEE Internet Comput. 11(6), 53–59 (2007)Link, S., Hoyer, P., Schuster, T., Abeck, S.: Model-driven development of human tasks for workflows. In: ICSEA ‘08: Proceedings of the 2008 third international conference on software engineering advances, Washington, DC, USA, pp. 329–335. IEEE Computer Society, Washington, DC (2008)Marcos, E., CĂĄceres, P., Castro, V. D.: An approach for navigation model construction from the use cases model. In: CAiSE Forum. Held in conjunction with the 16th Conference On Advanced Information Systems Engineering (June 2004)Pietschmann, S., Voigt, M., Meissner, K.: Adaptive rich user interfaces for human interaction in business processes. In: Proceedings of the 10th International Conference on Web Information Systems Engineering (WISE 2009), WISE, pp. 351–364. Springer LNCS (October 2009)Schwabe D., Rossi G.: An object oriented approach to Web-based applications design. Theor. Pract. Object Syst. 4(4), 207–225 (1998)Schmid H.A., Rossi G.: Modeling and designing processes in e-commerce applications. IEEE Internet Comput. 8(1), 19–27 (2004)Schwinger W., Retschitzegger W., Schauerhuber A., Kappel G., Wimmer M., Pröll B., Cachero C., Casteleyn S., Troyer O.D., Fraternali P., GarrigĂłs I., Garzotto F., Ginige A., Houben G.J., Koch N., Moreno N., Pastor O., Paolini P., Pelechano V., Rossi G., Schwabe D., Tisi M., Vallecillo A., van der Sluijs K., Zhang G.: A survey on Web modeling approaches for ubiquitous Web applications. IJWIS 4(3), 234–305 (2008)Sousa K.S., Mendona H., Vanderdonckt J.: A model-driven approach to align business processes with user interfaces. J. UCS 14(19), 3236–3249 (2008)Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S.: Model-driven approach for managing human interface design life cycle. In: MoDELS, pp. 226–240 (2007)Tedre M.: What should be automated?. Interactions 15(5), 47–49 (2008)Torres, V., Giner, P., Bonet, B., Pelechano, V.: Adapting BPMN to Public Administration. In: Proceedings BPMN 2010 Springer’s Lecture Notes in Business Information Processing (LNBIP). Postdam, Germany (to appear)Troyer, O.D., Casteleyn, S.: Modeling complex processes for Web applications using wsdm. In: Proceedings of the Third International Workshop on Web-Oriented Software Technologies (held in conjunction with ICWE2003), IWWOST2003 (2003

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    E-BioFlow: Different Perspectives on Scientific Workflows

    Get PDF
    We introduce a new type of workflow design system called\ud e-BioFlow and illustrate it by means of a simple sequence alignment workflow. E-BioFlow, intended to model advanced scientific workflows, enables the user to model a workflow from three different but strongly coupled perspectives: the control flow perspective, the data flow perspective, and the resource perspective. All three perspectives are of\ud equal importance, but workflow designers from different domains prefer different perspectives as entry points for their design, and a single workflow designer may prefer different perspectives in different stages of workflow design. Each perspective provides its own type of information, visualisation and support for validation. Combining these three perspectives in a single application provides a new and flexible way of modelling workflows

    Designing an Open Virtual Factory of Small and Medium-sized Enterprises for Industrial Engineering Education

    Get PDF
    Curriculum of Industrial Engineering program must accomplish the requirement that graduates have the ability to design, develop, implement, and improve integrated system that include people, materials, equipment and energy. However, it is not easy to implement a curriculum that fosters such competencies. One of the strategies to achieve that is using an innovative learning media, so that the problem-based learning (PBL) can be accustomed. In this paper, we design a web-based enterprise resources planning. It is aimed to capture the real problem of small and medium-sized enterprises (SMEs) in bottled drinking water industries. The integrated system can be illustrated as ERP application that designed by using free open source software (FOSS). This research aimed to utilize the application to improve teaching methods in IE education. The result of the research can be used to improve the competencies of IE students, especially the abilities to identify, formulate, and solve the activities of the business process improvement in SMEs. Keywords Industrial engineering education, FOSS, innovative learning media, problem-based learnin

    A framework and tool to manage Cloud Computing service quality

    Get PDF
    Cloud Computing has generated considerable interest in both companies specialized in Information and Communication Technology and business context in general. The Sourcing Capability Maturity Model for service (e-SCM) is a capability model for offshore outsourcing services between clients and providers that offers appropriate strategies to enhance Cloud Computing implementation. It intends to achieve the required quality of service and develop an effective working relationship between clients and providers. Moreover, quality evaluation framework is a framework to control the quality of any product and/or process. It offers a tool support that can generate software artifacts to manage any type of product and service efficiently and effectively. Thus, the aim of this paper was to make this framework and tool support available to manage Cloud Computing service quality between clients and providers by means of e-SCM.Ministerio de Ciencia e InnovaciĂłn TIN2013-46928-C3-3-RJunta de AndalucĂ­a TIC-578
    • 

    corecore