44,854 research outputs found

    A Model to Estimate First-Order Mutation Coverage from Higher-Order Mutation Coverage

    Full text link
    The test suite is essential for fault detection during software development. First-order mutation coverage is an accurate metric to quantify the quality of the test suite. However, it is computationally expensive. Hence, the adoption of this metric is limited. In this study, we address this issue by proposing a realistic model able to estimate first-order mutation coverage using only higher-order mutation coverage. Our study shows how the estimation evolves along with the order of mutation. We validate the model with an empirical study based on 17 open-source projects.Comment: 2016 IEEE International Conference on Software Quality, Reliability, and Security. 9 page

    Estimating the relative rate of recombination to mutation in bacteria from single-locus variants using composite likelihood methods

    Get PDF
    A number of studies have suggested using comparisons between DNA sequences of closely related bacterial isolates to estimate the relative rate of recombination to mutation for that bacterial species. We consider such an approach which uses single-locus variants: pairs of isolates whose DNA differ at a single gene locus. One way of deriving point estimates for the relative rate of recombination to mutation from such data is to use composite likelihood methods. We extend recent work in this area so as to be able to construct confidence intervals for our estimates, without needing to resort to computationally-intensive bootstrap procedures, and to develop a test for whether the relative rate varies across loci. Both our test and method for constructing confidence intervals are obtained by modeling the dependence structure in the data, and then applying asymptotic theory regarding the distribution of estimators obtained using a composite likelihood. We applied these methods to multi-locus sequence typing (MLST) data from eight bacteria, finding strong evidence for considerable rate variation in three of these: Bacillus cereus, Enterococcus faecium and Klebsiella pneumoniae.Comment: Published at http://dx.doi.org/10.1214/14-AOAS795 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Predictions of the emergence of vaccine-resistant hepatitis B in The Gambia using a mathematical model

    Get PDF
    Vaccine escape variants of hepatitis B virus (HBV) have been identified world-wide. A mathematical model of HBV transmission is used to investigate the potential pattern of emergence of such variants. Attention is focused on The Gambia as a country with high quality epidemiological data, universal infant immunization and in which escape mutants after childhood infections have been observed. We predict that a variant cannot become dominant for at least 20 years from the start of vaccination, even when using a vaccine which affords no cross protection. The dominant factor responsible for this long time scale is the low rate of infectious contacts between infected and susceptible individuals (we estimate the basic reproduction number of hepatitis B in The Gambia to be 1·7). A variant strain that achieves high prevalence will also take many years to control, and it is questionable whether emergence will be identifiable by sero-surveillance until of high prevalence. The sensitivity of the model predictions to epidemiological and demographic factors is explored

    Survival analysis of DNA mutation motifs with penalized proportional hazards

    Full text link
    Antibodies, an essential part of our immune system, develop through an intricate process to bind a wide array of pathogens. This process involves randomly mutating DNA sequences encoding these antibodies to find variants with improved binding, though mutations are not distributed uniformly across sequence sites. Immunologists observe this nonuniformity to be consistent with "mutation motifs", which are short DNA subsequences that affect how likely a given site is to experience a mutation. Quantifying the effect of motifs on mutation rates is challenging: a large number of possible motifs makes this statistical problem high dimensional, while the unobserved history of the mutation process leads to a nontrivial missing data problem. We introduce an 1\ell_1-penalized proportional hazards model to infer mutation motifs and their effects. In order to estimate model parameters, our method uses a Monte Carlo EM algorithm to marginalize over the unknown ordering of mutations. We show that our method performs better on simulated data compared to current methods and leads to more parsimonious models. The application of proportional hazards to mutation processes is, to our knowledge, novel and formalizes the current methods in a statistical framework that can be easily extended to analyze the effect of other biological features on mutation rates

    Predictions of the emergence of vaccine-resistant hepatitis B in The Gambia using a mathematical model

    Get PDF
    Vaccine escape variants of hepatitis B virus (HBV) have been identified world-wide. A mathematical model of HBV transmission is used to investigate the potential pattern of emergence of such variants. Attention is focused on The Gambia as a country with high quality epidemiological data, universal infant immunization and in which escape mutants after childhood infections have been observed. We predict that a variant cannot become dominant for at least 20 years from the start of vaccination, even when using a vaccine which affords no cross protection. The dominant factor responsible for this long time scale is the low rate of infectious contacts between infected and susceptible individuals (we estimate the basic reproduction number of hepatitis B in The Gambia to be 1·7). A variant strain that achieves high prevalence will also take many years to control, and it is questionable whether emergence will be identifiable by sero-surveillance until of high prevalence. The sensitivity of the model predictions to epidemiological and demographic factors is explored

    LittleDarwin: a Feature-Rich and Extensible Mutation Testing Framework for Large and Complex Java Systems

    Full text link
    Mutation testing is a well-studied method for increasing the quality of a test suite. We designed LittleDarwin as a mutation testing framework able to cope with large and complex Java software systems, while still being easily extensible with new experimental components. LittleDarwin addresses two existing problems in the domain of mutation testing: having a tool able to work within an industrial setting, and yet, be open to extension for cutting edge techniques provided by academia. LittleDarwin already offers higher-order mutation, null type mutants, mutant sampling, manual mutation, and mutant subsumption analysis. There is no tool today available with all these features that is able to work with typical industrial software systems.Comment: Pre-proceedings of the 7th IPM International Conference on Fundamentals of Software Engineerin

    Bayesian co-estimation of selfing rate and locus-specific mutation rates for a partially selfing population

    Full text link
    We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about pure hermaphroditism, androdioecy, and gynodioecy. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens Sampling Formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from the data using a Dirichlet Process Prior (DPP) model. Among the parameters jointly inferred are the population-wide rate of self-fertilization, locus-specific mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual

    The Progress, Challenges, and Perspectives of Directed Greybox Fuzzing

    Full text link
    Most greybox fuzzing tools are coverage-guided as code coverage is strongly correlated with bug coverage. However, since most covered codes may not contain bugs, blindly extending code coverage is less efficient, especially for corner cases. Unlike coverage-guided greybox fuzzers who extend code coverage in an undirected manner, a directed greybox fuzzer spends most of its time allocation on reaching specific targets (e.g., the bug-prone zone) without wasting resources stressing unrelated parts. Thus, directed greybox fuzzing (DGF) is particularly suitable for scenarios such as patch testing, bug reproduction, and specialist bug hunting. This paper studies DGF from a broader view, which takes into account not only the location-directed type that targets specific code parts, but also the behaviour-directed type that aims to expose abnormal program behaviours. Herein, the first in-depth study of DGF is made based on the investigation of 32 state-of-the-art fuzzers (78% were published after 2019) that are closely related to DGF. A thorough assessment of the collected tools is conducted so as to systemise recent progress in this field. Finally, it summarises the challenges and provides perspectives for future research.Comment: 16 pages, 4 figure
    corecore