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Summary

In the past few years Tabling has emerged as a powerful logic programming model.

The integration of concurrent features into the implementation of Tabling systems is

demanded by need to use recently developed tabling applications within distributed

systems, where a process has to respond concurrently to several requests. The support

for sharing of tables among the concurrent threads of a Tabling process is a desirable

feature, to allow one of Tabling’s virtues, the re-use of computations by other threads

and to allow efficient usage of available memory. However, the incremental comple-

tion of tables which are evaluated concurrently is not a trivial problem.

In this dissertation we describe the integration of concurrency mechanisms, by the

way of multi-threading, in a state of the art Tabling and Prolog system, XSB. We be-

gin by reviewing the main concepts for a formal description of tabled computations,

called SLG resolution and for the implementation of Tabling under the SLG-WAM, the

abstract machine supported by XSB. We describe the different scheduling strategies

provided by XSB and introduce some new properties of local scheduling, a scheduling

strategy for SLG resolution.

We proceed to describe our implementation work by describing the process of in-

tegrating multi-threading in a Prolog system supporting Tabling, without addressing

the problem of shared tables. We describe the trade-offs and implementation decisions

involved.

We then describe an optimistic algorithm for the concurrent sharing of completed

tables, Shared Completed Tables, which allows the sharing of tables without incurring

in deadlocks, under local scheduling. This method relies on the execution properties

of local scheduling and includes full support for negation. We provide a theoretical

framework and discuss the implementation’s correctness and complexity.

After that, we describe amethod for the sharing of tables among threads that allows

parallelism in the computation of inter-dependent subgoals, which we name Concur-

rent Completion. We informally argue for the correctness of Concurrent Completion.

We give detailed performance measurements of the multi-threaded XSB systems

over a variety of machines and operating systems, for both the Shared Completed Ta-

bles and the Concurrent Completion implementations. We focus our measurements in
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the overhead over the sequential engine and the scalability of the system.

We finish with a comparison of XSB with other multi-threaded Prolog systems and

we compare our approach to concurrent tabling with parallel and distributed methods

for the evaluation of tabling. Finally, we identify future research directions.
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Sumário

Nos últimos anos a Tabulação têm-se destacado como ummodelo de programação em

lógica poderoso. A integração de mecanismos de concorrência na implementação de

sistemas tabulados é requerida pelo recente desenvolvimento de aplicações tabuladas

que precisam de ser integradas em sistemas distribuídos, onde um processo tem de

responder em simultâneo a vários pedidos. O suporte à partilha de tabelas entre os

diversos processos leves é desejável, pois permite explorar uma das vantagens da Tab-

ulação, a re-utilização de resultados das computações prévias de outros processos leves

e a utilização eficiente da memória disponível. No entanto, a completação incremental

de tabelas avaliadas em concorrência não é um problema trivial.

Nesta dissertação descrevemos a integração de mecanismos de concorrência,

através do suporte de processos leves, num sistema de Prolog e Tabulação que rep-

resenta o estado da arte da tecnologia desta, o sistema XSB. Começamos por rever os

conceitos principais usados na descrição formal da execução tabulada de programas,

a resolução SLG, e da implementação da tabulação através do modelo SLG-WAM, a

máquina abstracta suportada pelo XSB. Descrevemos as diferentes políticas de escalon-

amento utilizadas no sistema XSB e introduzimos novas propriedades do escalona-

mento local, uma política de escalonamento da resolução SLG.

Seguidamente, descrevemos o trabalho de concepção e implementação, abordando

o processo de integração dos processos leves num sistema Prolog com suporte à tabu-

lação, sem abordar a partilha de tabelas. Descrevemos os compromissos e as decisões

de implementação tomadas.

Depois descrevemos um algoritmo optimista para a partilha de tabelas entre pro-

cessos leves, as Tabelas Partilhadas Completas, que permite aos processos leves par-

tilharem tabelas completas sem a ocorrência de deadlocks, sob o escalonamento local.

Este método depende das propriedades do escalonamento local e inclui suporte à ne-

gação. Providenciamos um enquadramento teórico e discutimos a correcção e com-

plexidade da implementação.

Em seguida descrevemos um método para partilhar tabelas que permite par-

alelismo na avaliação de subgolos inter-dependentes, que designamos como Com-

pletção Concorrente. Discutimos informalmente a correcção da Completação Concor-
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rente.

Apresentamos resultados das medições de desempenho detalhadas obtidas com os

sistemas XSB com processos leves, sobre uma variedade de máquinas e sistemas oper-

ativos, para ambas as implementações, Tabelas Completas Partilhadas e Completação

Concorrente. Concentramos as nossas medidas no impacto dos processos leves em

comparação com a implementação sequencial e na escalabilidade do sistema.

Terminamos com uma comparação do XSB com outros Prologs com processos leves

e comparamos a nossa abordagem à tabulação concorrente com outras abordagens

sobre a execução paralela e distribuída para a computação da tabulação. E finalmente,

identificamos direcções de trabalho futuro.
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1
Introduction

In this dissertation we pursue the goal of enhancing the capabilities of existing logic

programming systems to enable cooperation in concurrent and distributed environ-

ments. Such capabilities are essential in today’s computing world, where large band-

width networking is available for low prices. As evidence of this need for more ad-

vanced computing models, topics like grid computing, collaborative agents and dis-

tributed workflows have evolved as research fields themselves.

While in 1999, when this work started, those topics were not as pressing as today,

the need for supporting distributed computing was already a reality. Our initial goal

was to provide a programming system that would allow to apply the power of logic

programming to the growing need for distributed applications.

While the ultimate goal was to provide a distributed logic programming system,

we realized that the need for concurrent programming within a logic programming

system was a fundamental step in the right direction. Thus the integration of multi-

threaded programming in a logic programming system was an important goal.

By the time we started, several Prolog systems offered multi-threaded program-

ming interfaces, but Prolog itself was already being “outclassed”, or, to put it in a more

correct way, complemented by a new logic programming execution model: tabling.

Prolog’s procedural interpretation allows the programmer full control over the ex-

ecution, while also allowing the logic interpretation of programs. However in the sec-

ond case, as all Prolog programmers know, not all programs are correctly evaluated by

Prolog systems.

Take the program in Figure 1.1, where left_ancestor/2 declares the ancestor re-

lation using left recursion and right_ancestor/2 declares the ancestor relation using

right recursion. The declarative meaning of ancestor is well defined, and clearly the
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right_ancestor(X,Y) :- parent(X,Z), right_ancestor(Z,Y ).
right_ancestor(X,Y) :- parent(X,Y).

left_ancestor(X,Y) :- left_ancestor(X,Z), parent(Z,Y).
left_ancestor(X,Y) :- parent(X,Y).

Figure 1.1: Ancestor using right and left recursion

fib(0,0).
fib(1,1).
fib(N,Res) :-

N > 1,
N1 is N - 1, N2 is N - 2,
fib(N1,Res1),
fib(N2,Res2),
Res is Res1 + Res2.

Figure 1.2: Fibonacci in Prolog

same, whether it is defined through right recursion or left recursion. Yet the former

will be correctly computed by a traditional Prolog system, while the other will loop.

With tabling, both definitions are correctly computed.

On the other hand some programs may be correctly interpreted but the efficiency

of the execution may suffer. Consider the program Fibonacci program in Figure 1.2.

This program’s execution complexity is exponential in N. Of course, the program

can be written in a more efficient manner, given Prolog’s procedural semantics, but the

clarity of the solution would be compromised.

Tabling avoids this problem, being able to evaluate the program with an acceptable

complexity. While Prolog would loop for many programs, tabling guarantees termina-

tion and correct interpretation for all datalog programs. When the programs include

negation, tabling allows evaluation with respect to the well founded semantics [83].

Tabling has been completely integrated in some Prolog systems, allowing the same

program to combine the best of both worlds – integrating a declarative semantics with

full procedural control. However not all the features of the procedural execution model

have been integrated with tabling, namely multi-threading.

We presented an early proposal to integrate multi-threading in XSB [47], the state

of the art tabling system at the time, and still a leading tabling system at the moment of

this writing. That proposal included extending XSB Prolog to support multi-threading

and integrating tabling in a way that tables could be shared and completed concur-

rently by a set of threads. The sharing of tables would allow for one of the nice features

of tabling, the re-use of previous computations, to be accomplished, and to rationalize

the use of existing memory on the system.

Supporting the multi-threading of Prolog reliably in XSB proved to be a major im-
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plementation project. The reliance of XSB’s implementation on global variables was

a major headache - we had to consider a couple of hundreds of global variables that

would make the code non-re-entrant, and had to deal with them in the appropriate

way, either making them private to the thread, protecting them with locks, and even

in some cases just making them regular local variables. Many of these problems stem

from the fact that XSB supports tabling with well founded negation, asserted tries,

subsumptive tabling and more. Meanwhile, the sequential XSB system had to be kept

intact as it is used by thousands of people. The complexity of this process led us to

reconsider our goals. The sharing of tables among threads would still be the foremost

of the work, instead of addressing the distribution issues.

After having designed and implemented the support of multi-threading for Prolog,

we proceeded to support tabling without allowing threads to share tables. Support

was given to efficient access to private tables and private dynamic predicates. Interac-

tion among threads in manipulating this private data structures was thoroughly elim-

inated, ensuring the scalability of the system for many threads executing in a multi-

processor. An API was designed to match the still evolving ISO standard proposal.

This implementation is described in Chapter 3.

As the sharing of tables is concerned we intended to implement the completion

algorithm described in [47]. However, in the early stages of implementation it was

found that the algorithm was incorrect. While trying to figure out a correct completion

algorithm, the idea of only sharing completed tables arose. Of course, as only com-

pleted tables would be shared, if a thread needed an answer from a table owned by

another thread and vice-versa a deadlock would occur. However in the centralized

context of a multi-threaded engine, detection of such a deadlock is straightforward.

There remained the problem of how to break the deadlock. It turns out, that under

local scheduling, the default scheduling of XSB for some years now, it is possible to

reset a tabled computation and to restart the subgoal as if nothing happened (of course

modulo Prolog side effects – see Chapter 2 for details). Thus the Shared Completed

Tables were born, which are presented in Chapter 4.

We finally proceeded with the development of the concurrent completion algo-

rithm. It has been reported several times that detecting the completion of tables is

the most difficult problem in the implementation of tabling, and this is specially true

in a concurrent environment. We managed to get an algorithm that allowed to concur-

rently complete tables owned by different threads, while allowing for inter-dependent

subgoals to be evaluated concurrently. We implemented the algorithm under batched

scheduling, as we already had support for shared tables under local scheduling. The

algorithm and its implementation are not used by default in XSB (the default is local

scheduling with Shared Completed Tables) and the implementation is not yet robust

enough for widespread use, but we are confident that it is fundamentally correct and

that it will at some point allow for parallelism to be exploited with tabling. This is
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reported in Chapter 5.

Although during the process of the dissertation new implementations of tabling

appeared and multi-threaded support become widespread in Prolog, no effort, as far

as we know, has been made to support a clean semantics for the integration of the

tabling logic programming model with multiple threads of execution.

1.1 The Demand for Multi-Threaded Tabling

In the last few years many applications that use tabling have been developed. A whole

company, XSB Inc.1, has was launched that develops applications in XSB. Other com-

panies, like Ontology Works (www.ontologyworks.com ), Medical Decision Logics, Inc

(mdlogix.com ) and BBN Inc have products that depend on XSB, as do many other com-

panies. Heavy weight applications have been developed. CDF [77] is an ontology

management system that has been used to develop commercial applications by XSB

Inc. Flora-2 is an object oriented knowledge base language developed byMichael Kifer

and is colleagues that supports the language of F-logic [41], Hilog [12] and Transaction

Logic [6]. It makes extensive use of negation. XMC [55,56] is a model checking tool for

XSB that has been heavily used for a variety of model checking problems, such as [24]

and [54]. For many of such applications the need to interact with users through web

pages conflicts with the restriction to sequential execution imposed by XSB. There is

an interface for XSB with Java, InterProlog [8], but if the XSB process is restricted to

sequential execution it can’t respond concurrently to several Java threads. Needless

to say, the use of heavyweight processes to solve this problem is a performance killer.

As a result, version 3.0 of InterProlog (in preparation) is based on the multi-threaded

engine developed in this thesis. Though many of the main queries that must be sup-

ported by these applications do not need to be amortized, and as such, adequately

supported by private tables, some of the sub-queries are repeated ad-infinitum and

as such are excellent candidates to share tables. One example are inheritance queries

for the object oriented languages (e.g. CDF and Flora-2) that would benefit from the

implicit caching offered by shared tables.

Shared tables are also needed when a large number threads, running at the same

time, need to compute the same large tables. In that case, the use of private tables,

while semantically correct, would multiply the memory requirements for table stor-

age by the number of threads running. In such cases, memory could easily become

exhausted, which is unacceptable.

With the emergence of the multi-core processors, parallel execution has become

a mainstream feature, and expensive multi-processor systems are no longer the only

option to support parallel execution. Dual core processors are today’s standard for per-

sonal computers, while processors with more cores are already on the market, and the

1www.xsb.com
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number of cores per processor on a standard personal computer is expected to grow

gradually over the next years (according to Moore’s Law, it should double every two

years). This makes multi-threading of tabling more appealing, and even of impera-

tive use, as the use of the explicit parallelism offered by multi-threaded programming

model is a sure way to increase the performance of the tabling applications. We also

think of the support for explicit parallelism with sharing of tables and concurrent com-

pletion of tables as a starting point to support implicit table parallelism, as defined

in [33], where each thread computes a set of tables in a tabled program, and all threads

contribute in parallel to the computation of the full program. This would increase

the performance of tabling applications that don’t require explicit concurrent actions

without explicit intervention from the programmer.

1.2 Structure of the Dissertation

Chapter Two introduces the main concepts for the semantics and implementation of

tabling. Section 2.1 introduces the concept of tabled evaluations. Section 2.2 presents

a formalization of tabled evaluations and introduces the batched and local scheduling

strategies, and discusses some properties of local evaluation. The formalization of local

scheduling at Section 2.2.3 is original, while the general formalization in Section 2.2.1

follows previous work. Section 2.3 presents the fundamental of the SLG-WAM that are

required to understand further chapters.

Chapter Three describes the design and implementation of the multi-threaded en-

gine with thread private tables. Section 3.1 recalls multi-threaded programming and

its mapping into the Prolog language. Section 3.2 discusses the design considerations

for the multi-threaded XSB execution and programming model. Section 3.3 describes

the actual implementation.

Chapter Four describes Shared Completed Tables. Section 4.1 presents the changes to

the SLG-WAM to implement Shared Completed Tables. Section 4.2 presents a formal

semantics for the concurrent execution of tabling through Shared Completed Tables

and proofs its correctness w.r.t. to SLG. Section 4.3 gives an example of concurrent

execution with deadlocks occurring and being resolved. Finally section 4.4 argues for

the properties of the implementation vs the formal semantics.

Chapter Five describes the Concurrent Completion implementation. Section 5.1 de-

scribes the changes to the SLG-WAM to support Concurrent Completion. Section 5.2

presents an example of execution of Concurrent Completion. Section 5.3 informally

proofs the completeness and liveness of the Concurrent Completion algorithm and

also covers some loose ends.
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Chapter Six discusses related work. Section 6.1 presents somemulti-threaded Prolog

systems. Section 6.2 discusses proposals and systems that allow the parallel computa-

tion of tables. Section 6.3 discusses experiments to support the distributed execution

of tabling.

Chapter Seven presents the performance results. Section 7.1 considers the overhead

of multi-threading vs. the sequential engine. Section 7.2 presents scalability results for

private tables. Section 7.3 presents the results of some experiments involving shared

tables.

Chapter Eight presents some conclusions and future work.
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2
Background

In this chapter we introduce the main concepts to be developed throughout the dis-

sertation. In Section 2.1 we introduce tabling informally. In Section 2.2 we formalize

tabling by presenting an operational semantics for it, including well-founded nega-

tion. We formalize local scheduling and state some of its properties. In Section 2.3

we present the main concepts of the implementation of tabling for definite programs,

namely the SLG-WAM’s data structures, its instruction set and the implementation of

Batched and Local scheduling.

2.1 Introduction to Tabling

It’s well known that the evaluation of logic programs under Prolog may not reflect its

declarative semantics. For example consider program P2.1 in Figure 2.1 and the query

:- p(s,X) .

A SLD evaluation [43], as done by a standard Prolog system is shown in Figure 2.2.

:- table p/2.

p(X,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- e(X,Z), q(Z).

e(s,b). e(s,d). e(b,c). e(b,f)

q(b). q(d). q(c).

Figure 2.1: Program P2.1
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:− p(s,X)

:− p(s,Y),p(Y,Z)

:− p(s,Y),p(Y,Z)

T

Figure 2.2: SLD evaluation of program P2.1

Table Space

p(s,b)

subgoal answers

p(s,V0)
2 3 p(s,V0) :− e(s,V0), q(V0).

p(s,b) :− q(b)

1

4

p(s,b) :−5

p(s,V0) :− p(s,V0)

p(s,V0) :− p(s,V0), p(V0,V1).

suspend

Figure 2.3: Tabled evaluation of program P2.1: deriving p(s,b)

Tree T is obviously infinite and the Prolog system will never terminate evaluating the

query. However p(s,b) is clearly an answer to that query under the program’s declar-

ative semantics. Indeed there is a non-infinite path in the SLD tree that would allow

the derivation of that answer, but Prolog’s fixed textual order of evaluation of clauses

prevents that. And as there are infinite paths on the tree, SLD resolution itself cannot

be used to find all the answers to the query.

Tabling considers a table where answers are stored as they are derived by the eval-

uation mechanism. When a subgoal that is not present on table is called, the NEW

SUBGOAL operation is performed, and a new entry on the table is created for that

subgoal together with the corresponding tree to evaluate that subgoal. Clauses are

resolved against tree nodes by the PROGRAM CLAUSE RESOLUTION operation like in

SLD. When a variant of a tabled subgoal that is present on the table is called and there

are no answers for that subgoal, the computation suspends and the next alternative on

the search tree is explored. When an answer is found to the tabled subgoal the oper-

ation NEW ANSWER is performed. After deriving the answer p(s,b) (5) the query is

satisfied as shown on Figure 2.3.

If more answers were required, the suspended branch in the search tree would be

resumed. It would be found that there is one new answer for the suspended call to

p(s,V0) (2) and execution would proceed by returning answer p(s,b) , performing the

POSITIVE RETURN operation. This would lead to the unification of V0 and b, and the
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2 p(s,V0) :− e(s,V0), q(V0).

p(b,c) :−

p(b,c) :− q(c)

8 9

10

11

7

1 p(s,V0) :− p(s,V0)

p(s,V0) :− p(s,V0), p(V0,V1).

6 p(s,V0) :− p(s,b), p(b,V1).

suspend

suspend

Table Space

p(s,b)

subgoal answers

p(b,c)

p(s,V0)

p(s,b) :− q(b)4

p(s,b) :−5

3

p(b,V1)

p(b,V1) :− p(b,V1)

p(b,V1) :− p(b,V1), p(V1,V2). p(b,V1) :−e(b,V1), q(V1).

Figure 2.4: Tabled evaluation of program P2.1: deriving p(b,c)

second call in the clause would become a call to subgoal p(b,V1). As subgoal p(b,V1) is

not in the table, a new derivation tree for it would be created, together with an entry

on the table by the NEW SUBGOAL operation (7). The answer p(b,c) would be derived

in the same manner as p(s,b) above. This leads us to the state represented in Figure 2.4

The answer p(b,c) is returned by the POSITIVE RETURN operation to the call

p(b,V1) and the call to p(c,V2) is made, performing the NEW SUBGOAL operation.

A tree to compute p(c,V2) is created. After expanding all the sub-trees for subgoal

p(c,V2) the call to e(c,V2) fails and the situation shown in Figure 2.5 is reached.

At this point no answers can be returned to any suspended call to p(c,V1) . As no

more operations can be performed on any node of the tree for subgoal p(c,V1) it can be

completed by the COMPLETION operation. Further operations would follow a similar

course, until all answers are derived and all subgoals completed.

2.2 SLG Resolution

2.2.1 An Operational Semantics for Tabling

Several semantics have been proposed for tabled evaluation of logic programs such as

OLDT [78] and SLG [13] which considers programs with well-founded negation [83].

In this section we follow the reformulated SLG proposed in [74].

Terminology and assumptions We assume the standard terminology of logic pro-

gramming (see, e.g. [43]) and an understanding of the well-founded semantics (see

[83]). We assume that any program is defined over a countable language L of pred-
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2

fail16

3 p(s,V0) :− e(s,V0), q(V0).

7

suspend

suspend p(b,c) :−

p(b,c) :− q(c)10

11

12

1 p(s,V0) :− p(s,V0)

p(s,V0) :− p(s,V0), p(V0,V1).

6 p(s,V0) :− p(s,b), p(b,V1).

suspend

15

suspend

p(b,V1) :− p(b,V1)

8 9

14

p(s,b) :− q(b)4

p(s,b) :−5

p(b,V1) :− p(b,V1), p(V1,V2). p(b,V1) :−e(b,V1), q(V1).

p(b,c) :− p(b,c), p(c,V2).

Table Space

p(s,b)

subgoal answers

p(b,c)

p(s,V0)

13

p(b,V1)

p(c,V2)

p(c,V2) :− p(c,V2)

p(c,V2) :− p(c,V2), p(V2,V3). p(c,V2) :− e(c,V2), q(V2).

Figure 2.5: Tabled evaluation of program P2.1: p(c,Z’) completes

icates and function symbols. If L is a literal, then vars(L) denotes the set of variables

in L. The Herbrand base HP of a program P is the set of all ground atoms formed from

L . By a 3-valued interpretation I of a program P we mean a set of literals defined over

HP. For A ∈ HP, if A ∈ I, A is true in I, and if not A ∈ I, A is false in I. When I is an

interpretation and A is an atom, I|A refers to

{L | L ∈ I and (L = G or L = not G) and G is in the ground instantiation of A}

The Well-Founded Model of a program P is denoted asWFM(P). In the following

sections, we use the terms goal, subgoal, and atom interchangeably. Variant terms are

considered to be identical. SLG evaluations allow arbitrary, but fixed literal selection

strategies. For simplicity, throughout this paper we assume that literals are selected in

a left-to-right order.

Definition 2.2.1 (SLG Trees and Forest) An SLG forest consists of a forest of SLG trees.

Nodes of SLG trees have the forms:

Answer_Template :- Delay_Set|Goal_List

or

f ail
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In the first form, the Answer_Template is an atom, the Delay_Set is a set of delayed literals (see

Definition 2.2.2) and Goal_List is a sequence of literals. The second form is called a failure

node. The root node of an SLG tree may be marked with the token complete.

We call a node N an answer when it is a leaf node for which Goal_List is empty. If the

Delay_Set of an answer is empty it is termed an unconditional answer, otherwise, it is a

conditional answer.

Definition 2.2.2 specifies the exact formulation of delay literals. Definition 2.2.8 will

ensure that the root node of a given SLG tree, T , has the form S :- |S, where S is a

subgoal. If T is an SLG tree in a forest F whose root node is S :- |S (possibly marked as

complete), then we use the following terminology. S is the root node for T or that T is

the tree for S, and S is in F .

Definition 2.2.2 (Delay Literals) A negative delay literal in the Delay_Set of a node N has

the form not A, where A is an ground atom. Positive delay literals have the form ACall
Answer, where

A is an atom whose truth value depends on the truth value of some answer Answer for the

subgoal Call. If θ is a substitution, then (ACall
Answer)θ = (Aθ)Call

Answer.

Positive delay literals contain information so that they may be simplified when a

particular answer to a particular call becomes unconditionally true or false. It is useful

to define answer resolution so that it takes into account the form of delay literals.

Definition 2.2.3 (Answer Resolution) Let N be a node A :- D|L1, ...,Ln, where n > 0. Let

Ans = A′ :- D′| be an answer whose variables have been standardized apart from N. N is SLG

resolvable with Ans if ∃i, 1≤ i≤ n, such that Li and A′ are unifiable with an mgu θ. The SLG
resolvent of N and Ans on Li has the form

(A :- D|L1, ...,Li−1,Li+1, ...,Ln)θ

if D′ is empty, and

(A :- D,D|L1, ...,Li−1,Li+1, ...,Ln)θ

otherwise, where D = Li if Li is negative, and D = Li
Li
A′ otherwise.

A set of subgoals is completely evaluated when it can produce no more answers.

Formally,

Definition 2.2.4 (Completely Evaluated) A set S of subgoals in a forest F is completely

evaluated if at least one of the conditions holds for each S ∈ S

1. The tree for S contains an answer S :- |; or

2. For each node N in the tree for S:

(a) The selected literal LS of N is completed or in S ; or

11



(b) There are no applicable NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION,

POSITIVE RETURN, DELAYING, or NEGATIVE RETURN operations (Defini-

tion 2.2.8) for N.

Once a set of subgoals is determined to be completely evaluated, the COMPLETION

operation marks the root node of the trees for each subgoal (Definition 2.2.1).

Definition 2.2.5 (Supported Answer) Let F be a SLG forest, S a subgoal in F , and Answer

be an atom that occurs in the head of some answer of S. Then Template is supported by S in F

if and only if:

1. S is not completely evaluated; or

2. there exists an answer node Answer :- Delay_Set| of S such that for every positive delay

literal DCall
Ans , Ans is supported by Call.

As an aside, we note that unsupported answers appear to be uncommon in practical

evaluations which minimize the use of delay such as [66].

An SLG evaluation consists of a (possibly transfinite) sequence of SLG forests. In

order to define the behavior of an evaluation at a limit ordinal, we define a notion of

a least upper bound for a set of SLG trees. If a global ordering on literals is assumed,

then the elements in the Delay_Set of a node can be uniformly ordered, and under

this ordering a node of a tree can be taken as a term to which the usual definition of

variance apply. In particular, nodes of SLG trees are treated as identical when they are

variant.

A rooted tree can be viewed as a partially ordered set in which each node N is

represented as {N,P} in which P is a tuple representing the path from N to the root of

the tree [28]. When represented in this manner, it is easily seen that when T1 and T2 are

rooted trees, T1⊆ T2 iff T1 is a sub-tree of T2, and furthermore, that if T1 and T2 have the

same root, their union can be defined as their set union, for T1 and T2 taken as sets.

Definition 2.2.6 (Tabled Evaluation) Given a program P, an atomic query Q and a set of

tabling operations (from Definition 2.2.8), a tabled evaluation E is a sequence of SLG forests

F0,F1,. . . ,Fβ, such that:

• F0 is the forest containing a single tree Q :- | Q

• For each successor ordinal, n + 1≤ β, Fn1 is obtained from Fn by an application of a

tabling operation.

If no operation is applicable to Fα, Fα is called a final forest of E . If Fβ contains a leaf node

with a non-ground selected negative literal, it is floundered.

SLG forests are related to interpretations in the following manner.
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Definition 2.2.7 Let F be a forest. Then the interpretation induced by F , IF is the smallest

set such that:

• A (ground) literal A ∈ IF iff A is in the ground instantiation of some unconditional an-

swer Ans :- | in F .

• A (ground) literal not A∈ IF iff A is in the ground instantiation of a completely evaluated

subgoal in F , and A is not in the ground instantiation of any answer in F .

An atom S is successful in F if the tree for S has an unconditional answer S. S is failed

in F if S is completely evaluated in F and the tree for S contains no answers. An atom S

is successful (failed) in IF if S′ (not S′) is in IF for every S′ in the ground instantiation

of S. A negative delay literal not D is successful (failed) in a forest F forest if D is (failed)

successful in F . Similarly, a positive delay literal DCall
Ans is successful (failed) in a F if Call has

an unconditional answer Ans :- | in F .

These operations are as follows.

Definition 2.2.8 (SLG Operations) Given a forest Fn of a SLG evaluation of program P and

query Q, where n is a non-limit ordinal, Fn+1 may be produced by one of the following opera-

tions.

1. NEW SUBGOAL: Let Fn contain a non-root node

N = Ans :- DelaySet|G,Goal_List

where G is the selected literal S or not S. Assume Fn contain no tree with root subgoal S.

Then add the tree S :- |S to Fn.

2. PROGRAM CLAUSE RESOLUTION: Let Fn contain a root node N = S :- |S and C be a

program clause Head :- Body such that Head unifies with S with mgu θ. Assume that
in Fn, N does not have a child Nchild = (S :- |Body)θ. Then add Nchild as a child of N.

3. POSITIVE RETURN: Let Fn contain a non-root node N whose selected literal S is positive.

Let Ans be an answer node for S in Fn and Nchild be the SLG resolvent of N and Ans on S.

Assume that in Fn, N does not have a child Nchild . Then add Nchild as a child of N.

4. NEGATIVE RETURN: Let Fn contain a leaf node

N = Ans :- DelaySet|not S,Goal_List.

whose selected literal not S is ground.

(a) NEGATION SUCCESS: If S is failed in F , then create a child for N of the form:

Ans :- DelaySet|Goal_List.

(b) NEGATION FAILURE: If S succeeds in F , then create a child for N of the form fail.

13



:- table p/1, q/1, r/1.

p(X) :- not q(X), r(X).

q(X) :- not p(X).
q(a).

r(a).

Figure 2.6: Program P2.2

5. DELAYING: Let Fn contain a leaf node N = Ans :- DelaySet|not S,Goal_List, such that

S is ground, in Fn, but S is neither successful nor failed in Fn. Then create a child for N

of the form Ans :- DelaySet,not S|Goal_List.

6. SIMPLIFICATION: Let Fn contain a leaf node N = Ans :- DelaySet|, and let L∈DelaySet

(a) If L is failed in F then create a child fail for N.

(b) If L is successful in F , then create a child Ans :- DelaySet ′| for N, where Delay_Set ′

= Delay_Set−L.

7. COMPLETION: Given a completely evaluated set S of subgoals (Definition 2.2.4), mark

the trees for all subgoals in S as completed.

8. ANSWER COMPLETION: Given a set of unsupported answersUA , create a failure node

as a child for each answer Ans ∈UA .

An interpretation induced by a forest (Definition 2.2.7) has its counterpart for SLG,

(Definition 5.2 of [13]). Using these concepts, we can relate SLG to SLG evaluations.

Theorem 2.2.1 Let F a forest in a terminated SLG evaluation of a query Q to a program P,

and A an atom such that A :- A is the root of some tree in F . Then

WFM(P)|A = IF |A

For the proof see [74]. This theorem implies the correctness of SLG, and as such,

proving correctness w.r.t. to SLG will ensure the correctness w.r.t. to the well founded

model.

2.2.2 Example of SLG Resolution

In this section we give an example of SLG resolution as defined in the previous section,

stressing the features of SLG that support well-founded negation.

Consider program P2.2 in Figure 2.6 and the query :- p(a) . The initial forest for

the SLG evaluation consists of the tree with the node p(a) :- p(a). After the application
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p(a) :− | p(a)

q(a) :− | q(a)

DELAYING

p(a) :− | p(a)

q(a) :− | q(a)

p(a) :− | not q(a), r(a) p(a) :− not q(a) | r(a)

Figure 2.7: SLG evaluation of program P2.2: the delay operation

p(a) :− | p(a)

p(a) :− not q(a) | r(a)

p(a) :− not q(a) |

q(a) :− | q(a)

q(a) :− | q(a)q(a) :− | not p(a)

q(a) :− |

r(a) :− |

r(a) :− | r(a) : completed

Figure 2.8: SLG evaluation of program P2.2: a conditional answer

of PROGRAM CLAUSE RESOLUTION and NEW SUBGOAL for q(a) the forest at the left

side Figure 2.7 is obtained.

At this point the DELAYING operation is applied giving the forest at the right of the

figure. After applying a set of NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION, POSI-

TIVE RETURN and COMPLETION operations we get the forest represented in Figure 2.8.

At this point we have an unconditional answer for p(a) . In this case it is possible

to apply the operation SIMPLIFICATION to literal not q(a) because there is an answer

q(a) . p(a) fails and NEGATION SUCCESS can be applied to the literal not p . No more

operations can be executed for the trees of p(a) and q(a) , so they are marked com-

pleted by the COMPLETION operation and the final forest represented in Figure 2.9 is

reached.

p(a) :− not q(a) | r(a)

p(a) :− not q(a) |

fail

p(a) :− | p(a) : completed

q(a) :− | q(a)q(a) :− | not p(a)

q(a) :− |q(a) :− |

q(a) :− | q(a) : completed

r(a) :− |

r(a) :− | r(a) : completed

Figure 2.9: SLG evaluation of program P2.2: final forest
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p(s,Y)

p(b,Z)

p(c,Z’)

p(a)

q(a)

PP2.1 2.2

Figure 2.10: SDG for forests in Figures 2.5 and 2.8.

2.2.3 Local SLG Evaluations

Definition 2.2.9 (Subgoal Dependency Graph) Let F be a forest. We say that a tabled

subgoal subgoal1 directly depends on a tabled subgoal subgoal2 in F iff subgoal1 and

subgoal2 are non-completed and subgoal2 or not(subgoal2) is the selected literal of some

node in the tree for subgoal1 in F . If subgoal2 (not(subgoal2)) is the selected literal of some

node in the tree for subgoal1 in F , then we say that subgoal1 positively (negatively) directly

depends on subgoal2.

The relation “depends on” is the transitive closure of the relation “directly de-

pends on”. That is, subgoal1 depends on subgoalk iff there exists a sequence,

subgoal1, subgoal2, ..., subgoalk, such that ∀ i, k − 1 ≥ i ≥ 1, subgoali directly de-

pends on subgoali+1.

The Subgoal Dependency Graph SDG(F ) = (V,E) of F is a directed graph in whichV is

the set of root goals for trees in F and (si,s j) ∈ E iff subgoal si directly depends on subgoal s j.

An SDG can be partitioned in disjoint sets of mutually dependent subgoals, or SCCs

(strongly connected components).

Definition 2.2.10 (Independent SCC) A strongly connected component SCC is indepen-

dent if ∀S ∈ SCC, if S depends on some S′, then S′ ∈ SCC.

In Figure 2.10 we show the SDGs for the forest represented in Figures 2.5 and 2.8.

We consider the forest in Figure 2.5 as an informal SLG forest for definite programs.

That SDG contains three SCCs, one for each tabled subgoal. Only the SCC for p(c,Z’)

is independent. The SDG for the forest of P2.2 has only one independent SCC contain-

ing both subgoals.

We define local scheduling as a restriction to a SLG evaluation so that it satisfies the

locality property.

Definition 2.2.11 (Locality) A SLG evaluation satisfies the locality property if all SLG op-

erations (definition 2.2.8) are applied to trees whose root subgoal is in an independent SCC.
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Furthermore operation COMPLETION can only be applied to all the subgoals in the indepen-

dent SCC.

We say that E is a local SLG evaluation if E satisfies the locality property.

We now formulate the following theorem:

Theorem 2.2.2 If an SLG evaluation E = F0 . . .Fn satisfies the locality property than ∀0≤

k ≤ n : SDG(Fk) has one and only one independent SCC.

Proof: Let E = F0 . . .Fn be a local SLG evaluation. We prove by induction that ∀0≤ k≤

n : SDG(Fk) has one and only one independent SCC.

Induction base: F0 = {Q : −|Q} has only the tree for subgoal Q. SDG(F0) = (Q,⊘)

which is itself an independent SCC as Q doesn’t depend on any subgoal.

Induction hypothesis: ∀0≤ i≤ k : SDG(Fi) has one and only one independent SCC.

Induction thesis: ∀0≤ i≤ k +1 : SDG(Fi) has one and only one independent SCC.

Given the induction hypothesis we only need to prove that SDG(Fk+1) has one and

only one independent SCC to prove the induction thesis.

From Fk for which SDG(Fk) has only one independent SCC (induction hypothesis)

we obtain Fk+1 by applying one of the SLG operations of definition 2.2.8 to one of the

trees whose root is in the independent SCC of SDG(Fk) (local SLG evaluation). This

may be:

1. NEW SUBGOAL: This creates a new tree in Fk+1 which means a new node in

SDG(Fk+1). This node has no outgoing edges (the tree has only its root) but will

have at least one incoming edge (from the selected literal which originated the

new subgoal.) So a new independent SCC with only one node (the new sub-

goal) is created. There was only one independent SCC in SDG(Fk) (induction

hypothesis) and this will depend on the new node and will not be independent

in SDG(Fk+1). So SDG(Fk+1) will have only one independent SCC.

2. PROGRAM CLAUSE RESOLUTION: This either leaves the SDG(Fk) unchanged in

which case SDG(Fk+1) = SDG(Fk) (in the case that there was another clause with

the same subgoal) so it has only one independent SCC by the induction hypothe-

sis, or adds a new edge to it departing from one of the nodes of its only indepen-

dent SCC to create SDG(Fk+1). There are two cases:

• The destination node belongs to the independent SCC in which case it will

not be changed.

• The destination node belongs to a not independent SCC. In this case the not

independent SCC will depend on the independent SCC (as this is the only

one on the graph, all other SCCs will depend on it) and there will be a merge

of SCCs forming one and only one new independent SCC.
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In both cases SDG(Fk+1) still has one independent SCC.

3. POSITIVE RETURN: In this case a new leaf node with (possibly) a new selected

literal is added to a tree of Fk. If there’s no new selected literal SDG(Fk) =

SDG(Fk+1). Otherwise, like in the above case a new edge may be created in

SDG(Fk) departing from the independent SCC. The prove that SDG(Fk+1) has

only one independent SCC is the same.

4. NEGATIVE RETURN

(a) NEGATION SUCCESS: This case is identical to the previous one. A new node

is created with (possibly) a new selected literal. The proof is identical.

(b) NEGATION FAILURE: In this case a new fail node is added to a tree of Fk.

SDG(Fk+1) = SDG(Fk).

5. DELAYING: This case is identical to POSITIVE RETURN and NEGATION SUCCESS

with respect to the SDG as a new node with (possibly) a new selected literal is

created.

6. SIMPLIFICATION: In this case the new node added to the tree has the same se-

lected literal (if any). SDG(Fk+1) = SDG(Fk).

7. COMPLETION: Let Fi, i < k be the forest in E before the SLG operation that added

the first node in the independent SCC of SDG(Fk). All posterior SLG operations

applied on F j, j > i either (local SLG evaluation):

• (NEW SUBGOAL) added a new node to SDG(F j). As this will be the only

new independent SCC (induction hypothesis), the independent SCC of

SDG(Fi+1) will depend on it. This new node will be later either be merged

into the independent SCC of SDG(Fk) or removed by a COMPLETION oper-

ation.

• (COMPLETION) removed the only independent SCC of SDG(F j) (induction

hypothesis) which the independent SCC of SDG(Fi+1) depends on.

• (others) added a new edge to a node of the independent SCC of SDG(F j)

which the independent SCC of SDG(Fi+1) depends on (as its the the only

one independent SCC of SDG(F j) – induction hypothesis). The independent

SCC of SDG(F j)will either be merged into the independent SCC of SDG(Fk)

or removed by a COMPLETION operation.

• (others) left SDG(F j) unchanged.

Removing the independent SCC from SDG(Fk)will thus give us SDG(Fi).

As we are assuming (induction hypothesis) that ∀i ≤ k : SDG(Fi) has only one

independent SCC, SDG(Fk+1) = SDG(Fi)must have only one independent SCC.
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8. ANSWER COMPLETION: This will create failure nodes and not affect the SDG.

Thus SDG(Fk+1) = SDG(Fk).

Corollary 2.2.1 In the SDG for a forest of a local SLG evaluation there is at most one incoming

edge for each SCC.

Proof: By theorem 2.2.2 there can only be one independent SCC. As such the only

incoming edge into that SCC has to be added at its creation, as by the locality property

(Definition 2.2.11) no operation may be applied to a tree outside the independent SCC

once it has been created.

Corollary 2.2.2 In a SLG evaluation a subgoal may only return answers out of its SCC once

its completed.

Proof:

By theorem 2.2.2 there can only be one independent SCC, I. As such no POSITIVE

RETURN or NEGATIVE RETURN operation can be applied to trees outside of I. Its only

after I is completed that POSITIVE RETURN or NEGATIVE RETURN operations can be

applied to trees of another SCC.

Theorem 2.2.3 (Completeness) Let P be a finite program andQ an atomic query. Then there

exists a finite SLG evaluation of Q against P with final SLG forest F if and only if there exists

a finite local SLG evaluation of Q against P with final state F L.

Proof:

If Part: Trivial, as a local SLG evaluation is a SLG evaluation.

Only If Part: In every SDG for an SLG forest, Fn, there is an independent SCC, I. If

there is a SLG evaluation E = Fn . . .F f inal, where F f inal is a final forest, according to

Definition 2.2.6, then there always at least one SLG operation, from the ones applied

in E , that involves the trees in I – if none of the others, the COMPLETION for operation

for all the trees in I can be applied. When the COMPLETION operation is applied I

is removed from the SDG, and there is a new independent SCC, I′, where again at

least one SLG operation of E can be applied to I′ in Fn+1. This can be repeated until

all trees are completely evaluated, i.e. a final SLG forest is reached by a local SLG

sub-evaluation Elocal = Fn . . .F f inal . By making Fn = F0, an initial forest containing one

single tree, which has only one independent SCC, we have that for every finite SLG

evaluation E = F0 . . .F f inal there is a finite local SLG evaluation Elocal = F0 . . .F f inal.
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This theorem ensures that by restricting ourselves to local evaluations of SLG we

don’t lose any of the power of SLG to evaluate queries.

2.3 The SLG-WAM for Definite Programs

The SLG-WAM is the abstract machine that implements tabling at the abstract machine

level. It is an extension of the WAM, with new registers data structures and instruc-

tions. It also implies some modifications in proper WAM data structures and instruc-

tions. In this section we only cover the part of the SLG-WAM that deals with definite

programs (we don’t consider negation). For a complete description of the SLG-WAM

including negation, consult [64].

Unlike the WAM, the SLG-WAM needs to be able to suspend and resume computa-

tions, whenever a tabled subgoal’s computation path can’t generate more answers and

an alternative must be explored. This may lead to answers to be returned to the previ-

ous computation path, which later will have to be resumed. This implies the problem

of scheduling: to choose which computation path will be resumed next.

There’s also the need to incrementally complete tabled subgoals, both for space

efficiency and to allow the completed subgoal call optimization: if a completed subgoal

is called a more efficient way of traversing the answers using compiled tries, can be

used.

Since the introduction of the SLG-WAM other methods have been tried to imple-

ment tabling. CAT [25] uses copying of the stacks instead of freezing, to suspend and

resume computations. It has been implemented in Mercury [70]. CHAT [26, 27] is an

hybrid approach between copying and freezing. It has been implemented in XSB but

results reported in [11] showed the SLG-WAM to perform better and it is no longer

supported. YapTab [59] implements the SLG-WAM without the completion stack and

is further discussed on Chapter 6. A very different scheme of the implementation is

linear tablingwhich doesn’t require the suspension and resuming of computation. Two

approaches of linear tabling were used in B-Prolog [88, 89] and ALS [35, 36]. A recent

work [69] reproduces and compares these new approaches. A brief explanation of lin-

ear tabling is given in Chapter 6.

2.3.1 The WAM

The WAM is the standard abstract machine used to implement many Prolog systems.

It supports backtracking and unification at the abstract machine level. We give a brief

account of its data structures and instruction set as implemented by XSB. For a full

description see [1].
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Data Structures The XSB implementation of the WAM uses four stacks:

• The environment stack sometimes called the local stack keeps track of the pro-

cedure activation records for Prolog calls. This include the local variables for a

predicate invocation and the return address of the call, very much like in proce-

dural languages implementations.

• The choice point stack keeps the choice points created by the execution of pred-

icates with multiple clauses, that require a choice to be made in the derivation

tree. It’s used to control backtracking and contains the Failure Continuation – the

next clause to be executed in the case of a failure into that choice point – and the

argument registers as well as the abstract machine’s registers that must be saved

for the procedure to be re-invoked.

• The heap is used to store the global variables and data structures (lists and terms).

Sometimes this is referred to as the global stack.

• The trail is used to record conditional bindings that must be undone when back-

tracking occurs.

The predicate space is a separate space that contains the WAM code for the Prolog

predicates. The atom table, sometimes called the heap, is a separate space that contains

the values for constants and functors.

The WAM uses the following registers:

• pcreg the program counter.

• cpreg the return pointer register; used to save the pcreg value to where execution

may return after successful execution of a predicate.

• breg, hreg, ereg, trreg the top of the stacks

• hbreg the frame of the heap that corresponds to the top of the choice point stack.

Used to save a segment of the heap for backtracking.

• ebreg the same as hbreg, but for the environment stack.

• regs named in our WAM reference as the A registers, these are used to store the

arguments for a predicate call.

In many Prolog implementations the Environment and Choice Point stacks are col-

lapsed into a single stack. In such implementations the ebreg is not needed.
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Instruction Set The WAM includes the following instruction groups:

• Unification instructions: the get, put, uni and bld families of instructions. These

allow for the construction, binding and unification of variables and data struc-

tures on top of the WAM’s data structures. There are specialized instructions for

variables, constants, functors and lists. There is support for conditional (trailed)

bindings and unconditional (non trailed) bindings. A binding is said to be condi-

tional if it refers to a variable deeper in the stacks than the youngest choice point

and has to be undone in backtracking.

• Predicate call related instructions In this group we consider the call and instruc-

tions. We also consider the instructions for allocation and de-allocation of envi-

ronments, allocate and deallocate.

• Choice point instructions In this group we consider the try, retry and trust families

of instructions. These instructions are used to allocate choice points for predicates

with multiple clauses. They usually form a chain, in which, during execution, the

first try instruction calls a clause and sets the choice point’s failure continuation

for the next clause’s retry instruction and so on.

• Indexing instructions The switch family of instructions allows the indexing of a

predicate with multiple clauses, in a way that depending on value of the argu-

ments of the call an appropriate clause is selected without having to traverse a

try–retry chain. It works very much like a “C” language switch statement vs an

if–else if chain. This instructions are clearly important to speedy access to large

multi-fact predicates.

We finish by noting that many WAM implementations provide macro-instructions

that correspond to the most common sequences of compiler generated WAM instruc-

tions. With this optimization they eliminate multiple fetch and decode cycles, saving

considerable execution time, and also achieve amore compactWAM code. XSB doesn’t

do this optimization. For some of the developments that followed the WAM see [84].

2.3.2 SLG-WAM Stacks and Registers

Due to the need to suspend and resume computations, implemented by the freeze

registers, the SLG-WAM stacks are not proper stacks, being more properly described

as cactus stacks. They represent a view of the tree of computation in progress with more

than one branch at each time. This is needed because in the SLG-WAM there is a need

to suspend and resume computations, unlike in the WAM where the resolution tree

is searched in a strictly depth first strategy. The representation of more than just one

branch of the tree in the stacks is achieved through the freeze mechanismwhich consists

of freezing the contents of the stacks when a computation is suspended. For this, the
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SLG-WAM has special purpose registers, the freeze registerswhich record which part of

the stacks is frozen.

SLG-WAM Registers Other than all of the WAM registers the SLG-WAM includes

the following:

• hfreg, bfreg, efreg, trfreg The freeze registers. These registers are used in the

freezing mechanism, to preserve the status of suspended computations in the

SLG-WAM cactus like stacks (see next section).

• openreg The top of the completion stack

The Choice Point Stack The choice point stack is used in the WAM to control back-

tracking. In the SLG-WAM it also controls the suspension and resuming of subgoals.

There are three types of choice points in the SLG-WAM’s choice point stack:

• Internal choice points These are really Prolog choice points used to control back-

tracking in program clause resolution. They are equivalent to regular WAM

choice points.

• Generator choice points When a tabled subgoal is first encountered a generator

choice point is laid out. This choice point is also used to do resolve program clauses

whose answers will be stored on the table. In Figure 2.11 and others, the * marks

a field which is not present in the WAM. The first section corresponds to state

information that the SLG-WAM must restore on backtracking for any subgoal,

tabled or not, and are also present in internal choice points. The middle part

doesn’t appear in internal choice points. It contains a pointer to the table entry

of the subgoal (the Subgoal Frame, see Section 2.3.3) and the values of the freeze

registers upon creation of the choice point. These are needed to free the frozen

areas of the stacks when the subgoal completes. The bottom section contains

the argument registers along with its substitution factor, the set of free variables

which exist in the terms in the argument registers. As explained in Section 2.3.3,

the substitution factor is used to reduce copying information into and out of the

answer tables.

• Consumer choice points These are laid out when the subgoal has been already

called and used by the answer return instruction to fetch answers from the table.

The consumer choice point contains a pointer to the last answer that has been

consumed from the table, so that on backtracking further answers can be con-

sumed. A list of the consumer choice points for a tabled subgoal is kept, and the

field PrevCCP points to the previous consumer choice point in this list. Instead of

the argument registers the consumer choice point stores the substitution factor,

which is used to retrieve answers from the table (see Section 2.3.3).
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FailCont The Failure Continuation
EBreg Environment Backtrack Point
Hreg Top of Global Stack (Heap)
TRreg Top of Trail
CPreg Success Continuation for Subgoal
Ereg Parent Environment
Breg_Chain* Failure Continuation on Backtracking out of this CP
SubgFr* Pointer to the Subgoal Frame
BFreg* Choice Point Freeze Register
HFreg* Heap Freeze Register
TRFreg* Trail Freeze Register
EFreg* Local Stack Freeze Register
An Argument Register n
...

...
A1 Argument Register 1
...

...
A1 Argument Register 1
VarNum* Number of Variables: m
Vm* Substitution Factor Variable m
...

...
V1* Substitution Factor Variable 1

Figure 2.11: Format of generator choice points.

The Trail The trail records the conditional bindings that must be undone in back-

tracking. In the SLG-WAM because of the suspend and resume mechanism, the values

of the bindings have to be remembered, for the case that a computation path has to

be restored. This is sometimes referred to as a forward trail. The freeze mechanism is

also used for the trail itself, which implies that the previous trail frame in the current

computation path may not be adjacent. This means adding a back pointer to every trail

frame.

Summing up, the SLG-WAM trail frames have three fields: the variable address,

the variable value and the previous trail frame.

The trail is used to restore the bindings when switching of environments takes

place. This is done by the restore_bindings procedure given in [64].

Note on Conditional Bindings Because the suspend and resume mechanisms may

freeze the stacks when some traditional WAM unconditional bindings have taken

place, those bindings may still have to be undone and redone later, and can no longer

be conditional. This leads to the restriction of the situations where bindings may be

unconditional in the SLG-WAM. See [75] for details.

The Completion Stack The SLG-WAM has a new stack, the completion stackwhich is

a proper stack (it doesn’t require the freeze mechanism). The completion stack records
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FailCont Pointer to answer_return Instruction
EBreg Environment Backtrack Point
Hreg Top of Global Stack (Heap)
TRreg Top of Trail
CPreg Success Continuation
Ereg Parent Environment
Breg_Chain* Failure Continuation on Backtracking out of this CP
LastAnswer* Pointer to Last Consumed Answer
PrevCCP* Pointer for Consumer Choice Point Chain
VarNum* Number of Variables: m
Vm* Substitution Factor Variable m
...

...
V1* Substitution Factor Variable 1

Figure 2.12: Format of consumer choice points.

which tabled goals are being solved at the moment and an approximation of their

inter-dependencies. The DirLink field (see Figure 2.13) indicates the deepest subgoal

that this subgoal depends on. For a subgoal S, we define MinLink(S) as the deepest

DirLink value for all the frames in the completion stack younger than the one for S. We

define a S as a leader of a scheduling ASCC if and only if the completion frame associated

with S is either the deepest one in the completion stack or satisfies the condition

DFN(Sprev) < min(DirLink(S),MinLink(S))

where Sprev is the predecessor of S on the completion stack.

The completion stack can be thus partitioned in scheduling ASCCs, A1 . . .An, with

the property that no subgoal in a given scheduling ASCC depends on any subgoal in

a scheduling ASCC deeper in the stack.

The scheduling ASCCs are thus approximations of strongly connect components

(SCCs) in the subgoal dependency graph (see Section 2.2.3), in that they consist of a

set of SCCs1.

The DirLink fields are updated and the ASCCs maintained by the procedure ad-

just_levels (Figure 2.20 in Section 2.3.4) which is called by the SLG-WAM instruction

table_try.

SubgFr Pointer to Subgoal Frame
DFN Depth First Number
DirLink Deepest Direct Dependency

Figure 2.13: Format of completion stack frames.

1With Local scheduling an ASCC correspond to one and only one SCC.

25



answer
trie

call trie

Frame

Subgoal

Frame

Subgoal

Table Info Frame

(predicate level)

Frame

Subgoal

Figure 2.14: Data structures for a tabled predicate

a/1
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p/2

b

X’

X’’

d/1

X’’

Figure 2.15: Trie for terms p(a(X),c) ,p(a(X),Y) , p(b,X’) and p(X”,d(X”))

2.3.3 Table Space

The SLG-WAM adds a new space to the WAM, the table space, used to store the tables

of subgoals with their answers.

The table space is laid out one entry for each predicate (see Figure 2.14). The Table

Information Frame represents a predicate and gives the entry point for the subgoals

associated with that predicate by pointing into the call trie. The call trie represents the

Prolog terms that correspond to the subgoal calls and can be traversed to give access

to the Subgoal Frame.

Figure 2.15 shows the trie representation for several subgoals of a predicate p/2 .

This representation is compact and allows easy implementation of the check/insert

operation of a subgoal in the table, by traversing the trie from the root to the leaves.

For each subgoal there is a subgoal frame (see Figure 2.16), which has a pointer

to the root of the answer trie. The bottom elements of the figure, such as the Answer

Return List are used for incomplete subgoals and can be disposed of when the subgoal

is completed.
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AnsTrieRoot Pointer to the Root of the Answer Trie
IsCompleted True if Subgoal is completed
NextSF Pointer to Next Subgoal Frame
PreviousSF Pointer to Previous Subgoal Frame
ComplSF Pointer to the Associated Completion Stack Frame
AnsRetListH Pointer to the Head of the Answer Return List
AnsRetListT Pointer to the Tail of the Answer Return List
CCP_Chain Pointer to the Head of the Consumer Choice Point Chain

Figure 2.16: Format of subgoal frames.

p(X,c(Y))

a d

b c/1

X’

Y’

Answer Return List

Figure 2.17: Answer trie for answers of p(a(X),Y) : (X=a,Y=b); (X=a,Y=c(X’) ); (X=d,Y=Y’ )

The answer trie (see Figure 2.17) corresponds to a trie where the answers of the

subgoals are stored. This uses the substitution factoring optimization, so that only the

bindings of the free variables of the call are stored in the trie. This has the effect of

considerably reducing the size of the answer trie. The trie is compiled into WAM-like

trie instructions which support the unification and backtracking at abstract machine

instruction level. The compiled trie code is called directly by the SLG-WAM to return

answers from completed tables; this is the completed table optimization. The answer

return list is used to traverse the answers for incomplete subgoals. It points to the

leaves of the trie, which means that traversing the answers for incomplete tables is

done from the leaves to the root, in the inverse order to the one used for completed

tables.

For a detailed treatment of tries, its compilation and the tabling data structures in

general see [57].

2.3.4 The SLG-WAM Instruction Set

The SLG-WAM introduces new instructions specific to the new tabling operations.

The table_try instruction mimics the WAM’s try instruction, adding the functionality

for the SLG NEW SUBGOAL operation if a new subgoal is encountered and additional
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L1 : table_try 2 L3 TR %
L2 : table_trust 2 L13 %
L3 : allocate 3 % p(X,Z) :-
L4 : getVn v3 %
L5 : getpvar v1 r2 %
L6 : putpvar v2 r2 % p(X,Y
L7 : call 3 p/2 % ),
L8 : putpval v2 r1 % p(Y,
L9 : putpval v1 r2 % Z
L10: call 3 p/2 % )
L12: new_answer 2 v3 % .
L13: allocate 2 % p(X,Z) :-
L14: getVn v2 %
L15: getpvar v1 r2 %
L16: call 2 e/2 % e(X,Z),
L17: putpval v1 r1 % q(Z
L18: call 2 q/1 % )
L19: new_answer 2 v2 % .

Figure 2.18: SLG-WAM code for predicate p/2 of program P2.1.

bookkeeping to the tabling data structures. The SLG-WAM table_trust instruction is

identical to the WAM’s trust instruction except that it sets the failure continuation to

check_complete instruction which corresponds to the COMPLETION SLG operation, so

that incremental completion can be performed when there are no more answers to this

subgoal. There is also a table_try_single instruction for single clause tabled predicates.

The tabled predicates need the try-type instructions because a generator choice point

must always be created, even for single clause predicates.

The answer_return instruction corresponds to the SLG POSITIVE RETURN operation.

This instruction is stored as the failure continuation of consumer choice points and

is used to resume the computation and to return answers to the variant subgoal calls

suspended waiting for answers from the table.

The new_answer instruction is compiled at the end of every tabled predicate clause

and corresponds to the NEW ANSWER tabling operation. The new_answer instruction

also performs the functionality of the WAM’s deallocate and proceed instructions.

Figure 2.18 shows the compilation into SLG-WAM instructions for predicate p/2 of

program P2.1 in Figure 2.1. Note the getVn instructions that save a pointer to the gener-

ator choice point in a local variable, so that it can later be accessed by the new_answer

instruction, even if additional choice points have been pushed meanwhile. Note also

that there are no deallocate neither proceed instructions, whose functionality is per-

formed by the new_answer instruction.

The Table_Try Instruction We proceed to explain the table_try instruction for a sub-

goal S as represented in Figure 2.19. The T IF argument corresponds to the Table Infor-
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mation Frame, given in the previous section, which is used to access the call trie, which

is traversed in line 1, to obtain the subgoal frame SF . If the subgoal frame is not found,

a new one is created in line 2.1 and a generator choice point for the evaluation of a new

tabled subgoal is created (line 2). A completion stack frame is pushed for that subgoal

(line 2.3) and execution branches to the next SLG-WAM instruction so that program

clause resolution will be performed.

If the subgoal is already on the table and is completed (lines 3–3.2) execution

branches to the answer trie of the completed subgoal. If the subgoal is already on

the table but is incomplete (lines 4–4.7), a consumer choice point is created to return

the answers. The procedure adjust_levels is called to reflect the dependency of subgoals

younger than S on S. The stacks are frozen to preserve the current computation path,

so that the answer_return instruction in this consumer choice point can be executed in

the proper environment. Finally execution fails into the consumer choice point, for it

to return its first answer.

Instruction table_try(Arity, NextClause, T IF) /* Subgoal is in argument registers */
1 SF ← subgoal_check_insert(Subgoal, T IF)
2 if (SF = NULL ) /* Subgoal is new and added */
2.1 SF ← CreateSubgoalFrame(Subgoal);
2.2 GCP← PushGeneratorChoicePoint(. . . );
2.3 GCP.FailCont← NextClause;
2.4 ComplSF← PushCompletionStackFrame(. . . );
2.5 ComplSF.SubgFr← SF ;
2.6 /* Branch to the next SLG-WAM instruction */
3 else if ( (SF.IsCompleted) ) /* Subgoal is complete */
3.1 Answer_Root← Subgoal.AnsTrieRoot ;
3.2 /* Branch to Answer_Root SLG-WAM instruction */
4 else /* Subgoal is incomplete */
4.1 CCP← PushConsumerChoicePoint(. . . );
4.2 adjust_levels(SF); /* for scheduling ASCCs: see Figure 2.20 */
4.3 CCP.Prev_CCP← SF.CCP_Chain;
4.4 SF.CCP_Chain←CCP;
4.5 CCP.FailCont← answer_return;
4.6 freeze_stacks();
4.7 Fail; /* to answer_return instruction inCCP */

Figure 2.19: The table_try instruction.

Procedure adjust_levels(S) updates the completion stack to reflect the dependency of

any younger subgoals on S. By updating the DirLink field of the topmost completion

stack frame with the DirLink corresponding to S or a keeping lower value, it is ensured

that S is included in the topmost ASCC.
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Procedure adjust_levels(Subgoal)
ComplSFtop← openreg;
ComplSF ← Subgoal.ComplSF;
/* Completion stack frames are accessed through the corresponding subgoal frame */

ComplSFtop.DirLink← min(ComplSFtop.DirLink, ComplSF.DirLink);

Figure 2.20: Updating ASCC information on encountering consumer subgoals.

Instruction check_complete
1 SubgCSF← breg.SubgFr.ComplSF; /* breg points to the Generator CP of Subgoal */
2 if (is_leader(SubgCSF) )
2.1 tmp_breg← fixpoint_check(SubgCSF, breg);
2.2 if( tmp_breg 6= breg ) /* if there are answers to return */
2.2.1 breg← tmp_breg ;
2.2.2 Fail;
2.3 for each CSF ∈ [SubgCSF..openreg]
2.3.1 CSF.SubgFrame.IsComplete← true;
2.4 openreg← SubgCSF−1
2.5 reclaim_stacks(breg) ;
3 breg← breg.Breg_Chain;
4 Fail;

Figure 2.21: The check_complete instruction for definite programs (Batched scheduling).

2.3.5 Scheduling

In this sectionwe describe how the SLG-WAM implements the two scheduling policies,

Batched and Local. For a more detailed description see [34].

Batched Scheduling Batched scheduling inherits the scheduling properties from

Prolog, in that when an answer is derived, by the new_answer instruction, it is im-

mediately returned to the calling environment.

Batched scheduling derives its name from the way that answer_return instructions

are scheduled within an ASCC. The systems tries to schedule all unreturned answers

for the ASCC at each pass, doing multiple passes, until no more answers can be de-

rived.

The Check_Complete Instruction for Batched Scheduling As long as there are PRO-

GRAM CLAUSE RESOLUTION operations to be performed for a generator choice point,

they are done as in Prolog. When nomore PROGRAM CLAUSE RESOLUTION operations

can be performed, execution backtracks to the check_complete instruction. Figure 2.21

shows the actions performed by the completion instruction.

In line 2, it is checked if the subgoal is the leader of the ASCC. If not, execution

passes to line 3 where it fails to the previous choice point, until a leader is found.
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Function fixpoint_check(SubgCSF, sched_chain)
for each CSF ∈ [SubgCSF..openreg]/* SubgCSF is a pointer to the completion stack frame */

SubgFr←CSF.SubgFr;
sched_chain← schedule_resumes(SubgFr, sched_chain);

return sched_chain;

Figure 2.22: The fixpoint_check function.

Function schedule_resumes(SubgFr, sched_chain)
CCP← SubgFr.CCPChain; /* consumer choice point chain for S */
while( CCP 6= NULL )

if( has_unconsumed_answers(CCP) )
CCP.Breg_Chain← sched_chain;
sched_chain←CCP;

CCP←CCP.PrevCCP;
return sched_chain;

Figure 2.23: The schedule_resumes function.

In line 2.1 a scheduling chain is built out of all the consumer choice points for sub-

goals of this ASCC that have answers to return by function fixpoint_check. If the chain

is not empty (line 2.2) executions fails into it, to return the answers from the environ-

ments of the consumer choice points.

From line 2.3 to line 2.5 several actions are taken, to mark the subgoals as completed

and reclaim the stack space.

Figure 2.22 shows function fixpoint_check which calls schedule_resumes to build the

scheduling chain for the consumer choice points of each subgoal in the ASCC and

merges them together.

Figure 2.23 builds the scheduling chain of choice points with answers to return for

each subgoal.

Local Scheduling Local scheduling follows the principle given in Section 2.2.3, Def-

inition 2.2.11, which states that tabling operations may only be performed to trees in

the independent SCC of the SDG of the evaluation. As such, it evaluates one SCC at a

time, not returning any answers outside the SCC until all of its subgoals are completed.

The new_answer instruction is prevented of returning the derived answer to the call-

ing environment by failing to the current generator choice point after deriving the an-

swer.

The Check_Complete Instruction for Local Scheduling The check_complete instruc-

tion for Local scheduling has to take care of more details than its equivalent for Batched

scheduling. Figure 2.24 shows the actions performed by the completion instruction.

Lines 1 to 3.2.2 take care of the scheduling of answer_return instructions by the leader
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Instruction check_complete
1 Subgoal← breg.SubgFr; /* breg points to the Generator CP of Subgoal */
2 SubgCSF← Subgoal.ComplSF;
3 if (is_leader(SubgCSF) )
3.1 tmp_breg← fixpoint_check(SubgCSF, breg);
3.2 if( tmp_breg 6= breg ) /* if there are answers to return */
3.2.1 breg← tmp_breg ;
3.2.2 Fail;
3.3 for each CSF ∈ [SubgCSF..openreg]
3.3.1 CSF.SubgFrame.IsComplete← true;
3.4 openreg← SubgCSF−1 ;
3.5 reclaim_stacks(breg) ;
3.6 if( has_answers(Subgoal) )
3.6.1 /* restore environment from the generator choice point breg */
3.6.2 Answer_Root← Subgoal.AnsTrieRoot ;
3.6.3 /* Branch to Answer_Root SLG-WAM instruction */
4 else /* it is not a leader */
4.1 MakeConsumerFromGenerator(breg);
4.2 breg.PrevCPP← Subgoal.CCP_Chain;
4.3 Subgoal.CCP_Chain← breg;
5 breg← breg.Breg_Chain;
6 Fail;

Figure 2.24: The check_complete instruction for definite programs (Local scheduling).

and are the same as the ones for Batched scheduling. When completion takes place,

again, lines 3.4 and 3.5 are the same as in Batched scheduling. In line 3.6 it is checked if

the leader has any answers. If so, they must be returned outside of the SCC. Remember

that by Corollary 2.2.1 there can be only one call into the SCC, and that’s the call to the

leader. So only the leader has to return answers outside of the SCC, and it does so

by backtracking through its answer trie, which is activated in line 3.6.3. If the leader

doesn’t have any answers, it just fails to the calling SCC through line 6.

Line 4.1 features another interesting aspect of the implementation of Local schedul-

ing in XSB. When a generator choice point has exhausted all PROGRAM CLAUSE RESO-

LUTION operations and finds that it is not the leader, it transforms itself into a consumer

choice point (mainly by changing its FailCont field into a answer_return instruction), and

it is added to the consumer choice point chain of the subgoal. It will later be scheduled

like any other consumer choice point frame, to return its answers into the SCC that it

belongs to. This allows for most of the code to be shared among the Local and Batched

check_complete instructions.
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FailCont Pointer to negation_resume Instruction
EBreg Environment Backtrack Point
Hreg Top of Global Stack (Heap)
TRreg Top of (Forward) Trail Stack
CPreg Return Point of Suspended Literal
Ereg Parent Environment
RSreg Root Subgoal Choice Point
SubgFr Frame of Suspended Subgoal
PrevNS Pointer for Negation Suspension Frame Chain

Figure 2.25: Format of negation suspension frames.

2.4 Support for Negation in the SLG-WAM under Local

Scheduling

In this section we give an overview of the features of the SLG-WAM that offer support

for negation. We only consider Local scheduling, which allows some features of the

implementation to be simplified. For a detailed description of the support for stratified

negation under Batched scheduling see [64]. For the implementation of non-stratified

negation with delay see [65]. For a detailed description of the data structures that

implement delay lists in the table space see [20].

We first consider the basic mechanisms to support stratified negation and then pro-

ceed to the mechanisms needed for full support of the WFS.

Data Structures The following registers are added to the SLG-WAM to support nega-

tion:

rsreg The Root Subgoal register keeps the root of the current SLG tree that is being eval-

uated.

dreg The Delay register keeps the head of the delay list for the subgoal that is being

evaluated.

A field for each of these registers is added to all types of choice points, because they

have to be restored on backtracking.

Choice Point Stack A new type of choice point, the negation suspension frame (see

Figure 2.25) is added. A negation suspension is created upon the suspension of the

evaluation of a negated subgoal not S, and later may be used to switch environments

back to not S. This is explained in more detail in Section 2.4.2.

Table data structures The fieldNS_Chain is added to the subgoal frame to keep track

of any negation suspension frames that depend on a subgoal S, in a manner similar to
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1 tnot( S) :-
2 ( ground( S) →
3 ( subgoal_not_in_system( S), call( S), fail
4 ; ( is_complete( S) → negate_truth_value( S)
5 ; negation_suspend( S)
6 )
7 )
8 ; error(“Flounder: subgoal “, S, “ is not ground”)
9 ).

Figure 2.26: Implementation of the tabled negation predicate (tnot/1 )

the way that CCP_Chain keeps track of consumer choice points. The interned delay

lists are also supported at the level of the table data structures, Section 2.4.2 gives more

details.

2.4.1 Support for Stratified Negation

In this section we focus on the basic mechanisms to support negation for programs that

don’t need to apply the DELAYING and SIMPLIFICATION operations.

Early Completion When the new_answer instruction derives an answer to a ground

subgoal, it is sure to be the only answer, and the subgoal can be completed, as far as

the declarative meaning of the program is concerned.

This is done in XSB by setting the failure continuation of the generator choice point

to the check_complete instruction, so that no more clauses are explored for that sub-

goal, and by marking the subgoal as complete. The pointer to the nodes that depend

negatively on this subgoal (NS_Chain) is set to NULL, effectively trimming the nega-

tive paths that were to be explored by the NEGATION SUCCESS operation, in case this

subgoal would fail. Thus the NEGATION FAILURE operation is performed.

As it can be seen by the next paragraph, Early Completion is not really needed un-

der Local scheduling. However we find important to mention it, because its in the sys-

tem, and because it allows to break the fixed left to right computation rule in Batched

scheduling, allowing some programs involving stratified negation to be resolved with-

out having to resort to the delay mechanism.

Implementation of tnot/1 Negation is accessed by the programmer through the

tnot/1 predicate. The high-level implementation of the tnot/1 predicate can be seen

in Figure 2.26.

Remember that in Local scheduling, a subgoal is always completely evaluated be-

fore its SCC returns any answers (Corollary 2.2.2). The two cases in which a subgoal

may be incomplete when its called within an SCC, is that it is the first time it is called or

that it is involved in a loop through this SCC. In Figure 2.26 when S is checked in line
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4, it has been called before, either in line 3, or before, if it was already present on the

system. So the only chance for it to be incomplete is to be involved in a loop through

the current SCC, which means that the evaluation has a loop through negation, and is

not stratified.

As such, for stratified programs under Local scheduling, negation_suspend/1 is

never called and the truth value is always established by line 4.

2.4.2 Support for Delay and Simplification

To support programs with non-stratified (well-founded) negation the delay and sim-

plification mechanisms must be implemented.

The negation_suspend/1 predicate in Figure 2.26 suspends execution by creating a

negation suspension choice point (see Figure 2.25) in the choice point stack and freezing

the stacks. The negation choice point failure continuation points to a negation_resume

instruction. This is used to resume the computation upon the success of the negated

subgoal (performing a NEGATION SUCCESS operation) or the delaying of the subgoal.

Delaying Delaying occurs at the negation_resume instruction: if a negation suspen-

sion frame is resumed the negation_resume instruction checks if the subgoal (S) that it

depends on has unconditional answers.

If there is an unconditional answer the computation fails; otherwise the literal corre-

sponding to the call to S is delayed negatively, as notSS, and the computation proceeds.

The check_complete instruction (see Figure 2.27) schedules negation suspension

frames through the ProcNegSusps function (Figure 2.28) in lines 3.3–3.4.1. This ensures

the break of any loop through negation within the SCC. check_complete also triggers

the simplification on failure of any subgoals of the SCC, in lines 3.5.3–3.5.3.1.1.

The function ProcNegSusps (Figure 2.28) is similar to fixpoint_check; it schedules any

negation suspension frames present in the SCC.

Delay Propagation When a conditional answer is returned, its head is added to the

delay list. This operation involves adding a positive literal to the delay list and is

done by the answer_return operation. Positive delay elements are annotated with the

substitution that takes place in the resolution operation, i.e. if the call to subgoal p(X)

returns an conditional answer X = a the delay element is annotated as p(a)
p(X)
p(a) .

Simplification There are four cases of simplification:

• Simplify negation success: A subgoal S completes without answers. All the neg-

ative delay elements corresponding to S can be removed from its delay lists.

• Simplify negation failure: A unconditional answer is derived for subgoal S. All

delay lists with negative delay elements corresponding to S can be removed.
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Instruction check_complete
1 Subgoal← breg.SubgFr; /* breg points to the Generator CP of Subgoal */
2 SubgCSF← Subgoal.ComplSF;
3 if (is_leader(SubgCSF) )
3.1 tmp_breg← fixpoint_check(SubgCSF, breg);
3.2 if( tmp_breg 6= breg ) /* if there are answers to return */
3.2.1 breg← tmp_breg ;
3.2.2 Fail;
3.3 tmp_breg← ProcessNegSusps(SubgCSF, breg);
3.4 if( tmp_breg 6= breg ) /* if there are loops through negation */
3.4.1 breg← tmp_breg ;
3.4.2 Fail;
3.5 for each CSF in [SubgCSF..openreg]
3.5.1 SF ←CSF.SubgFrame
3.5.2 SF.IsComplete← true;
3.5.3 if (not has_answers(SF) )
3.5.3.1 for each delay list where SF appears
3.5.3.1.1 /* Simplify negation success */
3.6 openreg← SubgCSF−1 ;
3.7 reclaim_stacks(breg) ;
3.8 if( has_answers(Subgoal) ;
3.8.1 /* restore environment from the generator choice point breg */
3.8.2 Answer_Root← Subgoal.AnsTrieRoot ;
3.8.3 /* Branch to Answer_Root SLG-WAM instruction */
4 else /* it is not a leader */
4.1 MakeConsumerFromGenerator(breg);
4.2 breg.PrevCPP← Subgoal.CCP_Chain;
4.3 Subgoal.CCP_Chain← breg;
5 breg← breg.Breg_Chain;
6 Fail;

Figure 2.27: The check_complete instruction for normal programs (local scheduling).

Function ProcNegSusps(SubgCSF,sched_chain)
for each CSF ∈ [SubgCSF..openreg]

SubgFr←CSF.SubgFr);
NSF← SubgFr.NS_Chain
while( NSF 6= NULL )

NSF.Breg_Chain← sched_chain ;
sched_chain← NSF ;
NSF← NSF.PrevNS ;

return sched_chain ;

Figure 2.28: The ProcNegSusps function.

36



• Simplify positive success: A previously conditional answer A is found to be un-

conditional for subgoal S. All the positive delay elements corresponding to DS
A

can be removed from its delay lists.

• Simplify positive failure: A previously conditional answer A is found to be false

for subgoal S. All delay lists containing a delay element DS
A can be removed.

The main SLG-WAM instructions that lead to simplification are check_complete,

when a subgoal is completed without answers and answer_return, when an uncondi-

tional answer is returned. However, more simplification operations may be triggered

by other simplification operations, and the data structures that are used to store the

delay lists in the table space must support efficiently such cascaded simplification op-

erations.

Data Structures for Delay Lists The delay list for the current computation path is

kept on the heap, pointed by dreg. When the instruction new_answer derives an condi-

tional answer, its delay list is copied to the table space.

The Delay information is accessed, at first, by the answer trie of the conditional

answer. This is connectedwith, possibly several, delay lists, through aDelay Info frame.

Other than the delay lists, the Delay Info frame also contains the PDE list. The PDE List

is a doubly linked list, and each element in this list contains a back pointer (DE pointer)

to the occurrences of a delay element of the list and a back pointer (DL pointer) to the

delay list where this element belongs. These back pointers are used for simplification of

positive delay elements. Negative delay elements have a similar NDE list, however as

negative literals must be ground in the SLG-WAM this list is accessed from the subgoal

frame.

Each delay list contains several delay elements. Each delay element has four fields:

• Subgoal_Idwhich points to the subgoal frame of the delayed literal.

• Answer_Subst_Id which points to the leaf of the answer trie, corresponding to

the bindings of the call, if the delay element is positive. If the delay element is

negative this field is set to NULL.

• Delay_Trie which points to the leaf of the Delay Trie where the bindings to that

delay element are stored.

• PNDE pointer to the PDE element of this delay element (if the delayed literal

is positive) or pointer to the NDE element of this delay element (if the delayed

literal is negative). Used for simplification operations.
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Chapter Summary In this chapter we have introduced tabling and presented SLG, a

formal semantics for it. We formalized Local scheduling and shown some of its proper-

ties. We presented the SLG-WAM, the abstract machine that implements tabling in the

XSB system and discussed the implementation of well founded negation under Local

scheduling. This material forms the basis for the development of our work, mainly in

Chapters 4 and 5.
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3
The Multi-Threaded Engine

In this chapter we describe the multi-threaded XSB engine. We begin by recalling the

main aspects of the multi-threading programming model and its mapping to the Pro-

log language, including the use of tabling. We follow by describing the main design

decisions and give the execution and programming model for an XSB process. We

conclude with some nitty-gritty details of the implementation.

3.1 Multi-Threaded Programming

Real world applications need support for concurrent programming for a number of

reasons:

• Events happen concurrently in the outside world, and sometimes cannot be pro-

cessed sequentially. For instance a FTP server cannot wait for the transfer of the

current file to end before a new transfer is started.

• Some algorithms are inherently concurrent, and are more naturally modeled in a

concurrent programming model. For example, some applications might be nat-

urally structured as a pipeline. It would be natural and advantageous to model

each of stage of the pipeline as a thread, which would receive its input from the

previous stage, and send its output to the following stage.

• Making use of the resources supplied by multi-processor computing systems,

by parallel programming, is a way to achieve better results in shorter time peri-

ods. For example, chess programs became much stronger with its implementa-

tion over multi-processors.
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Traditionally, concurrency has been supported by the operating systems through

multi-processing, where each process is a single execution environment, protected by

the operating system against interference form other processes. This model has the

advantage of protecting each process against another process’s bugs, or even hostile

actions, which is of course essential in a multi-user context. However the actions in-

volved in switching contexts from a process to another and the need for operating sys-

tem intervention in the communication and synchronization among such processes,

lead to an execution overhead, that would not really be necessary, in the case of a sin-

gle application that consists of multiple processes.

Multi-threading provides a second layer of concurrency, multiple threads within a

process, where context switching, synchronization and communication demand less or

no intervention from the operating system, leading to a much more efficient execution

of concurrent programs.

In the rest of this section we follow the model of pthreads, one of the most used

models for multi-threaded programming. Pthreads stand for POSIX threads, and are

formalized as an ISO standard [40]. For a comprehensive introduction to the multi-

threaded programming with pthreads, see [42].

Memory Layout for the Multi-threaded Process As different threads share the pro-

cess’s address space, unlike with different processes, there is no protection of each

thread’s memory through the operating system’s virtual memory mechanism. Global

variables and data structures are shared, and can be used for inter-thread communica-

tion. However each thread has its own execution stack and local variables, which, even

though there is no system protection of this memory area, tend to be viewed as private

for each thread. As state has to be maintained among function calls, most implementa-

tions also provide a space for thread private variables, which can be used throughout

function calls of the same thread as if they were global variables. They can be accessed

by other threads, but this is usually not wanted. As all data is shared, communication

doesn’t involve any overheads due to operating system calls, but hard-to-debug bugs

can arise from one thread randomly damaging another’s “private” data or from races

involving global variables.

Kernel Level Threads vs User Level Threads While the first multi-threading im-

plementations were provided by user level libraries, with little or no interaction with

the operating system’s kernel, operating systems were gradually upgraded to support

multi-threading at the level of the kernel. Support by the operating system incurs in

higher overheads but has several advantages:

• More natural integration of multi-threading with the process I/O mechanisms.

The user level threads have to resort to elaborated tricks to avoid the whole pro-

cess to be blocked when one thread is performing I/O.
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• Support for parallel execution of different threads on multi-processors. This can

only be done with support from the kernel.

Kernel level threads are often referred to as lightweight processes. User level threads

can provide more control in the commutation of threads, by providing restrictions to

thread preemption, and so make it easier for the programmer circumventing concur-

rency problems. Due to the fact that both approaches have advantages, some imple-

mentations offer an integration of both models, where a number of user level threads

can be mapped into one kernel thread1.

Basic Synchronization Mechanisms The mutex lock is the mechanism used by

threads to guarantee mutual exclusion in the access of variables and serialization of

the execution of critical sections of code. The implementation guarantees that only one

thread may hold the lock at a time, and other threads are kept waiting for the lock

either by busy waiting or by being suspended in a queue.

The condition variable is the mechanism used to achieve general synchronization

among threads. There is a cond_wait primitive that suspends a thread on a condition

variable. The cond_signal primitive awakes a thread waiting in a condition variable. If

the thread has not yet suspended the signal is lost. Because of this, condition variables

should be used together with a mutex lock and explicit testing of the conditions in-

volved. The section of code executed atomically under the mutex lock which involves

the manipulation of the condition variables, testing of the conditions and other actions,

is akin to the monitor construct present in some concurrent programming languages

(see for example Chapter 7 of [5] for a general discussion of monitors). Usually the

cond_wait instruction is repeated in a while cycle which is exited when the condition

for resuming execution becomes true.

3.1.1 Multi-Threaded Prolog

Although the original Prolog language doesn’t provide constructs for multi-threading,

Prolog is still a viable candidate to support multi-threaded programming by consid-

ering its procedural interpretation and developing a library of built-in predicates. As

Prolog doesn’t allow the programmer to manipulate pointers, the main disadvantage

of multi-threading, namely buggy interferences in the memory that should be private

of other threads, doesn’t apply to multi-threaded Prolog programming. This of course,

providing that the implementation is correct, so that this burden is placed on the im-

plementors of a multi-threaded Prolog system. In fact several Prolog systems support

multi-threading today, and they are discussed in Chapter 6. The basic model for a

multi-threaded Prolog system is shown in Figure 3.1, where multiple Prolog executors

share a predicate database, consisting of static and possibly dynamic predicates.

1More complex mappings from user level threads into lightweight threads are possible – see [42]
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Prolog Process

Shared Predicate Database

Prolog Executor 1 Prolog Executor 2 Prolog Executor 2

Figure 3.1: Multi-threaded execution model of a Prolog process

Each Prolog executor is a fully self-contained deduction engine, where its logical

variables are stored internally. This means that there is no sharing of logical variables

among Prolog threads, and other mechanisms must be provided for the Prolog threads

to communicate, one logical candidate being the shared predicate database.

Communication and Synchronization Mechanisms The synchronization of threads

through condition variables is a somewhat low-level mechanism for a language like

Prolog. So higher level mechanisms of synchronization have been provided by multi-

threaded Prologs.

Assert and retract are the two basic mechanisms that Prolog offers for the ma-

nipulation of the database, which can be used to implement communication among

threads. Some systems, like Ciao (see Chapter 6), provide the synchronization among

threads through these primitives.

However, assert and retract are somewhat complex mechanisms in Prolog, be-

cause in general, they must support complex features like indexing and backtracking.

Most multi-threaded Prolog systems resort to message passing mechanisms, under

various forms, to provide synchronization and communication among threads.

Another desirable mechanism in a multi-threaded Prolog system implementation

is the mutex lock, which allows to serialize a series of actions, for example guaran-

teeing an atomic operation involving changing the shared predicate database through

multiple assert and retract operations.

Even if the shared predicate database is a feature of every multi-threaded Prolog, it

can be argued that a private database for dynamic predicates is a most desirable feature

to have, as it allows threads to keep its global state through predicate calls without in-

terference with others. More so, private dynamic predicates don’t require synchroniza-

tion support from the implementation which makes the implementation much simpler

and more efficient. Issues like space reclamation are much easier to handle for private

dynamic predicates than for shared ones. The absence of synchronization also allows

private dynamic predicates to give better results for parallel execution.
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3.1.2 Multi-Threaded Tabling

The multi-threaded execution of a process that supports tabling can be seen as an ex-

tension of the multi-threaded Prolog execution, adding the tabling operations. The

main implementation decision is whether to have a table that is shared by the threads

or for each thread to have its own private table space. Private tables have several ad-

vantages:

• They have a simpler implementation than shared tables, as inter-dependencies

among threads don’t have to be taken into account to complete or garbage collect

tables.

• Features such as negation and subsumption are more readily supported, mainly

because the completion operation is simplified by not having to handle SCCs

among tables owned by different threads.

• They allow better results for parallel execution on a multi-processor, as the access

to the tables doesn’t require synchronization.

On the other hand, sharing tables also has advantages:

• It allows the previous computations of other threads to be re-used, thus improv-

ing the time efficiency of the system.

• It saves memory, improving the space efficiency of the system.

• Given that we can assign different tables to different threads, so that each thread

computes the answers for a set of tables in parallel, shared tables constitute a

powerful basis for parallel programming.

As tabled execution has a declarative semantics, we could in principle hide the

detail of whether the tables are shared or private from the programmer, and deem it

an implementation detail. However, given the very different execution properties of

both models we decided that the programmer is allowed to specify for each tabled

predicate, whether its tables are shared or private.

3.2 Design of Multi-Threaded XSB

In this section we present the major design decisions taken in the development of the

multi-threaded system and give an overview of its execution model. We describe the

system’s API giving application examples.

43



Design Considerations In the conception of the multi-threaded system we tried to

adhere to the following principles:

1. Support of the Sequential System – The sequential system would continue to be

supported as is, with minimal interference from the multi-threading extensions.

2. Minimal overhead – we want to keep to overhead for the multi-threaded system

as low as possible w.r.t. the sequential system.

3. Incremental implementation – we want to provide multi-threaded execution for

a core functionality and to make it possible to gradually extend it to support the

multiple XSB functionality and packages.

4. Parallelism – we wish to be able to take advantage of the presence of more CPUs

to achieve faster execution when executing a multi-threaded program – provided

that the program itself allows multiple threads to be executed in parallel.

5. Scalability – we strive to support the execution of many threads with minimal

unneeded interactions, so that a multi-processor’s potential can be used effec-

tively.

Native Threads Versus Built-in Scheduler One important issue when implementing

threads for any language is related to the use of a native threads package, usually inte-

grated with the operating system, or support all the mechanisms of the multi-threaded

execution fromwithin our implementation. The latter solution involves explicitly com-

muting from one thread to another, while the context for each thread is kept in a data

structure and managed by a scheduler within the language runtime support (e.g. the

Prolog emulator).

• The thread context variables can be kept in global variables, as they were for the

sequential system, they’re values being swapped when the scheduler commutes

between threads. This allows to minimize changes to an existing sequential sys-

tem, specially in terms of access to global variables.

• Complete control on thread preemption and switching allows easier control of

critical sections, by disabling thread preemption at critical points.

• Complete control of the scheduling of threads allows the implementation of so-

phisticated scheduling policies and more powerful concurrency mechanisms.

• As a significant part of the implementation doesn’t rely on the operating system,

portability problems are greatly reduced.

However in this way kernel level threads cannot be used, and as was mentioned in

the previous section, user level threads have the severe disadvantage of not allowing
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Figure 3.2: Multi-threaded memory layout of a XSB process

different threads to run on different CPUs when using a multi-processor, thus violat-

ing our parallelism design goal. We thus decided to base our implementation on the

standard POSIX thread interface, which is available for most UNIX systems. POSIX

provides a standard programming model for threads and portability for most systems

should be good2.

Execution Model for Multi-Threaded XSB Figure 3.2 shows the basic organization

of the multi-threaded XSB process. There are global data structures for the shared dy-

namic predicates and the shared tables, as well as static code and the atom table. Each

thread has its execution context (discussed in Section 3.3.1), stacks, private dynamic

code and tables.

This model allows threads to avoid most inter-dependencies if they restrict them-

selves to private tables and dynamic predicates, while allowing them to share tables

and dynamic predicates when it is appropriate.

3.2.1 Multi-Threaded API

The API for XSB3 follows the current proposal for the ISO standard on the multi-

threaded extensions to Prolog [52]. It includes predicates for thread manipulation and

thread synchronization and directives for the sharing of predicates. Most predicates

on the API have shortcut versions with less arguments, which use default values for

2In fact XSB supports threads under Windows (and the .NET platform through Win32 native
code) – although the system must be compiled through the Cygwin Linux interface to Windows
(http://cygwin.com ).
3The multi-threaded API of XSB suffered an evolution throughout the dissertation process, including

during the time of the writing of the thesis. Professor Terrance Swift made significant contributions in
the re-design and implementation process.The current API is based on the ISO standard proposal [52].
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the missing arguments — we don’t give these versions in this text. For a more detailed

description consult the XSB programming manual [81].

Thread Management There are some basic predicates to create and destroy threads.

The identifier is an integer, which is mapped by the system to a pthread identifier.

• thread_create(+Goal, -ThreadId, +OptionList) This predicate creates a new

thread to execute the given goal and returns its identifier. The option list may

include the initial XSB stack sizes for the thread and if the thread will be cre-

ated as detached (so its return information automatically released at exit and the

thread cannot be joined). It may also include aliases, a mechanism that allows

the thread to be known by symbolic names.

• thread_join(+ThreadIds, -ExitDesignators) This predicate causes the thread to

wait for a thread or a set of threads (ThreadIds can be a list) to exit and returns its

exit status in ExitDesignators. Each exit status is a Prolog term, which contains

the reason for the termination of the thread. In case the thread terminated via the

thread_exit predicate the exit status contains the term passed to thread exit. In

case the thread terminated via an exception the exit status contains the exception

ball.

• thread_exit(+Term) This predicate terminates the current thread and allows re-

turning an arbitrary term, which can be retrieved by other threads using the

thread_join predicate.

• thread_self(-ThreadId) This predicate allows the current thread to know its iden-

tifier.

• thread_detach(+ThreadId) This predicate informs the system that the thread will

not be joined, and that its return information can be disposed at thread exit. Any

mutexes held by a thread are released when it exits.

• thread_cancel(+ThreadId) This predicate kills another thread. The main thread

of XSB cannot be cancelled. If any mutex locks are held by the cancelled thread

they are released. Note that, in general, cancelling a thread may be dangerous,

for example if the thread was manipulating some data structures which might

be left incoherent. However there’s never any problem from the point of view

of XSB’s correct execution in the case of thread cancellation. More, as in the case

above, when a thread is cancelled all the mutexes it holds are released.

• thread_yield This predicate tells the operating system to commute to a new

thread.
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Thread Synchronization and Communication Predicates These are the predicates

used for communication and to achieve synchronization among threads.

• mutex_create(?Mutex) This predicate creates a new mutex. If an atom is given,

the mutex will be designated by that atom, otherwise a system generated desig-

nator will be returned.

• mutex_destroy(+Mutex) This predicate destroys a mutex.

• mutex_lock(+Mutex) This predicate acquires a lock on a mutex, if necessary sus-

pending the thread until the lock can be held.

• mutex_try_lock(+Mutex) This predicate tries to acquire a lock on a mutex, but if

unsuccessful it fails instead of suspending the current thread.

• mutex_unlock(+Mutex) This predicate releases a lock on a mutex.

• with_mutex(+Mutex, +Goal) This predicate executes Goal deterministically,

while holding the given mutex. Unlike the previous low-level mutex locking

primitives, it is guaranteed that if the goal fails or an exception is raised the mu-

tex is unlocked.

• mutex_unlock_all This predicate releases all the mutex locks that the current

thread holds.

• mutex_property(?Mutex, ?Property) This predicate allows to check the current

status of a mutex (whether it’s locked and by which thread). On failure, it back-

tracks through all mutexes in the system if the first argument is given as a vari-

able.

• message_queue_create( -QID, +Options ) This predicate creates a new message

queue and returns its identifier. Message queues are buffers used for threads to

communicate through message passing. The queue has a fixed size (the number

of slots in the queue which can be passed in the Options list) and threads are

suspended if they are trying to remove items from an empty queue or add items

to a full queue.

• thread_send_message( +QID, +Message ) This predicate copies a new message

into the message queue given. The message can be any valid Prolog term. If the

queue is full it blocks, until there is an empty slot for the new term.

• thread_get_message( +QID, ?Message ) This predicate reads a message from the

given message queue. The parameter message is unified with all the messages

on the message queue, in FIFO order, until the unification succeeds. The message

for which unification has succeeded is then removed from the message queue. If

no term in the queue matches the given message, the predicate blocks until such

a term is present in the queue.
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Directives for Sharing Tables and Predicates The following directives control the

sharing of predicates:

• :- thread_private Predicate/Arity This directive specifies that the predicate is pri-

vate to this thread. It means that if the predicate is dynamic, each thread sees it’s

own clauses, and if the predicate is tabled, private tables are used for its compu-

tation.

• :- thread_shared Predicate/Arity This directive specifies that the predicate is

shared by all threads in the XSB process. It means that if the predicate is dy-

namic, every thread sees its clauses, and if the predicate is tabled, shared tables

are used for its computation.

By default all predicates are private in XSB. This is because the private tables imple-

mentation became stable earlier than the shared tables implementation and has been

more thoroughly optimized.

The user is responsible that a tabled dynamic shared predicate doesn’t get modified

while its tables are being computed, which could lead to an incoherency between the

answers in the table and the logical meaning of the predicate. Note that a shared dy-

namic tabled predicate can’t use private tables for its computation whereas a private

dynamic tabled predicate can’t use shared tables. While not allowing the first situation

is questionable, the second case is definitely to be prevented.

Examples of Multi-Threaded Programs in XSB Figure 3.3 shows an example of a

multi-threaded goal server in XSB, which makes extensive use of XSB’s socket library.

The server listens for requests from clients and spawns a worker thread to fulfill each

request. The worker thread has a connection with the client, from where it reads the

request and where it sends the answers, one at a time. Being the case of XSB, the

goals executed by the server could be tabled and take advantage of the shared tables

implementation. Halting of the server is done by the thread cancellation mechanism,

and a thread alias is used to make the server’s thread identifier known to the worker

threads. The alternative was to read the request in the server and check if it was a

request to stop the server, in which case the server would just exit – however this

solution would be problematic if the client had to exchange more messages with the

server, other than just reading which goal to execute. Note that we create a specific

thread for the main server loop, because the main thread cannot be cancelled.

The following example4, Figure 3.4, uses a multi-threaded execution model to com-

pute a series of prime numbers in parallel. The master thread partitions the work and

creates two worker threads. The worker threads each compute its portion of the inter-

val and return their results to the master through a message queue.

4This example was inspired on one in from the LogTalk manual [53] which is shown in section 6.1.
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server :-
socket( SockFD),
socket_set_option( SockFD, linger, SOCK_NOLINGER ),
xsb_port( XSBport),
socket_bind( SockFD, XSBport),
socket_listen( SockFD,Q_LENGTH),
thread_create( server_loop( SockFD), Id, [alias(server)] ),
thread_join( Id ).

server_loop( SockFD) :-
socket_accept( SockFD, SockClient),
thread_create( attend_client( SockClient) ),
server_loop( SockFD).

attend_client( SockClient) :-
socket_recv_term( SockClient , Goal),
( Goal == stop →

thread_cancel( server ),
socket_close( SockClient ),
thread_exit

; true
),
( is_valid( Goal) →

call( Goal),
socket_send_term( SockClient , Goal),
fail,

; socket_send_term( SockClient , invalid_goal( Goal))
),
socket_send_term( SockClient , end),
socket_close( SockClient).

Figure 3.3: A multi-threaded goal server in XSB
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prime( P, I) :- I < sqrt( P),!.
prime( P, I) :- Rem is P mod I, Rem = 0, !, fail.
prime( P, I) :- I1 is I−1, prime( P, I1).

prime( P) :- I is P−1, prime( P, I ).

list_of_primes( I, F , Tail, Tail) :- I > F , !.
list_of_primes( I, F , [ I| List ], Tail) :-

prime( I), !,
I1 is I +1, list_of_primes( I1, F , List , Tail).

list_of_primes( I, F , List , Tail) :-
I1 is I +1, list_of_primes( I1, F , List , Tail).

partition_space( N, H , H1) :-
H is N//2, H1 is H +1.

worker( Q, Id, I, F , List , Tail) :-
list_of_primes( I, F , List , Tail),
thread_send_message( Q, primes( Id, List , Tail) ).

master( N, L ) :-
partition_space( N, H , H1),

message_queue_create( Q),
thread_create( worker( Q, p1, 1, H , L, L1) ),
thread_create( worker( Q, p2, H1, N, L1, []) ),

thread_get_message( Q, primes(p1, L, L1) ),
thread_get_message( Q, primes(p2, L1,[]) ).

Figure 3.4: A multi-threaded program to generate prime numbers in XSB using term
queues

Notice how the primes/2 predicate uses difference lists to avoid the use of the ap-

pend predicate5, and while threads don’t share variables, the bindings of the terms

in the messages are correctly handled, allowing Prolog’s unification to assume its full

power. Although only two threads are used, the program could easily be extended to

use an arbitrary number of threads

In Figure 3.5 we present the changes to the example for the worker threads to use

the exit mechanism to communicate with the master. We only give the code for the

main predicates, which are the only ones that are different from the last example.

5For a description on how to program with difference lists see a Prolog programming text, such
as [71].
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worker( I, F , List , Tail) :-
list_of_primes( I, F , List , Tail),
thread_exit( primes( List , Tail) ).

master( N, L ) :-
partition_space( N, H , H1),

thread_create( worker(1, H , L, L1), W1 ),
thread_create( worker( H1, N, L1, []), W2 ),

thread_join( W1, exited(primes( L, L1)) ),
thread_join( W2, exited(primes( L1,[])) ).

Figure 3.5: A multi-threaded program to generate prime numbers in XSB using the
exit/join mechanism

3.3 Implementation Details

The development of the multi-threaded system without shared tables took four steps:

1. Supporting threads for pure Prolog – this involved supporting a private WAM

instance for each thread.

2. Supporting the Prolog built-ins within multi-threading – this involved dealing

with the data structures for a variety of system predicates such as assert and

retract of shared predicates, I/O, findall, etc..

3. Supporting tabling without sharing tables – this involved adding the SLG-WAM

state for each thread.

4. Support to efficiently access to private dynamic predicates and tables – this in-

volved providing direct entry points to private tables and dynamic predicate

clauses6.

All these steps were validated by extensive testing7.

In the following sections we describe each of these steps in detail, beginning with

the support for Prolog, followed by extensions to support thread private tables. We

conclude with the implementation of efficient dynamic private predicates, including

tabling.

6The mechanism to support efficient access to private tables and dynamic predicates was proposed
by Professor David S. Warren, which also did its initial implementation. Later Professor Terrance Swift
proposed the use of private structure managers for private tables and did an initial implementation of
them.
7The test-suites can be found at the XSB repository (xsb.sourceforge.net ) under themodule mttests.
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3.3.1 Multi-Threading for Pure Prolog

The support for multi-threading for pure Prolog requires the introduction of the thread

context. The thread context contains all the information that is relevant for the execu-

tion of the threads, except the stacks, and is used to access all data that is private to the

thread. It includes a couple of hundred items. The most important information present

is:

• The WAM and SLG-WAM registers (see Sections 2.3.1 and 2.3.2).

• The trie registers (used by the trie instructions when copying terms out of the

tables – see Section 2.3.3).

• Data structures to support the copying of terms into the tables (i.e. building the

tries). The trie data structures mentioned in Section 2.3.3 require several auxiliary

stacks and register sets to be correctly initialized and maintained. Furthermore,

table subsumption (which is not discussed in this thesis) requires time-stamped

tries, which are supported by further auxiliary data structures.

• Data structures used in garbage collection of private dynamic predicates and ta-

bles.

• Exception handling data.

• The thread private system flags (e.g. stack reallocation and garbage collection

modes, current input and output file descriptors and several other implementa-

tion flags).

• Pointers to the threads’ private data structures shown in Figure 3.2.

• Pointers to the structure managers for tabled data structures – these are the mem-

ory management units that provide allocation for the table data structures.

• State variables for Shared Completed Tables (see Chapter 4).

• State variables for Concurrent Completion (see Chapter 5).

TheNeed for the Thread Context Data Structure The thread context data structure is

needed because in the multi-threaded execution model all global variables are shared

among all threads, and XSB cannot be made into a single function having only local

variables as it state8. The option of using thread private data (global data with special

access mechanisms), or any other global data structure, for this purpose was discussed

but thought to be inefficient because of the need to use a mapping from the thread

identifier to access the specific items as opposed to the dereferencing of the pointer

that we actually use.
8For some time gcc supports thread local variables. However this implementation depends on sup-

port from the linker and it isn’t clear how portable that is.
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The Hypothesis of Changing XSB to C++ As each thread has its own execution con-

text, an ingenious solution involving minimal changes in XSB code would be to change

XSB to C++. Each thread would be an object, its state being the thread context and

the XSB functions that used the thread context would be redefined as methods of the

thread object.

This method was followed with some success at a stage but, alas, only on thanks

to a “liberal” compiler, provided by Red Hat Linux 6.0. When we switched to a more

conventional compiler it turned out that XSB uses features of C which are not a subset

of C++, namely the ability to use void pointers without explicit casts in assignments

to other pointer variables. Having to choose between major changes to XSB code and

redoing the multi-threaded experience using the already gained knowledge about the

thread context, this time in C, we took the latter choice.

Changes to XSB Code to Access the Thread Context In order to give access to the

thread context to all functions that need it, we proceeded in the following way:

• An extra parameter is passed to every function that needs to access the thread

context. This parameter is a pointer to a structure which contains all the variables

in the thread context. This parameter is conditionally compiled in, only in the

case of multi-threaded compilation.

• To keep the sequential system intact, all the context variables are defined as fields

of a pointer to the context structure. This definition only gets in effect in case of a

multi-threaded compilation.

• Conditional compilation ensured that the sequential system was not changed,

while keeping a single source tree.

System Issues There were a couple of system details that have to be handled even for

the execution of pure Prolog programs. The following list is by no means exhaustive,

we give only some of the more fundamental changes:

• Flags XSB has an array of status flags that act has parameters for the working of

the system. This was split into private and global flags. Themain private flags are

given in the previous section. The global flags store stuff such as the installation

directory, configuration file and command line goal. There is a global flag that

represents the number of threads in the system and is used in ensuring that there

is only one thread active when performing certain actions.

• Dynamic loading of predicates XSB supports dynamic loading of predicates, i.e.

when a predicate P of a module M1 is imported by a module M2, module M1 is

only loaded when P is called. This would lead to a problemwhen two threads try

to load the module simultaneously. This problem is solved using a lock in order
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to make the sequence from detecting a missing predicate to loading its module

an atomic sequence.

• Atom table The atom table is global to the XSB process and access to it is con-

trolled by a high-level mutex lock. The atom table can only be garbage collected

when there is only one active thread.

• Tagging arraysWhen running under some operating systems XSB must use a tag

array to map the different addresses returned by the operating system to different

tags. Cells in this array are initialized on demand, when the memory allocation

functions are called. The initialization of these cells must be an atomic operation

as the array must be global to the process as its used to map the address space.

Supporting the Prolog Built-ins Lots of little things had to be changed to support

the multi-threaded execution of XSB’s private built-in predicates. We give only some

of the more important ones that had to be changed:

• The I/O predicates The I/O streams are global to the Prolog process. The current

I/O stream is stored in a thread private flag, andmay be different for each thread.

The I/O functions have file stream specific locks, however a global I/O mutex is

used to access the file stream table.

• The shared dynamic predicates The data structures that store the shared dy-

namic code are protected for concurrent accesses through a high level mutex.

Garbage collection of the retracted shared dynamic predicates is only done when

there is only one active thread.

• Findall The buffers used to store the solutions of the findall family of predicates

have been included in the thread context.

• Exception handling Exception handling is done within a thread, although the

result of exceptions that are not handled by its thread can be examined by the

joining thread (c.f. Section 3.2.1) The exception ball is passed through asserting a

dynamic shared predicate, indexed by the thread identifier.

Supporting the Multi-Threading Primitives Some actions had be taken to support

the primitives in the multi-threading API:

• The thread table – there is a global table with an entry for each thread. Each

entry includes the pthread identifier, a pointer to the thread context, and sev-

eral boolean flags to maintain and control the state of the thread (for example,

whether the thread is detached or has exited). The pthread identifier enables to

map Prolog thread identifiers into pthread identifiers when there is the need to

use pthread primitives. The thread context allows for a thread’s internal state to

54



be accessed from other thread, when the need arises (this happens in situations

discussed in Chapters 4 and 5). The entries of the table are kept in two lists, one

for used entries other for unused ones. This allows to keep the execution time of

reserving an entry for a new thread or releasing an entry that is no longer needed,

a constant factor.

• Creation of a new thread – creation of a new thread is done through the

pthread_create primitive. The predefined “C” function that is used to run the

thread creates its stacks and data structures, copies the initial goal into the stacks

and accesses a predefined Prolog predicate that executes the initial goal for the

thread. This Prolog predicate handles any uncaught exceptions and calls the

thread exit primitive, whether the initial goal succeeds, fails or is interrupted

by an exception. When thread aliases are specified, they are asserted as Prolog

facts.

• Thread exiting – when a thread exits all its memory areas and any mutexes held

by the thread are released, whether they are mutexes from the Prolog application

or internalmutexes to the system. If the thread is detached its thread table entry is

released, otherwise it is released only when the thread is joined. The pthread_exit

primitive is called to terminate the thread. The exit status that is passed to a

following join is asserted as a dynamic Prolog fact. If the thread is detached its

aliases are removed.

• Thread cancellation – thread cancellation is not implemented via the

pthread_cancel primitive. Instead an UNIX signal is send to the thread, and XSB’s

asynchronous signal handling mechanism is used to terminate the thread grace-

fully, via the thread exiting mechanism discussed in the previous item.

• Term queues – At the heart of the term queue implementation is the bounded

buffer model, sometimes also called producer-consumer model. Its concurrent

solution using pthreads is described in [42]. The terms are compiled into the

queue slots using code initially designed for the assert built-in. Access to terms

using non-strictly FIFO order (by unification with a particular term on the queue)

is handled by a higher-level layer of Prolog code.

3.3.2 Support for Thread Private Tables

Support for tabling involved the continuation of the work described in the previous

section, extending the thread context to include the SLG-WAM registers and stacks,

including the support for delay and simplification for well-founded negation and the

additional data structures used by tabled subsumption.

We took some effort in guaranteeing that we would minimize the need for locking

with thread private tables; at this point we’d like to mention a difference with respect
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to the work reported in [62] – for thread private tables, the call tries are not shared by

threads so we don’t implement locking at the trie level. The same is true for the answer

tries. The data structures that support the conditional answer information delay lists

are also private to the thread. This conditional answer information includes delay lists,

delay elements, answer substitution information, back-pointer lists and delay tries.

The structure managers, XSB’s basic mechanism to allocate memory for the tabled

data structures, have a private version, for the allocation of private tables. This allows

to avoid locks in the allocation of space for new tabled data structures (except for the

locks managed by the “C” runtime system, at the few times that mallocmust be called).

Garbage collection of abolished private tables follows the same scheduling strategy

as garbage collection of abolished tables in the sequential engine; however for shared

tables it is only done when there is only one thread active. Likewise, garbage collection

of retracted predicates, is done on a regular basis for thread private predicates, but for

shared predicates it’s only done when there is only one thread active.

The Table_Try and Check_Complete Instructions The table_try and check_complete in-

structions are the same for private and shared tables. In the case of the check_complete

this is necessary to correctly support the evaluation of SCCs that contain both shared

and private table; the reasons for this will be clear after reading the following chapters,

specially Sections 4.1 and 5.1. In the case of the table_try instruction we could have pro-

vided an optimized instruction for private tables, but as this instruction’s code is very

complex (much more complex then the regular WAM instructions) the code bloating

and other complications involved were judged to be more significant than avoiding a

few memory accesses and if statements.

Support for Efficient Access to Thread Private Tables Support for efficient access

to the thread private tables’ table information frame (TIF), which represents a tabled

predicate (cf. Section 2.3.3) is done through a Thread Dispatch Blockwhich is an array of

pointers to the real table information frames for each tabled predicate. At the beginning

of the table_try instruction, the thread dispatch block is used to find the thread’s table

information frame for that predicate. For this to be possible, the thread dispatch block

mimics the table information frame’s in its first fields, and is passed to table_try as

if it were a regular table information frame. The table_try instruction finds that the

predicate is being evaluated through thread dispatch block and follows the indirection

in the array to the real table information frame. Figure 3.6 shows the data structures

for the private tables.

The thread dispatch blocks are chained in a list, so that when a thread exits it may

reclaim the space for its private tables. The thread dispatch blocks are initialized when

loading a program. The table information frames are created on demand, when a

tabled call to a predicate happens.
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TIF for p/2:T2

TIF for p/2:T1

TIF for p/2:T0

TIF for p/2 TIF for q/1

Figure 3.6: Data structures for thread private tabled predicates

Support for Private Dynamic Predicates In XSB dynamic predicates are accessed

through a prref (predicate reference block), which contains a WAM instruction to

branch into the code of the predicate. In the case of private dynamic predicates this

instruction is a switch_on_threadWAM-like instruction, which uses the current thread

identifier as an index in the thread dispatch block to branch into the WAM code that

corresponds to the clauses that belong to this thread.

When a thread exits, it follows the thread dispatch block chain to reclaim its clauses.

The thread dispatch block for a thread private predicate is created by the first thread

that finds that that predicate is dynamic and thread private.

Thread Private Dynamic Tabled Predicates In XSB, assert of tabled predicates is

done through a program transformation, that implements a tabled predicated with

multiple clauses as a tabled predicate with a single clause that calls the correspondent

non-tabled predicate with multiple clauses. So, the entry point for a thread private dy-

namic tabled predicate has a table_try_single instruction for each thread. This instruc-

tion includes a pointer to the table information frame for that predicate. It is important

to note that, in this case, although the tables are private, the table information frame

doesn’t correspond to a thread dispatch block but to a regular table information frame.

The data structures for thread private dynamic tabled predicates are illustrated in Fig-

ure 3.7.

The table information frame is created when the thread first finds that the predicate

is dynamic and tabled.

57



Atom table

q/1

Switfch_on_threadSwitch_on_thread

p/2

Thread

Dispatch

Block

Thread

Dispatch

Block
Table_try_single

Table_try_single

T0

T1

T2

TIF for p/2:T2

TIF for p/2:T1

WAM code for p/2:T2

WAM code for p/2:T2

Next Next

Figure 3.7: Data structures for thread private tabled predicates
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Chapter Summary in this chapter we introduced the fundamental concepts for

multi-threaded programming, including its interpretation for the Prolog language. We

presented the model of execution and programming of multi-threaded XSB which is

largely based on the current ISO proposal for Prolog threads but also includes tabling.

We discussed the design and implementation decisions, and presented some details

about the actual implementation, including the efficient support for private dynamic

predicates and tables.
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4
Shared Completed Tables

In this chapter we describe a simple way of sharing tables among threads. We call

this the Shared Completed Tables as it’s based on only sharing tables that have already

been completed.

Every table is owned by a thread that computes all its answers. Only when the

table is completed may other threads read the answers from the table. When calling a

tabled subgoal that is owned by another thread andwhich is not completed, the thread

suspends until that subgoal is completed.

:- table p/1, q/1.
:- thread_shared p/1, q/1.

p(X) :- q(X).

q(a).
q(b).
q(c).

Figure 4.1: Program P4.1

See Figure 4.1. Assume that thread T0 calls query ?- p(X), fail and thread T1

calls query ?- q(X), fail .

Scenario 1 Assume that the calls are done at the same time, or that T1 calls the sub-

goal q(X) before T0. In this case T0will own the table for the subgoal p(X) and T1will

own the table for the subgoal q(X) . Only after T1 computes all the answers to q(X) ,

will the call to q(X) in T0 return its first answer.
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Scenario 2 Assume that T0 calls the subgoal q(X) before T1. In this case T0 will own

both tables, for p(X) and q(X) . The call to q(X) in T1 will only return its first answer

after T0 computes all the answers to q(X)

This simple example shows that it doesn’t matter which thread owns a tabled pred-

icate, the result of the queries is the same to all ordering of events, only the order in

which the threads return their results changes.

However the idea of suspending the thread until the table owned by another com-

pletes has a catch. If there’s a cycle in the SDG of the tabled program and tables are

owned by different threads a deadlock situation will occur.

:- table p/1, q/1.
:- thread_shared p/1, q/1.

p(X) :- q(X).
p(a).

q(X) :- p(X).
q(b).

Figure 4.2: Program P4.2

See Figure 4.2. Assume that thread T0 calls query ?- p(X) and thread T1 calls query

?- q(X) . Assume that both calls are simultaneous i.e. T0 calls subgoal p(X) at the same

time that T1 calls subgoal q(X) .

When T0 goes ahead and calls q(X) it will suspend as q(X) is owned by T1 and its

not complete. When T1 calls p(X) it will also suspend because p(X) is owned by T0

and its not complete. A deadlock situation arises.

To solve that problem, before a thread suspends on a subgoal it checks if this will

create a cycle so that a deadlock would arise. If this happens a deadlock breaking

algorithm is invoked. The thread that detected the cycle (T1 in the above case) is called

the leader and its responsible for breaking the deadlock.

In the above case the deadlock would be resolved by resetting T0 to the call q(X)

and giving ownership of the table of subgoal q(X) to the leader (thread T1). The table

for q(X) would be emptied, and thread T1would recompute all the solutions for q(X) .

T0would only be restarted when the re-computation of all the answers of q(X) (which

involve computing the solution for p(X) too) would be complete.

4.1 Changing the SLG-WAM to support Shared Com-

pleted Tables

In this section we describe the changes to the SLG-WAM to allow the sharing of com-

pleted tables.
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Some data structures of the concurrent SLG-WAM have to be extended to include

some new fields to support the deadlock breaking algorithm (see Section 4.1.1).

The changes to the SLG-WAM instruction set to implement the Shared Completed

Tables are located in the table_try instruction (see section 4.1.2), which is executed when

calling a subgoal. The instruction has to check if the called subgoal is owned by the

current thread. If not, it has to suspend until that subgoal is completed.

Our algorithm detects this deadlock situation and breaks the deadlock, by given

ownership of all the tables in the cycle to a leader thread, which will re-compute any

tables that were already being computed by other threads. The other threads will be

reset to the computation of the subgoal which is the parent of the reallocated sub-

goal. This is only possible under local scheduling, under which the answers are only

returned to the parent subgoal after completion.

To find that there’s a cycle is a relatively simple matter. We keep the graph depen-

dencies among currently suspended threads (which has only one edge going out of

each node) and, whenever a thread suspends, check for a loop (see Section 4.1.3). We

call the subgoal that detects the deadlock the leader.

To implement the breaking of the deadlock, the table_try instruction has to be

restarted when a deadlock involving the suspended thread is found. This is done

through the condition variable completing_cond. The table_try instruction checks if it

was restarted by the reset boolean field of the thread data structure. If this is set the

table_try instruction is aborted and the next SLG-WAM instruction is executed. This is

set by the leader thread through the procedure reset_other_threads (see Section 4.1.4).

4.1.1 Data Structures

We use two global variables to control concurrency:

completing_mut A mutex that ensures mutual exclusion for the algorithm, so that

only one thread may be executing it at a time.

completing_cond A condition variable where the threads wait for a subgoal to com-

plete.

Thread Context We extend the thread context (as given in Section 3.3.1) with the

following fields:

waiting_for_subgoal Subgoal frame that the thread is waiting for to complete. Instan-

tiated when a thread makes a call to a subgoal that belongs to other thread.

waiting_for_thread context of the thread on which this thread depends on. This could

be omitted and the tid field of the subgoal frame given by waiting_ f or_subgoal be

used to compute it.
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reset This boolean field indicates to the algorithm that the thread has been reset and

that control flow should proceed from the following SLG-WAM instruction.

is_leader This boolean field is set to true when a thread becomes the leader in the

deadlock breaking algorithm. It’s used so that subgoals that have been grabbed

can be called by this thread.

We assume that all functions have the local parameter th so that they can access the

thread context (cf. Section 3.3.1).

Subgoal Frame The Subgoal Frame, defined in Section 2.3.3 is extended with the

following fields:

grabbed This boolean field, if set to true means that this subgoal frame is not being

used to generate answers, but is reserved for the leader thread who will later

recompute this subgoal.

tid An integer which denotes the thread to which this subgoal belongs.

Generator Choice Point the Generator Choice Point, defined in Section 2.3.2 is ex-

tended with the field:

reset_pcreg which is the address of the table_try instruction that created this generator

choice point. It is set in the table_try instruction and it is used as the forward

continuation when a thread that was reset is restarted.

4.1.2 The Table_Try Instruction

The table_try instruction (see Figure 4.3) is the SLG-WAM instruction responsible for

calling a subgoal. The main change to this instruction for Shared Completed Tables is

the introduction of the first if (line 1 in Figure 4.3). This code can only be executed by

a thread at a time, i.e. under mutual exclusion. Although this imposes a big restriction

on parallel execution of a tabled program, it must be done be cause of the deadlock

detection (see procedure would_deadlock in the next section). The lock completing_mut

ensures that condition.

If the subgoal is not a new one, the while (line 1.1) loop is executed. We note that this

loop is a programming device; the same result could have been obtained by different

nestings of if statements, however a while would always be needed somewhere.

This loop may end for a number of conditions. The first is if the subgoal is com-

pleted; in that case the thread may go ahead and share the table of the subgoal – this is

the basis of Shared Completed Tables.

Another condition (line 1.1.1) for breaking this loop is if the thread is the leader in

the breaking of a loop and the subgoal has been grabbed for re-computation. We say
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Instruction table_try(Arity, NextClause, T IF) /* Subgoal is in argument registers */
shared← table_is_shared(TIF.Shared);
if( shared ) lock(completing_mut);
grabbed← false ;
SF ← subgoal_check_insert(Subgoal, T IF);

1 if( shared and SF 6= NULL ) /* if the Subgoal is already in the table */
1.1 while( not SF.is_completed )

/* if is leader and subgoal is marked to be computed by leader */
1.1.1 if( th.is_leader and SF.grabbed )

SF.tid← th.tid ;
SF.grabbed← false ;
grabbed← true ;
break ;

table_tid← SF.tid ;
1.1.2 if (table_tid = th.tid)

break; /* if the thread owns the table, proceed */
waiting_ f or_thread = context(table_tid) ;

1.1.3 if( would_deadlock( waiting_ f or_thread, th ) )
reset_other_threads( waiting_ f or_thread, SF );
th.is_leader← true ;
continue ;

th.waiting_ f or_thread← waiting_ f or_thread ;
th.waiting_ f or_subgoal← SF ;
cond_wait(completing_cond,completing_mut) ;

1.1.4 if( th.reset ) /* if it was reset by leader */
th.reset← false;
unlock(completing_mut) ;
/* Branch to next SLG-WAM instruction */

th.waiting_ f or_thread← NULL ;
th.waiting_ f or_subgoal← NULL ;
unlock(completing_mut);

2 if ( SF = NULL ) /* the subgoal is not in the table */
SF ← CreateSubgoalFrame(Subgoal);
SF.tid← th.tid;
SF.grabbed← false;
if( shared ) unlock( completing_mut );
GCP← PushGeneratorChoicePoint(. . . );
. . . /* actions in lines 2.3–2.6 of Figure 2.19 */

3 else if ( SF.IsCompleted )
Answer_Root← Subgoal.AnsTrieRoot ;
/* Branch to Answer_Root SLG-WAM instruction */

4 else if ( grabbed ) /* SF already exists and the subgoal will be restarted */
GCP← PushGeneratorChoicePoint(. . . );
. . . /* actions in lines 2.3–2.6 of Figure 2.19 */

5 else
CCP← PushConsumerChoicePoint(. . . );
. . . /* actions in lines 4.2–4.7 of Figure 2.19 */

Figure 4.3: The table_try instruction.
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would_deadlock( subg_thread, current_thread )
t← subg_thread
while( t 6= NULL )

if( t = current_thread )
return true ;

else
t← t.waiting_ f or_thread;

return false ;

Figure 4.4: The would_deadlock function.

the subgoal has been grabbed when the thread that was computing it got involved in a

deadlock and the subgoal must be recomputed to break the deadlock. In this case this

thread will recompute the table for this subgoal.

Then it follows (line 1.1.2) one obvious condition to break the loop, which is if the

subgoal is owned by this thread. In that case the thread will normally compute the

subgoal.

After checking for breaking the loop, and following with a “normal” table_try

instruction, there is the deadlock check (line 1.1.3). This is done by the function

would_deadlock discussed below.

In the case that a deadlock would arise from waiting for the current subgoal the

thread becomes the leader for breaking this deadlock and resets the computations of

other threads which were blocked while computing subgoals involved in the dead-

lock. This is done by the procedure reset_other_threadswhich is discussed below. After

resetting the other threads they are awaken by a cond_broadcast. In this case the loop

is re-entered so that the leader can continue by recomputing one of the subgoals of the

reset threads.

If blocking the thread would not create a deadlock, the thread sets its fields

waiting_ f or_thread and waiting_ f or_subgoal so that new deadlocks can be detected and

blocks itself on the condition variable.

When it awakes (line 1.1.4) it checks to see if it has been reset; if yes it skips the rest

of the table_try instruction, continuing to execute SLG-WAM instructions in the pcreg

location to where it was reset to in reset_other_threads.

When a new subgoal is created (line 2) the owner thread is set to be the current

thread and the grabbed field is initialized to false.

4.1.3 Detecting a Deadlock

As it was said above, detecting a deadlock is not especially difficult. We keep a field

waiting_ f or_thread in each thread that is blocked waiting for the completion of subgoal

being computed by another thread.

The thread data structures augmented with that field form a graph, but one in
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which each node only has at most one outgoing edge. We just follow the path in the

graph starting in the current thread and find if it forms a cycle. This is shown in Fig-

ure 4.4.

The problem with this code is that it and the maintenance of the graph, given on

the previous and next sections, access the graph that keeps the dependencies among

threads and have to be executed under mutual exclusion. If not, the following situa-

tions might arise:

• Two (or more) threads might try to suspend on a subgoal that would proudce a

deadlock and would “think” they were the leader, leading to a situation in which

there would be more than one leader for the same SCC.

• Two threads (or more) might try to block on two (or more) subgoals that would

produce a cycle. In that case it might happen that none would detect the dead-

lock, with obvious consequences.

4.1.4 Resetting the other Threads in the Deadlock

reset_other_threads( ctxt, sg f )
reset_thread( ctxt, sg f , reset_sg f );
while( ctxt 6= NULL )

next← ctxt.waiting_ f or_thread;
ctxt.is_leader← false ;
ctxt.waiting_ f or_subgoal← reset_sg f ;
ctxt.waiting_ f or_thread← th ;
if( next 6= th )

reset_thread( next, ctxt.waiting_ f or_subgoal, reset_sg f );
ctxt← next ;

Figure 4.5: The reset_other_threads procedure.

The procedure reset_other_threads (see Figure 4.5) follows the cycle in the thread

waiting graph and just calls the procedure reset_thread for each thread in the cycle, but

for the leader thread. reset_thread is called with the subgoal which is depended on that

thread, and which the thread will be reset to.

Procedure reset_thread (see Figure 4.6) resets a thread so that a subgoal, and all

subgoals called directly or indirectly by it can be recomputed by another thread.

It starts with a check to see if this subgoal was already given to another thread - this

might by needed in case of multiple deadlock detections, for example in a case where

the number of threads involved in a deadlock is growing and an already reset thread

is still blocked,

Next the bottom_leader (Figure 4.8) function is used to find out to which subgoal

the thread will really be reset to. It happens that threads can only be reset under local
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reset_thread( ctxt, sg f , reset_sg f )
/* if the subgoal has not yet been computed, the thread should not be reset */

if( sg f .grabbed )
sg f .tid← th.tid ;
return ;

ctxt.reset← true ;
sg f ← bottom_leader(ctxt, sg f ) ;
reset_sg f ← sg f ;
ReclaimDSAndMarkReset(ctxt, sg f , th.tid);
th← ctxt ; /* trick to use other thread’s context */
RestoreChoicePoint(generator_cp(sg f )) ; /* this effectively resets the stacks */
pcreg← breg.reset_pcreg ;
breg← breg.prevbreg) ; /* delete the generator cp */

Figure 4.6: The reset_thread procedure.

scheduling, because each subgoal has only one caller outside its SCC. It follows that

when resetting a subgoal that is not the leader of an SCC we have to reset everything

up to the leader. This function just follows the completion stack downwards until it

finds the leader of the current SCC.

The ReclaimDSandMarkReset procedure (Figure 4.7) reclaims the table data struc-

tures and marks the subgoal frames as grabbed for re-computation. It follows the

completion stack from its top until the subgoal we are resetting the thread to.

Next the generator choice point for the subgoal we are resetting the thread to is

restored (a delicate operation for which we give no detail) and the pcreg is restored

to the start of that subgoal. The choice point is deleted and the thread will restart by

suspending until that subgoal completes.

ReclaimDSandMarkReset(ctxt, to, leader)
cs f ← ctxt.openreg ;
for(;;)

cs f .subg_ptr.grabbed← true ;
cs f .subg_ptr.tid← leader ;
abolish_tables_but_keep_sgf(cs f .subg_ptr) ;
if( cs f .subg_ptr = to )

break ;
cs f −−;

Figure 4.7: The ReclaimDSandMarkReset procedure.

4.1.5 The Check_Complete Instruction

The check_complete instruction must wake the threads waiting for the subgoals to com-

plete in the completing_cond condition variable. Marking the subgoals as completed is
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bottom_leader(to_sg f )
cs f ← to_sg f .compl_stack_ptr ;
while( not is_scc_leader(cs f ) )

cs f −− ;
return cs f .subg_ptr ;

Figure 4.8: The bottom_leader function.

Instruction check_complete
Subgoal← breg.SubgFr; /* breg points to the Generator CP of Subgoal */
SubgCSF← Subgoal.ComplSF;
if (is_leader(SubgCSF) )

. . .
for each CSF ∈ [SubgCSF..openreg]

CSF.SubgFrame.IsComplete← true;
if (not has_answers(SF) )

for each delay list where SF appears
/* Simplify negation success */

cond_broadcast(completing_cond) ;
. . .

else /* it is not a leader */
MakeConsumerFromGenerator(breg);

breg← breg.Breg_Chain;
Fail;

Figure 4.9: The check_complete instruction.
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done under mutual exclusion with the deadlock breaking algorithm.

4.2 A Semantics for Shared Completed Tables

4.2.1 SLGsct : an Operational Semantics for Shared Completed Tables

In this section we modify SLG for Shared Completed Tables. We re-use most of the

definitions and use the terminology and assumptions introduced in section 2.2.

Namely we still use Definition 2.2.1 for the SLGsct trees, which are now however

marked with a thread identifier.

Definition 4.2.1 (TID) SLGsct trees are marked with a Thread Identifier. This may be an

integer which denotes the thread that is evaluating the tree or the token complete. We denote

the marker for tree T as T ID(T). For each node N in tree T we use T ID(N) as an alias for

T ID(T). We graphically represent this markers by appending [T ID(T)] to the root node of T .

Every subgoal that is not completed is said to belong to a thread according to its T ID

Definition 4.2.2 (Thread) We define a thread state as the subset of trees marked with the

same T ID in an SLGsct forest. We define a thread as the sequence of thread state sub-forests in

a SLGsct evaluation. We say a thread is active in a forest if its thread state for that forest is not

empty.

Definition 4.2.3 (Thread Compatible) Let N be a node and T a tree for subgoal S. N is

thread compatible with S if T ID(T) = completed or T ID(T) = T ID(N).

Definition 4.2.4 (Deadlock) A set S of subgoals in a forest F is in deadlock if:

1. For each S ∈ S there are no applicable NEW SUBGOAL, PROGRAM CLAUSE RESO-

LUTION, POSITIVE RETURN, DELAYING, or NEGATIVE RETURN operations (Defini-

tion 4.2.7) for N.

2. ∃S1,S2 ∈ S such that S1 has a leaf node N that is SLG resolvable with an answer A of S2.

A set of subgoals is completely evaluated when it can produce no more answers.

Formally,

Definition 4.2.5 (Completely Evaluated) A set S of subgoals in a forest F is completely

evaluated if at least one of the conditions holds for each S ∈ S

1. The tree for S contains an answer S :- |; or

2. For each node N in the tree for S:

(a) The selected literal LS of N is completed or in S ; or
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(b) There are no applicable NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION,

POSITIVE RETURN, DELAYING, NEGATIVE RETURN or USURPATION opera-

tions (Definition 4.2.7) for N.

Once a set of subgoals is determined to be completely evaluated, the COMPLETION

operation marks the trees for each subgoal (Definition 2.2.1).

Definition 4.2.6 (Multi-threaded Tabled Evaluation) Given a program P, a set of atomic

queriesQ = {Q1 . . .Qn} and a set of tabling operations (fromDefinition 4.2.7), a multi-threaded

tabled evaluation E is a sequence of SLG forests F0,F1,. . . ,Fβ, such that:

• F0 is the forest containing the set of trees {Q1 :- |Q1[1] . . .Qn :- |Qn[N]}

• For each successor ordinal, n + 1 ≤ β, Fn1 is obtained from Fn by an application of a

tabling operation.

If no operation is applicable to Fα, Fα is called a final forest of E . If Fβ contains a leaf node

with a non-ground selected negative literal, it is floundered.

We call Qi the root subgoal for thread i.

These operations are as follows.

Definition 4.2.7 (SLGsct Operations) Given a forest Fn of a SLG evaluation of program P

and query Q, where n is a non-limit ordinal, Fn+1 may be produced by one of the following

operations.

1. NEW SUBGOAL: Let Fn contain a non-root node

N = Ans :- DelaySet|G,Goal_List

where G is the selected literal S or not S. Assume Fn contain no tree with root subgoal S.

Then add the tree S :- |S[TID(N)] to Fn.

2. PROGRAM CLAUSE RESOLUTION: Let Fn contain a root node N = S :- |S and C be a

program clause Head :- Body such that Head unifies with S with mgu θ. Assume that
in Fn, N does not have a child Nchild = (S :- |Body)θ. Then add Nchild as a child of N.

3. POSITIVE RETURN: Let Fn contain a non-root node N whose selected literal S is positive.

Let Ans be an answer node for S in Fn such that N is thread compatible (Definition 4.2.3)

with S and Nchild be the SLG resolvent of N and Ans on S. Assume that in Fn, N does not

have a child Nchild . Then add Nchild as a child of N.

4. NEGATIVE RETURN: Let Fn contain a leaf node

N = Ans :- DelaySet|not S,Goal_List.

whose selected literal not S is ground such that N is thread compatible (Definition 4.2.3)

with S.
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(a) NEGATION SUCCESS: If S is failed in F , then create a child for N of the form:

Ans :- DelaySet|Goal_List.

(b) NEGATION FAILURE: If S succeeds in F , then create a child for N of the form fail.

5. DELAYING: Let Fn contain a leaf node N = Ans :- DelaySet|not S,Goal_List, such that

S is ground, in Fn, but S is neither successful nor failed in Fn. Then create a child for N

of the form Ans :- DelaySet,not S|Goal_List.

6. SIMPLIFICATION: Let Fn contain a leaf node N = Ans :- DelaySet|, and let L∈DelaySet

(a) If L is failed in F then create a child fail for N.

(b) If L is successful in F , then create a child Ans :- DelaySet ′| for N, where Delay_Set ′

= Delay_Set−L.

7. COMPLETION: Given a completely evaluated set S of subgoals (Definition 4.2.5), mark

the trees for all subgoals in S as completed.

8. ANSWER COMPLETION: Given a set of unsupported answersUA , create a failure node

as a child for each answer Ans ∈UA .

9. USURPATION: Given a set of subgoals S in deadlock (Definition 4.2.4) mark all trees of

S with T ID(S),S ∈ S

An interpretation induced by a forest (Definition 2.2.7) has its counterpart for SLG,

(Definition 5.2 of [13]). Using these concepts, we can relate SLG to SLGsct evaluations.

Theorem 4.2.1 (Correctness of SLGsct) Let P be a finite program and Q a set of atomic

queries. Then a finite SLGsct evaluation of Q against P exists with final state F sct , if (com-

pleteness) and only if (soundness), for every Qi ∈ Q there exists a finite SLG evaluation of Qi

against P with final state F i and IF sct = (
S

IF i).

Definition 4.2.8 (depends) Let F be a forest. We say that a subgoal S1 directly depends

on S2 if and only if S2 is the selected literal on a tree with root S1. The transitive closure of the

directly depends on relation is the depends on relation. This is a slight modification to the

depends on relation of Definition 2.2.9

Proof:

Soundness: Let P′ = P∪{Q0 :- Q1 . . .Q0 :- Qn} with Q0, an atom such that Q0 /∈ HP.

Assuming that ∀Qi against P there is a finite SLG evaluation then there is a finite SLG

evaluation E ′ of Q0 against P′ such that the final SLG Forest F ′ will have an interpre-

tation IF ′ .

For each Qi there will be an evaluation E ′|Qi with final forest F ′|Qi which is a sub-

sequence of E ′, constructed considering only the operations which affect trees for the

subgoals that Qi depends on (Definition 4.2.8) given the final forest F ′. Note that there
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is an SLG evaluation E i of Qi against P with final forest F i having exactly the same

sequence of E ′|Qi where the forests are restricted to the trees of the subgoals that Qi

depends on in F ′ since at each stage any operation of E ′|Qi is an applicable operation

for that forest. Clearly E ′|Qi is finite and IF i = IF ′|Qi
.

Let T0 be the SLG tree with root Q0 :- |Q0 in F ′. From the previous paragraph and

Theorem 2.2.1
S

IF i = IF ′ \ I{T0}.

We prove that for every SLGsct evaluation ESCT of
SN{Qi} against P with a final

forest FSCT , there is an SLG evaluation E ′ of Q0 against P′ that produces a final forest

F ′ such that FSCT = F ′ \ {T0} disregarding the T ID tags which are meaningless for

interpretations.

Induction base: The forest F0 = {T0[N],Q1 :- |Q1[1] . . .QN :- |QN[N]} is obtained from

the forest F ′0 = {Q0 :- |Q0} by applying PROGRAM CLAUSE RESOLUTION N times and

by then applying NEW SUBGOAL N times.

Induction hypothesis: For F 0
SCT . . .F k

SCT there is an SLG evaluation E
′ = F ′0 . . .F ′i

where the trees are arbitrarily marked with the T ID.

Induction thesis: For F 0
SCT . . .F k+1

SCT there is an SLG evaluation E
′ = F ′0 . . .F ′j where

the trees are arbitrarily marked with the T ID.

From the F k
SCT which is a forest F

′
i of E

′ (induction hypothesis) marked with T ID

we obtain F k+1
SCT by applying one of the tabling operations of Definition 4.2.7. We show

that F k+1
SCT corresponds either to F

′
i or F

′
i+1 either of which corresponds to F

′
j .

1. NEW SUBGOAL: Similar to NEW SUBGOAL of Definition 2.2.8 except that it marks

the new tree with a T ID.

2. PROGRAM CLAUSE RESOLUTION: Similar to PROGRAM CLAUSE RESOLUTION of

Definition 2.2.8.

3. POSITIVE RETURN: Similar to POSITIVE RETURN of Definition 2.2.8 if it can be

applied.

4. NEGATIVE RETURN: Similar to NEGATIVE RETURN of Definition 2.2.8 if it can be

applied.

5. DELAYING:Similar to DELAYING of Definition 2.2.8.

6. SIMPLIFICATION: Similar to SIMPLIFICATION of Definition 2.2.8.

7. COMPLETION: Similar to COMPLETION of Definition 2.2.8. F k+1
SCT corresponds to

F ′i+1, as in all of the above cases.

8. ANSWER COMPLETION: Similar to ANSWER COMPLETION of Definition 2.2.8.

9. USURPATION: This only changes the T ID. F k+1
SCT corresponds to F

′
i .

Completeness: Given the SLG evaluations E1 . . .EN of Q1 . . .QN against Pwith final

forest F1 . . .FN , we construct a SLGsct evaluation of {Q1 . . .QN} against P as follows:
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1. The initial forest consists of {Q1 :- |Q1 . . .QN :- |QN}.

2. The initial operations consist in the operations of E1. If any POSITIVE RETURN

or NEGATIVE RETURN operation involves the tree for Q2 . . .QN an USURPATION

operation is used before it to mark that tree with T ID = 1. At the end all the trees

in F1 are completely evaluated.

3. Repeat the operations for Ei. If any POSITIVE RETURN or NEGATIVE RETURN op-

eration involves the tree for Qi+1 . . .QN an USURPATION operation is used before

it to mark that tree with T ID = i. If any operation involves changing a tree in

F1 . . .Fi−1 (note that any tree preset in Ei will be present in Fi) then that tree is

already completely evaluated and the operation is omitted. If any POSITIVE RE-

TURN or NEGATIVE RETURN operation involves a tree in F1 . . .Fi−1 then there’s

no problem as that tree is completed so the nodes are thread compatible. At the end

all the trees in F1 . . .Fi are completely evaluated.

4. The final forest FSCT =
SN Fi, where the T ID markers are all instantiated to com-

plete. So IFSCT =
SN IFN .

The above shows that for any SLG evaluations of Q1 . . .QN against P is always pos-

sible to construct a SLGsct evaluation of {Q1 . . .QN} against P with the same final inter-

pretation.

4.2.2 Local Multi-Threaded Evaluations

In SLGsct the SDG (Definition 2.2.9) can be partitioned in disjoint sub-graphs for each

thread state of a forest. We recall Definition 2.2.10 but in a local SLGsct forest there will

be one independent SCC for each thread state’s sub-graph.

Definition 4.2.9 (Thread Subgoal Dependency Graph) For each thread state, the

Thread Subgoal Dependency Graph (Thread SDG) for a forest consists of the sub-graph of

the SDG which contains all the nodes reachable from the node for the thread root subgoal.

Definition 4.2.10 (Local SLGsct evaluation) We say that E is a local SLGsct evaluation if E

satisfies the locality property (Definition 2.2.11) for each Thread SDG and each USURPATION

operation is applied an entire SCC of an active thread’s sub-graph.

Theorem 4.2.2 If an SLGsct evaluationE =F0 . . .Fn withm threads satisfies the locality prop-

erty than ∀0≤ k ≤ n : SDG(Fk) has one and only one independent SCC for each active Thread

SDG in Fk.
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Proof: The proof is similar to the one for Theorem 2.2.2 with the addition, in the in-

ductive step, of a case to the USURPATION operation. The USURPATION operation’s

proof is trivial for the usurping thread (the independent SCC gets extended) and for

the usurped thread it is similar to the case of the COMPLETION operation (the indepen-

dent SCC for the thread’s sub-graph gets deleted like in the COMPLETION operation).

We define the Thread Dependency Graph (TDG) has an alteration of the SDG for a

SLGsct forest.

Definition 4.2.11 (Thread Dependency Graph) Let T1 and T2 be two active thread states

in a SLGsct forest F . We say that T1 directly depends on T2 if there exist a subgoal in T1 that

directly depends on a subgoal in T2 (according to Definition 2.2.9).

The Thread Dependency Graph TDG(F ) = (V,E) of F is a directed graph whereV is the

set of active threads in F and (ti, t j) ∈ E iff thread state ti directly depends on thread state t j.

4.2.3 Complexity of SLGsct

Theorem 4.2.3 In the TDG for a SLGsct local forest there’s at most one outgoing edge from

each node.

Proof:

Once a edge outgoing from a thread state of T0 into the thread state of T1 appears

in a local SLGsct evaluation, the independent SCC of the Thread SDG of T0will belong

to the thread state of T1. From now on there will be no new edges added beginning

in the thread state of T0, until this independent SCC is either completed or usurped.

In the first case the outgoing edge will be deleted. In the second case the independent

SCC will be incorporated in the thread state of T0. In no other way may an edge be

added from one thread to another in the TDG.

Theorem 4.2.4 (Complexity) For each subgoal in the execution of a multi-threaded program

at most one USURPATION operation happens during the Multi-threaded evaluation of a pro-

gram.

Proof:

When a USURPATION operation happens the subgoals in the usurped thread are

grabbed by the leader thread, and the usurped threads are kept suspended andmarked

as non-leaders so that they will never be able to execute that subgoals again. New

USURPATION operations will only be executed as the SCC grows to include more sub-

goals.
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4.3 Example of Execution under Shared Completed Ta-

bles

:- table y/1, x/1, a/1, c/1.
:- thread_shared y/1, x/1, a/1, c/1.

y(X) :- x(X).
y(y).

x(X) :- a(X).
x(X) :- y(X).
x(x).

a(X) :- c(X).
a(X) :- x(X).
a(a).

c(X) :- a(X).
c(c).

t1 :- x(X).
t2 :- a(X).
t3 :- y(X).

Figure 4.10: Program P4.3

For program P4.3 (see Figure 4.10) let there be three threads with ids 1,2 and 3,

executing the initial queries :- t1 , :- t2 , :- t3 , respectively.

Initial State to State 1 Let’s assume that thread 1 starts and calls x(X) , which calls

a(X) . Meanwhile thread 2 calls c(X) . Now thread 1 calls c(X) and is suspended because

c(X) belongs to thread 2 and there is no deadlock yet. Now thread 2 calls a(X) . This

point in the computation is shown in Figure 4.11.

State 1 to State 2 Thread 2 now checks for deadlock and finds it. The subgoal a(X)

is usurped from thread 1 which is reset to the call to a(X) by x(X) . This is shown in

Figure 4.12.

State 2 to State 3 Thread 1 is still suspended and depends on thread 2 because of

the dependency of x(X) on a(X) and a(X) is recomputed by thread 2. This means that

a(X) again calls c(x) which is already in table for thread 2. Then a(X) calls x(X) . This

moment is shown in Figure 4.13.
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SDG

c(X):2

x(X):1 a(X):1

TDG

2

1

t1:1 t2:2

Figure 4.11: Concurrent execution of P4.3: State 1

SDG

c(X):2

x(X):1

TDG

a(X):2

2

1

t1:1 t2:2

Figure 4.12: Concurrent execution of P4.3: State 2

SDG

c(X):2

x(X):1

TDG

a(X):2

2

1

t1:1 t2:2

Figure 4.13: Concurrent execution of P4.3: State 3
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SDG

c(X):2

TDG

a(X):2x(X):2 1

2

t1:1 t2:2

Figure 4.14: Concurrent execution of P4.3: State 4

c(X):2

a(X):2x(X):2y(X):3

SDG TDG

1

23

t3:3 t1:1 t2:2

Figure 4.15: Concurrent execution of P4.3: State 5

State 3 to State 4 Thread 2 again checks for a deadlock and succeeds. The subgoal

x(X) is usurped from thread 1 which is reset to the call to a(X) by t1 . This is shown on

Figure 4.14.

State 4 to State 5 Thread 1 is still suspended and depends on thread 2 because of

the dependency from t1 to x(X) , Now let thread 3 begin. t3 calls y(X) . Let thread 2

proceed. x(X) calls a(X) which is already on the table for thread 2. Then x(X) calls

y(X) which belongs to thread 3 and as there is no deadlock, thread 2 suspends. Let

finally thread 3 call x(X) . This situation is shown on Figure 4.15.

State 5 to State 6 Now thread 3 detects a deadlock and usurps the SCC that was being

computed by thread 2. Thread 3 starts computing x(X) while the other computations

are lost. However all subgoals are marked as grabbed and belonging to thread 3, which

is the only one allowed to recompute them. Threads 1 and 2 continue suspended. This

is shown in Figure 4.16

State 6 to State 7 Thread 2 still depends on thread 3, although a(X) is not on the

stacks of thread 3 but it is marked as grabbed and belongs to thread 3. Thread 3 stacks

grow to eventually encompass all the the subgoals which is show in Figure 4.16.

State 7 to Final State Eventually all answers are returned and the SCC is completed.

Only then threads 1 and 2 are resumed and answers are returned to them (which they
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y(X):3

SDG TDG

c(X):3

a(X):3x(X):3 1
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Figure 4.16: Concurrent execution of P4.3: State 6

y(X):3

SDG TDG

c(X):3

a(X):3x(X):3

3 2

1

t3:3 t1:1 t2:2

Figure 4.17: Concurrent execution of P4.3: State 7

ignore in this example).

4.4 Correctness of Shared Completed Tables

In this section we argue that the algorithms presented in Section 4.1 implement the

local SLGsct semantics defined in Section 4.2 and make an argument for the complexity

of Shared Completed Tables.

The table_try instruction implements the NEW SUBGOAL and USURPATION oper-

ations. The first if block (line 1 in Figure 4.3) implements the USURPATION operation

while the second if block (2 in Figure 4.3) implements the NEW SUBGOAL operation. As

the second block is essentially the same as in the original SLG-WAM table_try instruc-

tion (see Figure 2.19) we only argue about the concurrency issues and the correctness

of the USURPATION operation.

4.4.1 Correctness of the Implementation of the USURPATION Opera-

tion

The execution of the USURPATION operation can be divided in three parts:

• Deadlock detection.

• Resetting the usurped threads.

• Awaking the suspended threads
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Deadlock Detection The function would_deadlock (Figure 4.4) is used to detect dead-

locks by detecting cycles in the TDG (Definition 4.2.11). The implementation of the

TDG and the detection of cycles is simplified by the fact that each node has at most

one outgoing edge (Theorem 4.2.3). This allows for a simple while loop to detect the

deadlock.

Resetting the Usurped Threads Resetting the usurped threads in the SLG-WAM un-

der local scheduling is possible thanks to Corollary 2.2.1 that states that each SCC in a

local evaluation has only one incoming edge. It works by finding the oldest subgoal in

the SCC (the one with the incoming edge) and removing the entire SCC (or set of en-

tire SCCs) from the completion stack. Function reset_other_threads (Figure 4.5) was dis-

cussed in Section 4.1.4. In our implementation of the USURPATION operation the sub-

goals are re-computed by the usurper thread after the stacks of the usurped threads are

reset. The usurper thread just jumps to point 3 in Figure 4.3 to (re)compute the grabbed

subgoal. The correctness of the evaluation is not affected by the re-computation, as the

tabled program is assumed to be static.

Awaking the Suspended Threads Clearly if a thread waits for the completion of a

subgoal when there is no deadlock, the subgoal will eventually be completed and the

thread awakened. If there occurs a deadlock and the corresponding USURPATION op-

eration, in a finite evaluation, the SCCwill eventually be completed and the suspended

threads awaken by the completion instruction.

4.4.2 Complexity of Shared Completed Tables

Theorem 4.2.4 which states that there’s at most one USURPATION operation for each

subgoal, holds true for the implementation as well.

As for each USURPATION operation the SCC has to be recomputed, Theorem 4.2.4

implies that in the worse case Shared Completed Tables is quadratic for the Well

Founded Semantics. However we believe that in practice deadlocks and the corre-

sponding USURPATION operations hardly ever occur, making the best case complex-

ity the overwhelmingly most common one, in which the complexity for Shared Com-

pleted Tables is the same as for the SLG-WAMwhich is linear for positive programs.

Chapter summary In this chapter we introduced Shared Completed Tables, an opti-

mistic method for implementing shared tables, which only allows other threads to read

from a table after it is completed. The main point of this method is to allow deadlocks

to occur and then to break them – although this is only possible under Local Schedul-

ing. We presented the changes to the SLG-WAM’s data structures and instruction set

to support Shared Completed Tables – most changes are in the table_try instruction.
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We formalized Shared Completed Tables, modifying standard SLG to support multi-

ple resolution threads and extend it with the USURPATION operation. We named this

variation of SLG SLGsct . We gave an example of execution of Shared Completed Tables

including the occurrence of deadlocks. Finally we discussed the correcteness of the

implementation with respect to SLGsct .
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5
Concurrent Completion

Concurrent Completion allows the returning of answers concurrently among non-

completed tabled subgoals owned by different threads. This means that when an-

swers are derived they may be returned immediately to other threads, modeling more

closely a concurrent producer-consumer model. This means that a one-answer query

involving tables owned by different threads may be computed faster than with Shared

Completed Tables as it doesn’t need for the involved tables to be completed before it

returns. This also opens more opportunities for table parallelism as inter-dependent

subgoals in different threads may be using each others answers in parallel in a compu-

tation.

The main burden of this method is a more complex completion algorithm, as imple-

mented by the SLG-WAM check_complete instruction. This generalizes the completion

method for the sequential SLG considering the completion of sets of subgoals scat-

tered among the stacks of different threads. The Concurrent Completion algorithm is

a generalization of the SLG-WAM completion algorithm and its main data structures

are kept, although with some detailed changes to model the dependencies among sub-

goals owned by different threads.

It was decided to use Batched scheduling for the implementation of Concurrent

Completion, as the speed of returning answers is stressed over the speed of complet-

ing SCCs as in Local scheduling. However, and unlike Shared Completed Tables that

require Local scheduling, Concurrent Completion can in principle be used with either

Local or Batched scheduling.
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Figure 5.1: The external consumer choice point

5.1 Changing the SLG-WAM to Support Concurrent

Completion

Concurrent Completion involves more elaborate changes to he SLG-WAM data struc-

tures than Shared Completed Tables. The most significant change is the new external

consumer choice point, a special consumer choice point used to return answers from

the generator thread to threads that use the answers from the table. In the thread’s com-

pletion stack there’s an associated completion stack frame used to enable the schedul-

ing of external answers. Figure 5.1 shows the new relationships among the subgoal

frame, the threads choice point stacks and the threads completion stacks, in the pres-

ence of external consumer choice points.

On the thread context data structures, the principal addition is the one of the Thread

Dependency List aka T DL to the thread context. This is used by the completion algo-

rithm to keep track of the dependencies among subgoals in different threads so that it

may compute the multi-threaded ASCCs.

At the level of SLG-WAM instructions the check_complete instruction is extensively

modified to handle the completion of multi-threaded ASCCs. The table_try instruction

also has to be changed to handle the external consumer choice points.

5.1.1 Data Structures

We use a global mutex to control concurrency:
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• completing_mut This is used to ensure that the check_complete instruction is

atomic.

Thread Context We extend the thread context (given in Section 3.3.1) with the fol-

lowing fields:

• Completing A boolean that is true when the thread is waiting for the ASCC (cf.

Section 2.3.2) to complete in the completion algorithm.

• CompletedA boolean that signals that the multi-threaded ASCC is completed in

the completion algorithm.

• round The round number is an integer which is used to keep track of the last

round performed in the completion process. It is incremented every time an-

swers are scheduled and is used by other threads to check if this thread may

have generated more answers.

• local_leader The leader for the top ASCC of this thread.

• cond_var A condition variable used to suspend the thread when it should wait

for other threads to perform its tasks in the completion algorithm.

• TDL The Thread Dependency List. A list of triplets < tid,subgoal f rame,round >1

used to keep track of the topology of the dependency graph and to find the com-

pleting ASCC when its goals are distributed among threads. The list is indexed

by thread, as only the deepest dependency on any thread is maintained – the

subgoal f rame present in the T DL is always the one which has the oldest Com-

pletion Stack Frame for every dependency on that thread that has been found so

far.

We assume that all functions have the local parameter th so that they can access the

thread context (cf. Section 3.3.1).

Subgoal Frame The subgoal frame, defined in Section 2.3.3, is extended with the

following field:

• tid An integer which denotes the thread identifier of the thread which generates

solutions for this subgoal. As terminology we refer to such a thread as the owner

of the subgoal.

1In the implementation, as the subgoal f rame record contains the tid the T DL only contains the
subgoal f rame and the round. The tid is given in this description of the algorithm to simplify the T DL
handling procedures.
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Generator Choice Point the generator choice point, defined in Section 2.3.2, is ex-

tended with the field:

• ComplSF This is needed to access the Completion Stack frames that correspond

to this Generator Choice point in the case of Generator Choice points associated

with external consumers2.

Consumer Choice Point The consumer choice point, defined in Section 2.3.2, is ex-

tended with the following field:

• tid An integer which denotes the thread in which stacks this consumer choice

point resides.

Completion Stack Frame The completion stack frame, defined in Section 2.3.2, is

extended with the following field:

• ExtCons This is null for regular SLG-WAM completion stack frames. For comple-

tion stack frames related to external consumers it points to the external consumer

choice point.

5.1.2 Changes to the Table_Try Instruction

The main changes to the table_try instruction concern the call to an already existing

subgoal (lines 4–8 of Figure 5.2).

The tid field stored in the consumer choice point can be compared with the tid field

of the subgoal frame to check if we are dealing with an external consumer choice point,

in which case these fields have different values.

In line 4.1 a generator choice point is created below the consumer choice point in

case there are no generator choice points below in the choice point stack, in which

case the completion stack is empty. This is needed because there must be a generator

choice point before all consumer choice points with the check_complete instruction as

the failure continuation to schedule the answers returned by external consumer choice

points 3.

The creation of the consumer choice point proper in line 5 is the same whether it is

external or not. The tid field is used to distinguish between them (if it’s different from

the current thread it’s an external consumer).

In line 6.1 a new completion stack frame is pushed, only in the case of an external

consumer choice point, with the ExtCons field set to the new external consumer choice

2Generator Choice Points have a pointer to the Subgoal Frame which itself points to the Comple-
tion Stack Frame. This doesn’t work for “dummy” Generator Choice Points as they must point to the
Completion Stack frame in the Completion Stack of their thread, not the one in the thread that generates
solutions for this subgoal
3With internal consumer choice points there is always the guarantee that the generator choice point

for that subgoal is below in the choice point stack of the thread.
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Instruction table_try(Arity, NextClause, T IF) /* Subgoal is in argument registers */
shared← table_is_shared(TIF);
if ( shared ) lock( completing_mut );
SF ← subgoal_check_insert(Subgoal, Subgoal_Trie_Root)

1 if (SF = NULL ) /* Subgoal is new and added */
SF ← NewSubgoalFrame(Subgoal);
if ( shared ) unlock( completing_mut );
SF.tid← th.tid;
GCP← PushGeneratorChoicePoint(. . . );
. . . /* actions in lines 2.3–2.6 of Figure 2.19 */

2 else if ( (SF.IsCompleted) ) /* Subgoal is complete */
if ( shared ) unlock( completing_mut );
Answer_Root← Subgoal.AnsTrieRoot ;
/* Branch to Answer_Root SLG-WAM instruction */

3 else /* Subgoal is incomplete */
if ( shared ) unlock( completing_mut );

4 if(SF.tid 6= th.tid and empty(completion_stack) )
4.1 gcp← PushGeneratorChoicePoint(. . . );

gcp.FailCont← check_complete_instruction;
5 CCP← PushConsumerChoicePoint(. . . );

CCP.tid← th.tid;
6 if(SF.tid 6= th.tid )
6.1 cs f ← PushCompletionStackFrame(. . . );

cs f .ExtCons←CCP;
7 if(SF.tid = th.tid )

adjust_levels(subgoal);
8 . . . /* actions in lines 4.3–4.7 of Figure 2.19 */

Figure 5.2: The table_try instruction.
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point. The completion stack frame is needed to schedule the answers returned by other

threads in the check_complete instruction.

In line 7, in the case that the consumer choice point is not external , the adjust_levels

procedure (c.f. Figure 2.20 in Section 2.3.4) which adjusts the DFNs in the completion

stack to extend the current SCC is not called. This is not done for external consumer

choice points because the generator choice point for the subgoal belongs to the stacks

of another thread and so the SCC for this thread must not be extended.

5.1.3 The New Check_Complete Instruction

The first thing to notice about the new check_complete instruction is that it is atomic i.e.

only one thread can execute check_complete at a time and it will not be interrupted.

Lines 1 to 3 2 of Figure 5.3 are the same as in the sequential check_complete instruc-

tion. However the fixpoint_check procedure (Figure 5.4) is changed to check for com-

pletion stack frames that correspond to external consumer choice points and to build

the initial T DLwith the direct dependencies of this thread to other threads. If answers

are found, the round number is incremented and the instruction fails to the chain of

consumer choice points that return the answers.

If no unreturned answers are found for any subgoal in the ASCC, procedure Up-

dateDeps (described in Section 5.1.5) is called. Procedure UpdateDeps extends the T DL

with the indirect dependencies of this thread and, if it finds a back dependency into

this thread, it will set NewLeader to the completion stack frame of this thread which is

depended on. The flag busy is set by UpdateDeps if any of the threads we depend on

is not in the Completing state, i.e. it is not blocked waiting for completion, but instead

running and generating solutions.

The condition in line 6 checks if the NewLeader is deeper in the completion stack

than the current leader of this thread. This would mean that the ASCC is larger than

what fixpoint_check considered and the levels in the completion stack must be adjusted

to extend the thread’s ASCC up to the new leader. The check_complete instruction

fails and execution backtracks to the new leader so that it will handle the completion

process.

Then if the busy flag is found to be true all other threads we depend on are awaken

(line 7.3.1). This is because new answers may be being returned and the other threads

will have to check for them.

If the busy false is false the MayHaveAnswers function checks the round number

of each thread with the last seen round number of the other thread. If these don’t

match, it means some answers have not been returned and MayHaveAnswers wakes

those threads.

If busy is false and all the round numbers match, it topology of the dependency

graph (the T DL) is checked by function CheckForSCC to see if it forms a proper SCC

(if all the edges have been already added). If yes, all others threads are signaled to
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Instruction check_complete
cs f ← breg.completion_ f rame;
lock(completing_mut);
T DL← empty ;
for(;;)

1 if( not is_leader(cs f ) )
breg← breg.Breg_Chain;
break;

2 tmp_breg←fixpoint_check(cs f , breg, th.TDL );
3 if( tmp_breg 6= breg ) /* if there are answers to return */

th.round++ ;
breg← tmp_breg;
break ;

4 NewLeader← cs f ;
5 UpdateDeps(th.TDL, busy, NewLeader)
6 if( NewLeader < cs f )
6.1 adjust_levels(cs f , NewLeader);

breg← breg.Breg_Chain;
break;

7 if( not busy )
7.1 if( MayHaveAnswers(th.TDL) )
7.1.1 ;
7.2 else if( CheckForSCC(th.TDL) )
7.2.1 CompleteOtherThreads( th.TDL ) ;
7.2.2 CompleteTop(th,cs f ) ;

break ;
7.3 else
7.3.1 WakeOtherThreads( th.TDL ) ;

th.Completed← false ;
th.Completing← true ;
th.local_leader← cs f ;

7.4 cond_wait(th.cond_var,completing_mut);
th.Completing← false ;

7.5 if( th.Completed )
break ;

unlock(completing_mut)
Fail ;

Figure 5.3: The check_complete instruction.
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complete by the CompleteOtherThreads procedure. CompleteOtherThreads also runs Com-

pleteTop for the other threads.

The CompleteTop procedure is similar to the sequential completion procedure in that

it marks the goals as completed, frees the stack space and resets the freeze registers.

Unlike in the sequential case it also wakes dependent threads that might be waiting

for these subgoals to complete.

If completion wasn’t successful the Completing flag is set to true and the thread

is suspended in its condition variable. When it awakes it checks to see if successful

completion was achieved by any other thread and if so, it fails to the next instruction.

If not it loops and again performs the leader check, scheduling of instructions, etc.

5.1.4 Scheduling Answers

Procedure fixpoint_check(SubgCSF, sched_chain, T DL)
/* SubgCSF is a pointer to the completion stack frame */

while (SubgCSF ≤ top_o f _completion_stack)
SubgFr← CSF_SubgFr(SubgCSF);
if (SubgCSF.ExtCons 6= NULL)

if (has_unconsumed_answers(SubgCSF.ExtCons))
/* schedule the external consumer */

SubgCSF.ExtCons.Breg_Chain← sched_chain
sched_chain← SubgCSF.ExtCons ;

if (not SubgFr.is_completed)
if (not < SubgFr.tid,_,_ > in T DL )

insert < SubgFr.tid,SubgFr,round(SugFr.tid)> in T DL
else if (< SubgFr.tid,S1,_ > in T DL and S1.ComplSF < SubgFr.ComplSF)

replace S1 by SubgFr in T DL
else

sched_chain← schedule_resumes(SubgFr,sched_chain);
/* as in sequential batched fixpoint_check (Figure 2.22) */

SubgCSF++;
return sched_chain

Figure 5.4: The fixpoint_check Procedure.

As it was said before, the only extension for the sequential case to procedure fix-

point_check (Figure 5.4) happens when a completion stack frame corresponding to an

external consumer is found. In that case a dependency is inserted in the T DL if there is

no previous element corresponding to that thread in the T DL. If there was a previous

element for that thread in the T DL, the one that refers to a subgoal corresponding to a

deeper reference in the completion stack frame for that thread is kept.
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UpdateDeps(T DL, busy, leader)
busy← false
NewT DL← empty

1 do
new_deps← false
for each < tid,sg f ,round > in T DL

if (not sg f .is_completed)
if Completing(tid)

round1← round(tid)
else

round1← 0
2 insert < tid,sg f ,round1> in NewT DL
3 if Completing(tid)
4 for each < ntid,nsg f ,nround > in TDL(tid)
5 if (ntid = th.tid)

if( nsg f .ComplSF < leader )
6 leader← ngs f .ComplSF

else if( < ntid,sg f 1,round1> in NewT DL )
if( sg f .ComplSF < sg f 1.ComplSF )

replace sg f 1 by sg f in NewT DL
new_deps← true

else
insert sg f in NewT DL
new_deps← true

else
7 busy← true ;
8 T DL← NewT DL ;
9 while( new_deps ) ;

Figure 5.5: The UpdateDeps procedure.

5.1.5 TDL Handling Procedures

In this section we present the various relatively low-level T DL handling routines. From

here on the notation field(tid) is used to denote the field of the thread context th to

which the thread identifier tid corresponds to. We use the particular field th to mean

the thread context, i.e. th(tid)means the context for thread tid.

The UpdateDeps procedure (Figure 5.5) expands the initial T DL (created by proce-

dure fixpoint_check) to include all the threads which the current thread indirectly de-

pends on. It uses a breadth first algorithm: for each iteration of the do loop in line

1 it adds all the dependencies in the T DL to the NewT DL; in the cycle in lines 4–7 all

the new direct dependencies from the current ones are checked; in part 6 the NewT DL

is copied back to the T DL; if no new dependencies have been added a fixpoint has

been reached and the loop finishes (part 7). If at any moment a thread is found to be

computing (not in the Completing status) busy is set to true (condition in line 3). The

condition in line 5 checks for back dependencies into the current thread, which are not
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CheckForSCC(T DL))
1 for each < tid,sg f ,round >∈ T DL
1.1 if( sg f .ComplSF < local_leader(tid) )

return false;
1.2 if (not th.tid ∈ TDL(tid))

return false;
1.3 for each < ntid,nsg f ,nround >∈ TDL(tid)
1.3.1 if( ntid 6= th.tid ) and not ntid ∈ T DL

return false ;
1.4 for each < ntid,nsg f ,nround > in T DL
1.4.1 if( ntid 6= tid ) and not ntid ∈ TDL(tid)

return false ;
return true;

Figure 5.6: The CheckForSCC function.

MayHaveAnswers(TDL)
rc← false ;
for each < tid,sg f ,round >∈ T DL

for each < ntid,nsg f ,nround >∈ TDL(tid)
if( nround < round(ntid) )

rc← true ;
cond_signal(cond_var(tid))

return false;

Figure 5.7: The MayHaveAnswers function.

added to the T DL but instead used to update the leader parameter.

The CheckForSCC procedure (Figure 5.6) simply checks that every thread on the

T DL depends on every other thread. It also checks if the deepest dependency on to

a thread corresponds to its local leader. This means that all dependencies have been

added and completion may take place.

The MayHaveAnswers procedure (Figure 5.7) checks if there is one thread, t in the

T DL whose last seen round from other thread, nt, is stale, i.e. thread nt has already

performed more rounds after thread t has performed the completion instruction. This

means that thread t has to check for more answers that may not yet have been returned

to its consumers.

CompleteOtherThreads(T DL)
for each < tid,sg f ,round >∈ T DL

CompleteTop(th(tid),local_leader(tid));
Completed(tid)← true;
cond_signal(cond_var(tid))

Figure 5.8: The CompleteOtherThreads procedure.
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WakeOtherThreads(TDL)
for each < tid,sg f ,round >∈ T DL

cond_signal(cond_var(tid))

Figure 5.9: TheWakeOtherThreads procedure.

CompleteTop(th, leader)
cs f ← leader;
while (cs f ≤ openreg)

subgoal← cs f .SubgFr;
if( not subgoal.is_completed )

subgoal.is_completed← true;
WakeDependentThreads(th, subgoal);

cs f ++;
openreg← leader−1;
reclaim_stacks(breg);
breg← breg.Breg_Chain;

Figure 5.10: The CompleteTop procedure.

The CompleteOtherThreads procedure (Figure 5.8) completes the top ASCC for all

threads in the multi-threaded ASCC and signals all threads that they have been com-

pleted.

The WakeOtherThreads procedure (Figure 5.9) simply wakes all other threads when

completion is unsuccessful because a global fixed point has yet been reached.

5.1.6 Completion of a Single Thread

In this section we describe the steps taken to finalize the completion for a single thread.

The CompleteTop procedure (Figure 5.10) shows that the main change to the sequen-

tial procedure to reclaim the stacks consists of the call to the WakeDependentThreads

procedure. This checks for all threads that have External Consumer Choice Points

in their stacks that return answers from this thread and signals them to restart their

check_complete instruction. This is because completion of a thread may be blocked

waiting for completion of an ASCC that doesn’t depend on subgoals in the top ASCC

for that thread, and such threads must be awaken.

ProcedureWakeDependentThreads (Figure 5.11) runs the list of consumers for a sub-

goal, and in case they are External Consumers, i.e. they don’t reside in the same thread

as the generator of the subgoal, the thread where they reside is signaled, so it may

unblock when waiting for a dependent subgoal to complete.
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WakeDependentThreads(subgoal)
Cons← subgoal.CCP_Chain ;
while(Cons 6= NULL)

if(Cons.tid 6= th.tid)
cond_signal(cond_var(tid)) ;

Cons←Cons.PrevCCP ;

Figure 5.11: TheWakeDependentThreads procedure.

:- table a/1, b/1, c/1.
:- thread_shared a/1, b/1, c/1.

a(X) :- b(X).
a(a).
b(X) :- c(X).
b(b).
c(X) :- a(X).
c(c).

t1 :- a(X), fail.
t2 :- b(X), fail.
t3 :- c(X), fail.

Figure 5.12: Program P5.1

94



Table
Space

a(X):T1 b(X):T2 c(X):T3

Thread Space

Compl. Stack

1 1c(X)

T3Compl. Stack

1 1b(X)

T2Compl. Stack

a(X) 1 1

T1

SLG forest:

a(X) :− a(X) b(X) :− b(X) c(X) :− c(X)

Figure 5.13: Concurrent execution of P5.1: State 1

5.2 Example of Concurrent Completion

To illustrate the aspects of the Concurrent Completion algorithm in detail we consider

the program P5.1 in Figure 5.12 and 3 threads T1, T2and T3which execute concurrently

the goals t1 , t2 and t3 respectively. For simplicity of the example we assume that only

one thread may be running at a given time.

Initial State to State 1 T1 calls a(X) . A table_try instruction is executed (Figure 5.2)

which creates a table for a(X) owned by T1, a generator choice point for a(X) on T1’s

choice point stack and pushes a completion frame onto T1’s completion stack. We

assume that at this point T2 calls b(X) , then T3 calls c(X) . In executing table_try, both

of these threads perform actions similar to T 1, leading to a state of the computation as

shown in Figure 5.13.

State 1 to State 2 Now assume that T1 executes and calls b(X) . As b(X) is in the table

a consumer frame is created on T1 Choice Point Stack by instruction table_try. As the

table is owned by another thread an external consumer choice point is created. A com-

pletion stack frame is pushed for b(X) which points to the external consumer choice

point (this is denoted in the corresponding figure with an “e”). Note that adjust_levels

is not called. Assume that at this point T2 calls c(X) and then to T3 calls a(X) . In ex-

ecuting table_try, both of these threads perform similar actions, leading to the state of

the computation shown in Figure 5.14.

State 2 to State 3 Let’s consider that thread T1 executes again. As b(X) has no an-

swers it backtracks to the failure continuation of the generator choice point of a(X) .

The continuation in the generator is a table_trust instruction which sets the failure con-

tinuation of the generator choice point to a check_complete instruction and leads to
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Compl. Stack

a(X) 1 1

b(X) 2 2 e

T1 Compl. Stack

1 1b(X)

c(X) 22 e

T2 Compl. Stack

1 1c(X)

a(X) 2 2 e

T3

SLG forest:

a(X) :− a(X) b(X) :− b(X) c(X) :− c(X)

a(X) :− b(X) b(X) :− c(X) c(X) :− a(X)

Figure 5.14: Concurrent execution of P5.1: State 2

the derivation of answer a(a) by program clause resolution, which is stored in the

table for a(X) by a new_answer SLG-WAM instruction. Execution backtracks to the

check_complete instruction in the generator choice point for a(X) . As a(X) is the thread’s

local leader it runs the fixpoint_check procedure which finds that there are no answers

to be returned and initializes the T DL with <T2,b(X) ,0>. The UpdateDeps procedure

finds that T2 is not in the completing state, sets the local variable busy to true and T1

suspends. Let’s assume that now T2 takes control. A similar course of events takes

place involving the generator choice point for b(X) and T2 also suspends when execu-

tion the check_complete instruction after having derived the answer b(b) leading to the

state shown in Figure 5.15.

State 3 to State 4 With T 1and T2 suspended only T3 can execute. In a similar manner

to T1 and T2 in the above paragraph, T3 fails to the generator choice point of c(X) and

derives c(c) by program clause resolution, failing back to the check_complete instruc-

tion in the generator choice point for a(X) . Procedure fixpoint_check finds that there is

one answer to return. round is incremented to 1, execution fails to the external con-

sumer choice point of a(X) and answer a(a) is returned by the SLG-WAM instruction

answer_return. Answer c(a) is derived and entered into the table for subgoal c(X) . Exe-

cution fails into the check_complete instruction. Procedure fixpoint_check finds that there

are no answers to return and initializes the T DL with <T 1, a(X) , 0>. When procedure

UpdateDeps is called <T2, b(X) , 0> is added to the T DL. A back dependency is found

from T1 to c(X) on T3 but as c(X) is already the leader for T3 execution proceeds.

Function MayHaveAnswers finds out that T2 has last seen round 0 for T3whereas T3’s

round is now 1 and returns true. T2 is awakened. T3 suspends leading to the state of

the computation shown in Figure 5.16.

State 4 to State 5 With T1 and T3 suspended, only T2 may run. T2 loops in the

check_complete instruction. Procedure fixpoint_check now finds that there is one an-

swer to return. round is incremented to 1 and execution fails to the external consumer
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TDL: <T3, c(X), 0>

Round: 0 Completing: true

Round: 0 Completing: false

TDL:

SLG forest:

a(X) :− a(X) b(X) :− b(X) c(X) :− c(X)

c(X) :− a(X)b(X) :− c(X)a(X) :− b(X) b(b) :− b(b)a(a) :− a(a)

Thread Space T2

T1

Table
Space

a(X):T1 b(X):T2 c(X):T3

b(b)a(a)

TDL: <T2, b(X), 0>

Round: 0 Completing: true
T3 (running)

(suspended)

(suspended)

Figure 5.15: Concurrent execution of P5.1: State 3

Thread Space T2

T1

Table
Space

a(X):T1 b(X):T2 c(X):T3

b(b)a(a) c(a)c(c)

T3

TDL: <T1, a(X), 0>, <T2, b(X), 0>

Round: 1

TDL: <T3, c(X), 0>

Round: 0 Completing: false
TDL: <T2, b(X), 0>

Round: 0 Completing: true

SLG forest:

a(X) :− a(X) b(X) :− b(X)

b(X) :− c(X)a(X) :− b(X) b(b) :− b(b)a(a) :− a(a) c(X) :− a(X)

c(X) :− c(X)

c(c) :− a(c)

c(a) :− a(a)

Completing: true

(suspended)

(suspended)

(ready)

Figure 5.16: Concurrent execution of P5.1: State 4
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TDL: <T2, b(X), 0>

Round: 0 Completing: true

Completing: falseRound: 2

TDL: <T1, a(X), 0>, <T3, c(X), 1>

SLG forest:

a(X) :− a(X) b(X) :− b(X)

b(X) :− c(X)a(X) :− b(X) b(b) :− b(b)a(a) :− a(a) c(X) :− a(X)

c(X) :− c(X)

c(c) :− a(c)

c(a) :− a(a)b(c) :− c(c) b(a) :− c(a)

Thread Space T2

T1

Table
Space

a(X):T1 b(X):T2 c(X):T3

b(b)a(a) c(a)c(c)b(c) b(a)

(running)

T3

TDL: <T1, a(X), 0>, <T2, b(X), 0>

Round: 1 Completing: true

(suspended)

(suspended)

Figure 5.17: Concurrent execution of P5.1: State 5

choice point of c(X) . The answer c(c) is returned and the answer b(c) is derived and

stored in the table. Execution backtracks to the check_complete instruction. Procedure

check_fixpoint finds that there is one answer to return. round is incremented to 2. An-

swer c(a) is returned and answer b(a) is derived and stored in the table. Execution

fails to the check_complete instruction. Procedure check_fixpoint finds that there are no

answers to return. Procedure UpdateDeps is called, leading to the state of the computa-

tion shown in Figure 5.17.

State 5 to State 6 Function MayHaveAnswers finds out that threads T1 and T3 have 0

for the last round of T2 while it is now 2, so it returns true. Threads T1 and T3 are

awaken while thread T2 is suspended. Assume that now T1 executes. T1 loops in

the check_complete instruction and find_fixpoint finds that there are answers to return.

round is incremented to 1. Answer b(b) is returned by the external consumer choice

point and answer a(b) is derived and stored in the table. Execution backtracks to

the check_complete instruction. Procedure fixpoint_check finds that there is one answer

to return. round is incremented to 2. Answer b(c) is returned and answer a(c) is

derived and stored in the table. Execution backtracks to the check_complete instruction.

Procedure fixpoint_check finds that there are answers to return. round is incremented

to 3. Answer b(a) is returned and answer a(a) is derived but not added to the table

as it is already there. Again execution fails into the check_complete instruction. This

time fixpoint_check doesn’t find any answers to return. After UpdateDeps the state of the
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Thread Space T2

T1

Table
Space

a(X):T1 b(X):T2 c(X):T3

b(b)a(a) c(a)c(c)b(c) b(a)a(b) a(c)

(running)

(suspended)

T3

Round: 2

TDL: <T1, a(X), 0>, <T3, c(X), 1>

Completing: true

TDL: <T1, a(X), 0>, <T2, b(X), 0>

Round: 1 Completing: true

TDL: <T2, b(X), 2> <T3, c(X), 1>

Round: 3 Completing: false

SLG forest:

c(X) :− a(X)

c(X) :− c(X)

c(c) :− a(c)

c(a) :− a(a)

a(X) :− a(X)

a(X) :− b(X) a(a) :− a(a)

a(b) :− b(b) a(c) :− b(c) a(a) :− b(a)

b(X) :− b(X)

b(X) :− c(X) b(b) :− b(b)

b(c) :− c(c) b(a) :− c(a)

(ready)

Figure 5.18: Concurrent execution of P5.1: State 6

Concurrent Completion engine looks like Figure 5.18.

State 6 to State 7 Function MayHaveAnswers finds that T2 and T3 have 0 as the value

for T1’s round while it is already 3, so it returns true. T2 and T3 are awakened while

T1 is suspended. Assume that now T3 runs. The check_complete instruction loops.

Procedure check_fixpoint finds that there is one answer to return. round is incremented

to 2. Answer a(b) is returned. Answer c(b) is derived and stored in the table. Exe-

cution backtracks to the check_complete instruction. Procedure check_fixpoint finds that

there is one answer to return. round is incremented to 3. Answer a(c) is returned.

Answer c(c) is derived but it’s not added to the table because it’s already there. Exe-

cution backtracks to the check_complete instruction. Procedure fixpoint_check finds that

there are no answers to return. After procedure UpdateDeps returns the state of the

computation engine is shown in Figure 5.19.

State 7 to State 8 In this case function MayHaveAnswers finds that T1 and T2 have last

seen round 1 of T3 but T3 is already on round 3 and returns true. This means that T1

and T2 are awaken and T3 suspends. Let’s assume that now T2 executes. T2 loops in
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Thread Space

T1

Table
Space

a(X):T1 b(X):T2 c(X):T3

b(b)a(a) c(a)c(c)b(c) b(a)a(b) a(c) c(b)

T3

T2

(running)

TDL: <T2, b(X), 2> <T3, c(X), 1>

Round: 3 Completing: true

Round: 3

TDL: <T1, a(X), 3>, <T2, b(X), 2>

Completing: false

Round: 2

TDL: <T1, a(X), 0>, <T3, c(X), 1>

SLG forest:

a(X) :− a(X)

a(X) :− b(X) a(a) :− a(a)

a(b) :− b(b) a(c) :− b(c) a(a) :− b(a)

b(X) :− b(X)

b(X) :− c(X) b(b) :− b(b)

b(c) :− c(c) b(a) :− c(a)

c(X) :− a(X)

c(X) :− c(X)

c(c) :− a(c)

c(a) :− a(a) c(b) :− a(b) c(c) :− a(c)

(ready)

(suspended) Completing: true

Figure 5.19: Concurrent execution of P5.1: State 7
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c(a) :− a(a) c(b) :− a(b) c(c) :− a(c)

Thread Space T2

T1

Table
Space

a(X):T1 b(X):T2 c(X):T3

b(b)a(a) c(a)c(c)b(c) b(a)a(b) a(c) c(b)

(running)

TDL: <T2, b(X), 2> <T3, c(X), 1>

Round: 3 Completing: true

Completing: false

TDL: <T1, a(X), 3>, <T3, c(X), 3>

Round: 3

T3

SLG forest:

a(X) :− a(X)

a(X) :− b(X) a(a) :− a(a)

a(b) :− b(b) a(c) :− b(c) a(a) :− b(a)

b(X) :− b(X)

b(X) :− c(X) b(b) :− b(b)

c(X) :− a(X)

c(X) :− c(X)

c(c) :− a(c)

b(c) :− c(c) b(a) :− c(a) b(b) :− c(b)

Round: 3

TDL: <T1, a(X), 3>, <T2, b(X), 2>

Completing: true

(ready)

(suspended)

Figure 5.20: Concurrent execution of P5.1: State 8

the check_complete instruction. Procedure fixpoint_check finds that there is one answer

to return. round is incremented to 3 and execution backtracks to the consumer choice

point which returns answer c(b) . Answer b(b) is derived but not entered into the table

because it’s already there. Execution backtracks to the check_complete instruction. This

time fixpoint_check finds no answers. After procedure UpdateDeps returns the state of

the computation is the one shown in Figure 5.20.

State 8 to State 9 Function MayHaveAnswers finds that T1 and T3 have their views

about the last round of T2 stale, so it returns true. T2 suspends while T1 and T3 are

awakened. Let’s assume that now T1 runs. T1 loops in the check_complete instruction.

Procedure fixpoint_check finds that there are no answers to return. The state of the

computation after procedure UpdateDeps returns is shown in Figure 5.21.

State 9 to State 10 Function MayHaveAnswers finds out that T3 has a obsolete view

of the round number for T2, so it returns true. This means that T 1 is suspended and

T3 awaken. As T1 and T2 are suspended only T3 may run. It loops in instruction

check_complete. Procedure fixpoint_check is called. It finds that there are no answers to
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Thread Space T2

T1

Table
Space

a(X):T1 b(X):T2 c(X):T3

b(b)a(a) c(a)c(c)b(c) b(a)a(b) a(c) c(b)

(running)

Round: 3

TDL: <T2, b(X), 3> <T3, c(X), 3>

Completing: false

Completing: true

TDL: <T1, a(X), 3>, <T3, c(X), 3>

Round: 3

T3

Round: 3

TDL: <T1, a(X), 3>, <T2, b(X), 2>

Completing: true

(ready)

(suspended)

Figure 5.21: Concurrent execution of P5.1: State 9

Thread Space T2

T1

Table
Space

a(X):T1 b(X):T2 c(X):T3

b(b)a(a) c(a)c(c)b(c) b(a)a(b) a(c) c(b)

(running)

Round: 3 Completing: true

TDL: <T2, b(X), 3> <T3, c(X), 3>
Completing: false

TDL: <T1, a(X), 3>, <T3, c(X), 3>

Round: 3

T3

Round: 3 Completing: true

TDL: <T1, a(X), 3>, <T2, b(X), 3>

(suspended)

(suspended)

Figure 5.22: Concurrent execution of P5.1: State 10

return. Let’s assume that now T2 runs. Procedure fixpoint_checkfinds no answers. After

procedure UpdateDeps returns we get the state of the computation shown in Figure 5.22.

State 10 to Final State FunctionMayHaveAnswers returns false because the threads last

views of the rounds match with the actual round numbers. Procedure CheckForSCC

returns true as every thread depends on each other and the leaders are correctly set.

Procedure CompleteTop is called by T3 for T1 and T2, effectively completing the top

tabled subgoals of these threads. Its completion stacks are emptied. The field completed

is set to true in T1and T2. Procedure CompleteTop is called to empty the stacks of thread

T3. T1 and T2 are awaken. Figure 5.23 shows the state of the computation.

Query t3 fails. Query t1 fails. Query t2 fails.

102



Thread Space T2

Compl. Stack

T1 Compl. Stack

Table
Space

Compl. Stack

T3

b(b)a(a) c(a)c(c)b(c) b(a)a(b) a(c)

Round: 3

c(b)

Round: 3

Completing: false

TDL: <T1, a(X), 3>, <T3, c(X), 3>

TDL: <T2, b(X), 3> <T3, c(X), 3>
Round: 3

TDL: <T1, a(X), 3>, <T2, b(X), 3>

Completing: false

Completing: false

(running)

b(X):completeda(X):completed c(X):completed

(ready)

(ready)

Figure 5.23: Concurrent execution of P5.1: Final State

5.3 Correctness of Concurrent Completion

In this section we show that the Concurrent Completion algorithm derives all the an-

swers of a program (Section 5.3.1), i.e. that the check_complete instruction correctly

determines that a set of subgoals has been completely evaluated when it finishes and

that this point will always be reached (Section 5.3.2). The soundness proof for the

derivation of answers is similar to the one for sequential engine (see [73]), with the

trivial addition of the external Consumer Choice Points when answers are returned

from other threads. We don’t develop that proof here. At the end of this section we

discuss how complexity of Concurrent Completion relates to the sequential engine.

5.3.1 Completeness

In this section we prove that the check_complete instruction is correct, in the sense that

if it terminates, all answers to a query have been derived.

Theorem 5.3.1 (Completeness) Given the check_complete instruction for the generator

choice point of subgoal S in thread T , if execution reaches line 7.2.1 of Figure 5.3 then S and all

subgoals that S depends on have been completely evaluated.

Proof: Recall that in an SLG evaluation of a definite program P, an independent SCC

can be completed as long as all new subgoal, program clause resolution, and answer
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return operations have been performed. At a high level, in the sequential SLG-WAM

the batched scheduling strategy performs this as follows (see [73] for details).

In order to keep track of mutually dependent subgoals, the SLG-WAM uses the

notion of an Independent Approximate SCC (ASCC) – a set of SCCs whose subgoals

depend on no subgoals outside of that set of SCCs. The SLG-WAM keeps track of the

ASCC as follows. When a new tabled subgoal is encountered, it is given a (global)

depth first number DFN(S) along with a DirLink field, initialized to DFN(S) and up-

dated by adjust_levels, when a call to a subgoal with an older completion stack frame,

S1 is encountered for a clause of S. Then all for all completion stack frames between

S and S1, DirLink is set to DirLink(S1). The leader of an independent ASCC is defined

as that subgoal Sleader such that for all subgoals S′ that are on the completion stack and

equal to or younger than Sleader, DirLink(S′) = DFN(Sleader). Once the ASCC has been

identified, completion can be assured by using the completion stack to traverse each

subgoal S in the ASCC, and then ensuring that, for each consumer choice point for

CCPS, if the root subgoal for CCPS is in the ASCC, then all answers for S have been

returned toCCPS. Since the completion operation is performed only when all program

clause resolution and new subgoal operations have been performed, the final check

that all answers have been returned to subgoals in the ASCC ensures that the subgoals

will have been completely evaluated before they are completed.

The Concurrent Completion algorithm generalizes this sequential algorithm so that

ASCCs may be maintained and completion checked when subgoals are owned by dif-

ferent threads and scattered among different completion stacks.

Definition 5.3.1 (Local ASCC) Let T1 be a thread. Then Local_Leader(T1) is the subgoal S

associated with the youngest completion stack frameC in T1 such that DFN(S) = MinLink(S)

on the completion stack. Let Local_ASCC(T) denote the partial ASCC containing its local

leader (S) and all subgoals whose completion stack frames are younger than the one of S.

Consider the situation when a thread T1 reaches line 4 of check_complete in Fig-

ure 5.3. Then Property 5.3.1 holds:

Property 5.3.1 All answers that have been derived at this point have been returned to all in-

ternal Consumer Choice Points for subgoals in Local_ASCC(T1) that are owned by T1, and to

all external Consumer Choice Points owned by T1 for subgoals in Local_ASCC(T1) not owned

by T1.

This is ensured by the fixpoint_check of condition 2 of check_complete in a similar

manner to the sequential algorithm.

Note that the round number for the blocked threads on which this subgoal depends

can be used to keep track of the last point at which the answers were returned to the

External Consumer Choice Points.
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Property 5.3.1 is weak. We still don’t know what subgoals need to be added to

Local_ASCC(T1) to make it a true ASCC, nor do we even have any assurance that an-

swers are not being added to external subgoals in Local_ASCC(T1) by other threads.

Definition 5.3.2 (LocalThreads) Let LocalT hreads(T1) be the minimal set of threads such

that any goal in ASCC(T1) is owned by one of the threads in LocalT hreads(T1).

We define T hreads(T1) as the fixed point of LocalT hreads(T1), i.e T ∈ T hreads(T1) iff:

T ∈ LocalT hreads(T1)

or

∃T2 : T ∈ LocalT hreads(T2) and T 2∈ T hreads(T1)

Note that fixpoint_check adds an entry for T2 whenever there is an external Con-

sumer Choice Point in Local_ASCC(T1) owned by T2. Thus, by the end of part 3,

T DL(T1)’s threads correspond to LocalT hreads(T1). The subgoal kept for each thread

is the oldest that belong to that thread, which is an optimization, as multiple depen-

dencies an thread could in principle be kept.

UpdateDeps is a simple breadth first algorithm that adds all threads which are reach-

able from its initial set, which as we saw correspond to LocalThreads(T 1). As the TDLs

for every thread, which constitute the universe of dependencies, were generated by

check_fixpoint and UpdateDepswe have at the end of part 4:

T hread_Set = {T |T is a thread ∈ T DL(T 1)}∪{T1} ⊆ T hreads(T1)

Thus all threads in T hread_Set will belong to themulti-threaded ASCC. Its also clear

that busywill be true if any thread in T hreads(T1) is not blocked waiting for completion

(in line 6.4).

Also note that NewLeaderwill be set only if there is an S owned by T1and belonging

to the Local_ASCC(T ′), where T ′ belongs to T hreads(T1), such that the completion

stack frame of S is younger than that of LocalLeader(T 1).

If the local leader changes, the completion process cannot proceed, as the

check_complete instruction no longer corresponds to the local leader which should be

backtracked to.

The checks that ensure that the union of Local_ASCC(T), T ∈ T hread_Set(T) is in

fact an independent multi-threaded ASCC are conditions 6, 6.1 and 6.2:

1. Condition 6 ensures that all threads in T hread_Set(T1) are awaiting completion,

which implies that they don’t have any unreturned internal answers and they are

quiescent.

2. Condition 6.1, the call to MayHaveAnswers ensures that no thread in Threads(T1)

has unreturned external answers.
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This is because each thread, in procedure UpdateDeps records the round number

for every other thread it depends on on the T DL before it suspends for comple-

tion. Let R = LastRound(T,T ′) be the round field of the entry for T ′ in the T DL of

T . For MayHaveAnswers to fail, it means:

∀T,T ′ ∈ T hread_Set(T1),round(T ′) = LastRound(T,T ′)

This means that round(T ′) wasn’t incremented since the moment that T sus-

pended for completion. As T did run fixpoint_check at that moment and there

were no more answers to return (remember that check_complete is atomic), it

means that thread T has returned all answers that T ′ generated for the subgoals

in Local_ASCC(T). (See also the discussion of Property 5.3.1).

3. Condition 6.2, the call to CheckForSCC ensures that:

∀T ∈ T hread_Set(T1),Thread_Set(T) = T hreads(T)

This ensures that every thread in the multi-threaded ASCC is included in the

T DL.

It also ensures (because of the condition in line 1.1 of Figure 5.6) that:

∀T,T ′ ∈ T hreadSet(T1) : 6 ∃S ∈ Local_ASCC(T ′) : Local_Leader(T ) is younger than S

This ensures that no subgoal in the multi-threaded ASCC depends on another on

thread T that is younger than the local leader of T .

From 1,2 and 3 above it follows that when execution reaches 7.2.1 of Figure 5.3 an

independent multi-threaded ASCC has been detected and all answers of its subgoals

have been derived.

In the next section we prove that execution will always reach 7.2.1 of Figure 5.3 for

some thread.

5.3.2 Liveness

In this section we show that if the query being evaluated has a finite number of answers

then Concurrent Completion always terminates.

Theorem 5.3.2 (Liveness) Given a program P and a set of queries Q1, Q2 . . .Qn evaluated by

a set of threads T1, T2 . . .Tn, given that:

• Every query Qi requires the computation of all answers to it.
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• For every query Qi its evaluation against program P results in a finite SLG evaluation.

• The underlying operation system scheduling of threads is fair.

Then all answers for Q1, Q2 . . .Qn against P will be computed by Concurrent Completion

Proof:

Terminology We begin the proof by introducing some terminology. Note that for a

given thread T performing tabled computation, the ASCC for T , denoted true_ASCC(T)

and potentially distributed among threads, can be defined as the least set such that:

Local_ASCC(T)⊆ true_ASCC(T) and S′ ∈ true_ASCC(T) iff every direct dependency

(see Definition 2.2.9) of S′ is in true_ASCC(T).

For a set of subgoals S , we define threads(S) as the least set of threads such that

every subgoal in S is owned by some thread in threads(S).

Although we have not modeled Concurrent Completion formally, we make use of

an informal notion of a Concurrent Completion computation as a sequence (with cardi-

nality ω or less) of SLG-WAM instructions executed by various threads, and the state of
such a computation as a sub-sequence of that sequence. Accordingly, consider a state

of computation in which a thread T is computing subgoals involved in true_ASCC(T).

Note that in the process of completing true_ASCC(T), any suspended threads that have

non-completed subgoals with dependencies on subgoals in true_ASCC(T)will eventu-

ally be restarted by the invocation of procedure WakeDependentThreads by procedure

CompleteTop (see Figure 5.10) so that liveness will be preserved for threads with goals

suspended on true_ASCC(T ) but that are not contained in true_ASCC(T). We thus may

restrict our attention to states involved in the computation of true_ASCC(T) itself.

In addition, note that if T consists of a single thread T0, it will complete as in the

SLG-WAM, so that we can restrict our attention to cases in which the cardinality of

threads(true_ASCC(T)) is greater than 1 – i.e. when local_ASCC(T ) is involved in a

multi-threaded computation.

We next define the notion of the known ASCC for a thread T , denoted

known_ASCC(T). For a subgoal S in a thread T , the completion segment for S in T con-

tains S together with all subgoals in the completion stack of T that are younger than S.

Thus the known ASCC for a thread T consists of the union of the subgoals in the Lo-

cal_ASCC(T) together with the completion segment for S′ in T ′ for each <T’,S’,round>

in the TDL of T . As S′ is set as the older subgoal for T ′ that Local_ASCC(T) depends

on, by check_fixpoint and UpdateDeps, we have known_ASCC(T)⊆ true_ASCC(T)).

Using these notions, we define the notion of computational progress for

true_ASCC(T) as the number of answers returned to subgoals in A combined with

sum of |known_ASCC(T’)| for T ′ ∈ threads(true_ASCC(T)). Note that for a finite

program the number of answers returned and subgoals in true_ASCC(T) will be
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finite, and since known_ASCC(T) ⊆ true_ASCC(T), the sum of |known_ASCC(T)| for

T ′ ∈ threads(true_ASCC(T))! will also be finite.

Attaining a Synchronization Point As described previously, the algorithm for con-

current completion works as follows for anASCC. The threads evaluate the goals in the

ASCC by generating and consuming answers, and by adjusting their local leaders to

reflect the cross-thread dependencies in the ASCC. The use of a completing_mut mutex

ensures that the check_complete instruction is atomic. We refer to a synchronization point

for a set of subgoals S as a computation state in which a thread owning some subgoal in

S executes a check_complete instruction and reaches line 7.1 in Figure 5.3.

Accordingly, let state be a state of a tabled computation in which some thread T

is evaluating subgoals in known_ASCC(T). We show that there will be a synchroniza-

tion point for known_ASCC(T) after state. Since synchronization points are executed

by check_complete instructions we begin by showing that execution for any thread

T ′ will always backtrack into a check_complete instruction for at least 1 subgoal S′ in

local_ASCC(T). This occurs because a completion instruction is set as the failure con-

tinuation of a generator choice point by the table_trust or table_try_single instruction or

is set up directly in the case of the generator choice point created by part 4 of Fig-

ure 5.3. Note also that each thread will always have a generator choice point as the

initial choice point of a tabled computation – see notes to line 5 of Figure 5.3.

Next, consider the various actions taken for the check_complete instruction for S′

in a thread T ′ described above. The first possible action is that the check_complete

instruction fails. There are several cases in Figure 5.3 to consider:

1. Condition in line 1: S is not the local leader for the current thread i.e. in its com-

pletion stack frame DFN 6= MinLink. Execution will eventually backtrack to the

completion instruction corresponding to the local leader deeper in the comple-

tion stack because:

(a) when the completion stack frame for S′ is created it is initialized with

DFN(S′) = MinLink(S′)

(b) when adjust_levels is called for S′ the completion stack frame for S′ is un-

changed and only younger completion stack frames DirLink fields are set to

DFN(S′).

2. Condition in line 3: There are answers to be returned to the evaluation of S or

other subgoals in local_ASCC(T). These answers will be returned, and by the

argument made above, the execution will eventually backtrack to the completion

instruction corresponding to the local leader deeper in the completion stack.

3. Condition in line 6: A new local leader for the thread has been found (cf. line

6 of Figure 5.5) adjust_levels will change the completion stack and the situation
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will be similar to case 1. In this case new dependencies have been added to the

completion stack

Note that for a finite program, failure of a check_complete instruction will not lead

directly to a synchronization point, but to further computation within a thread. Also

note that in a finite program, each of these conditions can be executed only a finite

number of times by a given thread within a synchronization point, since the first and

third cases depend on the number of subgoals in local_ASCC(T), which is finite, and the

second case depends on the number of answers to subgoals in local_ASCC(T)which is

again finite.

So far, this argument shows that condition 6 of Figure 5.3 will be reached for each

thread in threads(true_ASCC(T)). Next, consider the actions for condition 6 of Fig-

ure 5.3.

1. The condition in line 7 fails: busy is true, which means that a thread T ′ ∈

threads(known_ASCC(T)) may be deriving or returning answers, so that T ′ will

suspend.

2. The condition in line 7 succeeds: in which case a synchronization point has been

reached.

Note since threads(known_ASCC(T)) is finite, and since case 2 must occur if T’ is

the only non-suspended thread in known_ASCC(T), a synchronization point must be

reached for known_ASCC(T) from state.

Actions at a Synchronization Point Note that by the argument above, each thread

will perform any available computational work – either by returning answers or ad-

justing its local leader – before reaching Condition 6 of Figure 5.3 and suspending or

entering a synchronization point.

More formally, let StateS1 be the state of a synchronization point for true_ASCC(T),

and StateS2 be the next synchronization point. Also let a T ′ be a thread in

threads(true_ASCC(T)). Then if at StateS1, the local leader of T ′ is not equal to the oldest

subgoal owned by T ′ in known_ASCC(T ′), or if there are unreturned answers for T ′, the

local leader will be adjusted for T ′ and the answers returned before StateS2.

Thus, between StateS1 and StateS2 either some thread T in threads(true_ASCC(T))

performs one of the steps in the previous paragraph (i.e. makes computational

progress), or no such thread performed any work. Note that there can be only a fi-

nite number of synchronization points in which some thread makes computational

progress.

Next, consider a case in which no computational progress has been made between

two synchronization points. There can be three cases:
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• The condition in line 7.1 of Figure 5.3 succeeds. In this case there are T ′,T ′′ such

that LastRound(T ′,T ′′) < round(T ′′). Thread T ′ will be awakened in line 6.1.1, and

in some future synchronization point stateS2, LastRound(T ′,T ′′) = round(T ′′) be-

cause thread T ′′ will execute at some point (because there is a fair scheduling

policy) and procedure UpdateDepswill update LastRound(T,T ′). Since there is no

computational progress, round(T ′′) will not be incremented and there will be a

finite number of steps between stateS1 and stateS2.

• The condition in line 7.2 of Figure 5.3 fails. In this case there are T ′,T ′′ ∈

T hreads(T)) such that T hread_Set(T ′) 6= T hread_Set(T ′′). Threads T ′ and T ′′

will be awakened by line 7.3.1 and in some future synchronization point there

will be T hread_Set(T ′) = T hread_Set(T ′′) because both T ′ and T ′′ will execute

at some point (because there is a fair scheduling policy) and procedure Updat-

eDeps will eventually update the TDLs for either T ′ or T ′′ since both T ′ and

T ′′ belong to threads(true_ASCC(T)) (because we are not considering the case

that true_ASCC(T) 6⊆ true_ASCC(T ′) = true_ASCC(T ′′) in which case true_ASCC(T)

wouldn’t be independent.).

• The condition in line 7.1 fails and the condition in line 7.2 succeeds. We have

reached the conditions of Theorem 5.3.1 and completion may take place

In cases 1 and 2, even if no computational progress is done, the information con-

tained in the TDLs increases monotonically.

To summarize, we have shown that at any state state of a tabled computation in

which a thread T is computing subgoals in a non-completed true_ASCC(T) a future

synchronization point is attainable for true_ASCC(T) (not necessarily executed by T ).

We next showed that there can be only a finite number of synchronization points for

true_ASCC(T) that either make computational progress or increase the information in

the TDLs. Thus, step 6.2.1 and 6.2.2 of Figure5.3 will be reached and liveness shown.

5.3.3 Note on Complexity for Concurrent Completion

We note that Concurrent Completion doesn’t change the complexity of the SLG-WAM

for single threaded programs. In such cases the T DLwill be empty and all the function-

ality added by the Concurrent Completion will result in constant time computations,

except for the WakeDependentThreads in the CompleteTop procedure (see Figure5.10).

But that won’t add to the complexity of the execution as procedure fixpoint_checkwhich

has the same complexity will also be called.
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5.4 Open Aspects of Concurrent Completion

In this section we wish to note some points about the Concurrent Completion algo-

rithm which have note been completely solved. The first point is that, in a program

which has a consumer subgoal S1 in one thread that depends on a producer subgoal

S2 in other thread, if the producer thread at some point is slower than the consumer

thread, a parallel execution will degenerate in a sort of Shared Completed Tables, i.e.

the consumer will wait for the producer to complete. This is because the WakeDepen-

dentThreads procedure is only called at the CompleteTop procedure which is called at

completion time. An obvious solution would be to call WakeDependentThreads before

the call to fixpoint_check, therefore waking all the threads that might have new answers

computed by the previous round of computation. Another one would be to wake up

the dependent threads when a new answer is derived. We experimented a little with

this alternative solutions, but no obvious gain was achieved, so we left it in its original

form. Further experiments are needed to choose the appropriate solution to exploit

parallelism.

The second point is support for negation. We tried to implement a shortcut to sup-

port negation for programs without inter thread dependencies by checking if the T DL

is empty. However the XSB early completion mechanism interfered with the concur-

rent completion algorithm, and we had to turn it off, for the Concurrent Completion

engine. As early completion is deeply ingrained in the XSB implementation of nega-

tion, it turns out that some programs with negation are no longer correctly evaluated

by this engine.

A third issue has to do with the consumer choice point list, which includes external

consumer choice points and traverses threads, thus preventing the automatic growing

of the choice point stacks (because there are pointers from other threads onto it). This

list has to be changed to more robust data structure, that allows the growing of the

choice point stacks. One possible change would be having separate lists for internal

and external consumer choice points — while the first would be kept as an ordinary

list, the second would be changed to something different.

Chapter Summary In this chapter we presented Concurrent Completion, a method

for sharing tables which allows a thread to generate answers for a table while oth-

ers are reading it. We present the modifications to the SLG-WAM data structures and

instruction set to support Concurrent Completion. This changes include the introduc-

tion of the external consumer choice points, which allow a thread to consume answers

from tables generated by others, and a new check_complete instruction which allows

completion of SCCs scattered among different threads. The completion instructions

makes use of the thread dependency lists (T DL) to keep track of the inter-thread de-

pendencies. We give an example of execution of Concurrent Completion and discuss
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the correctness of the implementation. We finish with some details of Concurrent Com-

pletion which deserve further study.
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6
Related Work

In this chapter we analyze some approaches that have been taken to the different ap-

proaches to integrate concurrent and parallel execution models with logic program-

ming, with the goals of, either speeding up execution through parallel execution on

multi-processors, or allowing concurrent execution to enhance responsiveness by al-

lowing several processes or threads in a single program.

The material can be divided into systems that allow the programmer to specify

which actions of the program can be executed in parallel (the explicit parallelism ap-

proach) and systems that transparently to the programmer, allow the parallel of logic

programs. While the first approach can be used to either to support concurrency within

a logic program, for instance to increase responsiveness within a distributed system or

to take advantage of parallel hardware, the second has as it’s only goal to take advan-

tage of parallel hardware to speedup execution.

In Section 6.1 we cover the explicit parallelism approach, taking a particular focus

on multi-threaded Prolog systems. Multi-threaded Prolog systems have been around

for a long time and we review some of them, owing to their historical or practical

importance. We finalize the section with a table summarizing the features of those

systems and ours (Table 6.1).

In Section 6.2 we review the implicit parallelism approach, focusing on tabling sys-

tems. Although this approach is rather different than the one taken by our systems,

the problems of completing a set of tables in parallel and accessing the shared table

space are very similar. One of the proposals discussed, OPTYap, takes the form of a

real system, publicly available and yielding good speedups, which we try to analyze

in more detail.

In Section 6.3 we examine some proposals for executing tabling programs where
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the tables are distributed among different memory spaces. The problem of computing

tabling in a distributed memory environment is much harder than the one of com-

puting tabling in parallel in a shared memory computer, and accordingly this work

is more experimental than the ones mentioned in the previous sections. However we

feel that this is an interesting problem and analyze two systems that were developed

to compute distributed tabling.

6.1 Multi-Threaded Prolog

In the early days of concurrent logic programming, the researchers were trying to inte-

grate concurrency in the semantics of logic programming by designing new languages

that changed the semantics of Prolog. One approach, the so called committed choice

languages, like Parlog [15], Concurrent Prolog [68] and FGHC [82] imposed restric-

tions to backtracking, some going all the way to eliminate it completely and substitut-

ing Prolog’s don’t know determinism with don’t care determinism – where only one

of the branches of the search tree would be explored, without caring which.

Another approach was taken by Delta Prolog [21], which allowed multiple Prolog

processes to communicate through message passing, where the message exchanging

events, instead of committing execution to the exchange of that message, allowed,

through backtracking, for the communication event to be retried. This feature was

called distributed backtracking and allowed a Delta-Prolog program to have a declar-

ative semantics, based on the theory of Distributed Logic [50]. It also implied that ex-

ecution of a Delta-Prolog program could involve backtracking through multiple com-

munication events, incurring in high complexity for the time of execution.

At some point there started to appear more pragmatic systems that relied on a

multi-process Prolog model, using message passing to communicate, but where the

message passing was deterministic and treated as a side-effect to the Prolog process

execution, but allowing the Prolog’s semantics for each process. Two examples exam-

ples of such systems were CS-Prolog1 [32] and PMS-Prolog [87]. With the advent of

multi-threaded programming this approach was adapted, so that instead of multiple

isolated Prolog executors, each with its own clause database, there were multiple Pro-

log executors sharing the clause database and other process specific resources. These

were the multi-thread Prolog systems, which we examine in this section, following a

roughly chronological order. In the end we examine Logtalk, which while not being

a Prolog system, allows some very useful concurrency constructs over multi-threaded

Prolog systems. For each system we give the implementation of the multi-threaded

program to generate prime numbers from Section 3.22. We only show the master and

worker predicates, the rest of the program being regular Prolog and essentially the

1CS-Prolog also allowed the non-deterministic semantics for communication of Delta-Prolog, but
strongly advised programmers to use the deterministic communication model.
2This is example was inspired in one from the Logtalk manual [53].
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worker( Port, I, F , List , Tail) :-
list_of_primes( I, F , List , Tail),
write_pipe( Port, primes( List , Tail) ).

master( N, L ) :-
partition_space( N, H , H1),

pipe( In1, Out1),
pipe( In2, Out2),
t_fork( worker( Out1, 1, H , L, L1) ),
t_fork( worker( Out2, H1, N, L1, []) ),

read_pipe( In1, primes( L, L1) ),
read_pipe( In2, primes( L1,[]) ).

Figure 6.1: A multi-threaded program to generate prime numbers in IC-Prolog II

same as the XSB example.

IC-Prolog II The first of multi-threaded implementation to be reported was IC-

Prolog II [14]. IC-Prolog II provided the primitive t_fork/1 to create a thread to ex-

ecute a new subgoal. Within the same process threads communicate through pipes.

These are roughly similar to Unix pipes, but are message (term) oriented instead of

byte oriented. The primitive pipe/2 creates a new pipe and returns both its endpoints,

the input port and the output port. The primitives read_pipe/2 and write_pipe/2

allow reading and writing to the pipe.

Threads in different processes can use TCP/IP primitives for communication.

However IC-Prolog II also supplies a transparent communication mechanism, in the

form of mailboxes, whose location is transparent to the processes that intervene in the

communication, andwhich can be used for any thread in any process/machine to com-

municate with any other. Mailboxes may be bound to a global name, and the sending

and receiving of messages is done in strictly FIFO order, not being possible to retrieve

a message that is not the first, but unifies with a given term.

IC-Prolog II didn’t rely on native threads (the pthreads standard was only issued

later) and its threads were implemented at user level with a built-in scheduler, which

supported preemption. Figure 6.1 shows the multi-threaded program to generate

prime numbers in IC-Prolog II.

PVM-Prolog The author participated in the development of PVM-Prolog [22, 45, 46]

the extension of a Prolog core system produced at UNL with multi-threading and an

interface with the PVM System [72]. While multi-threaded programming allows the

Prolog process to react concurrently to external events, the PVM System allows mul-

tiple Prolog processes to be spawned and communicate among themselves. Threads
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worker( Qi, I, F , List , Tail) :-
list_of_primes( I, F , List , Tail),
q_put( Qi, primes( List , Tail) ).

master( N, L ) :-
partition_space( N, H , H1),

q_create( q1, 2, 65536, Q1 ),
q_create( q2, 2, 65536, Q2 ),
t_create( worker( Out1, 1, H , L, L1) ),
t_create( worker( Out2, H1, N, L1, []) ),

q_get( Q1, primes( L, L1) ),
q_get( Q2, primes( L1,[]) ),
q_destroy( Q1 ),
q_destroy( Q2 ).

Figure 6.2: A multi-threaded program to generate prime numbers in PVM-Prolog

communicate through deterministic FIFO term queues. PVM-Prolog’s multi-threading

is done by an internal scheduler, at the WAM level, and doesn’t support true parallel

execution among threads of the same process. The system was used as the imple-

mentation base for some research projects like in CAP [67] and GroupLog [4]. Fig-

ure 6.2 shows the multi-threaded program to generate prime numbers in PVM-Prolog.

In PVM-Prolog there was a memory limit for each term queue; if a queue would reach

its maximum memory size, the following q_put operations would block. This was

though to be essential so term queues wouldn’t exhaust the process’s memory. There’s

also the need to create two queues because terms can only be retrieved in FIFO order

(it isn’t possible to use unification to match an arbitrary term in the queue).

SICStus MT Amulti-threaded version of the commercial system SICStus Prolog has

been reported [31]. Threads are implemented at user level, by a built-in scheduler,

with preemption. For communication, each thread is associated with a term queue

from which it can consume terms. An arbitrary term can be retrieved from a queue

using unification. The sender thread sends terms directly to the receiver’s thread term

queue3. In Figure 6.3 we show the prime number example in SICStus MT, showing the

use of the private term queues.

BinProlog BinProlog4 is a multi-threaded commercial Prolog which builds on the

research efforts of Paul Tarau, implemented on Windows and UNIX platforms using

native threads. BinProlog has a synchronize/1 primitive that allows a set of goals to

3Those were later called in the proposed ISO standard “private term queues” as the term queue is
owned by the receiver thread.
4http://www.binnetcorp.com/BinProlog
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worker( Master, Id, I, F , List , Tail) :-
list_of_primes( I, F , List , Tail),
send( Master, primes( Id, List , Tail) ).

master( N, L ) :-
partition_space( N, H , H1),

self( Master ),
spawn( worker( Master, Id, 1, H , L, L1), _ ),
spawn( worker( Master, Id, H1, N, L1, []), _ ),

receive( primes( Id, L, L1) ),
receive( primes( Id, L1,[]) ).

Figure 6.3: A multi-threaded program to generate prime numbers in SICStus MT

worker( Id, I, F , List , Tail) :-
list_of_primes( I, F , List , Tail),
local_out( primes( Id, List , Tail) ).

master( N, L ) :-
partition_space( N, H , H1),

bg( worker(p1, 1, H , L, L1) ),
bg( worker(p2, H1, N, L1, []) ),

local_in( primes(p1, L, L1) ),
local_in( primes(p2, L1,[]) ).

Figure 6.4: A multi-threaded program to generate prime numbers in BinProlog

be run atomically. This is essentially the same functionality that other multi-threaded

Prolog systems support through mutexes. BinProlog uses the Linda [9] tuple space

model intensively, both among threads in a process, a local tuple space, and among

threads scattered through processes over the network, a global tuple space. It also

supports an high-level interface to sockets, inspired on Java’s, for high performance

communication. BinProlog allows the migration of threads [79] among processes; i.e. a

thread may be interrupted, have its state sent over the network, and be continued on

another process.

Jinni [80], a multi-threaded light-weight Prolog engine implemented in Java, can

run as a sibling process to the BinProlog process, using the same communication prim-

itives, and allowing for interoperability with other Java code. Figure 6.4 shows the

multi-threaded prime numbers generation program in BinProlog. The threads are us-

ing the tuple space local to the process to communicate.
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:- concurrent primes_q/3.

worker( Id, I, F , List , Tail) :-
list_of_primes( I, F , List , Tail),
assert( primes_q( Id, List , Tail) ).

master( N, L ) :-
partition_space( N, H , H1),

launch_goal( worker(p1, 1, H , L, []) ),
launch_goal( worker(p2, H1, N, L1, []) ),

retract( primes_q(p1, L, L1) ),
retract( primes_q(p2, L1,[]) ).

Figure 6.5: A multi-threaded program to generate prime numbers in Ciao

Ciao Prolog Ciao Prolog [7] supports a primitive inter-thread synchronization and

communication mechanism through the so called concurrent predicates [10]. Con-

current predicates are declared by using the concurrent directive. In a producer-

consumer model, the writer (producer) thread uses assertz/1 to write a fact at the

end of the buffer and the reader (consumer) thread uses a standard predicate call to

read a fact or retract/1 if it wants to consume the fact. The predicate call to a con-

current predicate blocks if there is no fact to read. The writer process may use the

close_predicate/1 to signal the consumer that it won’t be adding any more facts,

which will cause the reader to fail when trying to read the next fact. There are also non

blocking versions, call_nb/1 and retract_nb/1 of the reading predicates that never

block. Figure 6.5 shows the multi-threaded program to generate prime numbers in

Ciao. This example doesn’t really show the true potential of concurrent predicates as

only two pre-determined facts are passed among threads. Essentially the same pro-

gram using standard shared assert and retract could be done, provided that the

master thread would wait for the worker threads to finish (with join_goal/1 in Ciao).

Ciao’s multi-threaded implementation uses native threads from the operating system

and is capable of parallel execution.

Qu-Prolog Qu-Prolog was designed as a language to support interactive theo-

rem provers. It supports a multi-threaded programming model [16] based on user

level threads, implementing a built-in scheduler with preemption. The primitives

thread_forbid and thread_resume can be used to disable and later enable preemp-

tion, allowing the programming of atomic actions without the use of mutex locks.

Threads are identified by a triple < T hread− id,Process− id,Machine− id > on the dis-

tributed system and communication is done by explicitly naming the sender and re-

ceiver threads. Between each pair of threads a communication channel is established
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worker( I, F , List , Tail) :-
list_of_primes( I, F , List , Tail),
m_primes( List , Tail) −>> creator.

master( N, L ) :-
partition_space( N, H , H1),

thread_fork( Worker1, worker(1, H , L, L1) ),
thread_fork( Worker2, worker( H1, N, L1, []) ),

m_primes( L, L1) <<= Worker1,
m_primes( L1,[]) <<= Worker2.

Figure 6.6: A multi-threaded program to generate prime numbers in Qu-Prolog

from which the receiver thread can read terms in FIFO order, with the ipc_recv/4

primitive, or used the ipc_peek/5 to try to find a message that unifies with the argu-

ment. In both cases there is an option, timeout , which can be set to poll , block or

an integer N, to specify the communication to be respectively non-blocking, blocking

or blocking with a timeout of N seconds. An option to remember variable names is

also provided, allowing for multiple messages to share variables among themselves.

The messages are associated with the sender address and a reply-to address. Unifi-

cation can be used either in the message itself or on the sender’s address to fetch a

particular message from the queue. This essentially corresponds to a sophisticated

form of private message queues, which can be used transparently over the distributed

system. The communication primitives are used to implement higher level communi-

cation predicates for exchanging messages, which included guarded communication.

Qu-Prolog also allows for the shared predicate database of a process to be used for syn-

chronization through a special meta-call thread_wait that allows the call to retract/1

or clause/1 to suspend. A Linda tuple space is implemented using these primitives.

In Figure 6.6 the multi-threaded program that generates prime numbers is shown,

using the high-level communication mechanism of Qu-Prolog. Notice the ability to

name the sender in the message receiving predicate.

SWI-Prolog SWI-Prolog [85] is a popular open source Prolog system, that supports

native threads under UNIX and Windows [86]. SWI-Prolog’s API for thread manage-

ment, communication and synchronization is very similar to the one for XSB, presented

in Section 3.2. This is the interface defined by the proposed ISO standard for the multi-

thread extensions to Prolog [52]. SWI-Prolog was the original implementation of this

interface. It also has a thread_signal/2 predicate, which allows a thread to interrupt

another. The interrupted thread is given a goal to execute – this might be to throw

an exception and interrupt the regular flow of control of the thread. thread_signal is

also on the proposed ISO multi-threading extension. SWI-Prolog also supports thread
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worker( Q, Id, I, F , List , Tail) :-
list_of_primes( I, F , List , Tail),
thread_send_message( Q, primes( Id, List , Tail) ).

master( N, L ) :-
partition_space( N, H , H1),

message_queue_create( Q),
thread_create( worker( Q, p1, 1, H , L, L1), _, [detached(true)]),
thread_create( worker( Q, p2, H1, N, L1, []), _, [detached(true)]),

thread_get_message( Q, primes(p1, L, L1) ),
thread_get_message( Q, primes(p2, L1,[]) ),
message_queue_destroy( Q ).

Figure 6.7: A multi-threaded program to generate prime numbers in SWI-Prolog

private dynamic predicates, however, unlike XSB, dynamic predicates are by default

shared among threads. Another Prolog that supports threads following the proposed

ISO multi-threading extension is Yap [19].

SWI-Prolog implements garbage a collector for the atom space suspending all the

threads and then running the global garbage collector and it allows garbage collection

of retracted shared predicates. In Figure 6.7 we present the prime number generation

example in SWI-Prolog.

P# P# [17] is a Prolog compiler for the .NET framework [49]. It translates Prolog

code into C#, which is to be later translated to MSIL, the .NET intermediate language,

and allows interoperability with C#. P# allows a thread to be created through the

fork/2 primitive that has a goal to execute in the first argument and return an han-

dle to the C# object that is created to evaluate that goal in the second argument. P#

differs from the other multi-threaded Prolog systems presented in this section, in that

variables may be shared among the newly created thread and the creator thread. One

of the threads may use the wait_for/1 predicate to wait for the variable to be bound.

Repeated uses of the wait_for/1 primitive will return successive bindings of the vari-

able, done through backtracking. It also supports atomic execution through the lock/1

and unlock/1 primitives. The primitive backtrackable_lock/1 sets a lock which is un-

locked by failure over the primitive. The regular Prolog database predicates (assert et

al) refer to a thread private database. To access shared predicates, the global table pred-

icates must be used. We couldn’t find anything about remote communication in P#’s

documentation, so we assume that the interoperability with C# must be used to that

end.

We should notice that, whereas there are variables which are syntactically shared

among threads, there is really a hidden copy of the variable value from one thread’s
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worker( I, F , Di f f List) :-
list_of_primes( I, F , List , Tail),
Di f f List = List−Tail.

master( N, L ) :-
partition_space( N, H , H1),

fork( worker(1, H , D1) ),
fork( worker( H1, N, D2) ),

wait_for( D1 ),
wait_for( D2 ),

L−L1 = D1,
L1− [] = D2.

Figure 6.8: A multi-threaded program to generate prime numbers in P#

stacks to another, at the time of the binding of the variable, and which triggers success

of the wait_for/2 predicate. This is done using the global_assertz primitive. In

Figure 6.8we show the prime number generation example programmed in P#. It shows

that for complex data structures the shared variables aren’t a clear improvement on the

message passing used by other multi-threaded Prolog systems.

Logtalk Logtalk [51,53] is an object oriented extension for Prolog that has been imple-

mented over most popular Prolog systems, including XSB5. Logtalk provides an object

oriented interface to multi-threading which is similar to Java, including threaded ob-

jects, synchronized methods and the notify and wait primitives.

Logtalk allows the starting of a goal in a thread by the threaded_call/1 predicate.

The results may be retrieved through a call to the threaded_exit/1 predicate, which

allows to retrieve the bindings of the variables resulting from the execution of the goal.

Logtalk also supports a form of And-parallelism, so that a conjunction of goals is

executed in parallel, in different Prolog threads. This is illustrated in Figure 6.9 for

the prime number generation example. Another mechanism supported by Logtalk is

threaded_race which evaluates in parallel a number of goals and allows the user to

retrieve the answer returned for the first one to finish. This may be seen as a form of or

parallelism. And parallelism and Or parallelism are discussed in the next section.

Summary In Table 6.1 we present a summary of some of the most important features

offered by the systems discussed in this section, together with our XSB implementa-

tion. Native thread support is important because it allows parallelism to be exploited.

Thread private dynamic predicates are a most useful features, as Prolog programmers

5At the time of the writing Logtalk still didn’t support threads in XSB.
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worker( I, F , List , Tail) :-
list_of_primes( I, F , List , Tail).

master( N, L ) :-
partition_space( N, H , H1),

threaded( (
worker(1, H , L, L1),
worker( H1, N, L1,[]) ) ).

Figure 6.9: A multi-threaded program to generate prime numbers in Logtalk

like to use assert and retract to keep state information, and allowing state to the com-

putation of a thread is an important feature. Remote communication mechanisms are

important in implementing distributed applications. Higher level layers to basic multi-

threading functionality, like the one from Logtalk, are appearing, to make the use of

multi-threading more transparent to the programmer.

6.2 Parallel Tabling over Shared Memory Environments

In this section we address proposals for using implicit parallelism with tabling in

shared memory systems. Basically Logic Programs provide two main sources of par-

allelism – Or parallelism which allows the parallel execution of different clauses of a

predicate and And parallelism where the literals of a clause are evaluated in parallel.

And-parallelism can be classified in dependent and independent subclasses, depen-

dening on whether the goals that are executed in parallel are able to share logical vari-

ables or not. The first class implies communication among parallel goals, and is thus

more complex to implement.

Aurora [44] is an example of an early Or-parallel implementation of Prolog. To-

day, Or-Parallel Prolog implementations are available for popular Prolog systems, like

SICStus (Muse) [2] and Yap (YapOr) [60]. An early implementation of an indepen-

dent And-Parallel system was &-Prolog [38]. The Andorra I system is an example of

an implementation of dependent And parallelism6 [18]. For a survey of the various

dimensions involved in the implementation of and and or parallelism, see, for exam-

ple [37].

We consider a new source of parallelism is present in tabled programs, by consid-

ering the evaluation of each tabled subgoal as a parallel process. This is referred to as

table parallelism.

6The Andorra model not only provides dependent And parallelism, but also extends Prolog clauses
with flat guards, effectively subsuming FGHC [82]which itself belongs to the group of committed choice
languages mentioned in Section 6.1; The Andorra model also combines And parallelism with Or paral-
lelism.
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Native Primitive Thread Remote
Threads Inter-Thread Private Communic.
Support Communication Dynamic Model

Model Predicates
TCP/IP

IC-Prolog II No Pipes No
Mailboxes

PVM-Prolog No Global Term Queues No PVM

SICStus MT No Private Term Queues No Sockets

Windows Java Like Sockets
BinProlog Linux Linda No

Solaris Linda

Ciao Posix Concurrent Predicates No Sockets

Private Term Queues
Qu-Prolog No No Private Term Queues

Shared Predicates
SWI-Prolog Posix Private and Global

Term Queues Yes Sockets
Yap Windows Signals

P# .NET Shared Variables Yes Relies on C#

Posix
XSB Global Term Queues Yes Sockets

Windows

Table 6.1: Summary of the features supported by several Multi-Threaded Prolog sys-
tems
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6.2.1 Proposals for Parallel Evaluation of Tabling

Several proposals have been made concerning the parallel execution of tabling; how-

ever to our knowledge only the OPT model has been implemented.

Linear Tabling Proposal In [35] an implementation of tabling is proposed that

doesn’t involve the suspend and resume mechanism. The calls to table subgoals are

saved in the table, and when a variant call is encountered the environment is copied

to the new call and the computation of the tabled subgoal proceeds. Termination is

detected when after trying all tabled calls, no more solutions are found. This mecha-

nism of implementation involves less changes in the WAM (e.g. no freezing) but may

involve the re-computation of Prolog goals, called by the tabled predicates.

Because of the closeness to the WAM, the authors argue that this implementation

should be easier to parallelise by using standard parallel Prolog technology. However

we are not aware of such parallel implementation being available so far.

Table Parallelism Table Parallelism [33] considers a source of parallelism for tabled

programs consisting of evaluating different tabled subgoals in parallel. The paper pro-

poses an implementation framework, where each process computes a different tabled

subgoal. The global table information is shared and the completion stack is replaced

by a completion table and a subgoal dependency list which are shared by all processes.

The shared subgoal dependency list is used to compute the leader of an SCC. The com-

pletion table has several items for each incomplete subgoal, including a color field,

used by the parallel completion algorithm that detects completion. This algorithm is a

variation of Dijkstra’s [29] parallel termination algorithm that contemplates the chang-

ing topology of the SDG is used to detect the completion of an SCC. Our Concurrent

Completion engine can be used as a start to implement Table Parallelism. Whether us-

ing the more sophisticated parallel termination algorithm, instead of our simple Con-

current Completion algorithm, pays off in gains for the parallel execution of tabled

programs is an open question.

6.2.2 OPTYap - a Parallel Tabling System

YapTab [59] is an implementation of tabling over the popular Yap [19] Prolog system,

similar in many aspects to the SLG-WAM. The main difference is that YapTab doesn’t

have a completion stack. Instead it has a dependency frame area. Each dependency

frame corresponds to a consumer choice point, and as such, the dependency frames

could have been kept on the choice point stack, but with parallelism in view, they

opted to keep them in a separate area, which would be shared in a parallel implemen-

tation. The completion algorithm traverses the dependency frames to check if they

have unreturned answers, but unlike in XSB it doesn’t chain the dependency frames
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that have unreturned answers, returning answers only to the first consumer node. Lo-

cal scheduling is implemented by associating a dependency frame with a generator

choice point, so that all the alternatives in the generator choice point are exhausted

before the dependency frame starts to return the answers to the parent environments.

Unlike XSB, YapTab doesn’t support negation for tabled subgoals.

YapOr [60] is a Or-Parallel Prolog implementation based on the Yap system. On Or-

Parallel Prolog systems each Or-branch of the search tree is explored by a workerwhich

corresponds to a process or a thread, executing in parallel. Or-branches stem from

Or-nodes which correspond to the point of execution in which multiple clauses can

be executed. Or-Parallel Prologs have two important dimensions: how to differentiate

bindings of variables that are common to several workers (conditional bindings), and

how to schedule the work among different workers.

The two approaches to support conditional bindings are called environment shar-

ing and environment copying. With environment sharing the stacks are shared among

all workers and separate bindings are kept for each worker (for example through bind-

ing arrays). With environment copying a different copy of the stacks is kept for each

worker. These copies are made on demand, using a technique called Incremental Copy-

ing which minimizes the portions of the stacks to be copied. As the classic Or-Parallel

systems are concerned, Aurora uses environment sharing while Muse uses enviroment

copying.

The scheduler is a significant part of the Or-Parallel implementation, which manages

the distribution ofwork among idle workers and chooses which alternatives to explore.

As the search tree includes or nodes within Or-branches and as such there must be a

strategy to allocate Or-branches to workers. The scheduler must incur in minimum

overhead, maximize the efficiency of the search and preserve the Prolog semantics and

as can be easily seen is critical for the success of an Or-Parallel system. YapOr uses the

environment copying approach and its scheduler is based on the Muse scheduler.

OPTYap [58, 61, 63] is a combination of YapOr and YapTab, to implement the OPT

model. OPT stands for Or Parallelism within Tabling, and allows workers to explore

the different alternatives in an Or-Node within a tabled computation.. Whenever a

worker doesn’t have more answers to the consumer nodes of the subgoal in its SCC

and determines that it depends on branches that are outside this SCC, instead of sus-

pending and waiting for the other branches to return answers, it suspends the current

SCC, saving the stacks, and becomes ready to explore other alternatives. The saved

SCCs can be reloaded later, for example by workers working on nodes which depend

on such SCCs or by idle workers, to which the scheduler attributes this SCC. Each

suspended SCC is linked to the Or-Frame in which it arose so that the worker knows

which SCCs are suspended on its branch. Completion is only possible when (a) there

are no answers to return to this SCC, (b) there are no other workers active or unex-

plored branches in any Or-Nodes of this SCC and (c) there are no saved SCCs to which
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answers can returned. This approach is very different from our completion schemes, in

that we leave the control of the execution of the threads to the programmer, while the

OPT-Yap scheduler can decide whether workers will or will not explore alternatives in

the current SCC. OPTYap’s work takes in consideration the layout of the shared data

area (ensuring that different pages will be used to access data structures that may be

accessed by different workers, to avoid memory contention problems) which can be

compared with our structure managers, although OPTYap has done much better in

practice. OPTYap also explores different policies for locking the shared table space

(the tries) at various levels – this is further explored in [62] — in our work we followed

the much simpler approach of either locking the entire call trie or avoid locking the

answer tries at all. As YapTab, which is its base, OPTYap doesn’t support negation

of tabled subgoals. OPTYap gives very good speedups for tabled programs in multi-

processors, as reported in [62], which is evenmore impressive when one considers that

Yap is already a very fast system.

6.3 Tabling over Distributed Memory Environments

Computing tabling in a distributed memory environment, where there is no single

view of the global state, is also a much harder problem then supporting concurrency

in a shared memory environment. Both the determination of the topology of the SDG

and the detection of quiescence is a significantly harder problem, which solution in-

volves additional costs in performance. However, other than for eventual gains in

performance, such approaches will pay off in case of the need to maintain tables for

subgoals in different geographic locations, where the tabling systemmust reason about

geographically distributed information to achieve a global result. Another advantage

of distributed tabling may be the possibility of the use of the huge memory space that

is available in distributed computers, and which might allow some problems which

require very large tables to be solved.

Distributed XSB In [39] XSB was extended to allow the distributed evaluation of

tabled subgoals. The dependencies among subgoals are encoded in a number that is

attributed to each subgoal and the dependency graph is kept distributed, each process

maintaining its subgoal dependencies through the subgoal numbers. For instance if

subgoal G1 with number 1.2 called subgoal G2, G2’s number would be 1.2.1. Subgoal

G1 would depend all subgoals that have its number as a prefix, subgoals 1.1, 1.2 and

1.2.1. As in the tabled evaluation there may be cross dependencies, and additional de-

pendency list has to be kept for each subgoal. Termination detection is based on the

Dijkstra-Scholten algorithm message counting algorithm [30]. The complexity associ-

ated with maintaining the distributed dependency and detecting completion informa-

tion is N3 in messages. The dependencies (subgoal numbers) must be passed among
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processes, and as such the messages can get arbitrarily big.

For the implementation of this work, the XSB process was extended to allow con-

current computations, by using the freeze mechanism. In this way different threads

shared the same SLG-WAM and space reclamation in the stacks was impossible. This

allowed for the implementation of a running prototype, but wasn’t extended to sup-

port the execution of real applications.

Distributed Tabling Architecture In [23] a distributed tabling system is proposed.

The implementation uses classes of processes: the goal manager, the table manager, the

table storage clients and the table storage clients. The goal manager provides an inter-

face between the distributed tabling system and the outside world. The table manager

decides on the location of the tables among the several table storage clients, guaran-

teeing the uniqueness of the tables. The table storage clients store the tables of tabled

subgoals and provide for the returning of answers to table prover clients. The prover

clients are the inference engines that prove the subgoals.

Dependency information is centralized on the table manager, and as such, the N3

message complexity of the previous system is overcome. To detect completion of the

SCCs the credit recovery algorithm [48] for detecting distributed termination is used.

This is based on distributing a number of credits to the processes, which return them

when they are done. When all credits are returned, the computation has terminated.

This has N message complexity. A clever representation of the number of credits at-

tributed to each process allows to keep a precise account of the credits used by each

process using messages of constant size.

The implementation of the system was done through a Prolog meta-interpreter us-

ing PVM-Prolog. The different processes react to concurrent external events using the

multi-threaded features of PVM-Prolog and communicate via the PVM interface. It is

described in [3].

Chapter Summary In this chapter we presented several multi-threaded Prolog sys-

tems, showing the evolution of the multi-threaded Prolog programming model until

the current ISO standard proposal. We discuss the Prolog implicit parallelism approach

applied to tabling, discussing an Or-Parallel Tabling system, OPT-Yap. In the end we

presented some approaches taken to the problem of distributed memory computation

of tabling.
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7
Performance Analysis

In this Chapter we analyze the performance of the multi-threaded XSB system.

We measure the performance of two engines:

• The engine using Shared Completed Tables as the concurrent tabling algorithm

and Local as the scheduling policy

• The engine using Concurrent Completion as the concurrent tabling algorithm

and Batched as the scheduling policy

These engines are available in XSB’s cvs repository 12. The benchmark programs

themselves are available in the repository3.

We measure the overhead of each of these engines vs. the sequential engine, and

tested their scalability both on a dual core processor system and on a multi-processor.

We also used a single processor system to show some of the properties of the Shared

Completed Tables. The times taken were the CPU times for the overheads section and

the elapsed time for the other two sections.

The measurements were taken from the following systems:

• A 2 GHz Intel Pentium M Laptop with 1 GB of memory, running Fedora Core 6

Linux.

• A 2.13 GHz Intel Core 2 Duo Desktop with 2 GB of memory, running Fedora Core

6 Linux.
1xsb.sourceforge.org
2The version used in the tests in this chapter is taggedmt_thesis and will soon be released as version

3.1.
3The benchmarks programs are in the module mttests tagged as mt_thesis .
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• A 2 GHz Intel Core 2 Duo Laptop with 2 GB of memory, running Mac OS X

version 10.4.8.

• A 16 processor SPARC4 running Solaris 6.

We’ll refer to the first system as the “mono-processor system”, to the second system

as the “Linux system” or as the “Dual Core system”, to the third system as the “Mac

OS X system” and the fourth system as the “Solaris system” or as the “Multi-processor

system”.

In all measurements the engines were compiled using maximum optimization al-

lowed by the system compiler. All times were taken as the best of three runs.

All the benchmarks were run a number of iterations, which tried to make different

benchmarks take times of approximately the same magnitude, except for the random

graph benchmarks used in Section 7.3 which run the programs only once.

7.1 Overhead for Execution of One Thread

In this section we analyze the overhead of supporting multi-threading in the engine

for the execution of a single thread. This is important to show that the multi-threaded

system can efficiently run single threaded programs.

As we saw in Chapter 3 there are two main factors that introduce overheads: lock-

ing shared data structures (e.g. the clause database) and using the thread context local

variable to access SLG-WAM variables (e.g. the WAM EREG register). The use of local

variables also implies the existence of an extra parameter in function calls to pass the

context data among different functions.

For programs with tabling there are some more specific overheads, relating to the

different SLG-WAM instructions for concurrent tabling (as seen in chapters 4 and 5)

and the use of the dispatch block to select the table information frame for the actual

thread (as seen in Chapter 3).

7.1.1 Prolog Execution

Here we examine the execution of Prolog programs. Deriv, nrev, qsort,serialise and

query are the original WAM benchmarks5, which are run a number of times for each

test. Tak is a benchmark that runs the Ackermann function6 . Compiler is the XSB

compiler which is used to compile a file.

Query stresses choice point creation and use, particularly with regard to shallow

backtracking; nrev (naive reverse) stresses trail-recursive list traversal that does not re-

quire choice point creation; deriv (computation of the derivative of a polynomial) tests

4For site policy reasons we were only able to use 8 processors.
5Designed by D. H. D: Warren
6Designed by C.R. Ramakrishnan
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load
Lock symbol string undef dynamic io gentag
Benchmark
deriv 9 50 0 2 0 0
nrev 9 50 0 2 0 0
qsort 9 50 0 2 0 0
serialise 9 51 0 2 1 0
query 9 50 0 0 0 0
tak 9 50 0 0 0 2
compiler 71416 15323 27 1554 4 0

Table 7.1: Lock usage for Prolog benchmarks

Benchmark Sequential Multi-threaded Overhead
engine engine

deriv 1.11s 1.21s 9%
nrev 2.12s 2.06s -2%
qsort 1.21s 1.23s 2%
serialise 1.31s 1.47s 12%
query 1.47s 1.48s 1%
tak 0.82s 0.78s -3%
compiler 0.33s 0.34s 2%

Table 7.2: Overheads of the multi-threaded engine for Prolog benchmarks for one
thread in Linux

trailing and untrailing of variables; tak, the non-primitive recursive Ackermann func-

tion, tests determinacy detection within clause selection. Qsort, serialise, and compiler

test different combinations of Prolog functionality.

Table 7.1 shows the lock usage for the Prolog benchmarks. The symbol lock is the

lock on the symbol table, used to store the Prolog functors; the string lock is the lock

on the atom table; the dynamic lock is used for dynamic code; the load undef lock is used

for dynamic loading of static predicates; the io lock is used to synchronize diverse I/O

operations; and the gentag lock is used for the tag table that must be used in Linux. See

Chapter 3 for details on these locks.

This table shows that the WAM benchmarks use few locks, and that the compiler

benchmark intensively uses the locks on the string table and on the functor (symbol)

data structures.

In Table 7.2 the execution overheads for the Linux system are shown. The results

show overheads from 12 to -3%. There is no known relationship between the overhead

and known factors of the multi-threaded implementation, and this and other tables

that follow suggest that the overhead is somewhat random, based on the patterns of

storage of the code in memory, like the alignment of instructions and data in virtual

memory pages and cache blocks. These results show a small overhead for some cases,
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Benchmark Sequential Multi-threaded Overhead
engine engine

deriv 1.74s 1.74s 0%
nrev 3.71s 3.49s -5%
qsort 1.86s 1.70s -8%
serialise 0.61s 0.53s -12%
query 1.75s 1.64s -5%
tak 1.19s 1.11s -2%
compiler 0.47s 0.45s -3%

Table 7.3: Overheads of the multi-threaded engine for Prolog benchmarks for one
thread in the Mac OS X system

:- table ancestor/2.
ancestor(X,Y) :- move(X,Z), ancestor(Z,Y).
ancestor(X,Y) :- move(X,Y).

Figure 7.1: Ancestor with right recursion

while in most cases the overhead is negligible for Prolog.

We were surprised that in the Mac OS X system (see Table 7.3) the multi-threaded

system is actually a little faster (0 to 12%) than the sequential engine in most of the

benchmarks. However it’s noticeable that the times are somewhat slower on the Mac

OS X System, which suggests less compiler optimization of the XSB system, since the

processor clock is only slightly slower than the one of the Linux system, and the pro-

cessor is the same (although the mobile version.)

Given the range of overheads for the two platforms tested, it appears that the cost

for introducing multi-threading in Prolog is less than random factors accounted by

small changes in the execution environment, such as the patterns of code generated by

the compiler, the operating system overheads, etc.

7.1.2 Transitive Closure Benchmarks

In this section we examine some simple programs that make intensive use of tabling.

The ancestor relation with right recursion is show on Figure 7.1 and was run over

a move/2 relation configured as a cycle and as chain with 1024 nodes each. It creates

a new table for each invocation of the predicate, so our tests create and abolish 1024

tables. Note that running this predicate over a cycle would loop in Prolog.

The ancestor relation with left recursion is shown on Figure 7.2. It was also run

:- table ancestor/2.
ancestor(X,Y) :- ancestor(X,Z), move(Z,Y).
ancestor(X,Y) :- move(X,Y).

Figure 7.2: Ancestor with left recursion

132



:- table win/1.
win(X) :- move(X,Y), tnot(win(Y)).

Figure 7.3: “Win not win” program

over a cycle and a chain with 1024 nodes each. This predicate tables only one subgoal,

no matter howmany nodes the move relation has. Note that this program relies on the

ancestor predicate being tabled, as it would loop in Prolog.

The “win not win” program is shown on Figure 7.3. tnot/1 is the well founded

negation operator for tabled predicates. The program was run over a cycle and a chain

of 2048 nodes each. The “win not win” program over a cycle is an example of non

stratified negation.

We compare execution of these programs on the sequential engine and on themulti-

threaded engine where they were run both with shared tables and private tables.

With tabling the sources of overhead are the same as in Prolog (locks, use of the

context data structure and passing of an extra parameter) plus the use of dispatch

blocks for private tables.

Shared Completed Tables using Local Scheduling

In this section we analyze the performance of the engine that uses Shared Completed

Tables as the concurrent tabling algorithm, and Local as the scheduling policy. As

there’s only one thread the concurrent tabling algorithm is not the main object of test,

but nevertheless it also adds some overhead.

Table 7.4 analysis the usage of the different locks that protect critical sections of

code in the multi-threaded engine by the transitive closure benchmarks. The call trie

lock is used to protect the search/insert operation of a new subgoal in the call trie —

it’s not really one lock, but a set of locks, one for each predicate’s call trie; the delay

lock is used to protect access to shared delay lists for well founded negation; the struct

manager lock protects the structure managers (see Chapter 3) – again it’s not really one

lock, but a set of them, one for each structure manager. The compl (completion) lock

protects the relevant sections of the check_complete and table_try instructions and allows

for integration of shared and private tables. For more details on these locks see Section

4.1. The lines referring to the ancestor benchmarks show the total lock accesses for both

right and left recursion benchmarks.

This table shows that for private tables only the symbol and completion locks get

to be used. For shared tables the structure manager lock is very intensively used. For

non stratified negation programs (win not win) the delay lock which protects the delay

lists of shared tables is also intensively used.

In Linux (see Table 7.5) the overheads for the multi-threading system are somewhat

larger (1 to 22% for private tables) than for the Prolog benchmarks. The shared tables

show a much larger overhead than the private tables (from 25 up to 120%) probably
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call struct
Lock trie symbol delay string manager compl
Benchmark
ancestor chain 0 9226 0 200 0 7096
private
ancestor chain 10096 9226 0 200 15590492 10096
shared
ancestor cycle 0 9220 0 201 0 3002
private
ancestor cycle 8050 9220 0 201 15579088 6004
shared
win chain 0 212 0 187 0 819200
private
win chain 819200 212 0 187 4096800 1638000
shared
win cycle 0 212 0 186 0 150
private
win cycle 307200 212 307200 186 2150700 307350
shared

Table 7.4: Lock usage for Transitive Closure benchmarks with Local scheduling in the
Shared Completed Tables engine.

Benchmark Sequential Private Overhead Shared Overhead
Engine Tables Tables

Left rec. chain 1.58s 1.88s 19% 2.44s 55%
Left rec. cycle 1.60s 1.94s 22% 2.48s 54%
Right rec. chain 0.40s 0.44s 12% 0.87s 120%
Right rec. cycle 0.48s 0.55s 13% 0.95s 98%
Win chain 1.38s 1.53s 11% 2.04s 48%
Win cycle 1.00s 1.02s 1% 1.26s 25%

Table 7.5: Times for the Transitive Closure benchmarks for one thread using Local
scheduling in the Shared Completed Tables engine in Linux
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Benchmark Private Without Lock Shared Without Lock
Tables Locks Impact Tables Locks Impact

Left rec. chain 1.88s 1.83s 2% 2.44s 1.86s 31%
Left rec. cycle 1.94s 1.91s 1% 2.48s 1.87s 32%
Right rec. chain 0.44s 0.44s 0% 0.87s 0.45s 93%
Right rec. cycle 0.55s 0.52s 5% 0.95s 0.53s 79%
Win chain 1.53s 1.43s 6% 2.04s 1.54s 32%
Win cycle 1.02s 1.06s -3% 1.26s 1.10s 14%

Table 7.6: Gain for taking out the locks in the multi-threaded engine with Local
scheduling in the Shared Completed Tables engine for Transitive Closure benchmarks
on Linux

Benchmark Sequential Private Overhead Shared Overhead
Engine Tables Tables

Left rec. chain 2.75s 2.57s -5% 2.80s 2%
Left rec. cycle 2.90s 2.64s -8% 2.86s 0%
Right rec. chain 0.63s 0.62s 0% 0.78s 26%
Right rec. cycle 0.72s 0.74s 3% 0.90s 24%
Win chain 2.18s 2.28s 5% 2.48s 14%
Win cycle 1.65s 1.67s 1% 1.78s 8%

Table 7.7: Times for the Transitive Closure benchmarks for one thread using Local
scheduling under the Shared Completed tables engine in Mac OS X

due to the structure manager lock.

In Table 7.6 we analyze the result of taking out the locks for single threaded exe-

cution of the Transitive Closure benchmarks. These results show very small gains for

taking out the locks with private tables and a big gain (almost as big as the overhead

for executing the multi-threaded engine) for taking out the locks on shared tables. This

table proofs that the big overhead for shared tables comes from the use of locks.

In the Mac OS X system (see Table 7.7) with private tables the multi-threaded sys-

tem we see a more random pattern of overheads. In some cases the multi-threaded

system is faster in others it’s slower and in one case the times are the same. This con-

firms the results of Prolog that show that in the Mac OS X System the multi-threaded

system is sometimes faster. With shared tables the multi-threaded system is a little

slower, which again we account for the use of locks to access the shared structure man-

agers.

Concurrent Completion using Batched Scheduling

In this section we analyze the performance for the engine that uses Concurrent Com-

pletion as the concurrent tabling algorithm and Batched as the scheduling policy. The

overhead of the concurrent tabling algorithm is not the main factor being stressed be-

cause there’s only one thread.
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call cons struct
Lock trie list symbol string manager compl
Benchmark
ancestor chain 0 0 9226 201 0 10096
private
ancestor chain 10096 3000 9226 201 15583400 10096
shared
ancestor cycle 0 0 9220 201 0 6002
private
ancestor cycle 8050 3002 9220 201 15574040 6002
shared

Table 7.8: Lock usage for Transitive Closure benchmarks using Batched scheduling in
the Concurrent Completion engine.

Benchmark Sequential Private Overhead Shared Overhead
Engine Tables Tables

Left rec. chain 1.71s 1.96s 15% 2.46s 44%
Left rec. cycle 1.77s 2.03s 14% 2.52s 42%
Right rec. chain 1.30s 1.31s 1% 1.59s 22%
Right rec. cycle 1.20s 1.05s -12% 1.66s 38%

Table 7.9: Times for the Transitive Closure benchmarks for one thread using Batched
scheduling in the Concurrent Completion engine in Linux

With batched scheduling we didn’t consider the negation benchmarks, as negation

is not completely stable for batched scheduling in the Multi-threaded engine.

Table 7.8 analyzes the usage of the different locks that protect critical sections of

code in the multi-threaded engine by the Transitive Closure benchmarks. The cons

(consumer) list lock is the lock that ensures correct management of the consumer lists,

including external consumers in the concurrent completion. The compl (completion)

lock forces the check_complete instruction to execute in mutual exclusion – note that

this is not really the same completion lock discussed on the last section, although it

is similar. See Section 5.1 for details on these locks. This table shows that for private

tables only the symbol and completion locks are really used. For shared tables the

structure manager lock is very intensively used.

In the Linux machine (see Table 7.9) one of the benchmarks is faster in the multi-

threaded engine for private tables and these results seem a lot more random than the

ones for shared completed tables which is difficult to explain. For shared tables the

results are a little more consistent, and some overhead shows, which we attribute to

the structure manager locks.

In Table 7.10 we analyze the changes for compiling the multi-threaded engine with-

out locks for the Transitive Closure benchmarks in Linux. It shows very small to no

gains at all for private tables. For shared tables it shows a significant gain, as for Shared
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Benchmark Private Without Lock Shared Without Lock
Tables Locks Impact Tables Locks Impact

Left rec. chain 1.96s 1.93s 1% 2.46s 1.85s 32%
Left rec. cycle 2.03s 1.97s 3% 2.52s 1.90s 32%
Right rec. chain 1.31s 1.31s 0% 1.59s 1.24s 28%
Right rec. cycle 1.05s 1.05s 0% 1.66s 0.91s 82%

Table 7.10: Gain for taking out the locks in the multi-threaded engine with Batched
scheduling in the Concurrent Completion engine in Linux

Benchmark Sequential Private Overhead Shared Overhead
Engine Tables Tables

Left rec. chain 2.77s 2.65s -3% 2.91s 5%
Left rec. cycle 2.95s 2.73s -7% 2.99s 1%
Right rec. chain 1.80s 1.83s 2% 1.83s 2%
Right rec. cycle 1.46s 1.48s 1% 1.65s 12%

Table 7.11: Times for the Transitive Closure benchmarks for one thread using Batched
scheduling in the Concurrent Completion engine in Mac OS X

Completed tables, derived from the elimination of the structure manager lock.

Table 7.11 shows the execution times for the Transitive Closure benchmarks in

the Mac OS X system. The private tables show somewhat random overheads (three

cases have gains and one is equal) confirming that in the Mac OS X System the multi-

threaded engine sometimes performs better than the sequential engine. The overheads

for the shared tables are also somewhat random, being in some cases better than the

private tables.

These Transitive Closure benchmarks show overheads which are much more un-

stable. In most cases they are much larger than in Prolog, but in some cases the times

are actually much better for the multi-threaded engine. The Concurrent Completion

implementation also shows more performance instability than the Shared Completed

Tables implementation.

7.1.3 Abstract Interpretation Benchmarks

In this section we examine the behavior of some programs generated by program anal-

ysis that make use of tablingmixedwith Prolog. These programs were used tomeasure

the timings for the CHAT implementation described in [27]. These programs are more

representative of the SLG-WAM instruction mix for ’practical’ programs than those

of the previous section. The programs are run a number of times and the tables are

abolished between runs.
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call struct
Lock symbol trie string manager compl
Benchmark
cs_o private 378 0 742 0 15200
cs_o shared 581 19800 882 151600 28000
cs_r private 378 0 742 0 7600
cs_r shared 581 17300 882 81000 21200
disj private 376 0 740 0 29600
disj shared 579 53600 880 220800 70800
gabriel private 378 0 742 0 16520
gabriel shared 581 31640 882 157640 42560
kalah private 380 0 744 0 29400
kalah shared 583 61800 884 329700 78000
peep private 378 0 742 0 4600
peep shared 581 13300 882 82400 15700
pg private 377 0 741 0 19200
pg shared 580 26800 881 119200 42000

Table 7.12: Lock usage for Abstract Interpretation programs for Local scheduling in the
Shared Completed Tables engine

Benchmark Sequential Private Overhead Shared Overhead
Engine Tables Tables

cs_o 1.77s 1.73s -1% 1.74s -1%
cs_r 1.70s 1.67s -1% 1.68s -1%
disj 2.18s 2.02s -6% 2.04s -5%
gabriel 1.70s 1.77s 4% 1.71s 1%
kalah 1.71s 1.72s 1% 1.76s 3%
peep 1.74s 1.68s -2% 1.70s -1%
pg 1.71s 1.67s -1% 1.71s 0%

Table 7.13: Times for the Abstract Interpretation programs for one thread using Local
scheduling in the Shared Completed tables engine in Linux

Shared Completed Tables using Local Scheduling

In this section we analyze the performance for the engine that uses Shared Completed

Tables as the concurrent tabling algorithm and Local as the scheduling policy. Again

the concurrent tabling algorithm’s overhead not the main object of test as there’s only

one thread.

Table 7.12 shows the usage of locks for the Abstract Interpretation programs in the

multi-threaded engine. It shows that the structure manager lock is only used with

shared tables. Otherwise the completion lock is also used significantly.

In Table 7.13 we see the times of execution of the Abstract Interpretation programs

for the Linux machine. It shows a very small, some times even negative, overhead for

private tables (-6 to 4%). These are effectively less than the overheads for Prolog. The
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Benchmark Private Without Lock Shared Without Lock
Tables Locks Impact Tables Locks Impact

cs_o 1.73s 1.72s 0% 1.74s 1.76s -1%
cs_r 1.67s 1.70s -1% 1.68s 1.67s 0%
disj 2.02s 2.04s 0% 2.04s 2.06s 0%
gabriel 1.77s 1.70s 4% 1.71s 1.70s 0%
kalah 1.72s 1.76s -2% 1.76s 1.74s 1%
peep 1.68s 1.72s -2% 1.70s 1.73s -1%
pg 1.67s 1.70s -1% 1.71s 1.70s 0%

Table 7.14: Gain for taking out the locks in the multi-threaded engine with Local
scheduling in the Shared Completed Tables engine in Linux

Benchmark Sequential Private Overhead Shared Overhead
Engine Tables Tables

cs_o 3.01s 2.39s -20% 2.41s -19%
cs_r 2.92s 2.31s -20% 2.33s -19%
disj 3.43s 2.71s -20% 2.74s -19%
gabriel 2.48s 2.31s -6% 2.32s -6%
kalah 2.51s 2.34s -6% 2.38s -4%
peep 2.54s 2.35s -7% 2.35s -7%
pg 2.63s 2.28s -12% 2.31s -11%

Table 7.15: Times for the Abstract Interpretation programs for one thread using Local
scheduling with the Shared Completed Tables engine in Mac OS X

shared tables show times that are about the same as the private tables ones, showing

insignificant extra overhead.

Table 7.14 compares the times for the multi-threaded engine compiled with and

without locks on Linux. The times without locks sometimes happen to be worse than

with locks. We think this shows the relatively small usage of locks by these programs

(cf. Table 7.12) and the fact that the times are better is due to the random location of

instructions in the code pages of the differently compiled programs of the different

engines.

Table 7.15 shows the overheads of Abstract Interpretation programs for the Mac OS

X system. Like in previous benchmarks, we see significant gains for themulti-threaded

engine, specially in the cs_o, cs_r and disj benchmarks.

Concurrent Completion using Batched Scheduling

In this section we analyze the performance of the engine that uses Concurrent Comple-

tion as the concurrent tabling algorithm and Batched as the scheduling policy. Again

the concurrent tabling algorithm’s overhead is not the main object of test as there’s

only one thread.

Table 7.16 shows the usage of locks for the Abstract Interpretation programs in the
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call struct cons
Lock symbol trie string manager compl list
Benchmark
cs_o private 378 0 742 0 13600 0
cs_o shared 581 19800 882 146400 13600 3000
cs_r private 378 0 742 0 6700 0
cs_r shared 581 17300 882 77900 6700 3200
disj private 376 0 740 0 26400 0
disj shared 579 53600 880 209200 26400 20400
gabriel private 378 0 742 0 13720 0
gabriel shared 581 31640 882 152040 13720 12600
kalah private 380 0 744 0 24600 0
kalah shared 583 61800 884 316500 24600 13200
peep private 378 0 742 0 1700 0
peep shared 581 13300 882 80200 1700 9200
pg private 377 0 741 0 3200 0
pg shared 580 26800 881 115200 3200 19200

Table 7.16: Lock usage for Abstract Interpretation programs for Batched scheduling in
the Concurrent Completion engine

Benchmark Sequential Private Overhead Shared Overhead
Engine Tables Tables

cs_o 1.77s 1.77s 0% 1.80s 2%
cs_r 1.69s 1.68s 0% 1.69s 0%
disj 2.08s 2.04s -1% 2.06s 0%
gabriel 1.69s 1.71s 1% 1.73s 2%
kalah 1.72s 1.77s 3% 1.78s 4%
peep 1.76s 1.74s 0% 1.74s 0%
pg 1.74s 1.76s 1% 1.74s 0%

Table 7.17: Times for the Abstract Interpretation programs for one thread using
Batched scheduling for the Concurrent Completion engine in Linux

multi-threaded engine. It shows that only the completion lock is significantly used

with private tables. The structure manager lock is intensively used with shared tables.

Table 7.17 shows the times for Abstract Interpretation benchmarks in the Linux

machine. Again we see a very small overhead (from -1 to 3%) for private tables. The

overheads for shared tables are also very small (from 0 to 4%) and not significantly

different.

In Table 7.18 we compare the multi-threaded system compiled with and without

locks in the Linux machine. The results are somewhat similar that the ones for Local

scheduling and Shared Completed Tables (cf. Table 7.14). The private tables show a

very small impact of the locks on execution time (from 1 to 4%) and the shared tables

also show very small impact of the locks on execution time (1 to 4%).

Table 7.19 shows the overheads of Abstract Interpretation programs for the Mac OS
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Benchmark Private Without Lock Shared Without Lock
Tables Locks Impact Tables Locks Impact

cs_o 1.77s 1.72s 2% 1.80s 1.74s 3%
cs_r 1.68s 1.66s 1% 1.69s 1.66s 1%
disj 2.04s 1.98s 3% 2.06s 2.01s 2%
gabriel 1.71s 1.64s 4% 1.73s 1.66s 4%
kalah 1.77s 1.69s 4% 1.78s 1.70s 4%
peep 1.74s 1.68s 3% 1.74s 1.68s 3%
pg 1.76s 1.70s 3% 1.74s 1.70s 2%

Table 7.18: Gain for taking out the locks in the multi-threaded engine with Batched
scheduling using the Concurrent Completion engine in Linux

Benchmark Sequential Private Overhead Shared Overhead
Engine Tables Tables

cs_o 3.01s 2.39s -20% 2.41s -19%
cs_r 2.93s 2.30s -21% 2.33s -19%
disj 3.41s 2.71s -19% 2.75s -18%
gabriel 2.47s 2.30s -6% 2.32s -5%
kalah 2.52s 2.35s -5% 2.39s -4%
peep 2.57s 2.37s -7% 2.38s -6%
pg 2.64s 2.31s -12% 2.32s -11%

Table 7.19: Times for the Abstract Interpretation programs for one thread using
Batched Scheduling in the Concurrent Completion engine in Mac OS
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X system. Like in previous benchmarks, we see significant gains for the multi-threaded

engine, specially in the cs_o, cs_r and disj benchmarks.

The Abstract Interpretation benchmarks show small overheads for Linux and sig-

nificant gains for the Mac OS X, similar to the Prolog overheads. The results are very

regular for the same machine, in contrast with the Transitive Closure benchmarks. As

in the other benchmarks the Linux machine presents very small overheads and the

Mac OS X System sometimes even presents gains of performance. This results are en-

couraging for using the multi-threaded engine as the main XSB engine.

7.2 Scalability of Private Tables on a Multi-Processor

In this section we show the results of running the benchmarks discussed on the previ-

ous section, simultaneously, in a number of threads, over a multi-processor. For this

and the next section we measure the elapsed time, instead of the CPU time, as this is

the parameter that really shows that the parallel programs are faster.

As there are N threads doing the same thing as one thread, we calculate the pro-

jected speedup in the following way;

Pro jectedSpeedup =
N.T1

TN

Where T1 is the time to run one thread, N is the number of threads and TN is the

time taken to run N threads.

As every thread is running an independent program, which has absolutely no log-

ical dependence on the programs that are being run by other threads, and uses private

tables, in an ideal system the projected speedup should always be equal to the number

of threads (given that the number of processors is greater or equal than the number of

threads).

The biggest obstacles to this goal are memory contention which degrades program

performance due to hardware problems and lock contention, that forces sections of the

code to execute sequentially. We have tried very much to overcome such obstacles for

private tables. We provide private structure managers for each thread and use very

few locks (cf Tables 7.4, 7.8, 7.12 and 7.16). However, there are still some algorithms

and data structures in the underlying runtime system that require locks and that ex-

hibit some memory contention: foremost among these are memory allocation calls.

Although we strove to limit the number of such calls, they remain when execution

stacks need to be reallocated, when structure managers require the allocation of new

blocks, or when trie hash tables are resized.

Scalability for Prolog In Table 7.20 we show the times for executing the Prolog

benchmarks in parallel.
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Projected Projected Projected
N. threads 1 2 Speedup 4 Speedup 8 Speedup
Benchmark
deriv 0.66 0.64 2.06 0.65 4.06 0.73 7.23
nrev 1.31 1.32 1.98 1.34 3.91 1.40 7.48
qsort 0.56 0.60 1.86 0.66 3.39 0.77 5.81
query 0.64 0.64 2.00 0.66 3.87 0.69 7.42
serialise 0.74 0.74 2.00 0.76 3.89 0.78 7.58
tak 13.06 12.88 2.02 14.13 3.69 18.66 5.59

Table 7.20: Times for scalability of Prolog benchmarks for Solaris

Projected Projected Projected
N. threads 1 2 Speedup 4 Speedup 8 Speedup
Benchmark
Left rec. chain 0.96 1.33 1.44 1.44 2.66 2.09 3.67
Left rec. cycle 0.97 1.34 1.44 1.44 2.69 2.03 3.82
Right rec. chain 0.51 1.00 1.02 1.49 1.36 2.69 1.51
Right rec. cycle 1.46 2.35 1.24 3.56 1.64 6.42 1.81
Win chain 0.85 1.09 1.55 1.46 2.32 4.65 1.46
Win cycle 0.53 0.57 1.85 0.68 3.11 0.76 5.57

Table 7.21: Times for scalability of Transitive Closure benchmarks for private tables
using Local scheduling for Solaris

The projected speedups are mostly very close to the ideal ones. Only in qsort and

tak they are show speedups which are clearly less than linear. As they are the most

complex and demanding programs in the benchmarks that is not completely surpris-

ing.

The Transitive Closure Benchmarks The results for running the Transitive Closure

benchmarks in parallel, using private tables, are shown in Tables 7.21 and 7.22.

In Table 7.21 the times are shown for the engine using private tables using Local

scheduling under the Shared Completed Tables engine. The speedups are much more

modest than for Prolog. We attribute this to the need to use the “C” library function

realloc to grow the node hash tables for the answer tries in left recursion, and call tries in

right recursion, as well as to the use of the completion mutex lock (to make integration

with shared tables possible).

In Table 7.22 the times are shown for private tables using Batched scheduling under

the Concurrent Completion engine. These speedups are even more modest than the

previous ones. We attribute this to the longer time by which the completion lock has

to be held in the check_complete instruction.
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Projected Projected Projected
N. threads 1 2 Speedup 4 Speedup 8 Speedup
Benchmark
Left rec. chain 0.71 1.11 1.27 1.16 2.44 2.09 2.71
Left rec. cycle 0.72 1.12 1.28 1.25 2.30 2.07 2.78
Right rec. chain 0.53 1.09 0.97 2.02 1.04 3.74 1.13
Right rec. cycle 1.34 2.63 1.01 4.76 1.12 8.99 1.19
Win chain 0.75 0.98 1.53 1.57 1.91 4.70 1.27
Win cycle 0.42 0.52 1.61 0.97 1.73 0.96 3.50

Table 7.22: Times for scalability of Transitive Closure benchmarks for private tabled
using Batched scheduling for Solaris

Projected Projected Projected
N. threads 1 2 Speedup 4 Speedup 8 Speedup
Benchmark
cs_o 0.80 0.80 2.00 0.83 3.85 1.07 5.98
cs_r 0.72 0.74 1.94 0.78 3.69 0.88 6.54
disj 0.81 0.84 1.92 0.87 3.72 0.98 6.61
gabriel 0.73 0.76 1.92 0.79 3.69 0.89 6.56
kalah 0.66 0.71 1.85 0.72 3.66 0.82 6.43
peep 0.71 0.73 1.94 0.76 3.73 0.85 6.68
pg 0.71 0.74 1.91 0.77 3.68 0.87 6.52

Table 7.23: Times for scalability of Abstract Interpretation benchmarks for private ta-
bles using Local scheduling for Solaris

Abstract Interpretation Benchmarks In Tables 7.23 and 7.24 we show the results for

running the Abstract Interpretation programs in parallel, using private tables. These

benchmarks are, in a sense, more representative of the typical tabled program’s perfor-

mance than the previous ones, because they use real programs that use amore standard

mix of Prolog and different features of tabling.

In Table 7.23 we show the results for private tables using Local scheduling under

the Shared Completed Tables engine. Although not as good as the results from Prolog,

they give a speedup that is nearly linear, up to eight processors, and much better than

the ones from the Transitive Closure benchmarks.

In Table 7.24 we show the results for scalability using private tables using Batched

scheduling under the Concurrent Completion engine. A little surprisingly, these are

even better than the ones for Local scheduling.

We conclude that although a very intensive use of tabling may lead to some per-

formance losses with the current engine, the results for parallelizing real applications

with private tables should be, as far as the system is concerned, good, and overall

dependent of the parallelism that the programmer can extract from the application.
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Projected Projected Projected
N. threads 1 2 Speedup 4 Speedup 8 Speedup
Benchmark
cs_o 0.70 0.70 2.00 0.71 3.94 0.75 7.46
cs_r 0.64 0.65 1.96 0.67 3.82 0.70 7.31
disj 0.72 0.74 1.94 0.76 3.78 0.82 7.02
gabriel 0.64 0.66 1.93 0.66 3.87 0.70 7.31
kalah 0.59 0.60 1.96 0.62 3.80 0.66 7.15
peep 0.63 0.65 1.93 0.67 3.76 0.70 7.20
pg 0.64 0.66 1.93 0.67 3.82 0.84 6.09

Table 7.24: Times for scalability of Abstract Interpretation benchmarks for private ta-
bles using Batched scheduling for Solaris

7.3 Experiments with Shared Tables

In this sectionwe analyze the behavior of shared tables and compare it to private tables.

To analyze share tables we use a new set of benchmarks, which we describe in the next

paragraph. We analyzememory usage, elapsed time andwe try to answer the question

of how frequent deadlocks are in Shared Completed Tables.

The Random Graph Tests We used a program to generate random directed graphs,

that takes a number of nodes and the number of edges that fan out of each node. We

designate each graph by these two numbers, as NxE where N is the total number of

nodes and E is the number of edges fanning out of each node. Thus, the graph 2048x2

has 2048 nodes, each of which has exactly 2 outgoing edges, for and 4096 edges overall.

We use four graph models, instances of which are randomly generated for every

run of the tests:

256x128 A very dense (almost complete) graph with few nodes.

512x8 Although less dense this graph’s nodes are still densely connected and tend to

form a single component.

2048x2 This is the toughest graph for the programs to handle. Although less dense

than the previous it tends to have a single component, and with a fairly large

number of nodes, the number of paths among nodes tends to be very big.

8192x1 Although this is the graph with more nodes, as the fan out is small it tends to

have more than one component, and so the total number of paths among nodes

in the graph tends to be smaller than the previous.

The graphs are stored in a predicate edge/2 which is indexed by tries. Basically we

run two programs over these graphs:
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Transitive Closure with Left Recursion The graph is partitioned among the threads.

Each thread computes all nodes that are reachable from all the nodes in its parti-

tion, using left recursion. So, in the 2048x2 graph, if one thread is used it performs

the transitive closure for all the 2048 nodes in the graph, if two threads are used

each performs the transitive closure for 1024 nodes of the graph, and so on. This

process creates a tabled subgoal for every node in the partition, so each thread

computes a separate set of tabled subgoals.

Although not terribly useful in practice, this is an ideal application to parallelize

(by partitioning the graph), that uses the resources of the tabling in an optimal

way.

Transitive Closure with Right Recursion In this case the graph is also partitioned

among the threads, but this time the reachable nodes are computed using right

recursion instead of left recursion. This means that for each node, there is the

need to create a tabled subgoal for every node that is connected to it, thus re-

computing the tables for all the nodes in the component form by every node in

the partition. As these graphs tend to have few components, tables are usually

computed for most nodes in the graph.

Right recursion is not a recommendable way to program with tabling (due

to the creation of many tabled subgoals as opposed to one with left recur-

sion), however there may be cases where it is the natural way to program (e.g.

same_generation/2 , [76]). We use it mostly to test limit situations of performance,

such as forcing the occurrence of deadlocks in Shared Completed Tables, and

forcing the creation of an artificially high number of tables. We also expected

Concurrent Completion to yield some parallelism in evaluating tables with right

recursion, as we are computing a large set of interdependent tables.

The programs can write all the reachable nodes to the output, but we disabled that,

so that the benchmarks presented are all CPU bound.

7.3.1 Memory Usage

We run the Right Recursion program with a number of threads and measured the peak

memory usage, as obtained by the malloc function. We used the memusage program,

from the Linux package glibc tools to get these values. We only count the memory

allocated by malloc, and don’t take into account the threads “C” stacks and static code.

Table 7.25 shows the memory usage for the Right Recursion program using Local

scheduling. We see that the graph that is more demanding in computational power,

the 2048x2 graph, got up to 1GB of malloc’ed memory. In fact that was the reason we

stopped measuring at 16 threads7. The fact that we are using a 32 bit system, in which

7The machine has 2GB of memory, and indeed it was possible to run the benchmark with 32 threads,
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N. Threads 1 2 4 8 16
Tables Graph
Shared 256x128 11M 13M 16M 24M 38M
Shared 512x8 12M 14M 18M 25M 40M
Shared 2048x2 90M 92M 91M 98M 112M
Shared 8192x1 26M 28M 28M 35M 47M
Private 256x128 11M 17M 29M 49M 92M
Private 512x8 12M 21M 39M 51M 128M
Private 2048x2 90M 166M 197M 343M 981M
Private 8192x1 26M 38M 56M 80M 64M

Table 7.25: Peakmemory usage for Right Recursion benchmarks with Local scheduling
under the Shared Completed Tables engine in Linux

N. Threads 1 2 4 8 16
Tables Graph
Shared 256x128 9M 10M 14M 21M 36M
Shared 512x8 12M 14M 18M 25M 40M
Shared 2048x2 96M 97M 97M 102M 115M
Shared 8192x1 32M 34M 34M 41M 54M
Private 256x128 9M 12M 20M 35M 64M
Private 512x8 12M 21M 26M 63M 112M
Private 2048x2 90M 165M 181M 478M 1058M
Private 8192x1 32M 38M 39M 51M 103M

Table 7.26: Peakmemory usage for the Right Recursion programwith Batched schedul-
ing under the Concurrent Completion engine in Linux

Linux can only use 3GB of virtual memory, shows how close we are to the system’s

limitations.

Table 7.26 shows a similar behavior for batched scheduling, although here there is

even more demand on memory, as the batched evaluation method tends to keep the

subgoals in the stacks longer.

These values show that shared tables can be a lot better when it comes to memory

usage, and this might make the difference for an application to able to run in a system

or not. Although in 64 bit systems these problemsmight bemitigated, there will always

be a limit on physical memory, and abundant use of private tables in multiple threads

may easily lead to the exhaustion of memory.

7.3.2 Occurrence of Deadlocks

We counted the deadlocks occurring for Shared Completed Tables. It turns out that

deadlocks can only occur with the Right Recursion program, as with Left Recursion

yielding about 2.2GB of malloc’ed memory, but the virtual memory system trashed and we opted not to
include those values in the tables.
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N. Threads 2 4 8 16 32 64 128 256 512
Graph Cores
256x128 1 0 0 0 0 0 0 0 0 0
512x8 1 0 0 0 0 0 0 0 0 0
2048x2 1 0 0 0 0 0 0 4 0 0
8192x1 1 0 1 0 2 2 2 0 0 2
256x128 2 0 0 0 0 1 9 5 0 0
512x8 2 0 0 2 1 0 22 1 1 1
2048x2 2 0 0 2 4 1 22 5 2 19
8192x1 2 1 2 1 2 0 1 4 0 0

Table 7.27: Number of deadlocks for the Right Recursion program with Local schedul-
ing under the Shared Completed Tables engine in both Linux Systems

the computation of each transitive closure subgoal doesn’t depend on any other tabled

subgoal. We used both the Dual Core machine and the single core machine running

Linux for this measurements.

Table 7.27 shows the number of deadlocks that occurred. It confirms our hypothesis

from Chapter 4, that deadlocks will rarely happen in single processor systems. In

systems with more processors/cores they will happenmore, as it is shown by the table.

It would be interesting to count the deadlocks on a system with more processors, but

we didn’t have such an opportunity.

7.3.3 Performance in a Dual Core System

In this section we measure the timings of the random graph tests on the Dual Core

system and compare them with the results for private tables. This enables us to see if

the system is amortizing tabled calls by re-using shared tables and also to observe the

speedup that can be gained by having a dual core system.

Lock usage First we count the locks used by the random graph tests when running

one thread. In the tables that follow we added both the locks used by both left and

right recursion to save space.

Table 7.28 shows the lock usage for Local scheduling. The locks used were intro-

duced in Section 7.1. We can see that private tables use relatively few locks, mainly the

dynamic lock to access the graph data. The shared tables make a very intensive use

of the structure manager lock. The completion and call trie locks are also moderately

used.

Table 7.29 shows the lock usage for Concurrent Completion over Batched schedul-

ing. These values are much like the ones in the previous table, although now the con-

sumer list lock is also moderately used by shared tables.
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call struct
Lock dynamic trie symbol string compl manager
Benchmark
256x128 1566 0 765 155 257 0
Private
256x128 1566 33536 765 155 33281 265732
Shared
512x8 3102 0 1277 155 513 0
Private
512x8 3102 5632 1277 155 5121 1055748
Shared
2048x2 12318 0 4349 155 2424 0
Private
2048x2 12320 10240 4349 155 8568 13734876
Shared
8192x1 49184 0 16637 155 16297 0
Private
8192x1 49182 32768 16637 155 32681 2519862
Shared

Table 7.28: Lock usage for random graph benchmarks using Local scheduling under
the Shared Completed Tables engine

call struct cons
Lock dynamic trie symbol string compl manager list
Benchmark
256x128 1566 0 765 155 515 0 0
Private
256x128 1566 33536 765 155 515 265220 32769
Shared
512x8 3102 0 1277 155 1028 0 0
Private
512x8 3102 5632 1277 155 1028 1054724 4097
Shared
2048x2 12318 0 4349 155 4476 0 0
Private
2048x2 12318 10240 4349 155 4476 13730780 3722
Shared
8192x1 49182 0 16637 155 24494 0 0
Private
8192x1 49182 32768 16637 155 24494 2503478 8197
Shared

Table 7.29: Lock usage for the Random Graph benchmarks using Batched scheduling
under the Concurrent Completion engine
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N. Threads 1 2 Speed Up 4 8 16
Tables Graph
Private 256x128 1.44 1.20 1.20 0.93 1.12 0.84
Private 512x8 0.53 0.39 1.35 0.37 0.26 0.26
Private 2048x2 2.88 1.70 1.69 1.69 1.61 1.69
Private 8192x1 0.56 0.31 1.80 0.32 0.29 0.31
Shared 256x128 1.90 1.11 1.71 0.84 1.09 0.93
Shared 512x8 0.50 0.42 1.19 0.41 0.32 0.33
Shared 2048x2 3.44 2.69 1.27 2.31 2.34 2.35
Shared 8192x1 0.61 0.45 1.35 0.45 0.47 0.47

Table 7.30: Times for the Left Recursion program on the Dual Core system using Local
scheduling under the Shared Completed Tables engine

N. Threads 1 2 Speed Up 4 8 16
Tables Graph
Private 256x128 1.43 0.98 1.45 0.87 0.87 0.88
Private 512x8 0.44 0.29 1.51 0.28 0.25 0.26
Private 2048x2 2.76 1.63 1.69 1.54 1.59 1.58
Private 8192x1 0.50 0.28 1.78 0.29 0.33 0.44
Shared 256x128 1.84 0.84 2.19 0.84 0.84 0.86
Shared 512x8 0.48 0.32 1.50 0.31 0.33 0.32
Shared 2048x2 3.32 2.68 1.23 2.67 2.38 2.71
Shared 8192x1 0.58 0.44 1.31 0.46 0.47 0.51

Table 7.31: Times for the Left Recursion program on the Dual Core system using
Batched scheduling under the Concurrent Completion engine

Parallelism We run the Left Recursion program on the Dual Core system. The results

are shown in Tables 7.30 and 7.31.

Table 7.30 shows the speedups for Shared Completed Tables under Local schedul-

ing. Although they are not ideal, the times for the private tables are in coherent with the

results for the transitive closure benchmarks in Section 7.2. The speedups for shared

tables are, in average, not worse than the ones for private tables. We can see the fact

that private tables show better speedups for less dense graphs, while shared tables

show the inverse behavior.

We believe, as far as shared tables are concerned, that it has to do with the more

intensive use of locks in the bigger graphs (see Table 7.28), which causes more con-

tention problems. As far as the private tables are concerned, we believe, that the denser

graphs, with relatively more answers for each subgoal, will have the answer trie hash

table expanded more often, causing problems with malloc.

We can see that, for more than two threads, the times remain approximately con-

stant, as expected for this application, running on a dual core machine.

Table 7.31 shows the speedups for Concurrent Completion over Batched scheduling
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N. Threads 1 2 4 8 16
Tables Graph
Private 256x128 1.35 2.02 3.70 6.94 13.94
Private 512x8 0.51 0.47 1.16 2.37 4.52
Private 2048x2 1.61 1.86 4.18 7.92 18.66
Private 8192x1 0.26 0.23 0.33 0.48 0.70
Shared 256x128 1.38 1.39 1.85 1.40 1.42
Shared 512x8 0.56 0.46 0.55 0.43 0.42
Shared 2048x2 1.98 1.87 2.03 1.89 1.85
Shared 8192x1 0.33 0.32 0.31 0.31 0.32

Table 7.32: Times for the Right Recursion program on the Dual Core system using Local
scheduling under the Shared Completed Tables engine

in the Dual Core system. These numbers show approximately the same properties as

the ones in the previous table. The speedups for shared tables seem a little better

(there’s even a super linear speedup for the 256x128 graph), but we don’t attribute

this to any specific property of Batched scheduling, as the properties of the application

should be about the same for both cases.

Amortization We measured the times to compute the Right Recursion program on

the Dual Core system. Again, we repeat that right recursion is not an efficient way

to compute transitive closure with tabling, but in this case it shows a large number of

tables being re-used when possible.

In Table 7.32 we show the times for computing the Right Recursion program with

Shared Completed Tables over Local scheduling. It shows that the shared tables are

being effectively re-used by all the threads, as the computation time doesn’t increase

with the number of threads. It may even happen that deadlocks are occurring (cf. Sec-

tion 7.3.2) but the time to compute more threads doesn’t increase, as it always implies

computing the same tables, whatever number of threads are being run. On the other

hand, with private tables, we see that each thread has to compute a new tabled subgoal

for every reachable node from the nodes in its partition, degrading performance when

the number of threads increases. This is a little less evident for the sparser graphs, but

completely evident for the denser ones.

In some cases we can see some speedups for two threads; while Shared Completed

Tables weren’t designed for parallelism, they may yield some parallelism, while com-

puting a set of interdependent tables, depending on the SDG’s topology.

In Table 7.33 we show the times for the Right Recursion program for Concurrent

Completion over Batched scheduling. The results are essentially the same as the ones

for the previous table, where amortization is concerned, as the characteristics of the

application are not dependent on scheduling.

Where table parallelism is concerned the results are slightly disappointing, there
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N. Threads 1 2 4 8 16
Tables Graph
Private 256x128 1.57 1.92 4.56 7.65 15.80
Private 512x8 0.72 0.75 1.91 3.40 6.84
Private 2048x2 2.13 3.09 5.10 12.55 27.61
Private 8192x1 0.25 0.24 0.32 0.47 0.88
Shared 256x128 1.57 1.57 1.71 1.01 1.51
Shared 512x8 0.72 0.58 0.74 0.59 0.60
Shared 2048x2 2.36 2.39 2.24 2.18 2.19
Shared 8192x1 0.31 0.31 0.31 0.32 0.40

Table 7.33: Times for the Right Recursion program on the Dual Core system using
Batched scheduling under the Concurrent Completion engine

N. threads 1 2 Speedup 4 Speedup 8 Speedup
Tables Graph
Private 256x128 5.29 4.94 1.07 4.45 1.18 4.38 1.20
Private 512x8 1.76 1.36 1.29 1.16 1.51 1.12 1.57
Private 2048x2 11.02 7.30 1.50 4.84 2.27 3.98 2.76
Private 8192x1 2.36 1.52 1.55 0.90 2.62 0.61 3.86
Shared 256x128 5.24 4.88 1.07 4.46 1.17 4.35 1.20
Shared 512x8 1.79 1.68 1.06 1.27 1.40 1.28 1.39
Shared 2048x2 11.29 12.23 0.92 9.61 1.17 22.88 0.49
Shared 8192x1 2.36 2.73 0.86 2.26 1.04 5.45 0.43

Table 7.34: Times for the Left Recursion program on the Multi-processor system using
Local scheduling under the Shared Completed Tables engine

being only one case of a very small speedup. We do understand that right recursion

imposes a big strain on the system, and that this may not be the ideal test case to test

parallelism with concurrent completion.

7.3.4 Scalability of Shared Tables on a Multi-Processor

We measured the scalability of the shared tables in a true multi-processor (as opposed

to a multi-core system) and present the results in this section.

In Table 7.34 we see the speedups for the Left Recursion program, using shared and

private tables using Shared Completed Tables on the Solaris Multi-processor. While the

times for private tables are in line with the ones reported on Section 7.2, the ones for

shared tables are just terrible. With 8 processors the performance, instead of improv-

ing, degrades down to 43%. We deem these to the intensive use of the shared structure

managers, including structure manager lock. In the case of a true multi-processor,

frequent write accesses of the same memory block, such as locking and unlocking a

mutex, by different threads, will cause the cache entries for that memory block to be
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N. threads 1 2 Speedup 4 Speedup 8 Speedup
Tables Graph
Private 256x128 3.49 3.72 0.93 3.51 0.99 3.51 0.99
Private 512x8 1.21 0.93 1.30 0.89 1.35 0.90 1.34
Private 2048x2 8.13 5.83 1.39 4.17 1.94 3.71 2.19
Private 8192x1 1.14 0.87 1.31 0.51 2.23 0.42 2.71
Shared 256x128 3.63 3.43 1.05 3.53 1.02 3.55 1.02
Shared 512x8 1.26 1.18 1.06 1.03 1.22 1.66 0.76
Shared 2048x2 8.75 10.25 0.85 11.44 0.76 25.71 0.34
Shared 8192x1 1.23 1.56 0.78 1.89 0.65 3.82 0.32

Table 7.35: Times for the Left Recursion program on the Multi-processor system using
Batched scheduling under the Concurrent Completion engine

invalidated in the remaining processors, leading to a big degradation in memory ac-

cess performance. As such, the fine-grained and heavily used nature of the shared

structure managers, including its locks, and perhaps also some other variables, causes

amemory contention problem. In traditional multi-processor systems, where the cache

blocks that contain the same data for other processors must be invalidated with each

write access this causes the system performance to degrade, and it will only degrade

more with the addition of more processors to the application. The good results shown

for the Dual Core system, in Section 7.3.3, although only for 2 cores, just show that

different hardware technology can have a major impact in a parallel program’s perfor-

mance.

In Table 7.35 we see the times for the Left Recursion program using shared and

private tables under Concurrent Completion and Batched scheduling. If anything, the

slowdowns for shared tables are even worse than the ones from the previous table.

In this Section we have shown that for some cases, where re-using tabled compu-

tations is possible, shared tables just perform much better whether in memory usage

or speed, than private tables. For more than one processor, the shared tables seem to

perform OK on multi-core systems, but have to be seriously re-worked for traditional

multi-processors, due to cache problems, caused at least by the fine grained use of the

shared structure managers.

Chapter Summary In this chapter we presented performance results for the multi-

threaded XSB engine. The overheads of the system are very variable, being negative

in some systems, while being considerable on others, specially for shared tables. In a

multi-processor the private tables have scaled well up to eight processors. We show

that the shared tables may allow big savings of memory over private tables and that

the deadlock situation of Shared Completed Tables occurs rarely. Shared tables also

allow time gains by the re-use of previous computations. However they scale badly for

parallel execution in a traditional multi-processor, but seem to be doing OK in multi-
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core systems.
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8
Conclusions

Working in the ever changing environment of the XSB system has not always been

easy. The demand to maintain an usable system and the interactions from conflicting

implementation lines are challenging issues. However we are rewarded by the synergy

of several different research directions, contributing to a powerful and efficient system

that can support interesting real world applications and which has a large community

of users.

8.1 Contributions of this Work

We believe we have achieved contributions to both the XSB user community and the

knowledge on the implementation of tabling with the work that is described in this

dissertation.

A Multi-threaded Tabling Engine The Multi-threaded Tabling Engine is the basic

foundation of this dissertation. The multi-threading of a real Prolog system, while

not an original achievement, is still a demanding effort. We support native threads,

which makes the concurrency issues harder to handle but gives the power of native

thread support. A large part of the effort of the dissertation was spent in testing it and

catching obscure global data access conflicts. The multi-threaded system now passes

the sequential test suite of 461 test files (most of which contain multiple tests) as well

as a multi-threaded test suite of 232 files1. Performance experiments show around 20%

of worst case performance for one thread vs the sequential engine. However most of

1Both these test suites are publicly available in the XSB repository under the modules tests and
mttests .
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the times the overheads are much lower, while for some systems and compilers it is

significantly faster than the sequential engine.

We highlight as positive features of the Multi-threaded engine:

• the engine is built over POSIX threads and supports their semantics at the Prolog

level.

• explicit parallelism, where the programmer can specify parallel actions

• support for thread private tables, including well-founded negation

• a real system for real applications

• comparable times to the sequential engine

• private tables scale well on a multi-processor.

Shared Completed Tables The implementation of Shared Completed Tables has

achieved a mature status. In fact Shared Completed Tables are very easy to implement

and provide a way for multiple threads to reuse each others tabled results without re-

computation. The fact that it doesn’t allow the parallel computing of interdependent

goals doesn’t prevent it from being useful in the re-utilization of computations and

achieving good throughput in single processor systems. We devolved SLGSCT , a for-

mal semantics that models the concurrent evaluation of shared tables, providing the

USURPATION operation to simulate the breaking of deadlocks. We proved the correct-

ness of SLGSCT w.r.t. SLG. We showed informally that the implementation is correct

w.r.t. SLGSCT . We believe the deadlock events that force the re-computation of tables

are difficult to achieve in real execution of programs, specially in a systemwith a single

or few processors (c.f. Table 7.27), and in the worst case its complexity doesn’t change

that of the sequential SLG-WAM for programs with negation.

We highlight as positive points of our implementation of Shared Completed Tables:

• an effective and simple way to implement shared tables

• supported by a formal semantics, including the USURPATION operation

• a method to restart a SCC spanning multiple threads within Local Scheduling

• support for well-founded negation with shared tables

• worst case complexity happens rarely in benchmarks but is still acceptable

• although it wasn’t designed for parallelism, it can yield some, depending on the

topology of the SDG.

156



Concurrent Completion Although implementation of the Concurrent Completion

algorithm is not completely mature it provides a way for several threads to compute

inter-dependent tabled subgoals in parallel. The Concurrent Completion doesn’t alter

the properties of execution of the sequential SLG-WAM, and the performance results

indicate that it doesn’t incur in significant performance overheads over private tables.

We proved the completeness and liveness of the design, providing a solid case for the

correctness of the implementation.

We highlight as positive features of Concurrent Completion:

• a generalization of the SLG-WAM completion mechanism for definite programs,

including the completion stacks

• proved completeness and liveness

• basic support for parallelism has been built into the system.

With these three dimensions, a fully multi-threaded system that can exploit the

benefits of both explicit parallelism and shared tables has been built, and we expect it

to be useful to the research community.

8.2 Future Work

While we believe to have built a stable system for users, some of the results reported

on this dissertation are still open to short term improvements. On the other hand, new

research directions are opened by providing a sound platform for further experimen-

tation in the parallel and distributed field.

ISO Prolog threads compatibility An effort is being done to publish a ISO standard

for multi-thread Prolog [52]. At the time of the writing, XSB already supports much of

the proposed standard. Some features are still to be supported, for example the signal

mechanism. We expect to support it, as well as most of the standard, very soon.

Parallel Execution on Multi-Processors As was seen in Chapter 7, while parallel

computation of shared tables in a dual core system has been achieved successfully,

it remains to provide efficient parallel execution on traditional multi-processors. To

this end the fine grained locking of the structure managers has to be refined, to avoid

the heavy memory contention that the system is actually exhibiting.

Concurrent Completion Concurrent Completion can be somewhat more polished,

and support for Local Scheduling and Negation should be added in the near future.

The XSB early completion feature that kept us from supporting negation shouldn’t

prove a long term obstacle. The points made in Section 5.4 about waking up consumer
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threads, and the consumer choice point lists, should be addressed. Testing concurrent

completion to evaluate in parallel a set of tables is another pressing issue.

However one very though challenge remains – to allow threads to stop in the mid-

dle of a tabled computation while allowing the other threads on the SCC to complete,

under batched scheduling. The only way to do this seems to be, in some way, to mi-

grate or restart the tables that are incomplete to the remaining threads. Such progress

would very much raise the interest of using Batch Scheduling for multi-threaded com-

putations. It is possible that a modification of OPTYap’s mechanism of saving and

restoring SCCs would support this in an efficient manner.

Other Shared Table Paradigms We did not in any way exhaust the models which

can be used to compute shared tables in a multi-threading environment. At this stage

two models are readily apparent:

Exporting Private Tables Under this model the tables would be computed privately,

and made known to others when completed.

Sharing the Table Space Under this model each thread would have its own private

stacks, but the global table space would be shared. There would be some compli-

cations, as there are pointers from the Table Space into the stacks (the consumer

choice point list in the subgoal frame comes to mind) but it might be doable.

While these two approaches would not be best suited to parallelism (as a subgoal

table could be being computed by a number of threads in a replicated way before it

was completed) they would solve the problem of incomplete tables: when a thread

didn’t complete the table, the others would just not know about it.

Abolishing Shared Tables and Retracting Dynamic Predicates Currently, we can

reclaim space for the shared data structures corresponding to retracted shared dynamic

predicates and abolished shared tables, onlywhen there is a single active thread. Multi-

threaded garbage collection of retracted/abolished shared data is a topic to explore in

the future.

Table Parallelism As we mentioned before, Concurrent Completion can be used as

a starting point for the implementation of table parallelism as defined in [33]. Further

research is needed to achieve an implementation of Table Parallelism. It can be argued

that the current Concurrent Completion algorithm its not parallel enough and that an

adapted version of the algorithm described in [33] would be better, although more

complex.
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Distributed Tabling and Applications As was seen Section 6.3 a multi-threaded en-

gine is a step forward into the development of a distributed tabling system that makes

effective use of the available resources. None of the systems mentioned in that section

has been used to support real applications, something which is still to be achieved. Fur-

ther research using the current system to support Distributed Tabling is desirable. The

multi-threaded system also makes it easier to build distributed tabling applications,

where internal concurrency is essential for each engine, in a distributed multi-engine

environment.
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