2,529 research outputs found

    Convex Relaxations for Gas Expansion Planning

    Full text link
    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal soluutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solutions

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Short-term generation scheduling in a hydrothermal power system.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D173872 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Modeling and optimization of an electric power distribution network planning system using mixed binary integer programming

    Get PDF
    In this paper, the electric distribution network expansion planning problem (EDNEPP) was solved by a mixed binary integer programming (MBIP) formulation of the network, where the steady-state operation of the network was modelled with non-linear mathematical expressions. The non-linear terms are linearized, using piecewise linearization of the non-linear expressions, so as to ensure the model computational compatibility with existing commercial optimization solvers. The linearized formulation is verified to ensure its solution optimality and degree of error deviation. The proposed network model formulation considers the alternatives of installation of new transformers of various capacities to reinforce already existing ones at substations of the network, choosing and construction of new substations given feasible locations, re-conductoring of existing feeders in the network, construction of new feeders given various conductor types alternatives, cost lost as a result of power interruption, and changes in the overall network topology. The cost of interruption would contain a cost term called ‘cost of goodwill’, which was brought into the model formulation, to measure the loss in confidence of consumers to distributors of power as a result of interrupted power supply, which is prevalent in developing nations. Two test systems of 23 and 54 nodes was used in showing the efficiency of the proposed network model formulation.Keywords: Distribution network, mixed binary integer programming, linearization, re-conducting, optimization

    Modelling and solution methods for stochastic optimisation

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this thesis we consider two research problems, namely, (i) language constructs for modelling stochastic programming (SP) problems and (ii) solution methods for processing instances of different classes of SP problems. We first describe a new design of an SP modelling system which provides greater extensibility and reuse. We implement this enhanced system and develop solver connections. We also investigate in detail the following important classes of SP problems: singlestage SP with risk constraints, two-stage linear and stochastic integer programming problems. We report improvements to solution methods for single-stage problems with second-order stochastic dominance constraints and two-stage SP problems. In both cases we use the level method as a regularisation mechanism. We also develop novel heuristic methods for stochastic integer programming based on variable neighbourhood search. We describe an algorithmic framework for implementing decomposition methods such as the L-shaped method within our SP solver system. Based on this framework we implement a number of established solution algorithms as well as a new regularisation method for stochastic linear programming. We compare the performance of these methods and their scale-up properties on an extensive set of benchmark problems. We also implement several solution methods for stochastic integer programming and report a computational study comparing their performance. The three solution methods, (a) processing of a single-stage problem with second-order stochastic dominance constraints, (b) regularisation by the level method for two-stage SP and (c) method for solving integer SP problems, are novel approaches and each of these makes a contribution to knowledge.Financial support was obtained from OptiRisk Systems

    Developing an Enhanced Algorithms to Solve Mixed Integer Non-Linear Programming Problems Based on a Feasible Neighborhood Search Strategy

    Get PDF
    Engineering optimization problems often involve nonlinear objective functions, which can capture complex relationships and dependencies between variables. This study focuses on a unique nonlinear mathematics programming problem characterized by a subset of variables that can only take discrete values and are linearly separable from the continuous variables. The combination of integer variables and non-linearities makes this problem much more complex than traditional nonlinear programming problems with only continuous variables. Furthermore, the presence of integer variables can result in a combinatorial explosion of potential solutions, significantly enlarging the search space and making it challenging to explore effectively. This issue becomes especially challenging for larger problems, leading to long computation times or even infeasibility. To address these challenges, we propose a method that employs the "active constraint" approach in conjunction with the release of nonbasic variables from their boundaries. This technique compels suitable non-integer fundamental variables to migrate to their neighboring integer positions. Additionally, we have researched selection criteria for choosing a nonbasic variable to use in the integerizing technique. Through implementation and testing on various problems, these techniques have proven to be successful

    Multi-parametric Analysis for Mixed Integer Linear Programming: An Application to Transmission Planning and Congestion Control

    Full text link
    Enhancing existing transmission lines is a useful tool to combat transmission congestion and guarantee transmission security with increasing demand and boosting the renewable energy source. This study concerns the selection of lines whose capacity should be expanded and by how much from the perspective of independent system operator (ISO) to minimize the system cost with the consideration of transmission line constraints and electricity generation and demand balance conditions, and incorporating ramp-up and startup ramp rates, shutdown ramp rates, ramp-down rate limits and minimum up and minimum down times. For that purpose, we develop the ISO unit commitment and economic dispatch model and show it as a right-hand side uncertainty multiple parametric analysis for the mixed integer linear programming (MILP) problem. We first relax the binary variable to continuous variables and employ the Lagrange method and Karush-Kuhn-Tucker conditions to obtain optimal solutions (optimal decision variables and objective function) and critical regions associated with active and inactive constraints. Further, we extend the traditional branch and bound method for the large-scale MILP problem by determining the upper bound of the problem at each node, then comparing the difference between the upper and lower bounds and reaching the approximate optimal solution within the decision makers' tolerated error range. In additional, the objective function's first derivative on the parameters of each line is used to inform the selection of lines to ease congestion and maximize social welfare. Finally, the amount of capacity upgrade will be chosen by balancing the cost-reduction rate of the objective function on parameters and the cost of the line upgrade. Our findings are supported by numerical simulation and provide transmission line planners with decision-making guidance
    corecore