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A number of studies have suggested using comparisons between DNA
sequences of closely related bacterial isolates to estimate the relative rate
of recombination to mutation for that bacterial species. We consider such
an approach which uses single-locus variants: pairs of isolates whose DNA
differ at a single gene locus. One way of deriving point estimates for the
relative rate of recombination to mutation from such data is to use compos-
ite likelihood methods. We extend recent work in this area so as to be able
to construct confidence intervals for our estimates, without needing to re-
sort to computationally-intensive bootstrap procedures, and to develop a test
for whether the relative rate varies across loci. Both our test and method for
constructing confidence intervals are obtained by modeling the dependence
structure in the data, and then applying asymptotic theory regarding the dis-
tribution of estimators obtained using a composite likelihood. We applied
these methods to multi-locus sequence typing (MLST) data from eight bac-
teria, finding strong evidence for considerable rate variation in three of these:
Bacillus cereus, Enterococcus faecium and Klebsiella pneumoniae.

1. Introduction. Homologous recombination is a process which allows for-
eign DNA to be incorporated within a genome. In bacteria this can occur through
three different mechanisms: conjugation, the uptake of DNA from other bacteria;
transformation, the uptake of naked DNA from the remains of bacteria that exist
in the living environment; or transduction, where DNA is implanted by bacterio-
phage [Low and Porter (1978)]. Although different, each result in the Introduction
of a new DNA sequence within a region of the genome, and thus recombination
is potentially an important mechanism driving the evolution of a given bacteria.
Understanding recombination in bacteria is important because it can allow for ge-
netic exchange between distant bacterial species and impacts on the evolution of

Received September 2013; revised June 2014.
1Supported in part by the Marsden Fund Project 08-MAU-099 (Cows, starlings and Campylobacter

in New Zealand: unifying phylogeny, genealogy and epidemiology to gain insight into pathogen
evolution).

2Supported in part by the Engineering and Physical Sciences Research Council, UK, Grant
EP/K014463/1.

Key words and phrases. Composite likelihood, recombination, single-locus variants, testing for
rate variation.

200

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/42413938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS795
http://www.imstat.org


RECOMBINATION IN BACTERIA 201

new species [Fraser, Hanage and Spratt (2007), Sheppard et al. (2008)]. Further-
more, the rate of recombination varies considerably across bacterial species: with
estimates of the relative effect of recombination to mutation varying by over three
orders of magnitude in Vos and Didelot (2009). Here we look at how to estimate the
relative rate of recombination to point mutation from population genetic data that
describe the genetic variation between a sample of bacterial isolates at a number
of loci. In particular, our approach develops recent ideas that estimate this relative
rate by comparing the DNA for closely related isolates.

For population genetic data it is often helpful to consider the genealogical his-
tory of a sample. If there is no recombination, this can be represented by a single
tree, which is often called the genealogy of the sample. The effect of recombina-
tion is that, while at any specific position along the chromosome we can define
such a genealogical tree, this tree can be different for different positions. The ge-
nealogical history of a sample is thus defined by the collection of all such trees,
which can be represented through a graph [Griffiths and Marjoram (1997)].

Within bacteria each recombination event generally affects only a relatively
small region of the genome. For example, in Campylobacter jejuni, a recombi-
nation event may change the DNA within a region of between a few hundred to
a few thousand base pairs, which constitutes a fraction of a percent of the whole
1.6 Mb genome. Thus, we can define a single tree for a sample of bacteria by
tracing the ancestry of the nonrecombinant region at each recombination event.
This tree has been called the clonal frame [Didelot and Falush (2007), Milkman
and Bridges (1990)]. We can then model recombination events as introducing a
number of mutations onto this clonal frame. An example is given in Figure 1. Our
approach to estimating recombination rates in this paper is based on using such a
model.

In this paper we assume we have genetic data collected from a number of iso-
lates of a given bacteria, and that this genetic data consist of the DNA sequence
at L loci of similar size. We assume these loci are sufficiently spread around the
genome such that a single recombination event is unlikely to affect more than one
locus. An example of data satisfying these assumptions is MLST data [Maiden
et al. (1998)], which consist of the DNA sequence of ≈500 bp fragments from a
selection of, normally around 7, housekeeping genes. Large MLST data sets for
over 20 bacteria are available from http://pubmlst.org.

For such data we can define sequence types (STs) so that two isolates which have
identical sequences at all L loci will have the same ST, but any two isolates whose
sequences differ will have differents STs. It is standard to define STs numerically:
ST1, ST2 etc. A simple example for 3 loci and 7 bacterial isolates is given in
Figure 2, where we also show the underlying clonal frame of the sample, and the
mutation and recombination events that have affected the sample. If we assume
each mutation is distinct, and these are also different from the mutations introduced
at recombination events, then we get 6 distinct sequence types.

http://pubmlst.org
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FIG. 1. Left-hand plot: Example of the genealogical trees for 4 isolates in one region of the genome.
The effect of recombination is that different sites in the gene have different genealogical trees. Here
we have two recombination events that have affected the genealogical relationship of the isolates (the
position of these back in time are denoted by the dashed lines, and the regions they affect by the light
blue lines under the gene fragments). The black tree is the clonal frame of the sample: the genealogy
at regions unaffected by recombination. Mutations that have affected the sample are given by the
black squares. Here we consider mutations that create differences from the sequence of the common
ancestor on the clonal frame. The other trees represent the genealogies of regions affected by either
one or both recombination events. Right-hand plot: the simplified model for the data based on the
clonal frame. Differences within our sample are created by mutation and recombination events that
occur on the clonal frame. We do not track the ancestry of recombination events, instead each one
just introduces a number of mutations within the recombinant region. These events are shown in the
figure and are labeled with the number of differences introduced.

The single-locus variants (SLVs) of a specific ST will be the set of other STs
that differ from it only at a single-locus. If we consider pairs of SLVs at a specific
locus l, then an SLV pair will be defined as a pair of isolates that have different
DNA sequences at locus l but have identical DNA sequences at the other L − 1
loci. For the example in Figure 2 we get one SLV pair at locus 2, and 3 SLV pairs
at locus 3. These can be summarized by the STs of each pair together with the
number of nucleotide differences at the locus that differs; see Table 1. In this paper
we consider how to use data such as that in Table 1 to infer the relative rate of
recombination to mutation. Note that we define this relative rate as the ratio of the
rate at which a locus is affected by recombination to the rate at which it is affected
by mutation. This rate is different from the relative rate of recombination to mu-
tation events across the genome, as recombination events that start outside a locus
can still affect it. Thus, the rate at which a locus is affected by recombination de-
pends both on the rate of recombination events and the relative size of the average
recombination tract length to the size of the locus.
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FIG. 2. Example clonal frame and resulting data set for 7 isolates at 3 loci. Mutations are denoted
by squares, and the color denotes the locus that the mutation occurs on. There is a single recombina-
tion event, denoted by a square labeled with the number of differences to the ancestral sequence that
event introduces. For this example, there are 6 distinct sequence types, denoted ST1 to ST6. We have
an SLV pair at locus 2 (ST2 and ST3) and 3 SLV pairs at locus 3 (all distinct pairs of ST4 to ST6).

The idea of using SLVs to estimate the relative rate of recombination to mutation
comes initially from the work of Feil et al. (1999) [see also Feil et al. (2000),
Spratt, Hanage and Feil (2001)]. By comparing closely related isolates, it can often
be clear as to whether the pair of isolates differs only by mutation or not. The
approach in Feil et al. (1999) is based on assuming that if the number of nucleotide

TABLE 1
Data for SLV pairs from example in Figure 2. The data
consist of the SLV pairs for each locus, together with x,
the number of nucleotide differences each SLV pair has

at that locus

Locus ST ST x

2 2 3 1
3 4 5 5
3 4 6 6
3 5 6 1
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differences is small (say 2 or fewer), then these are caused by mutation. If the
number of differences is large, then these are caused by recombination. For the
data in Table 1 such an approach would work well: identifying correctly that two
of the four SLV pairs are created by mutation, and two involve recombination.

However, to obtain sensible estimates of the relative rate of recombination to
mutation, we need to deal with two issues. First is the fact that SLV pairs that
involve recombination may have differences caused by both mutation and recom-
bination. Thus, using a simple ratio of SLV pairs caused by only mutation to those
that involve recombination may not be appropriate. Second, some recombination
events may introduce a small number of nucleotide differences, and thus we need
to allow for some of the SLV pairs that differ at a small number of nucleotides to be
due to recombination. To address these issues, Yu et al. (2012) introduce a simple
model for the number of nuceotide differences for an SLV pair as a function of the
relative rate of recombination to mutation, and then estimate the parameter in this
model using composite likelihood. We take the same approach here.

While the model is approximate, it should give robust and accurate inferences in
situations where it is easy to detect whether SLVs are caused only by mutation and
where it is likely that SLVs are caused by only one, mutation or recombination,
event. This corresponds to SLVs defined for data collected at a relatively large
number of loci (such as the 7 used in MLST data), and where most recombination
events introduce a large number of nucleotide differences.

A second issue with using SLVs to estimate the relative rate of recombination to
mutation is that data from some SLV pairs are dependent. This can be seen in the
data in Table 1 and the three SLV pairs at locus 3. These three SLV pairs are caused
by two events: one mutation and one recombination. This dependence makes it
harder to assess uncertainty in parameter estimates. As a result, Yu et al. (2012)
resort to using simulation, via a parametric bootstrap, to assess this uncertainty.
The main disadvantage with this is that the accuracy of the resulting measures of
uncertainty will depend on how accurate the model used to simulate the data is and,
in practice, the models used to simulate data do not capture many of the features
observed in real data sets. Furthermore, the use of simulation adds substantially to
the overall computational effort required to analyze any data set: using a parametric
bootstrap for large data sets, such as the Staphylococcus aureus MLST data set we
analyze in Section 4, can take months of CPU time.

The main difference between this work and that of Yu et al. (2012) is that we
use theory for composite likelihoods to get direct measures of uncertainty of our
estimates. We believe these to be more reliable than using simulation, and they are
much quicker to calculate. Composite likelihood theory also gives a framework
for performing inference across loci. We show how we can test whether there are
differences in the relative rate of recombination to mutation across loci, and how
to get an estimate of the common relative rate under the assumption that there is
no variation across loci.
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The next section introduces our model for data from SLV pairs and how we can
use composite likelihood to estimate the relative rate of recombination to mutation
from such data and to quantify the uncertainty in these estimates. We evaluate this
method on simulated data in Section 3. Our results suggest that we can get both
accurate estimates and also appropriate measures of uncertainty of our estimators.
For large data sets, coverage values of our confidence intervals do drop away from
their nominal value, but this appears to be due to slight biases in our model as
opposed to underestimating the variability of the estimators. We show that tests
for detecting differences across loci have close to their nominal significance level
across a range of simulated scenarios, and have good power to detect rate variation
across loci in situations where the recombination varies by a factor of three or
more. In Section 4 we apply our method to analyze MLST data from 8 bacteria.
In three cases we find strong evidence that the rate of recombination to mutation
varies across loci, with estimates suggesting this variation could be by up to two
orders of magnitude. The paper ends with a discussion. Data and code used in the
paper are available at http://www.maths.lancs.ac.uk/~fearnhea/SLV.zip.

2. Estimating recombination rates from SLVs. We will now describe how
we use data like that in Table 1 to estimate the relative rate of recombination and
mutation at a locus using composite likelihood methods. Roughly, the idea behind
composite likelihood approaches is to (i) split data into small subsets; (ii) intro-
duce a probabilistic model for each subset of data, which in turn will define a log-
likelihood for that subset; and (iii) combine information from all subsets through
taking a weighted sum of the log-likelihoods from the subsets. The weighted sum
is called a composite likelihood. Parameters can be estimated through maximiz-
ing this composite likelihood. Furthermore, if we model the dependence between
the log-likelihoods across different subsets, we are able to estimate the asymp-
totic variance of, and construct confidence intervals for, the resulting parameter
estimates.

Implementing a composite likelihood method involves a number of key deci-
sions and modeling assumptions. The first is the choice of subsets of the data to
use. In our application each subset corresponds to an SLV pair, with the data being
the number of nucleotide differences we observe for that SLV pair. Second, we
need to develop a model for the data, and we describe our model in Section 2.1.
Then we need to choose the weights used when constructing the composite like-
lihood, and finally to choose how to model the dependence between subsets of
the data. The last aspect is needed in order to be able to assess the uncertainty of
estimators, and hence to obtain confidence intervals. One advantage of compos-
ite likelihood methods is that we need only model one aspect of this dependence,
namely, the covariance of the score function (the derivative of the log-likelihood)
for pairs of subsets of data. Our choices of weights and model for this dependence
for our application are introduced in Section 2.2, together with fuller details of

http://www.maths.lancs.ac.uk/~fearnhea/SLV.zip
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how we then construct confidence intervals for our estimate of the relative rate of
recombination and mutation.

Theory for composite likelihood can also be used to combine information across
loci and construct a test for whether the relative rate of recombination to mutation
varies across loci. This is described in Section 2.3.

2.1. Model for a single SLV pair. Here we derive a conditional likelihood for
data from a single SLV pair at a specific locus, l, say. The data are the number of
nucleotide differences that the SLV pair has at that locus, which will be denoted x.
Remember that the total number of loci is L, and we will denote the relative rate at
which recombination, as opposed to mutation, affects locus l by λ. Our conditional
log-likelihood will be based on the log of the probability of observing x differences
between two STs conditonal on these STs being an SLV pair at locus l,

�(λ;x) = log Pr
λ
(X = x|SLV at locus l),

where the random variable X denotes the number of nucleotide differences at lo-
cus l between a (random) pair of isolates, and we are conditioning on the pair of
isolates being an SLV pair at locus l. We include the subscript λ as the probability
depends on λ.

To calculate this conditional probability, let A denote the event that only muta-
tions have occurred at locus l to create the differences between the pair of isolates,
and Ac the complementary event that at least one recombination occurred at lo-
cus l. Further, let θl denote the mutation rate at locus l, and θ = ∑L

i=1 θi denote
the overall mutation rate across the L loci. [We use standard coalescent scaling
for these rates, so one unit of time is equal to the expected time in the past until a
pair of isolates share a common ancestor; see Wakeley (2007).] Finally, we shall
assume that the relative rate of recombination to mutation, λ, is the same across all
loci.

Under a standard coalescent model, the probability of a pair of isolates being an
SLV pair at locus l is

Pr
λ
(SLV at locus l) ≈ 1

1 + (1 + λ)θ

∞∑
i=1

(
(1 + λ)θl

1 + (1 + λ)θ

)i

≈ 1

(1 + λ)θ

∞∑
i=1

(
(1 + λ)θl

(1 + λ)θ

)i

= 1

θ(1 + λ)

θl

θ

(
1 − θl

θ

)−1

= 1

θ(1 + λ)

θl

θ − θl

.

The first approximation comes from assuming that all recombination events at a
locus introduce a change to the sequence of one of the isolates. The expression
on the right-hand side is then obtained by considering the possible events in the
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history of the two isolates back to their common ancestor: there will need to be at
least one mutation/recombination event at locus l, and no mutation/recombination
events at other loci. The 1/(1+ (1+λ)θ) is the probability that the next event back
in time is a coalescent event, and the (1 + λ)θl/(1 + (1 + λ)θ) is the probability
of the next event back in time being a mutation or recombination event at locus l

[Wakeley (2007)]. We sum over i, the number of mutation or recombination events
in the history of the SLV pair. The approximation we have used in the second
line is reasonable if (1 + λ)θ � 1, which will be true for the cases where this
approach to inference for λ can be expected to be accurate. The advantage of this
approximation is that it means our final expression for the conditional likelihood
(see below) will only depend on θl and θ through the ratio θl/θ , which will be
easier to estimate in practice.

Now, by a similar argument, and using the same approximation, we can get

Pr
λ
(X = x ∩ A ∩ SLV at locus l) ≈ 1

θ(1 + λ)

(
θl

θ(1 + λ)

)x

,

as this will require x mutation events at locus l followed by a coalescent event.
Summing over x = 1,2, . . . gives

Pr
λ
(A ∩ SLV at locus l) ≈ 1

θ(1 + λ)

θl

θ + λθ − θl

.

Thus, we can write

Pr
λ
(X = x|SLV at locus l)

∝ Pr
λ
(X = x ∩ SLV at locus l)

= Pr
λ
(X = x ∩ A ∩ SLV at locus l) + Pr

λ

(
X = x ∩ Ac ∩ SLV at locus l

)

≈ 1

θ(1 + λ)

(
θl

θ(1 + λ)

)x

+ Pr
λ

(
SLV at locus l ∩ Ac) Pr

λ

(
X = x|SLV at locus l,Ac)

= 1

θ(1 + λ)

(
θl

θ(1 + λ)

)x

+
(
Pr
λ
(SLV at locus l) − Pr

λ
(SLV at locus l ∩ A)

)
× Pr

λ

(
X = x|SLV at locus l,Ac)

≈ 1

θ(1 + λ)

(
θl

θ(1 + λ)

)x

+
(

1

θ(1 + λ)

θl

θ − θl

− 1

θ(1 + λ)

θl

θ + λθ − θl

)
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× Pr
λ

(
X = x|SLV at locus l,Ac)

∝
(

θl

θ(1 + λ)

)x

+
(

θl

θ − θl

− θl

θ + λθ − θl

)
Pr
λ

(
X = x|SLV at locus l,Ac).

We can calculate the normalizing constant of this distribution by summing the final
terms over all possible values for x.

To use this conditional likelihood, we need to specify the probabilities Prλ(X =
x|SLV,Ac) and θl/θ . We approximate the former by the distribution of the num-
ber of nucleotide differences that are introduced by a single recombination event,
on the basis that we expect the number of mutation/recombination events in the
history of an SLV pair to be small, and the recombination event will produce most
of the differences between the two isolates. This can then be empirically approxi-
mated based on simulating recombination events at locus l from data on the popu-
lation diversity of sequences at that locus (see Appendix A). To estimate θl/θ , we
can either use the relative size of the sequences at each locus (approximating the
mutation rate per bp as constant) or we can use estimates of the mutation rate at
each locus from population data, such as based on the mean number of pairwise
differences [Donnelly and Tavaré (1995)]. Our experience is that the results are ro-
bust to the method used, and we suggest the former unless there is strong evidence
that mutation rates vary substantially across loci.

This conditional likelihood is very similar to that derived in Yu et al. (2012). The
main difference is that a further approximation is used in Yu et al. (2012) whereby
the probability of two isolates being an SLV pair does not depend on λ.

2.2. Composite likelihood inference. We now consider how to estimate λ

given data from a set of n SLV pairs. Denote the number of differences at each
of the n SLV pairs by x = (x1, . . . , xn). If the data from each SLV pair were in-
dependent from the others, then it would be natural to estimate λ by maximizing∑n

i=1 �(λ;xi); however, the data from each SLV pair is not necessarily indepen-
dent. To see this, consider the SLV pairs in Table 1. We have three SLV pairs
involving each pair of ST4, ST5 and ST6. The data for these three SLV pairs are
dependent, as different SLV pairs are affected by the same events. For example,
both SLV pairs involving ST4 are affected by the same recombination event.

Despite the data being dependent, we can still estimate λ by maximizing a re-
lated function

Cl(λ;x) =
n∑

i=1

wi�(λ;xi),

where w1, . . . ,wn are a set of positive weights. In this case Cl(λ;x) is often called
a composite likelihood, and asymptotic theory exists which shows that in many sit-
uations maximizing a composite likelihood produces an estimator with good sta-
tistical properties, such as consistency and asymptotic normality [Varin, Reid and
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Firth (2011)]. The choice of weights affects the overall accuracy of the estimator,
and we suggest an appropriate choice for our application below. Furthermore, this
theory shows how to construct appropriate confidence intervals for parameters.
Here we outline one such result that we will use.

Assume the true parameter value is λ0 and that λ̂ maximizes Cl(λ;x). Define
the score function

u(λ;x) = d�(λ;x)

dλ
and

U(λ;x) = d Cl(λ;x)

dλ
=

n∑
i=1

wiu(λ;xi).

Define J (λ) = Var(U(λ;X)) and

I (λ) = −E
(

dU(λ;X)

dλ

)
,

where in each case we calculate the variance or expectation with respect to data sets
X being drawn from the model with parameter λ. Then if we set γ = J (λ0)/I (λ0),
we can calculate a scaled deviance

W(λ) = 2

γ

[
Cl(λ̂;x) − Cl(λ;x)

]
.

Under certain regularity conditions, as n → ∞, W(λ0) is asymptotically chi-
squared distributed with 1 degree of freedom. If we can calculate, or consistently
estimate γ , then this result can be used to construct a confidence interval for λ.
Note that if Cl(λ;X) is replaced by a true log-likelihood, then, under standard reg-
ularity conditions, both I (λ) and J (λ) are equal to the Fisher information. In this
case γ = 1.

Each u(λ;Xi) is identically distributed. Let σ 2 = Var(u(λ0;X)), and note that
standard results for the expected information give that I (λ0) = ∑n

i=1 wiσ
2. Now

we can write

J (λ0) = σ 2

(
n∑

i=1

n∑
j=1

wiwj Cor
[
u(λ;Xi);u(λ;Xj)

])
.(1)

For any data set we will be able to partition the STs involved in SLV pairs at
locus l into groups, so that if you take any pair of STs within a group, they will form
an SLV pair, but if you take any two STs which come from different groups, they
will not form an SLV pair. Assume that there are G groups, containing n1, . . . , nG

STs, respectively.
A consequence of this is that you can also split the set of SLV pairs into

the same number of groups: so the gth group of SLV pairs will consist of all
ng(ng − 1)/2 pairs from the gth group of STs. The total number of SLV pairs will
be n = ∑G

g=1 ng(ng − 1)/2. The dependence in the data, the number of nucleotide
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differences of each SLV pair, is due to the possibility of different SLV pairs being
affected by the same mutation and/or recombination events, as was seen in the ex-
ample in Table 1. By construction, SLV pairs taken from different groups will not
share any mutation or recombination events, hence, it is reasonable to assume the
data from SLV pairs in different groups will be independent. For all distinct SLV
pairs within the same group, the correlation between them will be the same (by
symmetry). To develop a parsimonious model for the correlation structure within
a group, we will make a number of further simplifying assumptions. First is that
the correlation is the same for distinct SLV pairs as it is for SLV pairs that share a
common ST. Second is that the level of correlation does not depend on the size of
the group. Under these assumptions we will have for some α ∈ [0,1],

Cor
[
u(λ;Xi);u(λ;Xj)

]

=
⎧⎨
⎩

1, if i = j,

α, if i 
= j but SLV pairs i and j are in the same group,

0, otherwise.

We choose the weights based on this dependence structure. A group of SLV
pairs based on ng STs will contribute ng(ng − 1)/2 terms to the composite like-
lihood, but these depend on just ng pieces of information (the data at the ng dif-
ferent STs). If we chose uniform weights, then this would mean that the com-
posite likelihood could be overly dominated by the data from a small number
of large groups, which would lead to an increase of the variance of our esti-
mate of λ. Thus, we choose to downweight SLV pairs that are in large groups.
Our particular choice is that for an SLV pair in a group of size ng we have
wi = fw(ng) = {ng(ng − 1)/2}−1/2, the inverse of the square root of the number
of SLV pairs in that group.

Substituting these definitions for the correlation and the weights into (1) gives

J (λ0) = σ 2

(
G∑

g=1

ng(ng − 1)

2
fw(ng)

2

+ α

G∑
g=1

ng(ng − 1)

2

{
ng(ng − 1)

2
− 1

}
fw(ng)

2

)

= σ 2

(
G∑

g=1

1 + α

G∑
g=1

{
ng(ng − 1)

2
− 1

})
.

Thus,

J (λ0)

I (λ0)
= (G + α

∑G
g=1{ng(ng − 1)/2 − 1})∑G

g=1{ng(ng − 1)/2}1/2
.
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Note that this ratio does not depend on λ0, it purely depends on the correlation
parameter α. We can estimate α from the empirical correlation of the u(λ̂;xi)’s
for SLV pairs within the same group. We do this formally by modeling the score
functions as multivariate Gaussian with the appropriate covariance structure. In
practice, we make the further assumption of a common α value for all loci. Details
are given in Appendix B.

2.3. Joint inference across loci. It is possible to combine inferences across
loci. It is natural to assume that, conditional on parameters, the data from one
locus is independent of data from another, as the SLVs will be caused by different
recombination and mutation events. Two natural questions to address from looking
across loci are whether the value of λ is the same for all loci and, if so, can we
estimate this common λ value. We will show how composite likelihood methods
can be used to answer both these questions.

First we introduce some notation. Let Cl(l)(λ) be the composite log-likelihood
function for locus l. Similarly, let J (λ)(l) and I (λ)(l) denote the corresponding
values of J (λ) and I (λ) for locus l.

We first consider answering the second question, and let λ0 be the true common
λ value for the loci. We can estimate this by maximizing the sum of the locus-
specific composite log-likelihoods:

λ̂ = arg max
L∑

l=1

Cl(l)(λ).

Furthermore, if we define a scaled deviance as

W(λ) = 2

γ

[
L∑

l=1

Cl(l)(λ̂) −
L∑

l=1

Cl(l)(λ)

]
,

where γ = ∑L
l=1 J (l)(λ0)/

∑L
l=1 I (l)(λ0), then W(λ0) asymptotically has a chi-

squared distribution with one degree of freedom [Varin, Reid and Firth (2011)].
We can estimate γ using our estimates of J (λ0)

(l) and I (λ0)
(l) from each locus.

To test whether the value of λ at each locus is the same, we can use a (composite)
likelihood-ratio test statistic. We define the test statistic to be proportional to the
difference in composite log-likelihood for a model which allows each locus to have
different λ values and that of a model with a common λ value across loci:

LR = 2

ν1

[
L∑

l=1

max
λ

Cl(l)(λ) − max
λ

L∑
l=1

Cl(l)(λ)

]
.

If our null hypothesis, of a common λ across loci, is true, then LR has an asymp-
totic distribution that is an inhomogeneous sum of independent chi-squared dis-
tributions [Varin, Reid and Firth (2011)]. For an appropriate choice of ν1 it is
common to approximate this asymptotic distribution for a chi-squared distribution
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with L − 1 degrees of freedom [Molenberghs and Verbeke (2005), Rotnitzky and
Jewell (1990)]. We can calculate ν1 based on estimates of J (λ0)

(l) and I (λ0)
(l) for

each locus. Details are given in Appendix C.

3. Simulation study. We have investigated this approach for estimating the
relative rate of recombination to mutation using simulation. We used simMLST
[Didelot, Lawson and Falush (2009)] to simulate MLST data sets, under a standard
neutral model for evolution. This involves a model for recombination where the
tract length of a recombination event is geometrically distributed. As a default
scenario we used parameter values that are appropriate for MLST data for a range
of bacteria. This involves data at 7 loci, a population scaled mutation rate, θ , of
100 across the 7 loci, λ = 1, and mean recombination tract lengths that are 5 times
the length of the gene fragments used for each MLST locus. We then considered
performance of the method as we varied θ , λ and the number of loci. Note that for
simMLST recombination rate is defined in terms of the rate at which any loci are
affected by recombination, and hence is equal to the product of λ and θ .

3.1. Estimating λ. For each scenario we present results from analyzing each
locus individually (denoted Individual) and results for a combined analysis of data
at all loci under the assumption of a common λ value (denoted Joint). Results are
averaged across 100 simulated data sets for each scenario, and further averaged
across loci for the individual analysis. We present results in terms of estimating λ,
the relative rate of recombination to mutation. In all cases we look at the bias of
the estimates, their root mean square error and the coverage of putative 95% confi-
dence intervals. For each batch of simulations we also present the average number
of STs and the number of SLVs (across all loci) per data set. When estimating the
distribution of the number of nucleotides introduced at a recombination event (see
Appendix A), we assumed that with probability 0.8 a recombination event changed
the complete DNA sequence in a region.

Table 2 shows results as we vary the number of isolates in our sample and the
number of loci. First consider the individual analysis. Increasing N or L makes
only a small impact on the quality of inference. Note that the root mean square
error does not decrease much as L increases, because we are independently es-
timating a value of λ for each locus and the number of SLV pairs per locus is
actually reducing. Coverage values are close to their nominal level.

Combining information across loci gives more accurate estimates in all cases as
measured by root mean square error; however, coverage proportions drop substan-
tially below the nominal level in many cases. We believe this is because of a slight
bias in our estimates, due to the approximate model that we are fitting. The impact
of this bias is seen more strongly when the uncertainty of the estimates is lower,
such as when combining information across multiple loci. For our simulations we
can test whether this is the case, because we are able to “cheat” and remove the
bias and then see if the resulting confidence intervals have appropriate coverage
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TABLE 2
Results for estimating the relative rate of recombination to mutation for a different number of

samples, N , and loci, L. In each case we give the mean number of STs and SLVs per data set, the
bias and root mean square error of estimating λ, and the coverage for putative 95% confidence

intervals for λ. All simulations had λ = 1. For the simulations with L = 7 we fixed θ = 100 across
the 7 loci. For simulations with other numbers of loci we fixed θ = 14 per locus. Individual gives the

results for analyzing a single-locus, joint for combining inferences across all loci

Individual Joint

STs SLVs Bias RMSE Coverage Bias RMSE Coverage

N L = 7
5000 629 600 −0.06 0.3 0.92 −0.1 0.15 0.80

10,000 758 797 −0.04 0.26 0.94 −0.06 0.12 0.85
20,000 884 1000 −0.03 0.25 0.92 −0.06 0.11 0.87
40,000 1013 1231 −0.01 0.23 0.93 −0.03 0.09 0.91

L N = 10,000
5 574 730 0 0.29 0.92 −0.03 0.12 0.94

10 973 891 −0.05 0.27 0.94 −0.08 0.11 0.83
20 1591 1196 −0.07 0.31 0.92 −0.11 0.14 0.51

probabilities. We remove the bias by multiplying our estimate of λ by an appropri-
ate constant, chosen so that this new estimator is unbiased. If we do this, coverage
values for the joint analysis for all scenarios we considered were in the range 93%
to 97%, which is consistent with the nominal significance level, suggesting that we
are assessing correctly the uncertainty in our estimators.

We also looked at how the parameters for the mutation and recombination rate
affected performance. These are given in Table 3. We see that for a fixed mutation
rate, we get similar performance for a range of λ values. Note that while the bias
and root mean square error is increasing as λ increases, this is because we are esti-
mating a larger value: the relative size of bias and error remains roughly constant.
As we vary θ we notice that performance gets better as θ increases. The large
root mean square error values for small θ are caused by estimating a ratio, and
the distribution of the estimator in these cases is highly skewed with occasional
large estimates for λ. Again, we get more accurate estimates when we combine
information across loci, but the coverage values drop noticeably below their nom-
inal level. As mentioned above, this is due to slight bias in the model, which has
greater impact for the joint analysis.

3.2. Testing for variation in λ. We further looked at both type I error rate and
power for testing for a difference in λ across loci. For all the scenarios presented in
Section 3.1 we implemented our test for detecting a difference in λ values across
loci. We implemented the test at the 95% significance level. These scenarios all
correspond to the case where there is a common λ value. The average type I error
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TABLE 3
Results for estimating the relative rate of recombination to mutation for different mutation and
recombination rates. We use L = 7 and N = 10,000 in all cases. In each case we give the mean

number of STs and SLVs per data set, the bias and root mean square error of estimating λ, and the
coverage for putative 95% confidence intervals for λ. Individual gives the results for analyzing a

single-locus, joint for combining inferences across all loci

Individual Joint

STs SLVs Bias RMSE Coverage Bias RMSE Coverage

λ θ = 100
0.2 524 583 0 0.08 0.94 0 0.04 0.86
0.5 612 665 −0.02 0.15 0.95 −0.03 0.07 0.90
2 1007 1010 −0.12 0.49 0.93 −0.18 0.26 0.80
5 1648 1480 −0.39 1.4 0.9 −0.59 0.73 0.72

θ λ = 1
20 188 236 1.92 9.22 0.93 −0.05 0.29 0.93
50 426 485 −0.03 0.45 0.92 −0.09 0.17 0.84

200 1273 1218 −0.05 0.19 0.93 −0.06 0.1 0.82
500 2374 1908 −0.03 0.14 0.94 −0.04 0.07 0.87

rate across these scenarios was 7%, with a range of 3% to 12%. There was no
obvious pattern to which scenarios had higher, or lower, type I error rates, and
the range of values observed across the scenarios is consistent with the random
fluctuations one would expect if the type I error rate was the same in all cases.

We then investigated the power of the test. We simulated data at 7 loci, with
the population-scaled rate at which each locus is affected by recombination being
20, but with different mutation rates per locus. We tried two sets of scenarios:
(a) where one locus had θ = 20 and the others had θ = 20/C; and (b) where one
locus had θ = 20/C and all others had θ = 20. The first scenario is where most
loci have λ = C, but one locus has λ = 1; for the second scenario this is reversed.
We repeated this for C = 2,3,4, reflecting different levels of variation in λ across
the loci. Such data sets can be simulated using simMLST with θ = 20 per locus
and λ = 1, and then using thinning (removing mutations at a proportion of sites)
to reduce the mutation rate at some loci. It is not possible to use simMLST to
generate data with the same θ but different ρ per locus.

Results are given in Table 4. The results suggest large power for detecting vari-
ation in λ of a factor of three or more in scenario (a). There is less power under
scenario (b), as there are fewer mutations at the one locus for which λ is different
to the others, and this makes it harder to detect the difference in λ.

3.3. Comparison with a bootstrap approach. Finally, we give a simple com-
parison with a parametric bootstrap approach to calculating confidence intervals.
The aim here is to give some insight into the challenges and issues relating to
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TABLE 4
Power of test for detecting variation in λ across loci. In
all cases we simulated data of sample size 10,000 at 7

loci, with ρ = 20 per locus. In scenario (a) we have one
locus with θ = 20 and all others with θ = 20/C; in

scenario (b) we have one locus with θ = 20/C and all
other scenarios with θ = 20

C (a) (b)

2 0.46 0.33
3 0.93 0.64
4 0.97 0.71

the use of the bootstrap, over and above the extra computational cost it incurs. To
mimic issues that occur in real data, we will use a different model to simulate the
data than that which we assume when implementing the bootstrap. Our simulated
data was generated by simMLST under a model where there had been recent popu-
lation growth. If we define the population size, N , say, to be the size of population
prior to the growth, then our model assumes a step change in the population size
from N to 10N at a time 0.1 in the past. The population-scaled mutation rate is
100 across the 7 loci, and λ = 1. The effect of this model is to reduce the relative
rate of coalescent to mutation and recombination for the larger population size,
and hence increase the overall number of mutation and recombination events near
the tips of the clonal frame. We simulated 100 data sets, each with sample size of
1000 isolates. A summary of the results from analyzing these data sets using the
composite likelihood method is shown in Table 5. The observed type I error rate
for the test of a common λ across loci at 95% significance level was 0.03.

To implement a parametric bootstrap, we then simulated data from a constant
population size model. We fixed the population-scaled mutation rate to be equal

TABLE 5
Results for estimating relative rate of recombination to mutation for a population growth scenario.
We give coverage for three types of putative 95% confidence intervals: those from asymptotic theory

for composite likelihood, and two parametric bootstrap approaches. The latter differ in whether
they simulate data sets that match the true data in terms of the number of STs or the number of

SLVs. Results are shown for both analyzing loci individually and a joint analysis

Population growth (Average 810 STs 173 SLVs)

Composite likelihood Bootstrap

Bias RMSE Coverage Coverage (ST) Coverage (SLV)

Individual 0.03 0.56 0.95 0.69 0.98
Joint −0.08 0.17 0.93 0.65 0.99



216 P. FEARNHEAD ET AL.

to the average number of the difference between a pair of isolates, and set λ = 1.
Data sets simulated from a constant population size model have different patterns
in terms of the ratio of SLVs to STs that are observed for the population growth
model. Thus, we considered two approaches to simulating data for the parametric
bootstrap. For each “real” data set we analyzed we simulated 100 data sets under
the constant population size model. Our first approach simulated each of these 100
data sets to have the same number of STs as the real data set, while the second
approach matched in terms of the number of SLVs. The use of the parametric
bootstrap added considerably to the cost of analyzing the data. The composite
likelihood approach takes a matter of seconds to run, as compared to of the order
of 10 hours to simulate 100 SLV data sets.

To construct our parametric bootstrap confidence interval, we used the approach
of Yu et al. (2012). This is based on noting that the sampling distribution of an
estimate of λ/(1+λ) is approximately normal. We used the 100 data sets simulated
under the parametric bootstrap to estimate the variance of this normal distribution.
This enables us to produce putative 95% symmetric confidence intervals for λ/(1+
λ), which can then be transformed to confidence intervals for λ.

The observed coverage for each of these two methods for constructing bootstrap
confidence intervals is shown in Table 5. We observe that choosing the size of the
data sets simulated by the parametric bootstrap through matching the number of
STs leads to much smaller confidence intervals than when we match on the number
of SLVs. The coverage for the intervals when we match on STs is substantially
lower than the putative 95% confidence level. In this example matching on SLVs
gives much better results, though the coverage results suggest that the confidence
intervals produced are slightly too conservative.

The main message from these simulations is that when performing a parametric
bootstrap there can be issues if features of the simulated data sets do not match
the real data set when these features affect the amount of information the data has
about the parameter of interest. These issues disappear if we are able to simulate
from a model which is a very good approximation to real life, but for bacterial data
this is rarely the case.

4. Application to bacterial MLST data. We applied our composite likeli-
hood method to detect variation in λ across loci and estimate λ for a range of
bacteria. We used MLST data downloaded from http://pubmlst.org/. In each case
we had data at 7 loci. The bacteria we considered, together with the number of SLV
pairs we obtained, were as follows: Bacillus cereus (281 SLV pairs); Enterococ-
cus faecium (481); Haemophilus influenzae (977); Klebsiella pneumoniae (404);
Staphylococcus aureus (7892); Streptococcus uberis (356); Campylobacter jejuni
(7417); and Campylobacter coli (1842).

We found evidence for variation of λ across loci (p-values less than 0.01) in
3 bacteria: B. cereus (p-value 2.2 × 10−8); E. faecium (9.4 × 10−6); and K. pneu-
moniae (4.9 × 10−12). Estimates of λ for each locus for these bacteria are given in
Figure 3, and estimates of a common λ for the other bacteria are given in Table 6.

http://pubmlst.org/
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FIG. 3. Estimates and confidence intervals for λ for the three bacteria that showed evidence of
variation across loci. For each bacteria we plot the estimate (cross) and putatitve 95% confidence
intervals (lines) for each locus. In gray is the estimate (vertical dashed line) and 95% confidence
interval (horizontal line) under an assumption of a common value of λ across loci. We have ordered
the loci in terms of the value of the estimate of λ, with decreasing estimates as we move down each
plot. For clarity we have chosen an x/(1 + x) scale for the x-axis for each plot.
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TABLE 6
Estimate of common λ across MLST loci, together with

putative 95% confidence intervals

Bacteria Estimate of λ 95% CI

H. influenzae 4.9 (3.3,7.4)

S. aureus 1.4 (0.92,2.1)

S. uberis 11 (4.8,180)

C. jejuni 3.4 (2.9,4.1)

C. coli 0.43 (0.21,0.88)

The most striking results are the degree of variation we see in estimates of λ for
B. cereus, E. Faecium and K. pneumoniae. For each bacteria we have evidence for
loci with λ < 1, and often λ ≈ 0, as well as for loci with λ substantially greater
than 1. The estimates we get are consistent with the relative rate of recombination
to mutation varying by between one and two orders of magnitude across the loci
for each bacteria.

For the five bacteria for which we see no evidence for variation in λ, we see
that the relative rate of recombination to mutation varies noticeably across the
bacteria. The order of bacteria from the one with highest to lowest λ is S. uberis,
H. influenzae, C. jejuni, S. aureus and C. coli. The estimates of λ for S. uberis and
C. coli differ by a factor of 25.

5. Conclusion. We have presented a way of both estimating the relative rate
of recombination to mutation and detecting recombination rate variation from
MLST data. The key novelty within the statistical approach we take is to directly
model the form of dependence of information from different SLVs. This enables
us to correct for the dependence between the contribution each SLV makes to the
composite likelihood, and thus get appropriate measures of uncertainty in the es-
timates of parameters we get from maximizing the composite likelihood, and also
to test for variation in recombination rate across loci. While composite likelihood
methods are extensively used within genetics [see, e.g., Larribe and Fearnhead
(2011) and references therein], to date they have been primarily used to get point
estimates of parameters. Our results suggest that, with appropriate modeling of
the dependence structure, it should be possible to extend these earlier methods to
obtain both point estimates and confidence intervals for parameters of interest.

An example of why this is important can be seen by a previous analysis of
MLST data in bacteria. Recombination rates in B. cereus at MLST loci were es-
timated in Pérez-Losada et al. (2006), using an alternative composite likelihood
approach [Hudson (2001), McVean, Awadalla and Fearnhead (2002)]. They ob-
served estimates of the recombination rate varying by a factor of nearly 50 across
the loci; however, they were unable to calculate confidence intervals for their re-
combination rate estimates. As a result, it was impossible to conclude whether this
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variation is due to variability in the estimator or whether it resulted from true dif-
ferences in recombination rates across the loci. By comparison, our analysis gives
strong evidence for variation in λ across these loci.

Recently MLST data are increasingly being replaced by full-genome data. The
methods developed here can still be applied to such data, by choosing a set of
L loci and summarizing the full-genome data in terms of SLV pairs and the nu-
cleotide differences of each pair. To be viable, such an approach would need full-
genome data from a substantial number of isolates in order to produce sufficient
SLV pairs. Summarizing the data in such a way would clearly lead to a substan-
tial loss of information, but would be a simple and quick approach to performing
an initial analysis of data as compared to methods that try and analyze the full
sequence data [e.g., Didelot et al. (2010)]. As pointed out by a reviewer, the flex-
ibility over the choice of loci would give the possibility of using a nonparametric
bootstrap to assess uncertainty in estimates. If interest is in the ratio of recom-
bination to mutation at a given loci, we can make different choices for the other
L − 1 loci. Each choice would give a different set of SLVs, and hence a different
estimate. The variability of these estimates could be used to measure the degree of
uncertainty in the final estimate we make.

The results from our application to data from eight bacteria species are in line
with results in Vos and Didelot (2009). While that paper estimated a different
measure of recombination to mutation, looking at the probability of a nucleotide
change as due to recombination rather than mutation, the ordering of bacteria
species from less to more recombinant is broadly similar. The more striking results,
though, relate to strong evidence of rate variation in the rate of recombination to
mutation in three of the bacteria. This is part of the growing evidence for substan-
tial recombination rate variation, for example, in Didelot et al. (2010), who also
found evidence of rate variation in B. cereus, and Guy et al. (2012), who observed 3
orders of magnitude of recombination rate variation in Bartonella henselae. More
indirect evidence for rate variation also comes from the variation in recombination
rates for closely related bacterial species and substantial differences in estimates of
recombination rates from different studies of a given bacterial species [see Didelot
and Maiden (2010) for more details].

The reasons behind substantial variation in the relative rate of recombination
to mutation are currently unclear. One explanation is that estimated recombination
rates are higher within regions under positive selection [Vos (2009)]. The argument
is that we are only likely to see recombination events that add beneficial or remove
deleterious mutations. The selective advantage of such recombination events over
mutation will be largest within genes for which selection is strongest. In our study
we see large variation in recombination rates among housekeeping genes, genes we
would expect to all be under strong selective pressure. This includes variation in
recombination rates between genes with similar function: for example, both pycA
and tpi in B. cereus are genes involved in gluconeogenesis, yet their estimates



220 P. FEARNHEAD ET AL.

of λ differ by an order of magnitude. This suggests that there are other factors
responsible for the variation that we observe.

The MLST data analyzed in Section 4, together with R code implementing the
composite likelihood method presented in this paper, are available from http://
www.maths.lancs.ac.uk/~fearnhea/SLV.zip.

APPENDIX A: ESTIMATING Prλ(X = x|SLV,Ac)

Our approach to approximating Prλ(X = x|SLV,Ac) for a given locus is to use a
Monte Carlo estimate of the probability of x nucleotide differences being imported
at a single recombination event. This simple idea is based upon the fact that for an
SLV pair we expect the isolates to have a recent common ancestor, and hence
the number of mutation/recombination events to be one with a high probability. It
also simplifies computations in that this approximation is independent of λ, and
hence can be calculated and stored once. It is possible to extend the following
Monte Carlo setup to allow for possible multiple events at the locus, but to do this
correctly would involve making the approximation of Prλ(X = x|SLV,Ac) depend
on λ.

We assume we have a sample of K isolates, and for each pair (i, j) know the
number of nucleotide differences at locus l between isolates i and j , denoted xij .
Let m be the number of bases at the SLV locus. Assume with probability pa the
region of the recombination event will include all m bases of the locus. Fix the
Monte Carlo sample size, M :

(1) Set ni = 0 for i = 0, . . . ,m.
(2) Repeat M times:

(a) Sample i and j independently from {1,2, . . . ,K}.
(b) With probability pa set x = xij ; otherwise sample u, a realization of a

standard uniform random variable, and x the realization of a Binomial
random variable with parameters xij and u.

(c) Set nx = nx + 1.
(3) Calculate the approximation

Pr
λ

(
X = x|SLV,Ac) ≈ nx + 1

M + m − n0
.

In step (2b) we have used a simple mechanism for simulating the number of
changes due to a recombination event for which a breakpoint lies within the lo-
cus. This involves simulating u, the proportion of the locus that is affected by the
recombination event, and then, conditional on this, how many nucleotide differ-
ences the recombination event introduces.

The final approximation used in part (3) is chosen so that all probabilities are
non 0, to allow for the possibility of a value x for the number of nucleotide dif-
ferences observed for an SLV pair that was not simulated. We subtract n0 from
the denominator, as we are conditioning on there being an SLV pair at locus l, in

http://www.maths.lancs.ac.uk/~fearnhea/SLV.zip
http://www.maths.lancs.ac.uk/~fearnhea/SLV.zip
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which case x 
= 0. We repeat this procedure to get a different distribution for the
number of nucleotide differences for each locus.

APPENDIX B: ESTIMATING α

Assume we have partitioned the STs in G groups of size n1, . . . , nG, and for
each SLV pair we have the value of the score function at λ̂. To estimate the
within-group correlation of the score statistics, we will model the scores as be-
ing Gaussian, with independence across groups. Within group g we will view the
scores as realization of a vector random-variable V = (u(λ0;X1), . . . , u(λ0;Xk)),
where k = ng(ng − 1)/2. We model V ∼ MVN(0,
), and 
 is a k × k variance–
covariance matrix for i = 1, . . . , k, with 
ii = σ 2; and for i, j = 1, . . . , k with i 
=
j , 
ij = ασ 2. If we denote the data for this group as v = (u(λ̂;x1), . . . , u(λ̂;xk)),
then the likelihood for the group is l(α, σ ;v) = −0.5 log det(
) − 1

2v
−1vT . Us-
ing Sylvester’s theorem,

det(
) = σ 2k(1 − α)k
(

1 + (k − 1)α

1 − α

)
and 
−1 = akIk + bk1k,

where Ik is the identity matrix, 1k is a k × k matrix of 1’s, ak = 1/(1 − α) and
bk = −α/(1 − α)[1 + (n − 1)α]. Thus,

l(α, σ ;v) = −k

2
log

(
σ 2[1 − α]) − 1

n
log

(
1 + (k − 1)α

1 − α

)

− 1

2

(
ak

k∑
i=1

u(λ̂;xi)
2 + bk

[
k∑

i=1

u(λ̂;xi)

]2)
.

If we denote the data in group g by x
(g)
1 , . . . , x

(g)
kg

where kg = ng(ng − 1)/2, then
we get a likelihood

G∑
g=1

{
−kg

2
log

(
σ 2[1 − α]) − 1

n
log

(
1 + (kg − 1)α

1 − α

)

− 1

2

(
akg

kg∑
i=1

u
(
λ̂;x(g)

i

)2 + bkg

[
k∑

i=1

u
(
λ̂;x(g)

i

)]2)}
,

which we maximize numerically over σ > 0 and α ∈ [0,1) to get an estimate of α.
In practice, we use a common value of α for all loci, obtained by averaging the
locus-specific estimates.

APPENDIX C: ESTIMATING ν1

Consider a model for data at L loci. The general model will have parameter vec-
tor (λ1, . . . , λL) for the value of the rate of recombination to mutation for each of
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the L loci. Under our assumption of independence across loci, our joint compos-
ite log-likelihood is Cl∗(λ1, . . . , λL) = ∑L

l=1 Cl(l)(λl), the sum of the composite
log-likelihoods for each locus.

Assume that there is a common λ value for all loci. Let λ0 denote the true
common value. Further, to simplify notation, let J (l) = J (l)(λ0) and I (l) = I (l)(λ0)

be the value of J and I at locus l evaluated at this true common value. Then the J

and I matrices associated with our joint composite log-likelihood will be diagonal
with entries (J (1), . . . , J (L)) and (I (1), . . . , I (L)), respectively.

We are interested in a test for whether there is a common λ value for all loci.
To do this, we can introduce a reparameterization to (φ1, . . . , φL), where φ1 = λ1,
and for l = 2, . . . ,L, φl = λl − λ1. So a common λ value is equivalent to φl = 0
for l = 2, . . . ,L. Let

Clφ(φ1, . . . , φL) = Cl∗(φ1, φ2 + φ1, . . . , φL + φ1)

be the composite log-likelihood under this parameterization. The corresponding J

and I matrices will be denoted by Jφ and Iφ . The diagonal, first row and column
of Jφ are (

∑L
l=1 J (l), J (2), J (3), . . . , J (L)), with all other entries being 0; and Iφ

depends on I (1), . . . , I (L) in a similar way.
The likelihood ratio statistic for testing φl = 0 for l = 2, . . . ,L is given by

LR∗ = 2
[
max Clφ(φ1, . . . , φL) − max Clφ(φ1,0, . . . ,0)

]

= 2

[
L∑

l=1

max Cl(l)(λ) − max
L∑

l=1

Cl(l)(λ)

]
.

Define H and G to be (L−1)× (L−1) matrices obtained from removing the first
row and column from I−1

φ and (IφJ−1
φ Iφ)−1, respectively. Let ηi be the eigenval-

ues of the matrix H−1G. Then if φl = 0 for l = 2, . . . ,L, the asymptotic distribu-
tion of LR∗ is

∑L−1
i=1 ηiZ

2
i , where Z1, . . . ,ZL−1 are independent standard normal

random variables [see Kent (1982), Varin, Reid and Firth (2011)].
We approximate this distribution by scaling LR∗ to have the same mean as a

chi-squared distribution with L−1 degree of freedom, χ2
L−1 [Rotnitzky and Jewell

(1990)]. Thus, we define ν1 = ∑L−1
i=1 ηi/(L− 1), set LR = (1/ν1)LR∗, and approx-

imate the distribution of LR by a χ2
L−1 distribution. Higher order approximations

are possible [Varin (2008)], but we did not find them to be more accurate in prac-
tice.
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