

Citation for published version:
Corapi, D, Russo, A, De Vos, M, Padget, J & Satoh, K 2011, 'Normative design using inductive learning', Theory
and Practice of Logic Programming, vol. 11, no. 4-5, pp. 783-799. https://doi.org/10.1017/s1471068411000305

DOI:
10.1017/s1471068411000305

Publication date:
2011

Link to publication

© Cambridge University Press 2011

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161908667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/s1471068411000305
https://doi.org/10.1017/s1471068411000305
https://researchportal.bath.ac.uk/en/publications/normative-design-using-inductive-learning(ad92a3e1-1db1-4f6d-9e18-d7390e810a87).html

TLP 11 (4–5): 783–799, 2011. © Cambridge University Press 2011 C 783
doi:10.1017/S1471068411000305

Normative design using inductive learning

DOMENICO CORAPI and ALESSANDRA RUSSO
Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2AZ, London, UK

(e-mail: {d.corapi, a.russo}@ic.ac.uk)

MARINA DE VOS and JULIAN PADGET
Department of Computing, University of Bath, BA2 7AY, Bath, UK

(e-mail: {mdv,jap}@cs.bath.ac.uk)

KEN SATOH
Principles of Informatics Research Division, National Institute of Informatics, Chiyoda-ku, 2-1-2,

Hitotsubashi, Tokyo 101-8430, Japan

(e-mail: ksatoh@nii.ac.jp)

Abstract

In this paper we propose a use-case-driven iterative design methodology for normative frameworks,
also called virtual institutions, which are used to govern open systems. Our computational model
represents the normative framework as a logic program under answer set semantics (ASP). By means
of an inductive logic programming approach, implemented using ASP, it is possible to synthesise new
rules and revise the existing ones. The learning mechanism is guided by the designer who describes
the desired properties of the framework through use cases, comprising (i) event traces that capture
possible scenarios, and (ii) a state that describes the desired outcome. The learning process then
proposes additional rules, or changes to current rules, to satisfy the constraints expressed in the
use cases. Thus, the contribution of this paper is a process for the elaboration and revision of a
normative framework by means of a semi-automatic and iterative process driven from specifications
of (un)desirable behaviour. The process integrates a novel and general methodology for theory
revision based on ASP.

KEYWORDS: normative frameworks, inductive logic programming, theory revision

1 Introduction

Norms and regulations play an important role in the governance of human society. Social
rules such as laws, conventions and contracts prescribe and regulate our behaviour. By pro
viding the means to describe and reason about norms in a computational context, normative
frameworks (also called institutions or virtual organisations) may be applied to software
systems. Normative frameworks allow for automated reasoning about the consequences of
socially acceptable and unacceptable behaviour by monitoring the permissions, empow
erment and obligations of the participants and generating violations when norms are not
followed.

mailto:{mdv,jap}@cs.bath.ac.uk)

784 D. Corapi et al.

Just as legislators, and societies, find inconsistencies in their rules (or conventions),
so too may designers of normative frameworks. The details of the specification makes
it relatively easy to miss crucial operations needed to help or inhibit intended behaviour.
In order to make an analogy with software engineering, this characterises the gap between
requirements and implementation and what we describe here can be seen as an automated
mechanism to support the validation of normative frameworks, coupled with regression
testing.

The contribution of the work is two-fold. Firstly, we show how inductive logic pro
gramming (ILP) can be used to fill gaps in the rules of an existing normative framework.
The designer normally develops a system with a certain behaviour in mind. This intended
behaviour can be captured in use cases, which comprise two components: (a) a description
of a scenario, and (b) the expected outcome when executing the scenario. Use cases are
added to the program to validate the existence of an answer set. Failure to solve the
program indicates that the specification does not yield the intended behaviour. In this case,
the program and the failing use case(s) are given to an inductive learning tool, which will
then return suggestions for improving the normative specification such that the use cases
are satisfied. Secondly, we present a novel integrated methodology for theory revision that
can be used to revise a logic program under the answer set semantics/programming (ASP)
and supports the development process by associating answer sets (that can be used for
debugging purposes) to proposed revisions. Due to the non-monotonic nature of ASP, the
designer can provide the essential parts of the use case creating a template rather that a
fully specified description. The revision mechanism is general and can be applied to other
domains. We demonstrate the methodology through a case study showing the iterative
revision process.

The paper is organised as follows. Section 2 presents some background material on the
normative framework, while Section 3 introduces the ILP setting used in our proposed
approach. Section 4 illustrates the methodology and how the revision task can be formu
lated into an ILP problem. We illustrate the flexibility and expressiveness of our approach
through specifications of a reciprocal file sharing normative system. Section 5 discusses the
details of the revision mechanism and the learning system. Section 6 relates our approach
to existing work. We conclude with a summary and remarks on future work.

2 Normative frameworks

The essential idea of normative frameworks is a (consistent) collection of rules whose
purpose is to describe ‘a principle of right action binding upon the members of a group and
serving to guide, control, or regulate proper and acceptable behaviour’ (Merriam-Webster
Dictionary). These rules may be stated in terms of events, specifically the events that matter
for the functioning of the normative framework.

2.1 Formal model

The formalisation of the above may be defined as conditional operations on a set of terms
that represents the normative state. In order to provide the context for this paper, we give
an outline of a formal event-based model for the specification of normative frameworks

785 Normative design using inductive learning

N = 〈E , F , C, G, I〉, where	
p ∈ F ⇔ifluent(p). (1)

1.	 F = W ∪P ∪O ∪ D event(e). (2)Enorm	
e ∈ E ⇔

2.	 G : X × E → 2
F

e ∈ Eex ⇔evtype(e, obs). (3)
3.	 C : X × E → 2 × 2F where e ∈ Eact ⇔evtype(e, act). (4)

C (
↑
X
(
, e) =

↓(
e ∈ Eviol ⇔evtype(e, viol). (5)

(C φ, e), C φ, e)) where ↑(φ, e) = P ⇔∀p ∈ P initiated(p, T) ↑(
C ·

(i)	 C φ, e) initiates a fluent occurred (e, I), EX (φ, T). (6)
(ii)	 C↓(φ, e) terminates a C↓(φ, e) = P ⇔∀

←
p ∈ P · terminated(p, T)

fluent occurred (e, I), EX (φ, T). (7)←
4.	 = Eex ∪ Enorm

G(φ, e) = E ⇔g ∈ E,E
occurred(g, T) occurred(e, T),with Enorm = Eact ∪ Eviol	 ←

5.	 holdsat(pow(e), I) ,EX (φ, T). (8)

6.	
I
State Formula: X = 2F∪¬F holdsat(p, i00). (9)p ∈ I ⇔

(a)	 (b)

Fig. 1. (a) Formal specification of the normative framework, and (b) translation of normative
framework-specific rules into AnsP rolog .

that captures all the essential properties, namely empowerment, permission, obligation and
violation. We adopt the formalisation from Cliffe et al. (2006), summarized in Figure 1(a),
because of its straightforward mapping to ASP.

The essential elements of the normative framework are events (E), which bring about
changes in state, and fluents (F), which characterise the state at a given instant. The
function of the framework is to define the interplay between these concepts over time,
in order to capture the evolution of a particular institution through the interaction of its
participants. We distinguish two types of events: normative events (Enorm) that are the
events defined by the framework, and exogenous events (Eex), some of whose occurrence
may trigger normative events in a direct reflection of ‘counts-as’ (Jones and Sergot 1996),
and others that are of no relevance to this particular framework. Normative events are
further partitioned into normative actions (Eact) that denote changes in normative state,
and violation events (Eviol) that signal the occurrence of violations. Violations may arise
either from explicit generation (i.e. from the occurrence of a non-permitted event), or from
the non-fulfilment of an obligation. We also distinguish two types of fluents: normative
fluents that denote normative properties of the state such as permissions (P), powers (W)
and obligations (O), and domain fluents (D) that correspond to properties specific to a
particular normative framework. A normative state is represented by the fluents that hold
true in this state. Fluents that are not present are considered to be false. Conditions on a
state (X) are expressed by a set of fluents that should be true or false. When the creation
event occurs, the normative state is initialised with the fluents specified in I.

Changes in a normative state are achieved through the definition of two relations: (i) the
generation relation (G) that implements counts-as by specifying how the occurrence of
one (exogenous or normative) event generates another (normative) event, subject to the
empowerment of the actor and the conditions on the state, and (ii) the consequence relation
(C) that specifies the initiation and termination of fluents, subject to the performance of
some action in a state matching some condition.

The semantics of a normative framework is defined over a sequence, called a trace,
of exogenous events. Starting from the initial state, each exogenous event is responsible
for a state change through initiation and termination of fluents. This is achieved by a
three-step process: ind (i) the transitive closure of G with respect to a given exogenous

786 D. Corapi et al.

event determines all the generated (normative) events, iind (ii) to this all violations of non-
permitted events and non-fulfilled obligations are added, giving the set of all events whose
consequences determine the new state iiind (iii) the application of C to this set of events
identifies all fluents that are initiated and terminated with respect to the current state, so
determining the next state. For each trace, we can therefore compute a sequence of states
that constitutes the model of the normative framework for that trace. This process is realised
as a computational model through ASP (see Section 2.2) and it is this representation that
is used in the learning process described in Section 4. A detailed example of formal model
of an institution can be found in Cliffe et al. (2006).

2.2 Computational model

The formal model described above can be translated into an equivalent computational
model using ASP (Gelfond and Lifschitz 1991) with AnsProlog as an implementation
language. AnsProlog is a knowledge representation language that allows programmer to
describe a problem and the requirements on the solutions in an intuitive way, rather than the
algorithm to find the solutions to the problem. For our mapping we followed the naming
convention used in the event calculus (Kowalski and Sergot 1986) and action languages
(Gelfond and Lifschitz 1998).

The basic components of the language are atoms, elements that can be assigned a
truth value. An atom can be negated using negation as failure. Literals are atoms a or
negated atoms not a. We say that not a is true if we cannot find evidence supporting
the truth of a. Atoms and literals are used to create rules of the general form: a ←
b1, . . . , bm, not c1, . . . , not cn, where a, bi and cj are atoms. Intuitively, this means if all
atoms bi are known/true and no atom cj is known/true, then a must be known/true. We refer
to a as the head and b1, . . . , bm, not c1, . . . , not cn as the body of the rule. Rules with empty
body are called facts. Rules with empty head are referred to as constraints, indicating
that no solution should be able to satisfy the body. A (normal) program (or theory) is a
conjunction of rules and is also denoted by a set of rules. The semantics of AnsProlog
is defined in terms of answer sets, i.e. assignments of true and false to all atoms in the
program that satisfy the rules in a minimal and consistent fashion. A program may have
zero or more answer sets, each corresponding to a solution.

The mapping of a normative framework consists of three parts: a base component that
is independent of the framework being modelled, the time component and the framework-
specific component. The independent component deals with inertia of the fluents, the gen
eration of violation events of non-permitted actions and of unfulfilled obligations. The
time component defines the predicates for time and is responsible for generating a single
observed event at every time instance. The mapping uses the following atoms: ifluent(p)
to identify fluents, evtype(e, t) to describe the type of an event, event(e) to denote the
events, instant(i) for time instances, final(i) for the last time instance, next(i1, i2) to
establish time ordering, occurred(e, i) to indicate that the (normative) event happened at
time i, observed(e, i) that the (exogenous) event was observed at time i, holdsat(p, i) to
state that the normative fluent p holds at i and finally initiated(p, i) and
terminated(p, i) for fluents that are initiated and terminated at i. Note that exogenous
events are always empowered so that observed events are always occurred events, but

Normative design using inductive learning	 787

that normative events are not, so their occurrence is conditional on their empowerment.
Figure 1(b) provides the framework-specific translation rules, including the definition of
all fluents and events as facts. We translate expressions into AnsP rolog rule bodies as
conjunctions of literals using negation as failure for negated expressions.

The translation of the formal model is augmented with a trace program, specifying the
length of traces that the designer is interested in and rules to ensure that all but the final time
instance is associated with exactly one exogenous event. Specific occurrences of events
can be specified as facts (e.g. observed(event, instance)). We refer to a complete trace
when all exogenous events for a given time interval are specified. If a trace is incomplete
when the model needs to determine the missing exogenous events. While not discussed
in this paper, both normative framework and learning tool can deal with both types of
traces. When the model is supplemented with the AnsP rolog specification of a complete
trace, we obtain a single answer set corresponding to the model matching the trace.1 In this
case the complexity of computing the answer set is linear with respect to the number of
time instance being modelled. This result can be easily derived from the structure of the
program. Of course, in the absence of a complete trace, the complexity is NP-complete,
as the traces composed of all possible combinations of missing exogenous events are
computed. See Cliffe (2007) for further details and proofs.

3 Learning

Inductive Logic Programming (Muggleton 1995) is a machine learning technique
concerned with the induction of logic theories that generalise (positive and negative)
examples with respect to a prior background knowledge. For example, from the
observations (properties in this paper) Pfly = {fly(a), fly(b), not fly(c)} and a background
knowledge containing the two facts bird(a) and bird(b), we can generalise the concept
fly(X) bird(X). In non-trivial problems it is crucial to define the space of possible ←
solutions accurately. Target theories are within a space defined by a language bias that can
be expressed using the notion of mode declaration (Muggleton 1995).

Definition 1
A mode declaration is either a head declaration, written modeh(s), or a body declaration,
written modeb(s), where s is a schema. A schema is a ground literal containing special
terms called placemarkers. A placemarker is either ‘+type’, ‘−type’ or ‘#type’, where
type denotes the type of the placemarker and the three symbols ‘+’, ‘−’ and ‘#’ indicate
that the placemarker is an input, an output and a constant, respectively.

In the previous example a possible language bias would be expressed by
three mode declarations in Mfly: modeh(fly(+animal)), modeb(bird(+animal)) and
modeb(penguin(+animal)).

A rule h b1, . . . , bn is compatible with a set M of mode declarations iff (a) h is the ←
schema of a head declaration in M and bi are the schemas of body declarations in M, where
every input and output placemarkers are replaced by variables, and constant placemarkers

1	 The structure of the program (the stratified base part and observed events as facts) guarantees that the program
has exactly one answer set. See Cliffe (2007) for further details and proofs.

788 D. Corapi et al.

are replaced by constants; (b) every input variable in any atom bi is either an input variable
in h or an output variable in some bj , j < i and (c) all variables and constants are of the
corresponding type (enforced by implicit conditions in the body of the rules). From a user
perspective, mode declarations establish how rules in the final hypotheses are structured,
defining literals that can be used in the head and in the body of a well-formed hypothesis.
s(M) is a set of all the rules compatible with M.

Definition 2

An ILP task is a tuple 〈P , B, M〉, where P is a set of conjunctions of literals, called
properties, B is a normal program, called background theory, and M is a set of mode
declarations. A theory H , called hypothesis, is an inductive solution for the task 〈P , B, M〉
if (i) H ⊆ s(M), and (ii) P is true in all the answer sets of B ∪ H .

Our approach for incremental development of a normative system supports the synthesis
of new rules and the revision of existing one from given use-cases. We are therefore
interested in the task of Theory Revision (TR). As discussed in Corapi et al. (2009), non-
monotonic ILP can be used to revise an existing theory. The key notion is that of minimal
revision. In general, a TR system is biased towards the computation of theories that are
similar to a given revisable theory. Our revision algorithm uses a measure of minimality
similar to that proposed by Wogulis and Pazzani (1993), and defined in terms of numbers
of revision operations required to transform one theory into another.

Definition 3

Let T ′ and T be normal logic programs. A revision transformation r is such that r(T) =
T ′, and T ′ is obtained from T by deleting a rule, adding a fact, adding a condition to a
rule in T or deleting a condition from a rule in T . T ′ is a revision of T with distance
c(T ,T ′) = n iff T ′ = rn(T) and there is no m < n such that T ′ = rm(T).

For example, given the theory Tfly = {fly(X) bird(X)}, T ′ = {fly(X)← fly ←
bird(X), not penguin(X)} is a revision of T with distance 1. Note that, although we refer
to Definition 3, it is also possible to weight revisions differently or introduce different
transformations.

Definition 4

A TR task is a tuple 〈P , B, T ,M〉, where P is a set of conjunctions of literals, called
properties, B is a normal program, called background theory, T s(M) is a normal ⊆
program, called revisable theory, and M is a set of mode declarations. The theory T ′,
called revised theory, is a TR solution for the task 〈P , B, T ,M〉 with distance c(T ,T ′), iff
(i) T ′ ⊆ s(M), (ii) P is true in all the answer sets of B ∪ T ′, (iii) if a theory S exists that
satisfies conditions (i) and (ii), then c(T , S) � c(T ,T ′) (i.e. minimal revision).

For example, let Bfly = {animal(X). bird(X). penguin(c).}, Tfly, Pfly and Mfly as
in the previous examples. T ′ is a TR solution for the task 〈Pfly, Bfly, Tfly,Mfly〉 withfly

distance 1. The main difference with the ILP task given in Definition 2 is the availability
of an initial revisable theory and the consequent bias as discussed in more detail in the
following sections.

789 Normative design using inductive learning

Designer

Normative framework
AnsP rolog formalisation

Use cases

Learning

Suggested revisions

Fig. 2. Iterative design driven by use cases.

4 Revising normative rules

4.1 Methodology

Use cases represent instances of executions that are known to the designer and drive the
elaboration of a normative system. If the current formalisation of a normative system does
not match the intended behaviour in the use cases, then the formalisation is not complete
or is incorrect, and an extension or revision is required.

Each use case u ∈ U is a tuple 〈T ,O〉, where T , a trace, specifies a set of exogenous
events (observed(e, t)), and O is a set of holdsat and occurred literals that represents
the expected output of the use case. Given a set U of use cases, TU and OU denote,
respectively, the set of all the traces and expected outputs in all the use cases in U. The
time points of different use cases relate to different instances of executions of the normative
system to avoid the effect of events in one use case affecting the fluents of another use
case. The use cases can, but do not have to, be complete traces (i.e. an event for each time
instance) and expected output can contain positive as well as negative literals.

For a given translation of a normative framework N, the designer must specify what part
of the theory is subject to revision. The theory is split into two parts: a ‘revisable’ part, NT ,
and a ‘fixed’ part, NB . By default the former includes rules of the form (6), (7) and (8),
given in Figure 1(b), and the latter includes the rest of the representation of the normative
system and the set TU of traces in U.

Given a set U of use cases, a TR task for a normative framework N is defined
as the tuple 〈OU,NB ∪ TU,NT ,M〉, where M includes by default a body declaration
for any static relation declared in NB , and the following mode declarations (where
the schema is opportunely formed by substituting arguments with input placemarkers):
modeh(occurred(e∗, +instant)), for each e norm; modeh(initiated(f∗, +instant)) and∈ E
modeh(terminated(f∗, +instant)), for each f ∈ F; modeb(holdsat(f∗, +instant)), for each
f ∈ F; modeb(occurred(e∗, +instant)), for each e ∈ E.

The choice of the set of mode declaration M is crucial and is ultimately the responsibility
of the designer. Many mode declarations ensure higher coverage of the specification but
increase the computation time. Conversely, fewer mode declarations improve performance
but may result in partial solutions. The choice may be driven, for example, by previous
design cycles, or interest in more problematic parts of the specification.

As shown in Figure 2, the design of a normative system is an iterative process. The
representation N in AnsP rolog of a system described by the designer using a normative
language is tested against a set of use cases also provided by the designer. This analysis

790 D. Corapi et al.

step is performed by running an ASP solver over N, extended with the observed events
included in the use cases and a constraint indicating that no answer set that does not satisfy
O is acceptable. Conceptually, if the solver is not able to find an answer set (i.e. returns
unsatisfiable), then some of the given use cases are not satisfied in the answer sets of N and
a revision step is performed. Possible revisions are provided to the designer who ultimately
chooses the most appropriate one.

4.2 Case study

We illustrate the methodology with a small but rich enough case study that demonstrates
the key properties and benefits of our proposed approach. The following is a description of
a reciprocal file sharing normative framework.

The active parties – agents – of the scenario find themselves initially in the situation of having ownership of
several (digital) objects – the blocks – that form part of some larger composite (digital) entity – a file. An agent
is required to share a copy of a block they hold before they can download a copy of block that they are missing.
Initially each agent holds the only copy of a given block and there is only one copy of each block in the agent
population. Some vip agents are able to download blocks without any restriction. Agents that request a download
and have not shared a block after a previous download generate a violation for the download action and a misuse
violation for the agent. A misuse terminates the empowerment of the agent to download blocks.

The designer devises the following use case 〈T ,O〉:
observed(start, i00).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪

O =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

not viol(myDownload(alice, x3), i01).

not viol(myDownload(charlie, x3), i02).

not viol(myDownload(bob, x1), i03).

not viol(myDownload(charlie, x1), i04).

not viol(myDownload(alice, x5), i05).

viol(myDownload(alice, x4), i06).

observed(download(alice, bob, x3), i01).

observed(download(charlie, bob, x3), i02). ⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T = observed(download(bob, alice, x1), i03).

observed(download(charlie, alice, x1), i04).

observed(download(alice, charlie, x5), i05).

observed(download(alice, bob, x4), i06).

The use case models a sequence of events that includes a violation at the time point
i06, while the download events at the other time points do not generate violations. In the
trace, charlie performs a download at time point i04 without sharing a block after the
last download. This is not expected to generate a violation, as charlie is defined as vip
(isV IP (charlie) ∈ N).

The initial normative system includes the domain component and type definitions given
in Figure 1(b) and a specific component given by the following revisable theory NT :
%r u l e 1
i n i t i a t e d (h a s b l o c k (X, B) , I) :−

o c c u r r e d (myDownload (X, B) , I) .

%r u l e 2
i n i t i a t e d (perm (myDownload (X, B)) , I) :−

o c c u r r e d (myShare (X) , I) .

%r u l e 3
t e r m i n a t e d (pow (e x t e n d e d f i l e s h a r i n g , myDownload (X, B)) , I) :−

o c c u r r e d (misuse (X) , I) .
%r u l e 4
t e r m i n a t e d (perm (myDownload (X, B2)) , I) :−

o c c u r r e d (myDownload (X, B) , I) .

%r u l e 5
o c c u r r e d (myDownload (X, B) , I) :−

o c c u r r e d (download (Y, Y, B) , I) , h o l d s a t (h a s b l o c k (Y, B) , I) .
%r u l e 6
o c c u r r e d (myShare (X) , I) :−

o c c u r r e d (download (Y, X, B) , I) , h o l d s a t (h a s b l o c k (X, B) , I) .

Normative design using inductive learning	 791

Given the use case and the above formalisation of the normative system, the first iteration
of our approach proposes, through the revision process, the deletion of a condition in rule
5 and addition of a condition to rule 4 as shown below (leaving the other rules unaltered):

%r u l e 4 − r e v i s e d
t e r m i n a t e d (perm (myDownload (X, B2)) , I) :−

not i sVIP (X) , o c c u r r e d (myDownload (X, B) , I) .
%r u l e 5 − r e v i s e d
o c c u r r e d (myDownload (X, B) , I) :−

h o l d s a t (h a s b l o c k (Y, B) , I) .

However, this is not yet the intended formalisation. As an additional debugging facility
the designer can request the set of violations that is true in the answer sets that correspond
to the revision and notice that unwanted violations are generated at each time point. This
feedback can be used to refine the use case provided. In fact, the use case specifies the
single specific violations that must not occur but it does not request explicitly that no
violations should occur in the first five time points (e.g. viol(myDownload(alice,x3),i02),

viol(myDownload(alice,x4),i02)). These violations can be observed in the answer set asso
ciated with the revision. The designer can then improve the use case by modifying the set
of expected outputs:

⎧
viol(myDownload(alice, x4), i06). ⎪⎪⎪
not viol(myDownload(A, B), T), T ! = i06.

O =
⎨
⎪⎪⎪occurred(misuse(alice), i06). ⎩
not occurred(misuse(X), T), T ! = i06.

In the subsequent iteration, the revision process suggests changes that include those iden
tified in the previous iteration (i.e. addition of condition in rule 4 and deletion of condition
in rule 5), and the addition of a further condition in the body of rule 5. The combined effect
of these changes fixes the original error in the specification by also changing the name of
one of the variables. Furthermore, as the output O of the use case includes a desired misuse
event, which is not currently formalised in the system, the revision also suggests the new
rule 7 given below. The final theory NT

′ includes the following rules (leaving untouched
rules 1, 2, 3 and 6)2:

%r u l e 4 − r e v i s e d
t e r m i n a t e d (perm (myDownload (X, B2)) , I) :−

not i sVIP (X) , o c c u r r e d (myDownload (X, B) , I) .
%r u l e 5 − r e v i s e d
o c c u r r e d (myDownload (X, B) , I) :−

o c c u r r e d (download (X, Y, B) , I) , h o l d s a t (h a s b l o c k (Y, B) , I) .
%r u l e 7 − new
o c c u r r e d (misuse (X) , I) :−

o c c u r r e d (v i o l (myDownload (X, B)) , I) .

In summary, after a few iterations rule 4 is corrected by adding an exception not isVIP(X),
rule 5 is revised by correcting a typographical error in its condition (i.e. the name of a
variable was not the intended one – occurred(download(Y,Y,B),I)), and finally, a new rule
is learnt that defines misuse coherently with respect to the provided use case.

2	 The revision is generated in 23 seconds by ICLINGO (Gebser et al. 2007) on a 2.8 GHz Intel Core 2 Duo iMac
with 4 GB of RAM.

792 D. Corapi et al.

1 – Pre-processing (rules in N T) 2 – Learning (rule in H)
t e r m i n a t e d (perm (myDownload (X, B2)) , I) :−

e x c e p t i o n (t e r m i n a t e d (perm (myDownload (X, B2
t r y (4 , 1 , o c c u r r e d (myDownload (X, B) , I)) ,

)) , I) , B) :−

not e x c e p t i o n (t e r m i n a t e d (perm (

i sVIP (X) .

myDownload (X, B2)) , I) , B) .

t r y (4 , 1 , o c c u r r e d (myDownload (X, B) , I)) :− 3 – Postprocessing (rule in N T
′)

not d e l (4 , 1) ,

o c c u r r e d (myDownload (X, B) , I) . t e r m i n a t e d (perm (myDownload (X, B2)) , I) :−

not i sVIP (X) ,

t r y (4 , 1 , o c c u r r e d (myDownload (X, B) , I)) :− o c c u r r e d (myDownload (X, B) , I) .

d e l (4 , 1) .

Fig. 3. Detailed revision transformations for rule 4 (Section 4.2).

Input: NB fixed theory; NT ∈ s(M) revisable theory; P set properties; M mode declarations
Output: NT

′ revised theory according to the given P
(NT , M) = pre-processing(NT ,M);
H = ASPAL(P , NB ∪ NT , M);
NT
′ = post-processing(NT , H);

return NT
′ ;

Algorithm 1: Phases of the revision algorithm.

5 Theory revision through ASP

In this section we provide more details about the revision process. We first introduce all
the computational steps to derive a revision with respect to a set of use cases. Then we
delve into the details of the learning system, describing the integrated ASP-based ILP
approach.

The revised normative system NB ∪ N ′ is computed by means of two program transfor-T

mations and an abductive reasoning process executed in ASP, which derives prescriptions
for revisions and new rules in the form of abducibles. The abductive solution has a one-to
one mapping to a revision of the initial theory.

5.1 Revision

The approach described in this section can be applied to other problems of TR. To the
best of our knowledge, our methodology is the only one currently available that is able to
support revision of non-monotonic AnsP rolog theories that support integrity constraints,
aggregates and other ASP constructs, providing revisions as answer sets. Operationally, the
revision is performed using a similar transformation to the one described in Corapi et al.
(2009). Figure 3 details the revision steps for one of the rules in the case study described
above and Algorithm 1 illustrates the phases. We present the conceptual steps and refer the
reader to Corapi et al. (2009) for further details.

A pre-processing phase lifts the standard ILP process of learning hypotheses about ex
amples up to the (meta-)process of learning hypothesis about the rules and their exception
cases. For every rule in NT , every body literal cj

i is replaced by the atom try(i, j, cij), where
i is the index of the rule, j is the index of the body literal in the rule and the third argument
is a reified term for the literal cj

i . not exception(i, hi, vi) is added to the body of the rule
where i is the index of the rule, hi is the reified term for the head of the rule and vi is an
optional list of additional variables appearing in the body (see Figure 3). The try predicate

793 Normative design using inductive learning

is defined in such a way that whenever del(i, j) is true, the meta-condition try(i, j, cij) is
always true. Otherwise try(i, j, cij) is true whenever cij is true. Facts of the type del(i, j) can
be learnt by the ILP system used within the revision. M specifies mode declaration of rules
that can be added together with additional head declarations that are added to take into
account the newly introduced del and exception predicates.

In the learning phase, given the pre-processed theory NT and the new mode declarations
M, the following ILP task is executed 〈P , NB ∪ NT , M〉 using ASPAL, the learning system
described in Section 5.2. The outcome of the learning phase H is used in a post-processing
phase, which generates a revised theory N ′ semantically equivalent to NT ∪H . Informally, T

for each del(i, j) fact in H the corresponding condition j in rule i in NT is deleted. For each
exception rule in H of the form exception(i, hi, vi) c1, . . . , cn, the corresponding rule i in←
NT is substituted with n new rules, one for each condition ch, 1 � k � n. Each of these
rules k will have in the head the predicate hi and in the body all conditions present in the
original rule i in NT plus the additional condition not c(k). An exception with empty body
results in the original rule i being deleted. An exception for which at least two conditions
share variables is kept as an additional ‘exception concept’ in the revised theory. The pre
processing and post-processing phases perform syntactic transformations that are answer
set preserving and do not involve the answer set solver.

5.2 ASPAL

The system used in this work, called ASP Abductive Learning (ASPAL) , though used
here to support the revision of a normative system, can be applied more generally to non-
monotonic ILP problems. It is based on the transformation from an ILP task to an abductive
reasoning task, used in a recently proposed ILP system (Corapi et al. 2010).

This system offers several advantages over other existing ILP approaches, making it
particularly suited for normative design. ASPAL is able to handle negation within the
learning process, and therefore reason about default assumptions governing inertial fluents;
to perform non-observational and multiple predicate learning, thus computing hypotheses
about causal dependencies between observed sequences of events and normative states and
to learn non-monotonic hypothesis, which is also essential for theory revision. Further
more, the learning can be enabled by a simple transformation of the mode declarations
and does not require the computation of a bridge theory (Yamamoto et al. 2010). As
discussed in Corapi et al. 2010, none of the existing ILP systems provides the above-
mentioned features. Embedding the learning process within ASP reduces the semantic gap
between the normative system and the learning process and permits an easier control of the
whole process. The notion of revision distance as in Definition 3 can be managed by the
optimisation facilities provided by modern ASP solvers (Gebser et al. 2007). Optimisation
statements can be used to derive answer sets that contain a minimal number of atoms of a
certain type that ultimately relate to new rules or revisions as explained in this section.

As in Corapi et al. (2010), an ILP task 〈P , B, M〉 is transformed into an abductive logic
programming problem (Kakas et al. 1992), thus enabling the use of AnsP rolog. Let us
introduce some preliminary notation. Given a mode declaration modeh(s) or modeb(s), id
is a unique identifier for mode declaration, s is the literal obtained from s by replacing all
placemarkers with different variables X1, . . . , Xn; type(s, s) denotes the sequence of literals

794 D. Corapi et al.

t1(X1), . . . , tn(Xn) such that ti is the type of placemarker replaced by variable Xi; con(s, s) =
(C1, . . . , Cc) is the constant list of variables in s that replace only constant placemarkers in
s. inp(s, s) = (I1, . . . , Ii) and out(s, s) = (O1, . . . , Oo) are defined similarly for input and
output placemarkers. As s is clear from the context, in the following we omit the second
argument from type(s, s), con(s, s), inp(s, s) and out(s, s).

Given a set of mode declarations M, a top theory � = t(M) is constructed as follows:

•	 For each head declaration modeh(s), with unique identifier id, the following rule is in �

s ←
rule(RId, (id, con(s), ()),

rule id(RId), (1)

type(s),

body(RId, 1, inp(s)).

•	 For each body declaration modeb(s), with unique identifier id the following clause is in �

body(RId, L, I) ←
rule(RId, L, (id, con(s), Links)),

link(inp(s), I, Link),

s, (2)

type(s),

append(I, out(s), O),

body(RId, L + 1, O).

•	 The following rule is in � together with the definitions for the link, rule id and append
predicates:

body(RId, L,) rule(RId, L, last)	 (3)←

rule id(rid) is true whenever 1 � rid� rn, where rn is the maximum number of new rules
allowed. link((a1, . . . , am), (b1, . . . , bn), (o1, . . . , om)) is true if for each element in the first list
ai, there exists an element in the second list bj such that ai unifies with bj and oi = j. Given
the top theory, we seek a set of rule atoms Δ such that P is true for all models of B ∪�∪Δ.
Δ has a one-to-one mapping to a set of rules H = u(Δ,M). Intuitively, each abduced atom
represents a literal of the rule labelled by the first argument. The second argument collects
the constant used in the literal and the third disambiguates the variable linking. Figure 4
shows the learning steps for rule 4 of our example.

For space limitations we only state the main soundness and completeness theorem
(Corapi and Russo 2011) of the learning system.

Theorem 1
Given an ILP task 〈P , B, M〉, H is an inductive solution if and only if there is a Δ such that
H = u(Δ,M), � = t(M) and P is true in all the answer sets of B ∪ � ∪ Δ.

The ASP solver is used to compute a set of solutions Δ that can be translated back
into a set of inductive solutions. Soundness and completeness for the revision procedure
rely on Theorem 1 and the underlying ASP solver properties. These properties also ensure

795 Normative design using inductive learning

Inputs Top theory �

e x c e p t i o n (4 , t e r m i n a t e d (perm (myDownload (A
Mode declarations M , B)) ,T)) :−

i n s t a n t (T) , b l o c k (B) , a g e n t (A) ,
e x c e p t i o n (t e r m i n a t e d (perm (myDownload r u l e i d (RID) ,

(+ agen t , + b l o c k)) ,+ i n s t a n t) , + b l o c k) . r u l e (RID , 0 , (e4 , () , ())) ,
body (RID , 1 , (A, B , T)) .

body (RID , Level , (A, B , T)) :−
Properties P a g e n t (A) , b l o c k (B) , i n s t a n t (T) ,

r u l e i d (RID) ,

v i o l (myDownload (a l i c e , x4) , i 0 6) . l i n k (L1 , (A, B , T) , LR1) ,

not v i o l (myDownload (A, B) ,T) ,
o c c u r r e d (misuse (a l i c e) , i 0 6) .
not o c c u r r e d (misuse (X) , T) ,

T!=

T!=

i 0 6 .

i 0 6 .

r u l e (RID , Level ,
i sVIP (L1) ,
body (L + 1 , RID ,

(i s v , () , (LR1))) ,

(A, B , T)) .

body (RID , L ,) :−
r u l e (RID , L , l a s t) .

Background theory B
Abductive solution Δ

t e r m i n a t e d (perm (myDownload (X, B2)) , I) :−
r u l e (0 , 0 , (e4 , () , ())) ,

t r y (4 , 1 , o c c u r r e d (myDownload (X, B) , I)) ,
r u l e (0 , 1 , (i s v , () , (1))) ,

not e x c e p t i o n (t e r m i n a t e d (perm (
r u l e (0 , 2 , l a s t)

myDownload (X, B2)) , I) , B) .

t r y (4 , 1 , o c c u r r e d (myDownload (X, B) , I)) :− Output
not d e l (4 , 1) , Inductive solution H
o c c u r r e d (myDownload (X, B) , I) .

e x c e p t i o n (t e r m i n a t e d (perm (myDownload
t r y (4 , 1 , o c c u r r e d (myDownload (X, B) , I)) :− (X, B2)) , I) , B) :−

d e l (4 , 1) . i sVIP (X) .

Fig. 4. Learning steps for rule 4 (Section 4.2). We show only the relevant mode
declarations and rules.

that if a set of theories that matches the requirements exists within the language bias of
the learning, in the limit, if a complete set of all use cases (an extensional specification
of the requirements) is provided, the revision converges to the expected theory. This is
of course an ideal case. In practice the system outputs more accurate solutions as more
comprehensive use case sets are provided.

6 Discussion and related work

The motivation behind this paper is the problem of how to converge upon a complete
and correct normative system with respect to the intended range of application, where in
practice these properties may be manifested by incorrect or unexpected behaviour in use.
In addition, we observe from practical experience with our particular framework that it is
often desirable to be able to develop and test incrementally and regressively rather than
attempt verification once the system is (notionally) complete.

The literature seems to fall broadly into three categories: (a) concrete language
frameworks (OMASE (Garcı́a-Ojeda et al. 2007), Operetta (Okouya and Dignum 2008),
InstAL (Cliffe et al. 2006), MOISE (Hübner et al. 2007), Islander (Esteva et al. 2002),
OCeAN (Fornara et al. 2008) and the constraint approach of Garcia-Camino et al. (2009))
for the specification of normative systems that are typically supported by some form of
model checking, and in some cases allow for change in the normative structure; (b) logical
formalisms such as Garion et al. (2009) that capture consistency and completeness

796 D. Corapi et al.

via modalities and other formalisms like Boella et al. (2009b), which capture the
concept of norm change, or Vasconcelos et al. (2007) and Cardoso and Oliveira (2008);
(c) mechanisms that look out for (new) conventions and handle their assimilation into the
normative framework over time and subject to the current normative state and position of
other agents (Artikis 2009; Christelis and Rovatsos 2009). Essentially, the objective of each
of the above is to realize a transformation of the normative framework to accommodate
some form of shortcomings. These shortcomings can be identified in several ways: (a) by
observing that a particular state is rarely achieved, which can indicate there is insufficient
normative guidance for participants or (b) a norm conflict occurs, such that an agent is
unable to act consistently under the governing norms (Kollingbaum et al. 2007) or (c) a
particular violation occurs frequently, which may indicate that the violation conflicts with
an effective course of action that agents prefer to take, the penalty notwithstanding. All
of these can be viewed as characterising emergent (Savarimuthu and Cranefield 2009)
approaches to the evolution of normative frameworks, where some mechanism, either in
the framework or in the environment, is used to revise the norms. In the approach taken
here, the designer presents use cases that effectively capture the behavioural requirements
for the system in order to ‘fix’ bad states. This has an interesting parallel with the scheme
put forward by Serrano and Saugar (in press), where they propose the specification of
incomplete theories and their management through incomplete normative states identified
as ‘pending’.

In Boella et al. (2009c), whether the norms here are ‘strong’ or ‘weak’ – the first guide
line – depends on whether the purpose of the normative model is to develop the system
specification or additionally to provide an explicit representation for run-time reference.
Likewise, in respect of the remaining guidelines, it all depends on how the framework
is actually used: We have chosen, for the purpose of this presentation, to stage norm
refinement so that it is an off-line (in the sense of prior to deployment) process, while much
of the discussion in Boella et al. (2009c) addresses run-time issues. Whether the process we
have outlined here could effectively be a means for on-line mechanism design, is something
we have yet to explore. Within the context of software engineering (Alrajeh et al. 2007)
shows how examples of desirable and undesirable behaviour of a software system can
be used by an ILP system, together with an incomplete background knowledge of an
envisioned system and its environment, to compute missing requirement specifications.
There are several elements in common with the scheme proposed here.

From an ILP perspective, we employ a system that can learn logic programs with nega
tion (stratified or otherwise) and, unlike other existing nonmonotonic ILP systems (Sakama
2001b), is supported by completeness results, is integrated into ASP and can be tailored to
particular design requirements. Some properties and results of ILP in the context of ASP
are shown by Sakama (2010a). The author also proposes an algorithm for learning that
is sound but not complete and, differently from the approach proposed here, employs a
covering loop approach.

7 Conclusions and future work

The motivation for this work stems from a real need for tool support in the design of
normative frameworks, because, although high-level, it is nevertheless hard for humans

797 Normative design using inductive learning

to identify errors in specifications, or indeed to propose the most appropriate corrective
actions. We have described a methodology for the revision of normative frameworks and
how to use tools with formal underpinnings to support the process. Specifically, we are
able to revise a formal model – represented as a logic program – that captures the rules
of a normative system. The revision is achieved by means of an ILP, working with the
same representation, informed by use cases that describe instances of expected behaviour
of the normative system. If actual behaviour does not coincide with the expected one,
theory revision proposes new rules, or modifications of existing rules, for the normative
framework. Furthermore, given correct traces, the learning process guarantees
convergence – the property of ‘learning in the limit’.

From this firm foundation, which properly connects a theory of normative systems with
a practical representation, there are three directions that we aim to pursue: (i) definition of
criteria for selecting solutions from alternative suggestions provided by the learning (we
are currently investigating the use of crucial literals (Sattar and Goebel 1991)); (ii) intro
duction of levels of confidence in the use cases and their use for selecting the ‘most likely’
revision, in addition to the general criteria of minimal revision, i.e. combine some domain-
independent heuristics with some domain-specific heuristics such as level of confidence
in use cases and (iii) extension to interactions between normative frameworks and a form
of cooperative revision. In addition, there is the matter of scalability. The computation
time increases with the number of rules, time steps, errors in the theory and, in particular,
mode declarations and language bias for the learning. That is, it grows with the state space
of the normative framework and the ‘learning space’, i.e. is all possible theories we can
construct given our language bias. We need to experiment further to understand better to
which factors performance is sensitive and how to address these issues.

References

ALRAJEH, D., RAY, O., RUSSO, A. AND UCHITEL, S. 2007. Extracting requirements from
Scenarios using ILP. In Lecture Notes in Artificial Intelligence, S. Muggleton, R. P. Otera, and
A. Tamaddoni-Nezhad, Eds. Vol. 4455, Springer-Verlag, New York, USA, 63–77.

ARTIKIS, A. 2009. Dynamic protocols for open agent systems. In Proceedings of International
Conference on Agents and Multi-Agent Systems (AAMAS), Decker, Sichman, Sierra and
Castelfranchi, Eds., May, 10–15, 2009, Budapest, Hungary, 97–104.

BOELLA, G., NORIEGA, P., PIGOZZI, G. AND VERHAGEN, H., Eds. 2009a. Normative mult-agent
systems, number 09121. In Dagstuhl Seminar Proceedings, Schloss Dagstuhl, Germany.

BOELLA, G., PIGOZZI, G. AND VAN DER TORRE, L. 2009b. Normative framework for normative
system change. See Sierra et al. (2009), 169–176.

BOELLA, G., PIGOZZI, G. AND VAN DER TORRE, L. 2009c. Normative systems in computer
science – ten guidelines for normative multiagent systems. See Boella et al. (2009a).

CARDOSO, H. L. AND OLIVEIRA, E. C. 2008. Norm defeasibility in an institutional normative
framework. In European Conference on Artificial Intelligence (ECAI), M. Ghallab, C. D.
Spyropoulos, N. Fakotakis, and N. M. Avouris, Eds. Frontiers in Artificial Intelligence and
Applications, Vol. 178, IOS, Virginia, USA, 468–472.

CHRISTELIS, G. AND ROVATSOS, M. 2009. Automated norm synthesis in an agent-based planning
environment. See Sierra et al. (2009), 161–168.

798 D. Corapi et al.

CLIFFE, O. 2007. Specifying and Analysing Institutions in Multi-Agent Systems Using Answer Set
Programming. Ph.D. thesis, University of Bath, North East Somerset, UK.

CLIFFE, O., DE VOS, M. AND PADGET, J. 2006. Answer set programming for representing and
reasoning about virtual institutions. In Seventh International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA VII). Lecture Notes in Artificial Intelligence (LNAI), Vol. 4371.
Springer, New York, USA, 60–79.

CORAPI, D., RAY, O., RUSSO, A., BANDARA, A. K. AND LUPU, E. C. 2009. Learning rules from
user behaviour. In Artificial Intelligence Applications & Innovations (AIAI), Vol. 296, Springer,
Boston, 459–468.

CORAPI, D. AND RUSSO, A. 2011. Aspal. Proof of Soundness and Completeness. Technical Report
DTR11-5, Department of Computing, Imperial College, London.

CORAPI, D., RUSSO, A. AND LUPU, E. 2010. Inductive logic programming as abductive search.
In Technical Communications of the 26th International Conference on Logic Programming,
M. Hermenegildo and T. Schaub, Eds. LIPICS, Vol. 7, Dagstuhl, Germany, 54–63.

ESTEVA, M., DE LA CRUZ, D. AND SIERRA, C. 2002. Islander: An electronic institutions editor. In
AAMAS. ACM, 1045–1052.

FORNARA, N., VIGANÒ, F., VERDICCHIO, M. AND COLOMBETTI, M. 2008. Artificial institutions:
A model of institutional reality for open multiagent systems. Artificial Intelligence Law 16(1), 89–
105.

GARCÍA-CAMINO, A., RODRÍGUEZ-AGUILAR, J. A., SIERRA, C. AND VASCONCELOS, W. W.
2009. Constraint rule-based programming of norms for electronic institutions. Autonomous Agents
and Multi-Agent Systems 18(1), 186–217.

GARCÍA-OJEDA, J. C., DELOACH, S. A., ROBBY, OYENAN, W. H. AND VALENZUELA, J. 2007.
O-mase: A customizable approach to developing multiagent development processes. In AOSE,
M. Luck and L. Padgham, Eds. Lecture Notes in Computer Science, Vol. 4951. Springer, New
York, USA, 1–15.

GARION, C., ROUSSEL, S. AND CHOLVY, L. 2009. A modal logic for reasoning on consistency and
completeness of regulations. See Boella et al. (2009).

GEBSER, M., KAUFMANN, B., NEUMANN, A. AND SCHAUB, T. 2007. clasp: A conflict-driven
answer set solver. In LPNMR’07. Springer, New York, USA, 260–265.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3–4), 365–386.

GELFOND, M. AND LIFSCHITZ, V. 1998. Action languages. Electronic Transactions Artificial
Intelligence 2, 193–210.

HÜBNER, J. F., SICHMAN, J. S. AND BOISSIER, O. 2007. Developing organised multiagent systems
using the moise. International Journal of Agent-Oriented Software Engineering 1(3/4), 370–395.

JONES, A. J. AND SERGOT, M. 1996. A formal characterisation of institutionalised power. ACM
Computing Surveys 28(4es), 121. (Read 28/11/2004).

KAKAS, A. C., KOWALSKI, R. A. AND TONI, F. 1992. Abductive logic programming. Journal of
Logic Computer 2(6), 719–770.

KOLLINGBAUM, M., NORMAN, T., PREECE, A. AND SLEEMAN, D. 2006. Norm conflicts and
inconsistencies in virtual organisations. In Proceedings of COIN 2006, 245–258.

KOWALSKI, R. AND SERGOT, M. 1986. A logic-based calculus of events. New General
Computer 4(1), 67–95.

MUGGLETON, S. 1995. Inverse entailment and progol. New General Computer 13(3&4), 245–286.

OKOUYA, D. AND DIGNUM, V. 2008. Operetta: A prototype tool for the design, analysis and
development of multi-agent organizations. In AAMAS (Demos). IFAAMAS, 1677–1678.

SAKAMA, C. 2001a. Learning by answer sets. In Proceedings of the AAAI Spring Symposium on
Answer Set Programming, 181–187, AAAI Press, California, USA.

799 Normative design using inductive learning

SAKAMA, C. 2001b. Nonmonotonic inductive logic programming. In Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 6).
Notes in Artificial Intelligence 2173, Springer-Verlag, Berlin, Germany, 62–80.

SATTAR, A. AND GOEBEL, R. 1991. Using crucial literals to select better theories. Computational
Intelligence 7, 11–22.

SAVARIMUTHU, B. T. R. AND CRANEFIELD, S. 2009. A categorization of simulation works on
norms. See Boella et al. (2009a).

SERRANO, J.-M. AND SAUGAR, S. 2009. Dealing with incomplete normative states. In Proceedings
of COIN 2009, J. A. Padget, A. Artikis, W. W. Vasconcelos, K. Stathis, V. Torres da Silva, E. T.
Matson, and A. Polleres, Eds. LNCS, Vol. 6069. Springer, New York, USA, 304–319.

SIERRA, C., CASTELFRANCHI, C., DECKER, K. S. AND SICHMAN, J. S., Eds. 2009. AAMAS
2009, Budapest, Hungary, May 10–15, 2009, Vol. 1. IFAAMAS.

VASCONCELOS, W., KOLLINGBAUM, M. AND NORMAN, T. 2007. Resolving conflict and
inconsistency in norm-regulated virtual organizations. In AAMAS, E. H. Durfee, M. Yokoo, M. N.
Huhns, and O. Shehory, Eds. IFAAMAS, 91.

WOGULIS, J. AND PAZZANI, M. J. 1993. A methodology for evaluating theory revision systems:
Results with audrey ii. In International Joint Conference on Artificial Intelligence (IJCAI), 1128–
1134.

YAMAMOTO, Y., INOUE, K. AND IWANUMA, K. 2010. From inverse entailment to inverse
subsumption. In 20th International Conference on Inductive Logic Programming (ILP), Firenze,
Italy, June 27–30.

