466,988 research outputs found

    Algorithms and Implementation

    Get PDF
    In the past few years Tabling has emerged as a powerful logic programming model. The integration of concurrent features into the implementation of Tabling systems is demanded by need to use recently developed tabling applications within distributed systems, where a process has to respond concurrently to several requests. The support for sharing of tables among the concurrent threads of a Tabling process is a desirable feature, to allow one of Tabling’s virtues, the re-use of computations by other threads and to allow efficient usage of available memory. However, the incremental completion of tables which are evaluated concurrently is not a trivial problem. In this dissertation we describe the integration of concurrency mechanisms, by the way of multi-threading, in a state of the art Tabling and Prolog system, XSB. We begin by reviewing the main concepts for a formal description of tabled computations, called SLG resolution and for the implementation of Tabling under the SLG-WAM, the abstract machine supported by XSB. We describe the different scheduling strategies provided by XSB and introduce some new properties of local scheduling, a scheduling strategy for SLG resolution. We proceed to describe our implementation work by describing the process of integrating multi-threading in a Prolog system supporting Tabling, without addressing the problem of shared tables. We describe the trade-offs and implementation decisions involved. We then describe an optimistic algorithm for the concurrent sharing of completed tables, Shared Completed Tables, which allows the sharing of tables without incurring in deadlocks, under local scheduling. This method relies on the execution properties of local scheduling and includes full support for negation. We provide a theoretical framework and discuss the implementation’s correctness and complexity. After that, we describe amethod for the sharing of tables among threads that allows parallelism in the computation of inter-dependent subgoals, which we name Concurrent Completion. We informally argue for the correctness of Concurrent Completion. We give detailed performance measurements of the multi-threaded XSB systems over a variety of machines and operating systems, for both the Shared Completed Tables and the Concurrent Completion implementations. We focus our measurements inthe overhead over the sequential engine and the scalability of the system. We finish with a comparison of XSB with other multi-threaded Prolog systems and we compare our approach to concurrent tabling with parallel and distributed methods for the evaluation of tabling. Finally, we identify future research directions

    Distributed human computation framework for linked data co-reference resolution

    No full text
    Distributed Human Computation (DHC) is a technique used to solve computational problems by incorporating the collaborative effort of a large number of humans. It is also a solution to AI-complete problems such as natural language processing. The Semantic Web with its root in AI is envisioned to be a decentralised world-wide information space for sharing machine-readable data with minimal integration costs. There are many research problems in the Semantic Web that are considered as AI-complete problems. An example is co-reference resolution, which involves determining whether different URIs refer to the same entity. This is considered to be a significant hurdle to overcome in the realisation of large-scale Semantic Web applications. In this paper, we propose a framework for building a DHC system on top of the Linked Data Cloud to solve various computational problems. To demonstrate the concept, we are focusing on handling the co-reference resolution in the Semantic Web when integrating distributed datasets. The traditional way to solve this problem is to design machine-learning algorithms. However, they are often computationally expensive, error-prone and do not scale. We designed a DHC system named iamResearcher, which solves the scientific publication author identity co-reference problem when integrating distributed bibliographic datasets. In our system, we aggregated 6 million bibliographic data from various publication repositories. Users can sign up to the system to audit and align their own publications, thus solving the co-reference problem in a distributed manner. The aggregated results are published to the Linked Data Cloud

    Development of Distributed Research Center for analysis of regional climatic and environmental changes

    Get PDF
    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far

    Multiresolution modeling and simulation of an air-ground combat application

    Get PDF
    The High Level Architecture (HLA) establishes a common modeling and simulation framework facilitating interoperability and reuse of simulation components. Since 1996, ONERA (French Aeronautics and Space Research Centre) carries out several studies on HLA in order to gain a better understanding of the underlying mechanisms of HLA implementations. The first critical step of this initiative was to develop our own RTI from the HLA specifications. In order to evaluate the cost of making a transition from legacy simulations to HLA, we first developed an HLA federation simulating an air-ground combat involving a set of aircraft's engaged against a surface to air defense system. Current studies on HLA distributed simulation include security, WAN simulations and multiresolution. Conventional simulations represent entities at just one single level of resolution. Multiresolution representation of entities consists in maintaining multiple and concurrent representations of entities. In this paper we address the problem of how HLA services may allow to achieve multiresolution modeling and simulation. Our goal is not to provide a general framework as a basis for designing simulations of entities at different levels of resolution concurrently. We focus on experience feedback we have obtained by migrating a single level resolution HLA federation to a multi-level resolution federation. The selected application is an air-ground combat simulation involving aggregated patrols of aircraft's engaged against a surface to air defense system. In this paper, we briefly describe the air-ground combat simulation application. We then detail the multiresolution representation of entities (patrols and aircraft's), and discuss the chosen mechanisms allowing triggering aggregation from an entity-level representation, and conversely, triggering disaggregation from an aggregate representation. We focus on the HLA services we have selected to maintain several levels of representation concurrently and on methodological issues in designing multiresolution HLA simulations. We have tackled some difficulties and we propose a new HLA service that should make easier the user's task. This multiresolution management service can be added to our RTI or written by using existing HLA services. Finally, future trends are discussed

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Evaluation of Anonymized ONS Queries

    Full text link
    Electronic Product Code (EPC) is the basis of a pervasive infrastructure for the automatic identification of objects on supply chain applications (e.g., pharmaceutical or military applications). This infrastructure relies on the use of the (1) Radio Frequency Identification (RFID) technology to tag objects in motion and (2) distributed services providing information about objects via the Internet. A lookup service, called the Object Name Service (ONS) and based on the use of the Domain Name System (DNS), can be publicly accessed by EPC applications looking for information associated with tagged objects. Privacy issues may affect corporate infrastructures based on EPC technologies if their lookup service is not properly protected. A possible solution to mitigate these issues is the use of online anonymity. We present an evaluation experiment that compares the of use of Tor (The second generation Onion Router) on a global ONS/DNS setup, with respect to benefits, limitations, and latency.Comment: 14 page
    • …
    corecore