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Abstract

We consider an extension of logic programs, called ω-programs, that can be used to define
predicates over infinite lists. ω-programs allow us to specify properties of the infinite be-
havior of reactive systems and, in general, properties of infinite sequences of events. The
semantics of ω-programs is an extension of the perfect model semantics. We present vari-
ants of the familiar unfold/fold rules which can be used for transforming ω-programs. We
show that these new rules are correct, that is, their application preserves the perfect model
semantics. Then we outline a general methodology based on program transformation for
verifying properties of ω-programs. We demonstrate the power of our transformation-based
verification methodology by proving some properties of Büchi automata and ω-regular lan-
guages.
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1 Introduction

The problem of specifying and verifying properties of reactive systems, such as

protocols and concurrent systems, has received much attention over the past fifty

years or so. The main peculiarity of reactive systems is that they perform non-

terminating computations and, in order to specify and verify the properties of

these computations, various formalisms dealing with infinite sequences of events

have been proposed. Among these we would like to mention: (i) Büchi automata

and other classes of finite automata on infinite sequences (Thomas 1990), (ii) ω-

languages (Staiger 1997), and (iii) various temporal and modal logics (see (Clarke et al. 1999)

for a brief overview of these logics).

http://arxiv.org/abs/1007.4157v1


2 A. Pettorossi, M. Proietti, and V. Senni

Also logic programming has been proposed as a formalism for specifying com-

putations over infinite structures, such as infinite lists or infinite trees (see, for in-

stance, (Colmerauer 1982; Lloyd 1987; Simon et al. 2006; Min and Gupta 2010)).

One advantage of using logic programming languages is that they are general pur-

pose languages and, together with a model-theoretic semantics, they also have an

operational semantics. Thus, logic programs over infinite structures can be used

for specifying infinite computations and, in fact, providing executable specifica-

tions for them. However, very few techniques which use logic programs over infinite

structures, have been proposed in the literature for verifying properties of infinite

computations. We are aware only of a recent work presented in (Gupta et al. 2007),

which is based on coinductive logic programming, that is, a logic programming lan-

guage whose semantics is based on greatest models.

In this paper our aim is to develop a methodology based on the familiar un-

fold/fold transformation rules (Burstall and Darlington 1977; Tamaki and Sato 1984)

for reasoning about infinite structures and verifying properties of programs over

such structures. In order to do so, we do not introduce a new programming lan-

guage, but we consider a simple extension of logic programming on finite terms

by introducing the class of the so-called ω-programs, which are logic programs on

infinite lists. Similarly to the case of logic programs, for the class of locally stratified

ω-programs we define the perfect model semantics (see (Apt and Bol 1994) for a

survey on negation in logic programming).

We extend to ω-programs the transformation rules for locally stratified programs

presented in (Fioravanti et al. 2004; Pettorossi and Proietti 2000; Roychoudhury et al. 2002;

Seki 1991; Seki 2010) and, in particular: (i) we introduce an instantiation rule which

is specific for programs on infinite lists, (ii) we weaken the applicability conditions

for the negative unfolding rule, and (iii) we consider a more powerful negative fold-

ing rule (see Sections 3 and 4 for more details). We prove that these rules preserve

the perfect model semantics of ω-programs.

Then we extend to ω-programs the transformation-based methodology for verify-

ing properties of programs presented in (Pettorossi and Proietti 2000). We demon-

strate the power of our verification methodology through some examples. In par-

ticular, we prove: (i) the non-emptiness of the language recognized by a Büchi

automaton, and (ii) the containment between languages denoted by ω-regular ex-

pressions.

The paper is structured as follows. In Section 2 we introduce the class of ω-pro-

grams and we define the perfect model semantics for locally stratified ω-programs.

In Section 3 we present the transformation rules and in Section 4 we prove that they

preserve the semantics of ω-programs. In Section 5 we present the transformation-

based verification method and we see it in action in some examples. Finally, in

Section 6 we discuss related work in the area of program transformation and pro-

gram verification.
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2 Programs on Infinite Lists

Let us consider a first order language Lω given by a set Var of variables, a set

Fun of function symbols, and a set Pred of predicate symbols. We assume that Fun

includes: (i) a finite, non-empty set Σ of constants, (ii) the constructor J | K of the

infinite lists of elements of Σ, and (iii) at least one constant not in Σ. Thus, Js |tK

is an infinite list whose head is s ∈ Σ and whose tail is the infinite list t . Let Σω

denote the set of the infinite lists of elements of Σ.

We assume that Lω is a typed language (Lloyd 1987) with three basic types:

(i) fterm, which is the type of the finite terms, (ii) elem, which is the type of the

constants in Σ, and (iii) ilist, which is the type of the infinite lists of Σω. Every

function symbol in Fun−(Σ ∪ {J | K}), with arity n (≥ 0), has type (fterm×· · ·×

fterm)→ fterm, where fterm occurs n times to the left of→. The function symbol

J | K has type (elem×ilist)→ilist. A predicate symbol of arity n (≥0) in Pred

has type of the form τ1×· · ·×τn , where τ1, . . . , τn ∈ {fterm, elem, ilist}. For every

term (or formula) t , we denote by vars(t) the set of variables occurring in t .

An ω-clause γ is a formula of the form A ← L1∧ . . . ∧Lm , with m≥ 0, where A

is an atom and L1, . . . ,Lm are (positive or negative) literals, constructed as usual

from symbols in the typed language Lω, with the following extra condition: every

predicate in γ has, among its arguments, at most one argument of type ilist.

This condition makes it easier to prove the correctness of the positive and negative

unfolding rules (see Section 3 for further details). We denote by true the empty

conjunction of literals. An ω-program is a set of ω-clauses.

Let HU be the Herbrand universe constructed from the set Fun−(Σ∪ {J | K}) of

function symbols. An interpretation for our typed language Lω, called an ω-inter-

pretation, is a function I such that: (i) I assigns to the types fterm, elem, and

ilist, respectively, the sets HU, Σ, and Σω (which by our assumptions are non-

empty), (ii) I assigns to the function symbol J | K, the function J | KI such that,

for any element s ∈ Σ, for any infinite list t ∈ Σω, Js |tKI is the infinite list Js |tK,

(iii) I is an Herbrand interpretation for all function symbols in Fun− (Σ∪{J | K}),

and (iv) I assigns to every n-ary predicate p ∈Pred of type τ1×. . .×τn , a relation

on D1×· · ·×Dn , where, for i = 1, . . . , n, Di is either HU or Σ or Σω, if τi is either

fterm or elem or ilist, respectively. We say that an ω-interpretation I is an

ω-model of an ω-program P if for every clause γ∈P we have that I � ∀X1 . . . ∀Xk γ,

where vars(γ) = {X1, . . . ,Xk}.

A valuation is a function v : Var → HU ∪Σ ∪ Σω such that: (i) if X has type

fterm then v(X )∈HU, (ii) if X has type elem then v(X )∈Σ, and (iii) if X has type

ilist then v(X ) ∈Σω. The valuation function v can be extended to any term t ,

or literal L, or clause γ, by making the function v act on the variables occurring in

t , or L, or γ. We extend the notion of Herbrand base (Lloyd 1987) to ω-programs

by defining it to be the set Bω = {p(v(X1), . . . , v(Xn)) | p is an n-ary predicate

symbol in Pred and v is a valuation}. Thus, any ω-interpretation can be identified

with a subset of Bω.

A local stratification is a function σ: Bω →W , where W is the set of countable

ordinals. Given A ∈ Bω, we define σ(¬A) = σ(A)+1. Given an ω-clause γ of the
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form H ← L1 ∧ . . . ∧ Lm and a local stratification σ, we say that γ is locally

stratified w.r.t. σ if, for i = 1, . . . ,m, for every valuation v , σ(v(H )) ≥ σ(v(Li )).

An ω-program P is locally stratified w.r.t. σ, or σ is a local stratification for P , if

every clause in P is locally stratified w.r.t. σ. An ω-program P is locally stratified

if there exists a local stratification σ such that P is locally stratified w.r.t. σ.

A level mapping is a function ℓ : Pred → N. A level mapping is extended to

literals as follows: for any literal L having predicate p, if L is a positive literal, then

ℓ(L) = ℓ(p) and, if L is a negative literal then ℓ(L) = ℓ(p)+ 1. An ω-clause γ of the

form H ← L1 ∧ . . . ∧ Lm is stratified w.r.t. ℓ if, for i = 1, . . . ,m, ℓ(H ) ≥ ℓ(Li). An

ω-program P is stratified if there exists a level mapping ℓ such that all clauses of P

are stratified w.r.t. ℓ (Lloyd 1987). Clearly, every stratified ω-program is a locally

stratified ω-program. Similarly to the case of logic programs on finite terms, for

every locally stratified ω-program P , we can construct a unique perfect ω-model

(or perfect model, for short) denoted by M (P) (see (Apt and Bol 1994) for the case

of logic programs on finite terms). Now we present an example of this construction.

Example 1

Let: (i) Σ={a, b} be the set of constants of type elem, (ii) S be a variable of type

elem, and (iii) X be a variable of type ilist. Let p and q be predicates of type

ilist. Let us consider the following ω-program P :

p(X )← ¬q(X ) q(Jb|X K) ← q(Ja|X K)← q(X )

We have that: (i) p(w) holds iff w is an infinite list of a’s and (ii) q(w) holds

iff at least one b occurs in w . Program P is stratified w.r.t. the level mapping ℓ

such that ℓ(q)=0 and ℓ(p)=1. The perfect model M (P) is constructed by starting

from the ground atoms of level 0 (i.e., those with predicate q). We have that, for

all w ∈ {a, b}ω, q(w)∈M (P) iff w ∈ a∗b(a+b)ω , that is, q(w) 6∈M (P) iff w ∈ aω.

Then, we consider the ground atoms of level 1 (i.e., those with predicate p). For

all w ∈{a, b}ω , p(w)∈M (P) iff q(w) 6∈M (P). Thus, p(w)∈M (P) iff w ∈aω .

3 Transformation Rules

Given an ω-program P0, a transformation sequence is a sequence P0, . . . ,Pn , with

n ≥ 0, of ω-programs constructed as follows. Suppose that we have constructed a

sequence P0, . . . ,Pk , for 0≤k≤n−1. Then, the next program Pk+1 in the sequence

is derived from program Pk by applying one of the following transformation rules

R1–R7.

First we have the definition introduction rule which allows us to introduce a new

predicate definition.

R1. Definition Introduction. Let us consider m (≥1) clauses of the form:

δ1 : newp(X1, . . . ,Xd)← B1, . . . , δm : newp(X1, . . . ,Xd)← Bm

where: (i) newp is a predicate symbol not occurring in {P0, . . . ,Pk}, (ii) X1, . . . ,Xd

are distinct variables occurring in {B1, . . . ,Bm}, (iii) none of the Bi ’s is the empty

conjunction of literals, and (iv) every predicate symbol occurring in {B1, . . . ,Bm}
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also occurs in P0. The set {δ1, . . . , δm} of clauses is said to be the definition of

newp.

By definition introduction from program Pk we derive the new program Pk+1=Pk∪

{δ1, . . . , δm}. For n≥0, Defsn denotes the set of clauses introduced by the definition

rule during the transformation sequence P0, . . . ,Pn . In particular, Defs0 ={}.

In the following instantiation rule we assume that the set of constants of type elem

in the language Lω is the finite set Σ={s1, . . . , sh}.

R2. Instantiation. Let γ: H ← B be a clause in program Pk and X be a variable

of type ilist occurring in γ. By instantiation of X in γ, we get the clauses:

γ1: (H ← B){X /Js1|X K}, . . . , γh : (H ← B){X /Jsh |X K}

and we say that clauses γ1, . . . , γh are derived from γ. From Pk we derive the new

program Pk+1 = (Pk − {γ}) ∪ {γ1, . . . , γh}.

The unfolding rule consists in replacing an atom A occurring in the body of

a clause by its definition in Pk . We present two unfolding rules: (1) the positive

unfolding, and (2) the negative unfolding. They correspond, respectively, to the

case where A or ¬A occurs in the body of the clause to be unfolded.

R3. Positive Unfolding. Let γ : H ← BL ∧ A ∧ BR be a clause in program Pk

and let P ′
k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of program P ′
k such that, for i = 1, . . . ,m, A is unifiable with Ki ,

with most general unifier ϑi .

By unfolding γ w.r.t. A we get the clauses η1, . . . , ηm , where for i = 1, . . . ,m, ηi
is (H ← BL ∧ Bi ∧ BR)ϑi , and we say that clauses η1, . . . , ηm are derived from γ.

From Pk we derive the new program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηm}.

In rule R3, and also in the following rule R4, the most general unifier can be com-

puted by using a unification algorithm for finite terms (see, for instance, (Lloyd 1987)).

Note that this is correct, even in the presence on infinite terms, because in any ω-

program each predicate has at most one argument of type ilist. On the contrary, if

predicates may have more than one argument of type ilist, in the unfolding rule it

is necessary to use a unification algorithm for infinite structures (Colmerauer 1982).

For reasons of simplicity, here we do not make that extension of the unfolding rule

and we stick to our assumption that every predicate has at most one argument of

type ilist.

The existential variables of a clause γ are the variables occurring in the body

of γ and not in its head.

R4. Negative Unfolding. Let γ: H ← BL ∧¬A∧BR be a clause in program Pk

and let P ′
k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of program P ′
k , such that, for i = 1, . . . ,m, A is unifiable with

Ki , with most general unifier ϑi . Assume that: (1) A = K1ϑ1 = · · · = Kmϑm ,

that is, for i = 1, . . . ,m, A is an instance of Ki , (2) for i = 1, . . . ,m, γi has no
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existential variables, and (3) from ¬(B1ϑ1∨. . .∨Bmϑm) we get a logically equivalent

disjunction D1 ∨ . . . ∨Dr of conjunctions of literals, with r ≥ 0, by first pushing ¬

inside and then pushing ∨ outside.

By unfolding γ w.r.t. ¬A using Pk we get the clauses η1, . . . , ηr , where, for i =

1, . . . , r , clause ηi is H ← BL∧Di∧BR, and we say that clauses η1, . . . , ηr are derived

from γ. From Pk we derive the new program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηr}.

The following subsumption rule allows us to remove from Pk a clause γ such that

M (Pk )=M (Pk− {γ}).

R5. Subsumption. Let γ1: H ← be a clause in program Pk and let γ2 in Pk−{γ1}

be a variant of (H ← B)ϑ, for some conjunction of literals B and substitution ϑ.

Then, we say that γ2 is subsumed by γ1 and by subsumption, from Pk we derive

the new program Pk+1 = Pk − {γ2}.

The folding rule consists in replacing instances of the bodies of the clauses that

define an atom A by the corresponding instance of A. Similarly to the case of the

unfolding rule, we have two folding rules: (1) positive folding and (2) negative fold-

ing. They correspond, respectively, to the case where folding is applied to positive

or negative occurrences of literals.

R6. Positive Folding. Let γ be a clause in Pk and let Defs ′k be a variant of

Defsk without variables in common with γ. Let the definition of a predicate in

Defs ′k consist of the clause δ : K ← B , where B is a non-empty conjunction of

literals. Suppose that there exists a substitution ϑ such that clause γ is of the form

H ← BL ∧ Bϑ ∧ BR and, for every variable X ∈ vars(B)− vars(K ), the following

conditions hold: (i) Xϑ is a variable not occurring in {H ,BL,BR}, and (ii) Xϑ does

not occur in the term Y ϑ, for any variable Y occurring in B and different from X .

By folding γ using δ we get the clause η: H ← BL∧Kϑ∧BR , and we say that clause

η is derived from γ. From Pk we derive the new program Pk+1 = (Pk −{γ})∪ {η}.

R7. Negative Folding. Let γ be a clause in Pk and let Defs ′k be a variant of

Defsk without variables in common with γ. Let the definition of a predicate in

Defs ′k consist of the q clauses δ1 : K ← L1, . . . , δq : K ← Lq , with q≥1, such that,

for i = 1, . . . , q, Li is a literal and δi has no existential variables. Suppose that

there exists a substitution ϑ such that clause γ is of the form H ← BL ∧ (M1 ∧ . . .∧

Mq)ϑ ∧ BR, where, for i = 1, . . . , q, if Li is the negative literal ¬Ai then Mi is Ai ,

and if Li is the positive literal Ai then Mi is ¬Ai .

By folding γ using δ1, . . . , δq we get the clause η: H ← BL ∧ ¬Kϑ ∧ BR, and

we say that clause η is derived from γ. From Pk we derive the program Pk+1 =

(Pk − {γ}) ∪ {η}.

Note that the negative folding rule is not included in the sets of transformation

rules presented in (Roychoudhury et al. 2002; Seki 1991; Seki 2010). The negative

folding rule presented in (Fioravanti et al. 2004; Pettorossi and Proietti 2000) cor-

responds to our rule R7 in the case where q=1.
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4 Correctness of the Transformation Rules

Now let us introduce the notion of correctness of a transformation sequence w.r.t. the

perfect model semantics.

Definition 1 (Correctness of a Transformation Sequence)

Let P0 be a locally stratified ω-program and P0, . . . ,Pn , with n ≥ 0, be a trans-

formation sequence. We say that P0, . . . ,Pn is correct if (i) P0 ∪Defsn and Pn are

locally stratified ω-programs and (ii) M (P0 ∪Defsn) = M (Pn).

In order to guarantee the correctness of a transformation sequence P0, . . . ,Pn

(see Theorem 1 below) we will require that the application of the transformation

rules satisfy some suitable conditions that refer to a given local stratification σ. In

order to state those conditions we need the following definitions.

Definition 2 (σ-Maximal Atom)

Consider a clause γ: H ← G. An atom A in G is said to be σ-maximal if, for every

valuation v and for every literal L in G, we have σ(v(A))≥σ(v(L)).

Definition 3 (σ-Tight Clause)

A clause δ: H ← G is said to be σ-tight if there exists a σ-maximal atom A in G

such that, for every valuation v , σ(v(H ))=σ(v(A)).

Definition 4 (Descendant Clause)

A clause η is said to be a descendant of a clause γ if either η is γ itself or there exists

a clause δ such that η is derived from δ by using a rule in {R2,R3,R4,R6,R7}, and δ

is a descendant of γ.

Definition 5 (Admissible Transformation Sequence)

Let P0 be a locally stratified ω-program and let σ be a local stratification for P0.

A transformation sequence P0, . . . ,Pn , with n≥0, is said to be admissible if:

(1) every clause in Defsn is locally stratified w.r.t. σ,

(2) for k = 0, . . . , n−1, if Pk+1 is derived from Pk by positive folding of clause γ

using clause δ, then: (2.1) δ is σ-tight and either (2.2.i) the head predicate of γ

occurs in P0, or (2.2.ii) γ is a descendant of a clause β in Pj , with 0< j ≤ k , such

that β has been derived by positive unfolding of a clause α in Pj−1 w.r.t. an atom

which is σ-maximal in the body of α and whose predicate occurs in P0, and

(3) for k = 0, . . . , n−1, if Pk+1 is derived from Pk by applying the negative folding

rule thereby deriving a clause η, then η is locally stratified w.r.t. σ.

Note that Condition (1) can always be fulfilled because the predicate introduced

in program Pk+1 by rule R1 does not occur in any of the programs P0, . . . ,Pk . Con-

ditions (2) and (3) cannot be checked in an algorithmic way for arbitrary programs

and local stratification functions. In particular, the program property of being lo-

cally stratified is undecidable. However, there are significant classes of programs,

such as the stratified programs, where these conditions are decidable and easy to

verify.

The following Lemma 1 and Theorem 1, whose proofs can be found in the Ap-

pendix, show that: (i) when constructing an admissible transformation sequence
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P0, . . . ,Pn , the application of the transformation rules preserves the local stratifi-

cation σ for the initial program P0 and, thus, all programs in the transformation

sequence are locally stratified w.r.t. σ, and (ii) any admissible transformation se-

quence preserves the perfect model of the initial program.

Lemma 1 (Preservation of Local Stratification)

Let P0 be a locally stratified ω-program, σ be a local stratification for P0, and

P0, . . . ,Pn be an admissible transformation sequence.Then the programsP0∪Defsn ,

P1, . . . ,Pn , are all locally stratified w.r.t. σ.

Theorem 1 (Correctness of Admissible Transformation Sequences)

Every admissible transformation sequence is correct.

Now let us make a few comments on Condition (2) of Definition 5 and related

conditions presented in the literature. Transformation sequences of stratified pro-

grams over finite terms constructed by using rules R1, R3, and R6 have been first

considered in (Seki 1991). In that paper there is a sufficient condition, called (F4),

for the preservation of the perfect model. Condition (F4) is like our Condition (2)

except that (F4) does not require the σ-maximality of the atom w.r.t. which pos-

itive unfolding is performed. A set of transformation rules which includes also the

negative unfolding rule R4, was proposed in (Pettorossi and Proietti 2000) for lo-

cally stratified logic programs, and in (Fioravanti et al. 2004) for locally stratified

constraint logic programs. In (Seki 2010) Condition (F4) is shown to be insufficient

for the preservation of the perfect model if rule R4 is used together with rules R1,

R3, and R6, as demonstrated by the following example.

Example 2

Let us consider the initial program P0 = {m ←, e ← ¬m, e ← e}. By rule R1

we introduce the clause δ1: f ← m ∧ ¬e and we derive program P1=P0∪{δ1} and

Defs1= {δ1}. By rule R3 we unfold δ1 w.r.t. m and we get the clause δ2: f ← ¬e.

We derive program P2=P0∪{δ2}. Thus, Condition (F4) is satisfied. By rule R4 we

unfold δ2 w.r.t. ¬e and we get δ3: f ← m ∧¬e. We derive program P3 = P0 ∪{δ3}.

By rule R6 we fold clause δ3 using clause δ1, and we get δ4: f ← f . We derive

program P4 = P0 ∪ {δ4} and Defs4 = {δ1}. We have that f ∈ M (P0 ∪ Defs4) and

f 6∈ M (P4). Thus, the transformation sequence P0, . . . ,P4 is not correct.

In order to guarantee the preservation of the perfect model semantics, (Seki 2010)

has proposed the following stronger applicability condition for negative unfolding:

Condition (NU): the negative unfolding rule R4 can be applied only if it does not

increase the number of positive occurrences of atoms in the body of any derived

clause.

Indeed, in the incorrect transformation sequence of Example 2 the negative un-

folding does not comply with this Condition (NU). However, Condition (NU) is

very restrictive, because it forbids the unfolding of a clause w.r.t. a negative lit-

eral ¬A when the body of a clause defining A contains an occurrence of a nega-

tive literal. Unfortunately, many of the correct transformation strategies proposed
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in (Pettorossi and Proietti 2000; Fioravanti et al. 2004) would be ruled out if Con-

dition (NU) is enforced. Our Condition (2) is more liberal than Condition (NU)

and, in particular, it allows us to unfold w.r.t. a negative literal ¬A also if the body

of a clause defining A contains occurrences of negative literals. The following is an

example of a correct, admissible transformation sequence which violates Condition

(NU).

Example 3

Let us consider the initial program P0 = {even(0)←, even(s(s(X )))← even(X ),

odd(s(0))←, odd(s(X ))←¬ odd(X )} and the transformation sequence we now

construct starting from P0. By rule R1 we introduce the following clause

δ1: p ← even(X ) ∧ ¬ odd(s(X ))

and we derive P1 = P0 ∪{δ1}. By taking a local stratification function σ such that,

for all ground terms t1 and t2, σ(p) = σ(even(t1)) > σ(odd(t2)), we have that δ1
is σ-tight and even(X ) is a σ-maximal atom in its body. By unfolding δ1 w.r.t.

even(X ) we derive P2 = P0 ∪ {δ2, δ3}, where

δ2: p ← ¬ odd(s(0))

δ3: p ← even(X ) ∧ ¬ odd(s(s(s(X ))))

By unfolding, clause δ2 is removed and we derive P3 = P0 ∪ {δ3}. By unfolding δ3
w.r.t. ¬odd(s(s(s(X )))) we derive P4 = P0 ∪ {δ4}, where

δ4: p ← even(X ) ∧ odd(s(s(X )))

By unfolding δ4 w.r.t. odd(s(s(X ))), we derive P5 = P0 ∪ {δ5}, where

δ5: p ← even(X ) ∧ ¬ odd(s(X ))

By applying rule R6, we fold clause δ5 using clause δ1 and derive the final program

P6 = P0 ∪ {δ6}, where

δ6: p ← p.

The transformation sequence P0, . . . ,P6 is admissible and, thus, correct. In partic-

ular, the application of rule R6 satisfies Condition (2) of Definition 5 because δ1 is

σ-tight and δ5 is a descendant of δ3 which has been derived by unfolding w.r.t. a

σ-maximal atom whose predicate occurs in P0.

Note that, P0, . . . ,P6 violates Condition (NU) because, by unfolding clause δ3
w.r.t. ¬odd(s(s(s(X )))), the number of positive occurrences of atoms in the body

of the derived clause δ4 is larger than that number in δ3.

Finally, note that the incorrect transformation sequence of Example 2 is not

an admissible transformation sequence in the sense of our Definition 5, because it

does not comply with Condition (2). Indeed, consider any local stratification σ.

The atom m is not σ-maximal in m ∧ ¬e because e depends on ¬m and, hence,

σ(¬e)>σ(m). Thus, the positive folding rule R6 is applied to the clause δ3 which

is not a descendant of any clause derived by unfolding w.r.t. a σ-maximal atom.

5 Verifying Properties of ω-Programs by Program Transformation

In this section we will outline a general method, based on the transformation rules

presented in Section 3, for verifying properties of ω-programs. Then we will see
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our transformation-based verification method in action in the proof of: (i) the non-

emptiness of the language accepted by a Büchi automaton, and (ii) containment

between ω-regular languages.

We assume that we are given an ω-program P defining a unary predicate prop of

type ilist, which specifies a property of interest, and we want to check whether

or not M (P) |= ∃X prop(X ). Our verification method consists of two steps.

Step 1. By using the transformation rules for ω-programs presented in Section 3 we

derive a monadic ω-program T (see Definition 6 below), such that

M (P) |= ∃X prop(X ) iff M (T ) |= ∃X prop(X ).

Step 2.We apply to T the decision procedure of (Pettorossi et al. 2010) for monadic

ω-programs and we check whether or not M (T ) |= ∃X prop(X ).

Our verification method is an extension to ω-programs of the transformation-

based method for proving properties of logic programs on finite terms presented

in (Pettorossi and Proietti 2000). Furthermore, our method is more powerful than

the transformation-based method for verifying CTL∗ properties of finite state re-

active systems presented in (Pettorossi et al. 2010). Indeed, at Step 1 of the verifi-

cation method proposed here, (i) we start from an arbitrary ω-program, instead of

an ω-program which encodes the branching time temporal logic CTL∗, and (ii) we

use transformation rules more powerful than those in (Pettorossi et al. 2010). In

particular, similarly to (Pettorossi and Proietti 2000), the rules applied at Step 1

allow us to eliminate the existential variables from program P , while the transfor-

mation presented in (Pettorossi et al. 2010) consists of a specialization of the initial

program w.r.t. the property to be verified.

Note that there exists no algorithm which always succeeds in transforming an

ω-program into a monadic ω-program. Indeed, (i) the problem of verifying whether

or not, for any ω-program P and unary predicate prop, M (P) |= ∃X prop(X ) is

undecidable, because the class of ω-programs includes the locally stratified logic

programs on finite terms, and (ii) the proof method for monadic ω-programs pre-

sented in (Pettorossi et al. 2010) is complete. However, we believe that automatic

transformation strategies can be proposed for significant subclasses of ω-programs

along the lines of (Proietti and Pettorossi 1995; Pettorossi and Proietti 2000).

Definition 6 (Monadic ω-Programs)

A monadic ω-clause is an ω-clause of the form A0 ← L1 ∧ . . . ∧ Lm , with m ≥ 0,

such that: (i) A0 is an atom of the form p0 or q0(Js |X0K), where q0 is a predicate of

type ilist and s∈Σ, (ii) for i=1, . . . ,m, Li is either an atom Ai or a negated atom

¬Ai , where Ai is of the form pi or qi(Xi), and qi is a predicate of type ilist, and

(iii) there exists a level mapping ℓ such that, for i=1, . . . ,m, if Li is an atom and

vars(A0) 6⊇vars(Li), then ℓ(A0)>ℓ(Li) else ℓ(A0)≥ℓ(Li). A monadic ω-program is

a finite set of monadic ω-clauses.

Example 4 (Non-Emptiness of Languages Accepted by Büchi Automata)

In this first application of our verification method, we will consider Büchi automata,

which are finite automata acting on infinite words (Thomas 1990), and we will check

whether or not the language accepted by a Büchi automaton is empty. It is well
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known that this verification problem has important applications in the area of model

checking (see, for instance, (Clarke et al. 1999)).

A Büchi automaton A is a nondeterministic finite automaton 〈Σ,Q , q0, δ,F 〉,

where, as usual, Σ is the input alphabet, Q is the set of states, q0 is the initial

state, δ ⊆ Q×Σ×Q is the transition relation, and F is the set of final states. A run

of the automaton A on an infinite input word w = a0 a1 . . . ∈ Σω is an infinite

sequence ρ= ρ0 ρ1 . . . ∈ Qω of states such that ρ0 is the initial state q0 and, for

all n≥0, 〈ρn , an , ρn+1〉 ∈ δ. Let Inf (ρ) denote the set of states that occur infinitely

often in the infinite sequence ρ of states. An infinite word w ∈ Σω is accepted by A

if there exists a run ρ of A on w such that Inf (ρ) ∩ F 6= ∅ or, equivalently, if there

is no state ρm in ρ such that every state ρn , with n ≥ m, is not final. The language

accepted by A is the subset of Σω, denoted L(A), of the infinite words accepted

by A. In order to check whether or not the language L(A) is empty, we construct

an ω-program which defines a unary predicate accepting run such that:

(α) L(A) 6= ∅ iff ∃X accepting run(X )

The predicate accepting run is defined by the following formulas:

(1) accepting run(X ) ≡def run(X ) ∧ ¬ rejecting(X )

(2) run(X ) ≡def ∃S (occ(0,X , S ) ∧ initial(S ))∧

∀N ∀S1 ∀S2 (nat(N ) ∧ occ(N ,X , S1) ∧ occ(s(N ),X , S2)→ ∃A tr(S1,A, S2)))

(3) rejecting(X ) ≡def ∃M (nat(M )∧∀N ∀S (geq(N ,M )∧occ(N ,X , S )→ ¬final(S )))

where, for all n ≥ 0, for all ρ = ρ0 ρ1 . . . ∈ Qω, for all q, q1, q2 ∈ Q , for all a ∈ Σ,

(i) occ(sn(0), ρ, q) iff ρn = q, (ii) initial(q) iff q = q0, (iii) nat(sn(0)) iff n ≥ 0,

(iv) tr(q1, a, q2) iff 〈q1, a, q2〉 ∈ δ, (v) geq(sn(0), sm(0)) iff n ≥m, and (vi) final(q)

iff q ∈F .

By (α) and (1)–(3) above, L(A) 6= ∅ iff there exists an infinite sequence ρ =

ρ0 ρ1 . . . ∈ Qω of states such that: (i) ρ0 is the initial state q0, (ii) for all n ≥ 0,

there exists a ∈ Σ such that 〈ρn , a, ρn+1〉 ∈ δ (see (2)), and (iii) there exists no

state ρm , with m≥0, in ρ such that, for all n≥m, ρn /∈ F (see (3)).

Now we introduce an ω-program PA defining the predicates accepting run, run,

rejecting, nat, occ, and geq. In particular, clause 1 corresponds to formula (1),

clauses 2–4 correspond to formula (2), and clauses 5 and 6 correspond to formula (3).

(Actually, clauses 1–6 can be derived from formulas (1)–(3) by applying the Lloyd-

Topor transformation (Lloyd 1987).) In program PA any infinite sequence ρ0ρ1. . .

of states is represented by the infinite list Jρ0, ρ1, . . .K of constants.

Given a Büchi automaton A = 〈Σ,Q , q0, δ,F 〉, the encoding ω-program PA con-

sists of the following clauses (independent of A):

1. accepting run(X )← run(X ) ∧ ¬ rejecting(X )

2. run(X )← occ(0,X , S ) ∧ initial(S ) ∧ ¬not a run(X )

3. not a run(X )← nat(N ) ∧ occ(N ,X ,S1) ∧ occ(s(N ),X ,S2)∧ ¬ exists tr(S1,S2)

4. exists tr(S1, S2)← tr(S1,A, S2)

5. rejecting(X )← nat(M ) ∧ ¬ exists final(M ,X )

6. exists final(M ,X )← geq(N ,M ) ∧ occ(N ,X , S ) ∧ final(S )

7. nat(0)←
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8. nat(s(N ))← nat(N )

9. occ(0, JS |X K, S )←

10. occ(s(N ), JS |X K,R)← occ(N ,X ,R)

11. geq(N , 0)←

12. geq(s(N ), s(M ))← geq(N ,M )

together with the clauses (depending on A) which define the predicates initial, tr,

and final, where: for all states s , s1, s2∈Q , for all symbols a∈Σ, (i) initial(s) holds

iff s is q0, (ii) tr(s1,a,s2) holds iff 〈s1,a,s2〉∈δ, and (iii) final(s) holds iff s∈F .

The ω-program PA is locally stratified w.r.t. the stratification function σ defined

as follows: for every atom A in Bω, σ(A) = 0, except that: for every element n in

{sk(0) | k≥0}, for every infinite list ρ in Qω, (i) σ(rejecting(ρ))=σ(not a run(ρ))=

σ(nat(n))=1, and (ii) σ(run(ρ))= σ(accepting run(ρ))=2.

Now, let us consider a Büchi automaton A such that:

Σ={a, b}, Q={1, 2}, q0=1, δ={〈1, a, 1〉, 〈1, b, 1〉, 〈1, a, 2〉, 〈2, a, 2〉}, F ={2}

which can be represented by the following graph:

1 2
a

a, b a

1

For this automaton A, program PA consists of clauses 1–12 and the following

clauses 13–18 that encode the initial state (clause 13), the transition relation

(clauses 14–17), and the final state (clause 18):

13. initial (1)← 14. tr(1, a, 1)← 15. tr(1, b, 1)←

16. tr(1, a, 2)← 17. tr(2, a, 2)← 18. final(2)←

In order to check whether or not L(A)=∅ we proceed in two steps as indicated at

the beginning of this Section 5. In the first step we use the rules of Section 3 for

transforming the ω-program PA into a monadic ω-program T . This transformation

aims at the elimination of the existential variables from clauses 1–6, with the ob-

jective of deriving unary predicates of type ilist. We start from clause 6 and, by

instantiation of the variable X of type ilist, we get:

19. exists final(M , J1|X K)← geq(N ,M ) ∧ occ(N , J1|X K, S ) ∧ final(S )

20. exists final(M , J2|X K)← geq(N ,M ) ∧ occ(N , J2|X K, S ) ∧ final(S )

By some unfolding and subsumption steps, from clauses 19 and 20 we get:

21. exists final(0, J1|X K)← occ(N ,X , S ) ∧ final(S )

22. exists final(s(M ), J1|X K)← geq(N ,M ) ∧ occ(N ,X , S ) ∧ final(S )

23. exists final(0, J2|X K)←

24. exists final(s(M ), J2|X K)← geq(N ,M ) ∧ occ(N ,X , S ) ∧ final(S )

Note that clauses 21–24 are descendants of clauses derived by unfolding clauses 19

and 20 w.r.t. the σ-maximal atom geq(N ,M ). By rule R1, we introduce:

25. new1(X )← occ(N ,X , S ) ∧ final(S )

This clause is σ-tight by taking, for every infinite list ρ of states, σ(new1(ρ)) = 0.

By folding clause 21 using clause 25, and folding clauses 22 and 24 using clause 6
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(indeed, without loss of generality, we may assume that clauses 1–6 have been

introduced by rule R1), we get:

26. exists final(0, J1|X K)← new1(X )

27. exists final(s(M ), J1|X K)← exists final(M ,X )

28. exists final(s(M ), J2|X K)← exists final(M ,X )

By instantiation of the variable X and by some unfolding and subsumption steps,

from clause 25 we get:

29. new1(J1|X K)← occ(N ,X , S ) ∧ final(S )

30. new1(J2|X K)←

Note that clause 29 is a descendant of clause 25, that has been unfolded w.r.t. the

σ-maximal atom occ(N ,X , S ). By folding clause 29 using clause 25 we get:

31. new1(J1|X K)← new1(X )

At this point we have obtained the definitions of the predicates exists final and

new1 (that is, clauses 23, 26–28, 30, and 31) that do not have existential variables.

Now the transformation of program PA proceeds by performing on clauses 1–5

a sequence of transformation steps, which is similar to the one we have performed

above on clause 6 for eliminating its existential variables. By doing so, we get:

32. accepting run(J1|X K)← ¬not a run(X ) ∧ new1(X ) ∧ ¬ rejecting(X )

33. run(J1|X K)← ¬not a run(X )

34. not a run(J1|X K)← not a run(X )

35. not a run(J2|X K)← new2(X )

36. not a run(J2|X K)← not a run(X )

37. new2(J1|X K)←

38. rejecting(J1|X K)← ¬new1(X )

39. rejecting(J1|X K)← rejecting(X )

40. rejecting(J2|X K)← rejecting(X )

The final ω-program T obtained from program PA, consists of clauses 30–40 and

it is a monadic ω-program.

Now, in the second step of our verification method, we check whether or not

∃X accepting run(X ) holds inM (T ) by applying the proof method of (Pettorossi et al. 2010).

We construct the tree depicted in Figure 1, where the literals occurring in the two

lowest levels are the same (see the two rectangles) and, thus, we have detected an in-

finite loop. According to the conditions given in Definition 6 of (Pettorossi et al. 2010),

this tree is a proof of ∃X accepting run(X ). The run ρ=12ω is a witness for X and

corresponds to the accepted word aω. Thus, L(A) 6= ∅.

Example 5 (Containment Between ω-Regular Languages)

In this second application of our verification method, we will consider regular sets

of infinite words over a finite alphabet Σ (Thomas 1990). These sets are denoted

by ω-regular expressions whose syntax is defined as follows:

e ::= a | e1e2 | e1+e2 | e∗ with a ∈ Σ (regular expressions)

f ::= eω | e1eω2 | f1+f2 (ω-regular expressions)
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Figure 1. Proof of ∃X accepting run(X ) w.r.t. the monadic ω-program T . On the

right we have shown the infinite loop and the associated accepting run 122ω (that

is, 12ω).

Given a regular (or an ω-regular) expression r , by L(r) we indicate the set of

all words in Σ∗ (or Σω, respectively) denoted by r . In particular, given a regular

expression e, we have that L(eω) = {w0w1 . . . ∈ Σω | for i≥0,wi ∈ L(e)⊆Σ∗}.

Now we introduce an ω-program, called Pf , which defines the predicate ω-acc

such that for any ω-regular expression f , for any infinite word w , ω-acc(f ,w) holds

iff w ∈ L(f ). Any infinite word a0a1 . . . ∈ Σω is represented by the infinite list

Ja0, a1, . . .K of symbols in Σ. The ω-program Pf is made out of the following clauses:

1. acc(E , [E ])← symb(E )

2. acc(E1E2,X )← app(X1,X2,X ) ∧ acc(E1,X1) ∧ acc(E2,X2)

3. acc(E1+E2,X )← acc(E1,X )

4. acc(E1+E2,X )← acc(E2,X )

5. acc(E∗, [ ])←

6. acc(E∗,X )← app(X1,X2,X ) ∧ acc(E ,X1) ∧ acc(E∗,X2)

7. ω-acc(F1+F2,X )← ω-acc(F1,X )

8. ω-acc(F1+F2,X )← ω-acc(F2,X )

9. ω-acc(Eω ,X )← ¬new1(E ,X )

10. ω-acc(E1E
ω
2 ,X )← prefix(X ,N ,X1) ∧ acc(E1,X1) ∧ ω-acc1(Eω

2 ,X1,X )

11. new1(E ,X )← nat(M ) ∧ ¬new2(E ,M ,X )

12. new2(E ,M ,X )← geq(N ,M ) ∧ prefix(X ,N ,V ) ∧ acc(E∗,V )

13. ω-acc1(E , [ ],X )← ω-acc(E ,X )

14. ω-acc1(E , [H |T ], JH |X K)← ω-acc1(E ,T ,X )

15. geq(N , 0)←

16. geq(s(N ), s(M ))← geq(N ,M )

17. nat(0)←

18. nat(s(N ))← nat(N )

19. prefix (X , 0, [ ])←

20. prefix (JS |X K, s(N ), [S |Y ])← prefix(X ,N ,Y )

21. app([ ],Y ,Y )←

22. app([S |X ],Y , [S |Z ])← app(X ,Y ,Z )

together with the clauses defining the predicate symb, where symb(a) holds iff a ∈ Σ.

We have that prefix(X ,N ,Y ) holds iff Y is the list of the N (≥0) leftmost symbols

of the infinite list X . Clauses 1–6 stipulate that, for any finite word w and regular
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expression e, acc(e,w) holds iff w ∈ L(e). Analogously, clauses 7–14 stipulate that,

for any infinite word w and ω-regular expression f , ω-acc(f ,w) holds iff w ∈ L(f ).

In particular, clauses 9, 11, and 12 correspond to the following definition:

ω-acc(Eω,X ) ≡def

∀M (nat(M )→ ∃N ∃V (geq(N ,M ) ∧ prefix (X ,N ,V ) ∧ acc(E∗,V )))

The ω-program Pf is stratified and, thus, locally stratified.

Now, let us consider the ω-regular expressions f1 ≡def a
ω and f2 ≡def (b

∗a)ω .

The following two clauses:

23. expr1(X )← ω-acc(aω ,X ) 24. expr2(X )← ω-acc((b∗a)ω ,X )

together with program Pf , define the predicates expr1 and expr2 such that, for every

infinite word w , expr1(w) holds iff w ∈ L(f1) and expr2(w) holds iff w ∈ L(f2). If

we introduce the following clause:

25. not contained(X )← expr1(X ) ∧ ¬ expr2(X )

we have that L(f1) ⊆ L(f2) iff M (Pf ∪{23, 24, 25}) 6|= ∃Xnot contained(X ). By per-

forming a sequence of transformation steps which is similar to the one we have per-

formed in Example 4, from program Pf ∪ {23, 24, 25} we get the following monadic

ω-program T :

26.not contained(Ja|X K)← ¬new3(X ) ∧ new4(X ) 31.new5(Ja|X K)← new4(X )

27.new3(Ja|X K) ← new3(X ) 32.new5(Jb|X K)← new5(X )

28.new3(Jb|X K)← 33.new5(Jb|X K)← ¬new6(X )

29.new4(Ja|X K) ← new4(X ) 34.new6(Ja|X K)←

30.new4(Jb|X K)← new5(X ) 35.new6(Jb|X K)← new6(X )

By using the proof method for monadic ω-programs of (Pettorossi et al. 2010) we

have that M (T ) 2 ∃X not contained(X ) and, thus, L(f1) ⊆ L(f2).

6 Related Work and Conclusions

There have been various proposals for extending logic programming languages to in-

finite structures (see, for instance, (Colmerauer 1982; Lloyd 1987; Min and Gupta 2010;

Simon et al. 2006)). In order to provide the semantics of infinite structures, these

languages introduce new concepts, such as complete Herbrand interpretations, ra-

tional trees, and greatest models. Moreover, the operational semantics of these lan-

guages requires an extension of SLDNF-resolution by means of equational reasoning

and new inference rules, such as the so-called coinductive hypothesis rule.

On the contrary, the semantics of ω-programs we consider in this paper is very

close to the usual perfect model semantics for logic programs on finite terms, and

we do not define any new operational semantics. Indeed, the main objective of this

paper is not to provide a new model for computing over infinite structures, but

to present a methodology, based on unfold/fold transformation rules, for reasoning

about such structures and proving their properties.

Very little work has been done for applying transformation techniques to logic

languages that specify the (possible infinite) computations of reactive systems. No-

table exceptions are (Ueda and Furukawa 1988) and (Etalle et al. 2001), where the
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unfold/fold transformation rules have been studied in the context of guarded Horn

clauses (GHC) and concurrent constraint programs (CCP). However, GHC and

CCP programs are definite programs and do not manipulate terms denoting infi-

nite lists.

The transformation rules presented in this paper extend to ω-programs the rules

for general programs proposed in (Fioravanti et al. 2004; Pettorossi and Proietti 2000;

Roychoudhury et al. 2002; Seki 1991; Seki 2010). In Sections 3 and 4 we discuss in

detail the relationship of the rules in those papers with our rules here.

In Section 5 we have used our transformation rules for extending to infinite lists

a verification methodology proposed in (Pettorossi and Proietti 2000) and, as an

example, we have shown how to verify properties of the infinite behaviour of Büchi

automata and properties of ω-regular languages. This extends our previous work

(see (Pettorossi et al. 2010)), as already illustrated at the beginning of Section 5.

The verification methodology based on transformations we have proposed here is

very general. It can be applied to the proof of properties of infinite state reactive

systems; thus it goes beyond the capabilities of finite state model checkers. The

focus of our paper has been the proposal of correct transformation rules, that is,

rules which preserve the perfect model, while the automation of the verification

methodology itself is left for future work. This automation requires the design of

suitable transformation strategies that can be defined by adapting to ω-programs

some strategies already developed in the case of logic programs on finite terms (see,

for instance, (Proietti and Pettorossi 1995; Pettorossi and Proietti 2000)).

Many other papers use logic programming, possibly with constraints, for speci-

fying and verifying properties of finite or infinite state reactive systems (see, for in-

stance, (Abadi and Manna 1989; Delzanno and Podelski 2001; Fribourg and Olsén 1997;

Jaffar et al. 2004; Leuschel and Massart 2000; Nilsson and Lübcke 2000; Ramakrishna et al. 1997)),

but they do not consider terms which explicitly represent infinite structures. As we

have seen in the examples of Section 5, infinite lists are very convenient for speci-

fying those properties and the use of infinite lists avoids ingenious encodings which

would have been otherwise required.
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Appendix A Proofs for Section 4

We start off by showing that admissible transformation sequences preserve the local

stratification σ for the initial program P0 as stated in the following lemma.

Lemma 1 (Preservation of Local Stratification)

Suppose that P0 is a locally stratified ω-program, σ is a local stratification for P0,

and P0,P1, . . . , Pn is an admissible transformation sequence. Then the programs

P0 ∪Defsn , P1, . . . ,Pn are locally stratified w.r.t. σ.

Proof

Since P0, . . . ,Pn is an admissible transformation sequence, every definition in Defsn
is locally stratified w.r.t. σ (see Point (1) of Definition 5). Since, by hypothesis, P0

is locally stratified w.r.t. σ, also P0 ∪Defsn is locally stratified w.r.t. σ.

Now we will prove that, for k = 0, . . . , n, Pk is locally stratified w.r.t. σ by induction

on k .

Basis (k = 0). By hypothesis P0 is locally stratified w.r.t. σ.

Step. We assume that Pk is locally stratified w.r.t. σ and we show that Pk+1 is

locally stratified w.r.t. σ. We proceed by cases depending on the transformation

rule which is applied to derive Pk+1 from Pk .

Case 1. Program Pk+1 is derived by definition introduction (rule R1). We have that

Pk+1 = Pk ∪ {δ1, . . . , δm}, where Pk is locally stratified w.r.t. σ by the inductive

hypothesis. Since P0, . . . ,Pn is an admissible transformation sequence, {δ1, . . . , δm}

is locally stratified w.r.t. σ (see Point (1) of Definition 5). Thus, Pk+1 is locally

stratified w.r.t. σ.

Case 2. Program Pk+1 is derived by instantiation (rule R2). We have that Pk+1 =

(Pk − {γ})∪ {γ1, . . . , γh}, where γ is the clause H ← B and, for i = 1, . . . , h, γi is

the clause (H ← B){X /Jsi |X K}.

Take any i ∈ {1, . . . , h}. Let L{X /Jsi |X K} be a literal in the body of γi . Let v be any

valuation and v ′ be the valuation such that v ′(X ) = Jsi |v(X )K and v ′(Y ) = v(Y )

for every variable Y different from X . We have:

σ(v(H {X /Jsi |X K})) = σ(v ′(H )) (definition of v ′)

≥ σ(v ′(L)) (γ is locally stratified w.r.t. σ)

= σ(v(L{X /Jsi |X K})) (definition of v ′)

Thus, γi is locally stratified w.r.t. σ. Hence, Pk+1 is locally stratified w.r.t. σ.

Case 3. Program Pk+1 is derived by positive unfolding (rule R3). We have that

Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηm}, where γ is a clause in Pk of the form H ←

GL ∧ A ∧GR and clauses η1, . . . , ηm are derived by unfolding γ w.r.t. A. Since, by

the induction hypothesis, (Pk −{γ}) is locally stratified w.r.t. σ, it remains to show

that, for i = 1, . . . ,m, clause ηi is locally stratified w.r.t. σ. For i = 1, . . . ,m, ηi
is of the form (H ← GL ∧ Bi ∧ GR)ϑi , where γi : Ki ← Bi is a clause in a variant

of Pk such that γi has no variable in common with γ and Aϑi = Kiϑi . Take any

valuation v and let v ′ be a valuation such that, for every variable X occurring in γ

or γi , v
′(X ) = v(Xϑi).
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Let GL ∧ Bi ∧GR be the conjunction of s (≥ 0) literals L1, . . . ,Ls . Without loss

of generality, we assume that GL ∧ GR is L1 ∧ . . . ∧ Lr and Bi is Lr+1 ∧ . . . ∧ Ls ,

with 0 ≤ r ≤ s .

For j = 1, . . . , r , we have:

σ(v(Hϑi)) = σ(v ′(H )) (definition of v ′)

≥ σ(v ′(Lj )) (γ is locally stratified w.r.t. σ)

= σ(v(Ljϑi)) (definition of v ′)

For j = r + 1, . . . , s , we have:

σ(v(Hϑi)) = σ(v ′(H )) (definition of v ′)

≥ σ(v ′(A)) (γ is locally stratified w.r.t. σ)

= σ(v ′(Ki)) (definition of v ′ and because Aϑi = Kiϑi)

≥ σ(v ′(Lj )) (γi is locally stratified w.r.t. σ)

= σ(v(Ljϑi)) (definition of v ′)

Thus, the clause ηi is locally stratified w.r.t. σ.

Case 4. Program Pk+1 is derived by negative unfolding (rule R4). We have that

Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηr}, where γ is a clause in Pk of the form H ←

GL∧¬A∧GR and clauses η1, . . . , ηr are derived by negative unfolding γ w.r.t. ¬A.

Since, by the inductive hypothesis, (Pk−{γ}) is locally stratified w.r.t. σ, it remains

to show that, for j = 1, . . . , r , clause ηj is locally stratified w.r.t. σ.

Let γ1: K1 ← B1, . . . , γm : Km ← Bm be the clauses in a variant of Pk such

that, for i = 1, . . . ,m, A=Kiϑi for some substitution ϑi . Then, for j = 1, . . . , r , ηj
is of the form H ← Lj1 ∧ . . . ∧ Ljs and, by construction, for p = 1, . . . , s , Ljp is a

literal such that either (Case a) Ljp is an atom that occurs positively in GL∧GR, or

(Case b) Ljp is a negated atom that occurs in GL ∧GR, or (Case c) Ljp is an atom

M and ¬M occurs in Biϑi , for some i ∈ {1, . . . ,m}, or (Case d) Ljp is a negated

atom ¬M and M is an atom that occurs positively in Biϑi , for some i ∈ {1, . . . ,m}.

Take any j ∈ {1, . . . , h}. Take any p ∈ {1, . . . , s}. Take any valuation v . In

Cases (a) and (b) we have σ(v(H )) ≥ σ(v(Ljp )) because, by the inductive hypoth-

esis, γ is locally stratified w.r.t. σ. In Case (c) we have:

σ(v(H )) > σ(v(A)) (γ is locally stratified w.r.t. σ and

¬A occurs in the body of γ)

= σ(v(Kiϑi)) (A = Kiϑi)

> σ(v(Ljp)) (γi is locally stratified w.r.t. σ)

In Case (d) we have:

σ(v(H )) ≥ σ(v(A)) + 1 (γ is locally stratified w.r.t. σ and

¬A occurs in the body of γ)

= σ(v(Kiϑi)) + 1 (A = Kiϑi)

≥ σ(v(Ljp)) + 1 (γi is locally stratified w.r.t. σ)

Thus, ηj is locally stratified w.r.t. σ. Hence, Pk+1 is locally stratified w.r.t. σ.

Case 5. ProgramPk+1 is derived by subsumption (rule R5). Pk+1 is locally stratified

w.r.t. σ by the inductive hypothesis because Pk+1 ⊆ Pk .

Case 6. Program Pk+1 is derived by positive folding (rule R6). We have that Pk+1 =
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(Pk − {γ}) ∪ {η}, where η is a clause of the form H ← BL ∧ Kϑ ∧ BR derived by

positive folding of clause γ of the form H ← BL ∧ Bϑ ∧ BR using a clause δ of the

form K ← B ∈ Defsk . We have to show that η is locally stratified w.r.t. σ, that

is, for every valuation v , σ(v(H )) ≥ σ(v(K )ϑ).

Take any valuation v . By the inductive hypothesis, since γ is locally stratified

w.r.t. σ, we have that: (α) for every literal L occurring in BL ∧ Bϑ ∧ BR, we have

σ(v(H )) ≥ σ(v(L)).

By the applicability conditions of rule R6, clause δ is the unique clause defining

the predicate of its head and, by the hypothesis that the transformation sequence is

admissible, this definition is σ-tight (see Point (2) of Definition 5). Thus, for every

valuation v ′, we have that: (1) for every L in B , σ(v ′(K )) ≥ σ(v ′(L)), and (2) there

exists an atom A in B such that σ(v ′(K )) = σ(v ′(A)).

Let the valuation v ′ be defined as follows: for every variable X , v ′(X ) = v(Xϑ).

Then, we have that: (β ·1) for every L in B , σ(v(Kϑ)) ≥ σ(v(Lϑ)), and (β ·2) there

exists an atom A in B such that σ(v(Kϑ)) = σ(v(Aϑ)). Thus, from (α), (β · 1),

and (β · 2), we get that σ(v(H )) ≥ σ(v(Kϑ)). Hence, η is locally stratified w.r.t. σ.

Case 7. Program Pk+1 is derived by negative folding (rule R7). We have that

Pk+1 = (Pk − {γ}) ∪ {η} and, by the hypothesis that the transformation sequence

is admissible, η is locally stratified w.r.t. σ (see Point (3) of Definition 5).

In the rest of this Appendix we will consider:

(i) a local stratification σ : Bω →W ,

(ii) an ω-program P0 which is locally stratified w.r.t. σ, and

(iii) an admissible transformation sequence P0, . . . ,Pn .

Definition 7 (Old and New Predicates, Old and New Literals)

Each predicate occurring in P0 is called an old predicate and each predicate intro-

duced by rule R1 is called a new predicate. An old literal is a literal with an old

predicate. A new literal is a literal with a new predicate.

Thus, the new predicates are the ones which occur in the heads of the clauses of

Defsn .

Without loss of generality, we will assume that the admissible transformation

sequence P0, . . . , Pn is of the form P0, . . . ,Pd , . . . ,Pn , with 0≤d≤n, where:

(1) the sequence P0, . . . ,Pd , with d ≥ 0, is constructed by applying d times the

definition introduction rule, and

(2) the sequence Pd , . . . ,Pn , is constructed by applying any rule, except the defi-

nition introduction rule R1.

Thus, Pd = P0∪Defsn . In order to prove the correctness of the admissible transfor-

mation sequence P0, . . . ,Pn (see Proposition 1 below) we will show that M (Pd ) =

M (Pn). In order to prove Proposition 1, we introduce the notion of a proof tree

which is the proof-theoretic counterpart of the perfect model semantics (see Theo-

rem 2 below). A proof tree for an atom A ∈ Bω and a locally stratified ω-program

P is constructed by transfinite induction as indicated in the following definition.
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Definition 8 (Proof Tree for Atoms and Negated Atoms)

Let A be an atom in Bω, let P be a locally stratified ω-program, and let σ be a local

stratification for P . Let PT<A denote the set of proof trees for H and P , where

H ∈ Bω and σ(H ) < σ(A).

A proof tree for A and P is a finite tree T such that:

(i) the root of T is labeled by A,

(ii) a node N of T has children labeled by L1, . . . ,Lr iff N is labeled by an atom

H ∈ Bω and there exist a clause γ ∈ P and a valuation v such that v(γ) is

H ← L1 ∧ . . . ∧ Lr , and

(iii) every leaf of T is either labeled by the empty conjunction true or by a negated

atom ¬H , with H ∈ Bω, such that there is no proof tree for H and P in PT<A.

Let A be an atom in Bω and P be a locally stratified ω-program.

A proof tree for ¬A and P exists iff there are no proof trees for A and P . There

exists at most one proof tree for ¬A and P and, when it exists, it consists of the

single root node labeled by ¬A.

Remark 1

(i) For any A ∈ Bω if there is a proof tree for A and P , then there is no proof tree

for ¬A and P .

(ii) In any proof tree if a node H is an ancestor of a node A then σ(H ) ≥ σ(A).

The following theorem, whose proof is omitted, shows that proof trees can be

used for defining a semantics equivalent to the perfect model semantics.

Theorem 2 (Proof Tree and Perfect Model)

Let P be a locally stratified ω-program. For every A ∈ Bω, there exists a proof tree

for A and P iff A ∈ M (P).

In order to show that M (Pd ) = M (Pn), we will use Theorem 2 and we will show

that, given any atom A ∈ Bω, there exists a proof tree for A and Pd iff there exists

a proof tree for A and Pn .

In the following, we will use suitable measures which we now introduce.

Definition 9 (Three Measures: size, weight , µ)

(i) For any proof tree T , size(T ) denotes the number of nodes in T labeled by

atoms in Bω.

(ii) For any atom A ∈ Bω, the ordinal σ(A) is said to be the stratum of A.

For any ordinal α ∈ W , for any proof tree T , weight(α,T ) is the number of

nodes of T whose label is an atom with stratum α. (Recall that true, that is,

the empty conjunction of literals, is not an atom.)

(iii) For any atom A ∈ Bω, we define:

min-weight(A) =def min{weight(α,T ) | σ(A)=α and

T is a proof tree for A and Pd}.

(iv) For any atom A ∈ Bω such that there exists at least a proof tree for A and Pd ,

we define:

µ(A) =def 〈σ(A),min-weight(A)〉 if A is an old atom
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µ(A) =def 〈σ(A),min-weight(A)− 1〉 if A is a new atom

(v) For any atom A ∈ Bω such that there exists no proof tree for A and Pd , we

define:

µ(¬A) =def 〈σ(A), 0〉.

Remark 2

(i) If A is an old atom then min-weight(A)>0 else min-weight(A)≥0.

(ii) For any atom A ∈ Bω, µ(A) is undefined if there is no proof tree for A and Pd .

Now we extend µ to conjunctions of literals. First, we introduce the binary op-

eration ⊕ : (W ×N)2 → (W ×N), where W is the set of countable ordinals and N

is the set of natural numbers, defined as follows:

〈α1,m1〉 ⊕ 〈α2,m2〉 =





〈α1, m1〉 if α1 > α2

〈α1, m1+m2〉 if α1 = α2

〈α2, m2〉 if α1 < α2

or equivalently,

〈α1,m1〉 ⊕ 〈α2,m2〉 =

= 〈max(α1, α2), if α1=α2 then m1+m2 else (if α1>α2 then m1 else m2)〉

Given a conjunction of literals L1 ∧ . . . ∧ Lr such that, for i = 1, . . . , r , with r≥1,

there is a proof tree for Li and Pd , we define:

µ(L1 ∧ . . . ∧ Lr ) =def µ(L1)⊕ · · · ⊕ µ(Lr )

For true, which is the empty conjunction of literals, we define:

µ(true) =def 〈0, 0〉

Note that the definition of µ(true) is consistent with the fact that true is the neutral

element for ∧ and, thus, µ(true) should be the neutral element for ⊕, which is 〈0, 0〉.

The following lemma follows from the definition of the measure µ. Recall that a

new predicate can only be defined in terms of old predicates.

Lemma 2 (Properties of µ for a Definition in Pd )

Let δ ∈ Pd be a σ-tight clause introduced by the definition rule R1 with m=1, that

is, δ is the only clause defining the head predicate of δ in Pd . Let v be a valuation

and v(δ) be of the form:K ← L1∧. . .∧Lq . We have that: µ(K ) = µ(L1)⊕. . .⊕µ(Lq).

Proof

Without loss of generality, we may assume that L1 is an atom and σ(K ) = σ(L1)

because δ is σ-tight and, thus, L1 is σ-maximal. We have that:

Thus

µ(K ) = 〈σ(K ), min-weight(K )−1〉.

Now, min-weight(K ) = {by definition of min-weight} =

= min{weight(σ(K ),TK )} where TK is a proof tree for K and Pd =

= {by definition of weight (see also Figure A 1)} =

=
(
min

∑
i=1,...,q weight(σ(K ),Ti )

)
+1

where for i=1, . . . , q, Ti is a proof tree for Li and Pd =
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= {by definition of weight and Remark 1} =

=
(
min

∑
i=1,...,q ∧ σ(Li)=σ(K ) weight(σ(K ),Ti )

)
+1 = {by min

∑
=

∑
min} =

=
(∑

i=1,...,q ∧ σ(Li)=σ(K )min-weight(Li )
)
+1 = {by σ-tightness} =

=
(∑

i=1,...,q ∧ σ(Li)=σ(L1)
min-weight(Li)

)
+1.

Thus,

µ(K ) = 〈σ(L1),
∑

i=1,...,q ∧ σ(Li )=σ(L1)
min-weight(Li )〉 = {by definition of ⊕} =

= µ(L1)⊕ . . .⊕ µ(Lq).

K

L1 Lq

T1 Tq

. . .

Figure A 1. A proof tree for K and Pd . There is a valuation v and a clause δ ∈ Pd

such that v(δ) is of the form: K ← L1 ∧ . . .∧Lq . For i = 1, . . . , q, Ti is a proof tree

for Li and Pd .

Let > denote the usual greater-than relation on N. Let >lex denote the lexico-

graphic ordering over W × N.

Let π1 and π2 denote, respectively, the first and second projection function on

pairs. Given a pair A = 〈a, b〉 by A1 we denote a and by A2 we denote b.

Lemma 3 (Properties of ⊕)

(i) ⊕ is an associative, commutative binary operator.

(ii) For every A,B ,C ∈W × N and R ∈ {≥lex , >lex }, we have that:

(ii.1) A⊕ B ≥lex A

(ii.2) if A ≥lex B then A⊕ C ≥lex B ⊕ C

(ii.3) if A >lex B , A1 ≥ C1, and A2 > 0 then A⊕ C >lex B ⊕ C

(ii.4) if A R B and A1 > C1 then A R B ⊕ C

(ii.5) if A R B ⊕ C then A R B and A R C

Proof

(i) It follows immediately from the definition.

(ii.1) By cases. If A1 > B1 then A ⊕ B = A ≥lex A. If A1 = B1 then A ⊕ B =

〈A1,A2 + B2〉 ≥lex A. If B1 > A1 then A⊕ B = B >lex A.

(ii.2) Let us consider the following two pairs:

(α) =def A⊕ C =

= 〈max(A1,C1), if A1=C1 then A2+C2 else if A1>C1 then A2 else C2〉

and

(β) =def B ⊕ C =
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= 〈max(B1,C1), if B1=C1 then B2+C2 else if B1>C1 then B2 else C2〉.

We have to show that (α) ≥lex (β).

Since A ≥lex B , there are two cases. Case (1): A = B , and Case (2): A >lex B .

Case (2) consists of two subcases: Case (2.1): A1 > B1, and Case (2.2): A1 = B1

and A2 > B2.

In Case (1) we have that (α) = (β). Thus, we get (α) ≥lex (β) as desired.

In Case (2.1) we consider two subcases: Case (2.1.1): A1 > B1 and B1 ≥ C1, and

Case (2.1.2): A1 > B1 and B1 < C1.

In Case (2.1.1) we have that max(A1,C1) > max(B1,C1) and thus, we get that

(α) ≥lex (β).

In Case (2.1.2) (β) reduces to 〈C1,C2〉 and, since A1 > B1 ≥ C1, we get that

(α) ≥lex (β).

In Case (2.2) since A1 = B1, (β) reduces to

〈max(A1,C1), if A1 = C1 then B2+C2 else if A1 > C1 then B2 else C2〉

and, since A2 > B2, we get that (α) ≥lex (β).

(ii.3) Let us consider again the two pairs:

(α) =def A⊕ C =

= 〈max(A1,C1), if A1=C1 then A2+C2 else if A1>C1 then A2 else C2〉

and

(β) =def B ⊕ C =

= 〈max(B1,C1), if B1=C1 then B2+C2 else if B1>C1 then B2 else C2〉.

We have to show (α) >lex (β).

Since A >lex B there are two cases. Case (1): A1 > B1 and A1 ≥ C1 and A2 > 0.

Case (2): A1 = B1 and A2 > B2 and A1 ≥ C1 and A2 > 0.

For Case (1) we consider two subcases: Case (1.1) A1 = C1 and Case (1.2) A1 > C1.

In Case (1.1) we have that (α) reduces to 〈C1,A2 + C2〉 and

(β) reduces to 〈C1, if B1 = C1 then B2+C2 else if B1 > C1 then B2 else C2〉

and since A1 > B1 and A1 = C1, we get that (β) further reduces to 〈C1,C2〉 and,

since A2 > 0, we get that (α) >lex (β).

In Case (1.2) we have that (α) reduces to 〈A1, . . .〉 and (β) reduces to

〈max(B1,C1), . . .〉, and since A1 > B1 and A1 > C1 we get that (α) >lex (β).

For Case (2) we consider two subcases: Case (2.1) A1 = B1 = C1 and Case (2.2)

A1 = B1 > C1.

In Case (2.1) we have that (α) reduces to 〈A1,A2+C2〉 and (β) reduces to 〈A1,B2+

C2〉, and since in Case (2) we have that A2 > B2, we get that (α) >lex (β).

In Case (2.2) we have that (α) reduces to 〈A1,A2〉 and (β) reduces to 〈B1,B2〉, and

since A1 = B1 and in Case (2) we have that A2 > B2, we get that (α) >lex (β).

(ii.4) We have that:

B⊕C = 〈max(B1,C1), if B1 = C1 then B2+C2 else if B1 > C1 then B2 else C2〉

We reason by cases. Case (1): we assume A = B and A1 > C1 and we show A ≥lex
B ⊕ C . Case (2): we assume A >lex B and A1 > C1 and we show A >lex B ⊕ C .

Case (1). Since A = B , from A1 > C1 we get that B1 > C1 and thus, B ⊕ C = B .

Thus, A ≥lex B ⊕ C .
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Case (2). There are two subcases: (2.1) A1 > B1 and A1 > C1, and (2.2) (A1 = B1

and A2 > B2) and A1 > C1.

Case (2.1). We have that: A1 > max(B1,C1) and thus, A ≥lex B ⊕ C .

Case (2.2). Since A1 = B1 and A1 > C1, we have that: B ⊕ C = 〈B1,B2〉 =def B .

Since A1 = B1 and A2 > B2 we get A >lex B , and thus, A >lex B ⊕ C .

(ii.5) We have that:

B⊕C = 〈max(B1,C1), if B1 = C1 then B2+C2 else if B1 > C1 then B2 else C2〉

We reason by cases: Case (1) A = B ⊕ C , and Case (2) A >lex B ⊕ C . In order

to show Point (ii.5) in Case (1) we have to show A ≥lex B and A ≥lex C , and in

Case (2) we have to show A >lex B and A >lex C .

Case (1) Assume A = B ⊕ C .

Case (1.1): B1 = C1. Thus, A1 = B1 = C1 and A2 = B2 +C2. Thus, A ≥lex B and

A ≥lex C .

Case (1.2): B1 > C1. Thus, A1 = B1 and A2 = B2. Thus, A ≥lex B and A ≥lex C .

Case (1.3): B1 < C1. Like Case (1.2), by interchanging B and C .

Case (2) Assume A >lex B ⊕ C .

Case (2.1): A1 > max(B1,C1). We get: A >lex B and A >lex C .

Case (2.2): A1 = max(B1,C1).

Case (2.2.1): B1 = C1. We have: A1 = B1 = C1 and, since A >lex B ⊕C , we have:

A2 > B2 + C2. Thus, we get A >lex B and A >lex C .

Case (2.2.2): B1 > C1. Thus, A1 = max(B1,C1) = B1. Since A >lex B ⊕ C and

A1 = π1(B ⊕ C ), we have: A2 > π2(B ⊕ C ), that is,

A2 > if B1=C1 then B2+C2 else if B1 > C1 then B2 else C2, that is,

A2 > B2.

Thus, we get A >lex B and, since B1 > C1, we also get A >lex C .

Case (2.2.3): B1 < C1. Like Case (2.2.2), by interchanging B and C .

Notation 3

By L we will denote the negative literal ¬L, if L is a positive literal, and the positive

literal A, if L is the negative literal ¬A.

Lemma 4

For all atoms A ∈ Bω, literals L1, . . . ,Lm , which are either atoms in Bω or negation

of atoms in Bω, if for i = 1, . . . ,m, σ(A) ≥ σ(Li) then µ(A) ≥lex µ(L1) ⊕ · · · ⊕

µ(Lm).

Proof

The proof is by induction on m by recalling that the ⊕ is associative and commuta-

tive. We do the induction step. The base case can be proved similarly to Cases (1)

and (2.1) below.

We assume that µ(A) ≥lex µ(L1) ⊕ · · · ⊕ µ(Lj ), for some j ≥ 1, and we show

that µ(A) ≥lex µ(L1)⊕ · · · ⊕ µ(Lj )⊕ µ(Lj+1).

By definition, µ(A) = 〈σ(A), 0〉. Let µ(L1) ⊕ · · · ⊕ µ(Lj ) = 〈β,w1〉, for some
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β ∈ W and w1 ∈ N. Thus, the induction hypothesis can be stated as follows:

〈σ(A), 0〉 ≥lex 〈β,w1〉.

We have the following two cases.

Case (1). Assume that Lj+1 is a positive literal, say B . Let µ(B) be 〈σ(B),w2〉,

for some w2 ∈ W . Since σ(A) ≥ σ(Lj+1) > σ(B), by Lemma 3 (ii.4) we get that

µ(A) ≥lex µ(L1)⊕ · · · ⊕ µ(Lj )⊕ µ(B).

Case (2). Assume that Lj+1 is a negative literal, say ¬B . Let µ(¬B) be 〈σ(B), 0〉.

By hypothesis, we have σ(A) ≥ σ(Lj+1) = σ(B). We have three subcases.

Case (2.1). σ(B) > β. By induction hypothesis we have that 〈σ(A), 0〉 ≥lex 〈β,w1〉.

We also have that 〈β,w1〉 ⊕ 〈σ(B), 0〉 = 〈σ(B), 0〉 and 〈σ(A), 0〉 ≥lex 〈σ(B), 0〉.

Thus, we get 〈σ(A), 0〉 ≥lex 〈β,w1〉 ⊕ 〈σ(B), 0〉.

Case (2.2). σ(B) = β. By induction hypothesis we have that 〈σ(A), 0〉 ≥lex 〈β,w1〉.

We also have that 〈β,w1〉 ⊕ 〈σ(B), 0〉 = 〈β,w1〉. Thus, we get 〈σ(A), 0〉 ≥lex
〈β,w1〉 ⊕ 〈σ(B), 0〉.

Case (2.3). σ(B) < β. As Case (2.2).

Now we introduce the notion of a µ-consistent proof tree which will be used in

Proposition 1 below. This notion is a generalization of the one of a rank-consistent

proof tree introduced in (Tamaki and Sato 1984).

Definition 10 (σ-max Derived Clause)

We say that a clause γ in a program Pk of the sequence Pd , . . . ,Pn is a σ-max

derived clause if γ is a descendant of a clause β in Pj , with d < j ≤ k , such that

β has been derived by unfolding a clause α in Pj−1 w.r.t. an old σ-maximal atom.

(Recall that, by definition, a clause is a descendant of itself.)

Definition 11 (µ-consistent Proof Tree)

Let A be an atom in Bω and Pk be a program in the transformation sequence

Pd , . . . ,Pn . We say that a proof tree T for A and Pk is µ-consistent if for all atoms

H , all literals L1, . . . ,Lr which are the children of H in T , where H ← L1∧ . . .∧Lr

is a clause v(γ) for some valuation v and some clause γ ∈ Pk , we have that:

if H has a new predicate and γ is not σ-max derived

then µ(H ) ≥lex µ(L1)⊕ · · · ⊕ µ(Lr )

else µ(H ) >lex µ(L1)⊕ · · · ⊕ µ(Lr ).

The proof tree for the negated atom ¬A and Pk , if any, is µ-consistent. (Recall

that this proof tree, if it exists, consists of the single root node labeled by ¬A.)

Let us consider the following ordering on Bω which will be used in the proof of

Proposition 1.

Definition 12 (Ordering ≻)
Given any two atoms A1,A2 ∈ Bω, we write A1 ≻ A2 if either

(i) µ(A1) >lex µ(A2), or

(ii) µ(A1) = µ(A2) and A1 is a new atom and A2 is an old atom.

By abuse of notation, given any two atoms A1,A2 ∈ Bω, we write A1 ≻ ¬A2 if

σ(A1)>σ(A2) (that is, σ(A1)≥σ(A2)).

We have that ≻ is a well-founded ordering on Bω .
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Lemma 5

Let T be a µ-consistent proof tree for an atom A and a program P . Then, for every

atom B and literal L which is a child of B in T , we have B ≻ L.

Proof

Let L1, . . . ,Lr be the children of B in T , for some γ ∈ P and valuation v such that

v(γ) is B ← L1 ∧ . . .∧Lr , and let L be the literal Li . If Li is the negated atom ¬Ai

then, since P is locally stratified w.r.t. σ, we have σ(B) > σ(Ai) and B ≻ Li . Let

us now consider the case where Li is positive.

If the predicate of B is old then, by µ-consistency of T , µ(B) >lex µ(L1)⊕ · · · ⊕

µ(Lr ). By Lemma 3 (ii.1), µ(L1) ⊕ · · · ⊕ µ(Lr ) ≥lex µ(Li) and, thus, µ(B) >lex
µ(Li). By definition of ≻, we have that B ≻ Li .

If the predicate of B is new and γ is σ-max derived then, by µ-consistency of T ,

µ(B) >lex µ(Li) and, thus, B ≻ Li .

Finally, if the predicate of B is new and γ is not σ-max derived then γ is a

descendant of a clause that has not been derived by folding and, thus, the predicate

of Li is old. By µ-consistency, µ(B) ≥lex µ(Li) and, since the predicate of B is new

and the one of Li is old, we have B ≻ Li .

Lemma 6

Consider the locally stratified ω-program Pd of the admissible transformation se-

quence P0, . . . ,Pd , . . . ,Pn , where: (1) P0, . . . ,Pd is constructed by using rule (R1),

and (2) Pd , . . . , Pn is constructed by applying rules (R2)–(R7). If there exists a

proof tree for A and Pd then there exists a µ-consistent proof tree for A and Pd .

Proof

Let us consider a proof tree T for A and Pd such that

min-weight(A) = weight(σ(A),T ). We want to show that T is µ-consistent. That

tree T can be depicted as in Figure A 2. That tree has been constructed by using at

the top the clause γ and a valuation v such that v(γ) is of the form A← L1∧. . .∧Ln .

tree T : A

L1 Ln

T1 Tn

. . .

Figure A 2. A proof tree T for A and Pd such that min-weight(A) =

weight(σ(A),T ). There is a valuation v and a clause γ ∈ Pd such that v(γ) is

of the form: A← L1 ∧ . . .∧ Ln . For i = 1, . . . , n, Ti is a µ-consistent proof tree for

Li and Pd .

By induction on size(T ), we may assume that T1, . . . ,Tn are µ-consistent proof

trees. Since γ is locally stratified, we also have that for i=1, . . . , n, σ(A) ≥ σ(Li).
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(Recall that if Li , for some i ∈ {1, . . . , n}, is a negated atom, then Ti consists of

the single node Li and Ti is µ-consistent.)

In order to prove the lemma we have to show the following two points:

(P1) if A is a new atom then µ(A)≥lex µ(L1)⊕ ∧ . . . ∧ ⊕µ(Ln), and

(P2) if A is an old atom then µ(A)>lex µ(L1)⊕ ∧ . . . ∧ ⊕µ(Ln).

(Note that A ← L1 ∧ . . . ∧ Ln is not an instance of a σ-max derived clause

belonging to Pd , because no such a clause exists in Pd and, thus, if Points (P1) and

(P2) hold then the proof tree T is µ-consistent.)

Now, let us consider the following two cases: (1) A is a new atom, and (2) A is

an old atom.

Case (1): A is a new atom. We have that:

µ(A) = 〈σ(A), min-weight(A)−1〉 = 〈σ(A),
∑

i=1,...,n ∧ σ(Li)=σ(A) min-weight(Li )〉.

Now, we consider two subcases.

Case (1.1): for i = 1, . . . , n, σ(A)>σ(Li ). In this case we have that:

〈σ(A),
∑

i=1,...,n ∧ σ(Li)=σ(A) min-weight(Li)〉 =

= 〈σ(A), 0〉 >lex µ(L1)⊕ . . .⊕ µ(Ln).

This last inequality holds because π1(µ(L1)⊕ . . .⊕ µ(Ln)) =

= max{σ(Li) | i = 1, . . . , n} < σ(A), because for i = 1, . . . , n, σ(A)>σ(Li ).

Case (1.2): there exists i ∈ {1, . . . , n} such that σ(A)=σ(Li ). In this case we have

that:

〈σ(A),
∑

i=1,...,n ∧ σ(Li)=σ(A) min-weight(Li)〉 = µ(L1)⊕ . . .⊕ µ(Ln),

because µ(Lp) ⊕ µ(Lq) = µ(Lp), whenever π1(µ(Lp))> π1(µ(Lq)). This concludes

the proof of Case (1) and of Point (P1).

Case (2): A is an old atom. We have that:

µ(A) = 〈σ(A), min-weight(A)〉 =

= {the proof tree T for A and Pd is such that

min-weight(A) = weight(σ(A),T )} =

= 〈σ(A),
(∑

i=1,...,n ∧ σ(Li)=σ(A) min-weight(Li )
)
+ 1〉.

Let M be the subset of {1, . . . , n} such that for all j ∈ M , σ(Lj )=σ(A). We have

that:

〈σ(A),
(∑

i=1,...,n ∧ σ(Li )=σ(A) min-weight(Li )
)
+ 1〉 =

= 〈σ(A),
(∑

j∈M min-weight(Lj )
)
+ 1〉 >lex µ(L1)⊕ . . .⊕ µ(Ln).

This last inequality holds because
∑

j∈M min-weight(Lj ) = π2(µ(L1)⊕ . . .⊕µ(Ln).

This concludes the proof of Case (2), of Point (P2), and of the lemma.

Proposition 1

Let P0 be a locally stratified ω-program, σ be a local stratification for P0, and

P0, . . . ,Pd , . . . ,Pn be an admissible transformation sequence where: (1) P0, . . . ,Pd

is constructed by using rule (R1), and (2) Pd , . . . , Pn is constructed by applying

rules (R2)–(R7). Then, for every atom A ∈ Bω, we have that, for k = d , . . . , n:
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(Soundness) if there exists a proof tree for A and Pk , then there exists a proof tree

for A and Pd , and

(Completeness) if there exists a µ-consistent proof tree for A and Pd , then there

exists a µ-consistent proof tree for A and Pk .

Proof

We prove the (Soundness) and (Completeness) properties by induction on k .

Clearly they hold for k = d .

Now, let us assume, by induction, that:

(IndHyp) the (Soundness) and (Completeness) properties hold for k , with d≤k<

n.

We have to show that they hold for k+1.

In order to prove that the (Soundness) and (Completeness) properties hold for

k+1, it is sufficient to prove that:

(S) for every atom A ∈ Bω, if there exists a proof tree for A and Pk+1 then there

exists a proof tree for A and Pk , and

(C) for every atom A ∈ Bω, if there exists a µ-consistent proof tree for A and Pk

then there exists a µ-consistent proof tree for A and Pk+1.

We proceed by complete induction on the ordinal σ(A) associated with the atom A.

The inductive hypotheses (IS) and (IC) for (S) and (C), respectively, are as follows:

(IS) for every atom A′ ∈ Bω such that σ(A′)<σ(A), if there exists a proof tree

for A′ and Pk+1 then there exists a proof tree for A′ and Pk ,

and

(IC) for every atom A′ ∈ Bω such that σ(A′)<σ(A), if there exists a µ-consistent

proof tree for A′ and Pk then there exists a µ-consistent proof tree for A′ and

Pk+1.

By the inductive hypotheses (IS) and (IC), we have that:

(ISC) for every atom A′ ∈ Bω such that σ(A′)<σ(A) (and thus, A ≻ A′), there

exists a proof tree T ′ for A′ and Pk iff there exists a proof tree U ′ for A′ and

Pk+1.

Proof of (S). Given a proof tree U for A and Pk+1 we have to prove that there

exists a proof tree T for A and Pk . The proof is by complete induction on size(U ).

The inductive hypothesis is:

(Isize) for every atom A′ ∈ Bω, for every proof tree U ′ for A′ and Pk+1, if

size(U ′) < size(U ) then there exists a proof tree T ′ for A′ and Pk .

Let η be a clause in Pk+1 and v be a valuation. Let v(η) be a clause of the form
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A← L1 ∧ . . . ∧ Lr used at the root of U . We proceed by considering the following

cases: either (Case 1) η belongs to Pk or (Case 2) η does not belong to Pk and

it has been derived from a clause in Pk by applying a transformation rule among

R2, R3, R4, R6, and R7. These two cases are mutually exclusive and exhaustive

because rule R5 removes a clause.

We have that, for i = 1, . . . , r , there is a proof tree Ti for Li and Pk . Indeed,

(i) if Li is an atom then, by induction on (Isize), there exists a proof tree Ti for Li

and Pk , and (ii) if Li is a negated atom ¬Ai then, by the fact that program Pk+1

is locally stratified w.r.t. σ and by the inductive hypothesis (ISC), there is no proof

tree for Ai and Pk and hence, by definition, there is a proof tree Ti for Li and Pk .

Case 1. A proof tree T for A and Pk can be constructed by using v(η) and the

proof trees T1, . . . ,Tr for L1, . . . ,Lr , respectively, and Pk .

Case 2.1 (Pk+1 is derived from Pk by using rule R2.) Clause η is derived by in-

stantiating a variable X in a clause γ ∈ Pk . We have that γ is a clause of the form

Ã ← L̃1 ∧ . . . ∧ L̃r and η is of the form (Ã ← L̃1 ∧ . . . ∧ L̃r ){X /Js |X K} for some

s ∈ Σ. Thus, v(Ã{X /Js |X K}) = A and, for i=1, . . . , r , v(L̃i{X /Js |X K}) = Li .

Let v ′ be the valuation such that v ′(X ) = v(Js |X K) and v ′(Y ) = v(Y ) for every

variable Y different from X . Then v ′(γ) = v(η) and a proof tree T for A and Pk

can be constructed from T1, . . . ,Tr by using v ′(γ) at the root of T .

Case 2.2 (Pk+1 is derived from Pk by using rule R3.) Clause η is derived by unfolding

a clause γ ∈ Pk w.r.t. a positive literal, say K̃ , in its body using clause γi . Recall that

clauses γ and γi are assumed to have no variables in common (see rule R3). Without

loss of generality, we may assume that: (i) η is of the form (Ã ← L̃1 ∧ . . . ∧ L̃r )ϑi ,

(ii) γ is of the form Ã ← K̃ ∧ L̃q+1 ∧ . . . ∧ L̃r , with 0≤ q≤ r , and (iii) γi is of the

form H̃ ← L̃1 ∧ . . .∧ L̃q , where ϑi is an (idempotent and without identity bindings)

most general unifier of K̃ and H̃ .

Let v ′ be the valuation such that:(i) v ′(X ) = v(Xϑi) for every variable X in the

domain of ϑi , and (ii) v ′(Y ) = v(Y ) for every variable Y not in the domain of ϑi .

For this choice of v ′ we have that v ′(K̃ ) = {by definition of v ′} = v(K̃ϑi) = {since

K̃ϑi = H̃ϑi} = v(H̃ϑi) = {by definition of v ′} = v ′(H̃ ).

For instance, given γ: p(X )← q(X ,Y )∧s(X ,Y ,W ) and γi : q(Z , a)← r(Z ), by

unfolding γ w.r.t. q(X ,Y ) using γi , we get a most general unifier ϑi = {Z/X ,Y /a}

and the clause η: p(X )← r(X )∧s(X , a,W ). Thus, if v(η)=p(b) ← r(b)∧s(b, a, c),

we have v ′(X )=b, v ′(W )=c, v ′(Z )=b, and v ′(Y )=a.

Now, since v ′(K̃ )=v ′(H̃ ), given the proof trees T1, . . . ,Tr for L1, . . . ,Lr , respec-

tively, and Pk , we can construct a proof tree T for A and Pk as follows. LetK denote

v ′(K̃ ). (i) We first construct a proof tree TK for K and Pk from T1, . . . ,Tq by using

clause v ′(γi) at the root of TK , and then, (ii) we construct T from TK ,Tq+1, . . . ,Tr

by using clause v ′(γ) at the root of T .

Case 2.3 (Pk+1 is derived from Pk by using rule R4.) Clause η is derived by unfolding

a clause γ ∈ Pk w.r.t. a negative literal, say ¬K̃ , in its body. Recall that we have

assumed that v(η) is of the form A← L1 ∧ . . . ∧ Lr . Without loss of generality, we

may assume that:
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(i) there exist m substitutions ϑ1, . . . , ϑm and m clauses γ1, . . . , γm in Pk such that,

for i = 1, . . . ,m, ϑi is a most general unifier of K̃ and hd(γi), K̃ = hd(γi)ϑi , and

v(γiϑi) is of the form K ← Bi , and

(ii) v(γ) is of the form A ← ¬K ∧ Lm+1 ∧ . . . ∧ Lr , with 0 ≤ m ≤ r , (note that,

by Condition (1) of rule R4, γ is not instantiated by the negative unfolding). Thus,

v(η) = A← L1 ∧ . . .∧ Lr , is derived from A← ¬(B1 ∨ . . . ∨Bm) ∧ Lm+1 ∧ . . . ∧ Lr

by pushing ¬ inside and pushing ∨ outside.

Now, let us assume by absurdum that there exists a proof tree UK for K and

Pk+1. Then, there exists a valuation v ′ such that the children of the root of UK are

labeled by the literals M1, . . . ,Ms , where v ′(bd(γiϑi)) = M1 ∧ . . .∧Ms , for some i ,

with 1 ≤ i ≤ m. Since γi has no existential variables, without loss of generality

we take v ′(X ) = v(X ), for every variable X . By the definition of the negative

unfolding rule, there exist j ∈ {1, . . . , s} and h ∈ {1, . . . ,m} such that Mj = Lh .

By hypothesis, there exists a proof tree for Lh and Pk and, thus, UK is not a proof

tree for K and Pk+1. This is a contradiction and, thus, we have that there is no

proof tree for K and Pk+1. Since σ(K ) < σ(A), by the inductive hypothesis (ISC),

we have that there is no proof tree for K and Pk . Hence, there is a proof tree

T¬K for ¬K and Pk . Thus, we can construct a proof tree T for A and Pk from

T¬K ,Tm+1, . . . ,Tr by using clause v(γ) at the root of T .

Case 2.4 (Pk+1 is derived from Pk by using rule R6.) Let us assume that clause

η of the form Ã ← L̃1 ∧ L̃2 ∧ . . . ∧ L̃r is derived by positive folding from a clause

γ ∈ Pk of the form Ã ← M̃ ′
1 ∧ . . . ∧ M̃ ′

s ∧ L̃2 ∧ . . . ∧ L̃r using a clause δ ∈ Defsk
of the form K̃ ← M̃1 ∧ . . . ∧ M̃s . Without loss of generality, we may assume that

L̃1 = K̃ϑ, where ϑ is a substitution such that, for i=1, . . . , s , M̃iϑ=M̃ ′
i . Thus, the

literal L1 in the body of v(η) is v(K̃ϑ). We have that δ ∈ Pd and the definition of

the head predicate of δ in Pd consists of clause δ only.

By induction on k , we have that the (Soundness) property holds for k . We know

that there is a proof tree for L1 and Pk . Hence, by Conditions (i) and (ii) of rule

R6, there exists a proof tree for L1 and Pd , for some valuation v ′ such that v ′(δ) is

of the form L1 ← M1 ∧ . . . ∧Ms (note that if X ∈vars(η) then v ′(X ) = v(X )).

By induction on k , we have that the (Soundness) and (Completeness) properties

hold for k . Thus, there are proof trees U1, . . . ,Us for M1, . . . ,Ms , respectively, and

Pk .

Finally, by induction on (Isize), we know that there exist the proof trees T2, . . . ,Tr

for L2, . . . ,Lr , respectively, and Pk . As a consequence, we can construct a proof tree

T for A and Pk from U1, . . . ,Us ,T2, . . . ,Tr by using clause v(γ) at the root of T .

Case 2.5 (Pk+1 is derived from Pk by using rule R7.) Clause η is derived by negative

folding from a clause γ ∈ Pk using clauses δ1, . . . , δm in Defsk . Thus, we have that:

(i) v(γ) is of the form A ← N1 ∧ . . . ∧ Nm ∧ L2 ∧ . . . ∧ Lr , (ii) for i = 1, . . . ,m,

v(δi) is of the form K ← Bi , where either Ni is a positive literal Ai and Bi is

¬Ai , or Ni is a negative literal ¬Ai and Bi is Ai , and (iii) v(η) is of the form

A← ¬K ∧ L2 ∧ . . . ∧ Lr . Thus, L1 = ¬K .

By the inductive hypothesis (ISC), there exists a proof tree for L1 and Pk and,

since L1 = ¬K , there is no proof tree for K and Pk . By induction on k , we have that



Transformations of Logic Programs on Infinite Lists 31

the (Completeness) holds for k and, therefore, there exists no proof tree for K and

Pd . We have that {δ1, . . . , δm} ⊆ Pd and the clauses defining the head predicate

of δ1, . . . , δm in Pd are {δ1, . . . , δm}. Thus, there are no proof trees for B1, . . . ,Bm

and Pd .

By induction on k , the (Soundness) property holds for k and, therefore, there

are no proof trees for B1, . . . ,Bm and Pk . Thus, there are proof trees U1, . . . ,Um

for N1, . . . ,Nm , respectively, and Pk . Finally, by induction on (Isize), we have that

there are the proof trees T2, . . . ,Tr for L2, . . . ,Lr , respectively, and Pk . We can

construct a proof tree T for A and Pk from U1, . . . ,Um ,T2, . . . ,Tr by using clause

v(γ) at the root of T .

Proof of (C). Given a µ-consistent proof tree T for A and Pk , we prove that there

exists a µ-consistent proof tree U for A and Pk+1.

The proof is by well-founded induction on ≻ ⊆ Bω×Bω. The inductive hypothesis

is:

(Iµ) for every atom A′ ∈ Bω such that A ≻ A′, if there exists a µ-consistent proof

tree T ′ for A′ and Pk then there exists a µ-consistent proof tree U ′ for A′ and

Pk+1.

Let γ be a clause in Pk and v be a valuation such that v(γ) is the clause of the

form A ← L1 ∧ . . . ∧ Lr used at the root of T . We consider the following cases:

either (Case 1) γ belongs to Pk+1 or (Case 2) γ does not belong to Pk+1 because

it has been replaced by zero or more clauses derived by applying a transformation

rule among R2–R7.

Case 1. By the µ-consistency of T and Lemma 5, for i = 1, . . . , r , we have A ≻ Li .

Hence, by the inductive hypotheses (Iµ) and (ISC), there exists a µ-consistent

proof tree Ui for Li and Pk+1. A µ-consistent proof tree U for A and Pk+1 is

constructed by using v(γ) at the root of U and the proof trees U1, . . . ,Ur for

L1, . . . ,Lr , respectively, and Pk+1.

Case 2.1 (Pk+1 is derived from Pk by using rule R2.) Suppose that by instantiating

a variable X of clause γ in Pk we derive clauses γ1, . . . , γh in Pk+1. For i = 1, . . . , h,

γi is γ{X /Jsi |X K}, with si ∈ Σ. Hence, there exist i ∈ {1, . . . , h} and a valuation v ′

such that v(γ) = v ′(γi). By the µ-consistency of T and Lemma 5, for i = 1, . . . , r ,

we have A ≻ Li . Hence, by the inductive hypotheses (Iµ) and (ISC), for i = 1, . . . , r ,

there exists a µ-consistent proof tree Ui for Li and Pk+1. A proof tree U for A and

Pk+1 is constructed by using v ′(γi) at the root of U and the proof trees U1, . . . ,Ur

for L1, . . . ,Lr , respectively, and Pk+1.

The proof tree U is µ-consistent because: (i) by (Iµ), we have that U1, . . . ,Ur are

µ-consistent, (ii) γi is σ-max derived iff γ is σ-max derived, and (iii) since T is µ-

consistent, we have that if γ is not σ-max derived then µ(A) ≥lex µ(L1)⊕. . .⊕µ(Lr )

else µ(A) >lex µ(L1)⊕ . . .⊕ µ(Lr ).

Case 2.2 (Pk+1 is derived from Pk by using rule R3.) Suppose that by unfolding

γ w.r.t. an atom B in its body we derive clauses η1, . . . , ηm in Pk+1. Without loss
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of generality, we assume that B is the leftmost literal in the body of γ. Hence,

there exists a clause γi in (a variant of) Pk such that: (i) v(γi) is of the form

L1 ← M1∧. . .∧Mq , (ii) v(ηi) is A← M1∧. . .∧Mq∧L2∧. . .∧Lr , and (iii) v(γi) is the

clause which is used for constructing the children of L1 in T . By the µ-consistency

of T and Lemma 5, for i = 1, . . . , q, we have A ≻ Mi and, for i = 2, . . . , r , we

have A ≻ Li . Hence, by the inductive hypotheses (Iµ) and (ISC), for i = 1, . . . , q,

there exists a µ-consistent proof tree Vi for Mi and Pk+1 and, for i = 2, . . . , r ,

there exists a µ-consistent proof tree Ui for Li and Pk+1. A proof tree U for

A and Pk+1 is constructed by using v(ηi) at the root of U and the proof trees

V1, . . . ,Vq ,U2, . . . ,Ur for M1, . . . ,Mq ,L2, . . . ,Lr , respectively, and Pk+1.

It remains to show that the proof tree U is µ-consistent. There are two cases: (a)

and (b).

Case (a): in this first case we assume that A is new and ηi is not σ-max derived.

Since T is µ-consistent we get µ(A) ≥lex µ(L1)⊕µ(L2)⊕. . .⊕µ(Lr ) and µ(L1) ≥lex
µ(M1)⊕ . . .⊕ µ(Mq ). By Lemma 3 (ii.2), we get µ(A) ≥lex µ(M1)⊕ . . .⊕ µ(Mq)⊕

µ(L2)⊕ . . .⊕ µ(Lr ).

Case (b): in this second case, we assume that A is old or ηi is σ-max derived. We

have two subcases (b.1) and (b.2).

Subcase (b.1): A is old. Since T is µ-consistent, we get that µ(A) >lex µ(L1)∧ . . .∧

µ(Lr ) and µ(L1) ≥lex µ(M1) ∧ . . . ∧ µ(Mq). By Lemma 3 (ii.2) we get µ(A) >lex
µ(M1) ∧ . . . ∧ µ(Mq ).

Subcase (b.2): ηi is σ-max derived. We may assume that A is new, because in

Subcase (b.1) we have considered that A is old. Now we consider two subcases of

this Subcase (b.2).

Subcase (b.2.1): ηi is σ-max derived, A is new, and γ is σ-max derived, and

Subcase (b.2.2): ηi is σ-max derived, A is new, and γ is not σ-max derived.

Subcase (b.2.1). Since T is µ-consistent we get µ(A) >lex µ(L1)⊕µ(L2)⊕. . .⊕µ(Lr )

and µ(L1) ≥lex µ(M1)⊕ . . .⊕µ(Mq). By Lemma 3 (ii.2), we get µ(A) >lex µ(M1)⊕

. . .⊕ µ(Mq)⊕ µ(L2)⊕ . . .⊕ µ(Lr ).

Subcase (b.2.2). Since T is µ-consistent and L1 is old, we get: (†1) µ(L1) >lex
µ(M1) ⊕ . . . ⊕ µ(Mq), and (†2) π2(µ(L1)) > 0. Since ηi is σ-maximal derived, we

have that, for i=2, . . . , r , σ(L1)≥σ(Lj ). Thus, (†3) σ(L1) ≥ π1(µ(L2)⊕. . .⊕µ(Lr )).

From (†1), (†2), and (†3), by Lemma 3 (ii.3), we get: (†4) µ(L1) ⊕ µ(L2) ⊕ . . . ⊕

µ(Lr ) >lex µ(M1) ⊕ . . . ⊕ µ(Mq) ⊕ µ(L2) ⊕ . . . ⊕ µ(Lr ). Since T is µ-consistent,

we have that µ(A) ≥lex µ(L1) ⊕ . . . ⊕ µ(Lr ), and by (†4) we get: µ(A) >lex
µ(M1)⊕ . . .⊕ µ(Mq)⊕ µ(L2)⊕ . . .⊕ µ(Lr ), as desired.

This concludes the proof that U is a µ-consistent proof tree.

Case 2.3 (Pk+1 is derived from Pk by using rule R4.) Suppose that we unfold γ

w.r.t. a negated atom in its body and we derive clauses η1, . . . , ηs in Pk+1. Without

loss of generality, we assume that we unfold γ w.r.t. the leftmost literal in its body.

Let γ1, . . . , γm be all clauses in (a variant of) Pk whose heads are unifiable with

the leftmost literal in the body of γ. We may assume that, for i = 1, . . . ,m, v(γi)

is of the form A1 ← Bi , where L1 = ¬A1 and Bi is a conjunction of literals. Since

there is no proof tree for A1 and Pk , for i = 1, . . . ,m, there exists a literal Ri in Bi
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such that there is no proof tree for Ri and Pk . By definition, there is a proof tree

for Ri and Pk . Moreover, (i) A ≻ ¬A1 because by hypothesis the proof tree T is

µ-consistent, and (ii) σ(¬A1) ≥ σ(Ri), because Pk is locally stratified w.r.t. σ.

Now we have two cases: (i) Ri is an atom, and (ii) Ri is a negated atom, say ¬Ci .

In Case (i) we have that σ(A) > σ(A1) ≥ σ(Ri) and, thus, A ≻ Ri . In Case (ii)

we have that σ(A) > σ(A1) ≥ σ(¬Ci ) and, thus, σ(A) > σ(Ci) = σ(Ri) and

µ(A) > µ(Ri). Hence, A ≻ Ri . Thus, in both cases A ≻ Ri .

Since A ≻ Ri , by the inductive hypotheses (Iµ) and (ISC), we have that, for

i = 1, . . . ,m, there exists a µ-consistent proof tree Vi for Ri and Pk+1. By the

µ-consistency of T , for i = 2, . . . , r , there exists a µ-consistent proof tree Ui for Li

and Pk+1. By the definition of rule R4, there exists a clause ηp among the clauses

η1, . . . , ηs derived from γ, such that v(ηp) is of the form A ← R1 ∧ . . . ∧ Rm ∧

L2 ∧ . . . ∧ Lr . (To see this, recall that by pushing ¬ inside and ∨ outside, from

¬((C1 ∧C2) ∨ (D1 ∧D2)) we get (C 1 ∧D1)∨ (C 1 ∧D2) ∨ (C 2 ∧D1) ∨ (C 2 ∧D2).)

A proof tree U for A and Pk+1 is constructed by using v(ηp) at the root of U

and the proof trees V1, . . . ,Vm ,U2, . . . ,Ur for R1, . . . ,Rm ,L2, . . . ,Lr , respectively,

and Pk+1.

In order to show that U is µ-consistent we need to consider two cases. In the

first case, we assume that A is old or η is σ-max derived. Thus, in this case, also γ

is σ-max derived. By µ-consistency of T , we have µ(A) >lex µ(L1)⊕ · · · ⊕ µ(Lr ).

By local stratification of Pk and by Lemma 4, µ(L1) ≥lex µ(R1) ⊕ · · · ⊕ µ(Rm).

Therefore, by Lemma 3 (ii.2), µ(A) >lex µ(R1)⊕· · ·⊕µ(Rm)⊕µ(L2)⊕· · ·⊕µ(Lr )

and U is µ-consistent.

In the second case, A is new and η is not σ-max derived. As a consequence, also γ

is not σ-max derived. By µ-consistency of T we have µ(A) ≥lex µ(L1)⊕· · ·⊕µ(Lr ).

By local stratification of Pk and by Lemma 4, µ(L1) ≥lex µ(R1)⊕· · ·⊕µ(Rm) and,

by Lemma 3 (ii.2), µ(A) ≥lex µ(R1)⊕· · ·⊕µ(Rm)⊕µ(L2)⊕· · ·⊕µ(Lr ). Therefore,

U is µ-consistent.

Case 2.4 (Pk+1 is derived from Pk by using rule R5.) Suppose that the clause γ is

removed from Pk by subsumption. Hence, there exists a clause γ1 in Pk − {γ} and

a valuation v ′ such that v ′(γ1) is of the form A←. The clause γ1 belongs to Pk+1

and, therefore, a proof tree U for A and Pk+1 can be constructed by using v ′(γ1)

at the root of U . The proof tree U consists of the root A with the single child true.

Now we prove that the proof tree U is µ-consistent, that is, µ(A) >lex µ(true). We

have to prove that µ(A) >lex 〈0, 0〉. We have the following three cases: (a), (b.1),

and (b.2).

Case (a). A is an old atom. In this case we have that µ(A) >lex 〈0, 0〉, because, as

stated in Remark 2, for any old atom B , we have that min-weight(B)>0.

Case (b). A is a new atom. Since A is new, there is a valuation v ′ and a clause δ

in Pd such that v ′(δ) is of the form A← G, for some goal G. Now, let us consider

the following two subcases.

Case (b.1) G is of the form: GL∧B∧GR and B is an old atom. By (1) the hypothesis

that T is a µ-consistent proof tree for A in Pk , (2) the (Soundness) property, and

(3) Lemma 6, we have that there exists a µ-consistent proof tree Td for A and Pd
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where B is a child of A. By µ-consistency of Td , we have that µ(A) ≥lex µ(B).

Since µ(B) =def 〈σ(B),min-weight(B)〉 and, since B is an old atom, by Remark 2,

we have that min-weight(B)>0. Thus, we get that µ(A)>lex 〈0, 0〉.

Case (b.2) G is of the form: GL ∧ ¬B ∧ GR and B is an old atom. Since δ is

locally stratified, σ(A)>σ(B) and, thus, σ(A)> 0. Hence, µ(A) =def 〈σ(A),min -

weight(A)−1〉 >lex 〈0, 0〉.

This concludes the proof tree U is µ-consistent.

Case 2.5 (Pk+1 is derived from Pk by using rule R6.) Let us assume that clause η

of the form Ã← K̃ϑ ∧ L̃q+1 ∧ . . . ∧ L̃r is derived by positive folding from a clause

γ ∈ Pk of the form Ã← L̃1 ∧ . . . ∧ L̃q ∧ L̃q+1 ∧ . . . ∧ L̃r using a clause δ ∈ Defsk of

the form K̃ ← L̃′
1∧ . . .∧ L̃

′
q and where ϑ is a substitution such that, for i=1, . . . , q,

L̃′
iϑ= L̃i . We have that δ ∈ Pd and the definition of the head predicate of δ in Pd

consists of clause δ only.

Thus, there is a valuation v such that v(Ã) = A and in the proof tree T for

A and Pk the children of A are the nodes L1, . . . ,Lq ,Lq+1, . . . ,Lr such that for

i = 1, . . . , q, Li = v(L̃′
i ) and for i = q + 1, . . . , r , Li = v(L̃i ). By the induction

hypothesis (IndHyp) there exist proof trees for v ′(L̃′
1), . . . , v

′(L̃′
q) and Pk , for some

valuation v ′ such that, for i=1, . . . , q, v ′(L̃′
iϑ) = v(L̃i). Let K be v ′(K̃ϑ).

Since δ ∈ Pd and M (Pd ) |= δ, by Theorem 2 and Definition 11, there is a µ-

consistent proof tree for K and Pd . By induction hypothesis, the (Completeness)

property holds for k and, thus, we have that there exists a µ-consistent proof tree for

K and Pk . By the hypothesis that the transformation sequence P0, . . . ,Pd , . . . ,Pn

is admissible and by Condition (2) of Definition 5, either A is old or γ is σ-max

derived. Thus, by the µ-consistency of the proof tree T , we have that µ(A) >lex
µ(L1)⊕ · · · ⊕ µ(Lq)⊕ µ(Lq+1)⊕ · · · ⊕ µ(Lr ).

Since δ is a clause in Defsk , by Lemma 2 we have that µ(K ) = µ(L1)⊕· · ·⊕µ(Lq)

and, thus, µ(A) >lex µ(K )⊕ µ(Lq+1)⊕ · · · ⊕ µ(Lr ).

Moreover, by Lemma 3 (ii.5), µ(A) >lex µ(K ). Thus, A ≻ K and, by the in-

ductive hypothesis (Iµ), there exists a µ-consistent proof tree UK for K and Pk+1.

By the µ-consistency of T and Lemma 5, for i = q + 1, . . . , r , we have A ≻ Li .

Hence, by the inductive hypotheses (Iµ) and (ISC), for i= q +1, . . . , r , there exists

a µ-consistent proof tree Ui for Li and Pk+1. A proof tree U for A and Pk+1 is con-

structed by using v ′(η) at the root of U and the proof trees UK ,Uq+1, . . . ,Ur for

K ,Lq+1, . . . ,Lr , respectively, and Pk+1. The proof tree U is µ-consistent because,

as we have shown above, µ(A) >lex µ(K )⊕ µ(Lq+1)⊕ · · · ⊕ µ(Lr ).

Case 2.6 (Pk+1 is derived from Pk by using rule R7.) Suppose that we fold γ using

clauses δ1, . . . , δq , belonging to (a variant of) Defsk , and we derive a clause η in

Pk+1. Without loss of generality, by the definition of rule R7 and the commutativity

of ∧, we may assume that (i) v(γ) is of the form A← L1∧ . . .∧Lq ∧Lq+1∧ . . .∧Lr ,

(ii) for i = 1, . . . , q, v(δi) is of the form K ← Mi , where Mi = Ai , if Li = ¬Ai ,

and Mi = ¬Ai , if Li = Ai , and (iii) v(η) is of the form A← ¬K ∧ Lq+1 ∧ . . . ∧ Lr .

By the inductive hypothesis, the (Soundness) and (Completeness) properties hold

for k and, therefore, for i = 1, . . . , q, there is no proof tree for Mi and Pd . Since

M (Pd ) |= K ↔ M1∨ . . .∨Mq , there is no proof tree for K and Pd . By the inductive
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hypothesis, the (Soundness) property holds for k and, thus, we have that there is

no proof tree for K and Pk . By the hypothesis that the transformation sequence

P0, . . . ,Pd , . . . ,Pn is admissible and by Condition (3) of Definition 5, σ(A) > σ(K ).

Hence, by the inductive hypothesis (IS), there is no proof tree for K and Pk+1,

that is, there is a proof tree U¬K for ¬K and Pk+1. By the µ-consistency of T and

Lemma 5, for i = q+1, . . . , r , we have A ≻ Li . Hence, by the inductive hypotheses

(Iµ) and (ISC), there exists a µ-consistent proof tree Ui for Li and Pk+1. A proof

tree U for A and Pk+1 is constructed by using v(η) at the root of U and the proof

trees U¬K ,Uq+1, . . . ,Ur for ¬K ,Lq+1, . . . ,Lr , respectively, and Pk+1.

In order to show that U is µ-consistent we need to consider two cases.

In the first case, we assume that A is old or γ is σ-max derived. Thus, in this case,

also η is σ-max derived. By µ-consistency of T , we have µ(A) >lex µ(L1) ⊕ · · · ⊕

µ(Lq)⊕µ(Lq+1)⊕· · ·⊕µ(Lr ). By Lemma 3 (ii.5), we have that µ(A) >lex µ(Lq+1)⊕

· · · ⊕µ(Lr ). Since the transformation sequence P0, . . . ,Pn is admissible, clause η is

locally stratified and, thus, σ(A) > σ(K ). Hence, π1(µ(A)) = {by definition of µ} =

σ(A) > σ(K ) = {by definition of µ} = π1(µ(¬K )). Therefore, by Lemma 3 (ii.4),

we have that: µ(A) >lex µ(¬K )⊕ µ(Lq+1)⊕ · · · ⊕ µ(Lr ). Thus, U is µ-consistent.

In the second case, A is new and γ is not σ-max derived. As a consequence, also η

is not σ-max derived. By µ-consistency of T we have µ(A) ≥lex µ(L1)⊕· · ·⊕µ(Lq)⊕

µ(Lq+1)⊕ · · · ⊕ µ(Lr ). And, by Lemma 3 (ii.5), µ(A) ≥lex µ(Lq+1) ⊕ · · · ⊕ µ(Lr ).

Since π1(µ(A)) > π1(µ(¬K )) (see the first case), by Lemma 3 (ii.4), we have that:

µ(A) ≥lex µ(¬K )⊕µ(Lq+1)⊕· · ·⊕µ(Lr ). Thus, U is µ-consistent. This completes

the proof.

The correctness of admissible transformation sequences, that is, Theorem 1 of

Section 4, follows immediately from Theorem 2 and Proposition 1 because: (i) Pd =

P0 ∪Defsn , and (ii) a µ-consistent proof tree is a proof tree.

Acknowledgements

We thank Hirohisa Seki for stimulating conversations on the topics of this paper.

We also thank John Gallagher for his comments and the anonymous referees of

ICLP 2010 for their constructive criticism.

We also acknowledge the financial support of: (i) PRIN 2008 (Progetto di Ricerca

di Interesse Nazionale) Project no. 9M932N-003, and (ii) the GNCS Group of

INdAM (Istituto Nazionale di Alta Matematica) under the grant ‘Contributo Pro-

getto 2009’.

References

Abadi, M. and Manna, Z. 1989. Temporal logic programming. Journal of Symbolic

Computation 8, 3, 277–295.

Apt, K. R. and Bol, R. N. 1994. Logic programming and negation: A survey. Journal
of Logic Programming 19, 20, 9–71.

Burstall, R. M. and Darlington, J. 1977. A transformation system for developing
recursive programs. Journal of the ACM 24, 1 (January), 44–67.



36 A. Pettorossi, M. Proietti, and V. Senni

Clarke, E. M., Grumberg, O., and Peled, D. 1999. Model Checking. MIT Press.

Colmerauer, A. 1982. Prolog and infinite trees. In Logic Programming, K. L. Clark
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