152,848 research outputs found

    Transformations of Logic Programs on Infinite Lists

    Get PDF
    We consider an extension of logic programs, called \omega-programs, that can be used to define predicates over infinite lists. \omega-programs allow us to specify properties of the infinite behavior of reactive systems and, in general, properties of infinite sequences of events. The semantics of \omega-programs is an extension of the perfect model semantics. We present variants of the familiar unfold/fold rules which can be used for transforming \omega-programs. We show that these new rules are correct, that is, their application preserves the perfect model semantics. Then we outline a general methodology based on program transformation for verifying properties of \omega-programs. We demonstrate the power of our transformation-based verification methodology by proving some properties of Buechi automata and \omega-regular languages.Comment: 37 pages, including the appendix with proofs. This is an extended version of a paper published in Theory and Practice of Logic Programming, see belo

    Normative design using inductive learning

    Get PDF
    In this paper we propose a use-case-driven iterative design methodology for normative frameworks, also called virtual institutions, which are used to govern open systems. Our computational model represents the normative framework as a logic program under answer set semantics (ASP). By means of an inductive logic programming approach, implemented using ASP, it is possible to synthesise new rules and revise the existing ones. The learning mechanism is guided by the designer who describes the desired properties of the framework through use cases, comprising (i) event traces that capture possible scenarios, and (ii) a state that describes the desired outcome. The learning process then proposes additional rules, or changes to current rules, to satisfy the constraints expressed in the use cases. Thus, the contribution of this paper is a process for the elaboration and revision of a normative framework by means of a semi-automatic and iterative process driven from specifications of (un)desirable behaviour. The process integrates a novel and general methodology for theory revision based on ASP.Comment: Theory and Practice of Logic Programming, 27th Int'l. Conference on Logic Programming (ICLP'11) Special Issue, volume 11, issue 4-5, 201

    Understanding Restaurant Stories Using an ASP Theory of Intentions

    Get PDF
    The paper describes an application of logic programming to story understanding. Substantial work in this direction has been done by Erik Mueller, who focused on texts about stereotypical activities (or scripts), in particular restaurant stories. His system performed well, but could not understand texts describing exceptional scenarios. We propose addressing this problem by using a theory of intentions developed by Blount, Gelfond, and Balduccini. We present a methodology in which we model scripts as activities and employ the concept of an intentional agent to reason about both normal and exceptional scenarios

    The Structure of First-Order Causality

    Get PDF
    Game semantics describe the interactive behavior of proofs by interpreting formulas as games on which proofs induce strategies. Such a semantics is introduced here for capturing dependencies induced by quantifications in first-order propositional logic. One of the main difficulties that has to be faced during the elaboration of this kind of semantics is to characterize definable strategies, that is strategies which actually behave like a proof. This is usually done by restricting the model to strategies satisfying subtle combinatorial conditions, whose preservation under composition is often difficult to show. Here, we present an original methodology to achieve this task, which requires to combine advanced tools from game semantics, rewriting theory and categorical algebra. We introduce a diagrammatic presentation of the monoidal category of definable strategies of our model, by the means of generators and relations: those strategies can be generated from a finite set of atomic strategies and the equality between strategies admits a finite axiomatization, this equational structure corresponding to a polarized variation of the notion of bialgebra. This work thus bridges algebra and denotational semantics in order to reveal the structure of dependencies induced by first-order quantifiers, and lays the foundations for a mechanized analysis of causality in programming languages

    Constraint Exploration and Envelope of Simulation Trajectories

    Get PDF
    The implicit theory that a simulation represents is precisely not in the individual choices but rather in the 'envelope' of possible trajectories - what is important is the shape of the whole envelope. Typically a huge amount of computation is required when experimenting with factors bearing on the dynamics of a simulation to tease out what affects the shape of this envelope. In this paper we present a methodology aimed at systematically exploring this envelope. We propose a method for searching for tendencies and proving their necessity relative to a range of parameterisations of the model and agents' choices, and to the logic of the simulation language. The exploration consists of a forward chaining generation of the trajectories associated to and constrained by such a range of parameterisations and choices. Additionally, we propose a computational procedure that helps implement this exploration by translating a Multi Agent System simulation into a constraint-based search over possible trajectories by 'compiling' the simulation rules into a more specific form, namely by partitioning the simulation rules using appropriate modularity in the simulation. An example of this procedure is exhibited. Keywords: Constraint Search, Constraint Logic Programming, Proof, Emergence, TendenciesComment: 15 pages, To be presented at the First Workshop on Rule-Based Constraint Reasoning and Programming at the First International Conference on Computational Logic, London, UK, 24th to 28th July, 200

    Studying and Analysing Transactional Memory Using Interval Temporal Logic and AnaTempura

    Get PDF
    Transactional memory (TM) is a promising lock-free synchronisation technique which offers a high-level abstract parallel programming model for future chip multiprocessor (CMP) systems. Moreover, it adapts the well-established popular paradigm of transactions and thus provides a general and flexible way to allow programs to read and modify disparate memory locations atomically as a single operation. In this thesis, we propose a general framework for validating a TM design, starting from a formal specification into a hardware implementation, with its underpinning theory and refinement. A methodology in this work starts with a high-level and executable specification model for an abstract TM with verification for various correctness conditions of concurrent transactions. This model is constructed within a flexible transition framework that allows verifying correctness of a TM system with animation. Then, we present a formal executable specification for a chip-dual single-cycle MIPS processor with a cache coherence protocol and integrate the provable TM system. Finally, we transform the dual processors with the TM from a high-level description into a Hardware Description Language (VHDL), using some proposed refinement and restriction rules. Interval Temporal Logic (ITL) and its programming language subset AnaTempura are used to build, execute and test the model, since they together provide a powerful framework supporting logical reasoning about time intervals as well as programming and simulation

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers
    • …
    corecore