407 research outputs found

    SnakeTrack, A Bio-Inspired, Single Track Mobile Robot with Compliant Vertebral Column for Surveillance and Inspection

    Get PDF
    This paper presents the conceptual and embodiment design of a bio-inspired single track ground mobile robot, named SnakeTrack, designed for surveillance and inspection tasks in unstructured environments with narrow spaces. Its main components are the vertebral column, characterized by two end modules and a variable number of vertebrae connected by compliant joints, and the peripherical track. The robot is actuated by four motors, two for the track motion and two to command the lateral flexion of the vertebral column for steering, while limited passive torsion and retroflexion of the vertebral column are allowed by the compliant joints to adapt to terrain unevenness, improving traction. Vision is provided by two cameras placed on the end modules, behind the tracks, which are characterized by dedicated openings. The pitch of vertebrae and tracks is equal, then the robot is modular, and its length can be changed on the basis of the environment features and the required onboard equipment

    Robotic Minimally Invasive Tools for Restricted Access Confined Spaces

    Get PDF
    A study has been performed in the design and fabrication of deployable borehole robots into confined spaces. Three robot systems have been developed to perform a visual survey of a subterranean space where for any reason humans could not enter. A 12mm diameter snake arm was designed with a focus on the cable tensions and the failure modes for the components that make the snake arm. An iterative solver was developed to model the snake arm and algorithmically calculate the snake arms optimal length with consideration of the failure modes. A robot was developed to extend the range capabilities of borehole robots using reconfigurable borehole robots based around established actuation and manufacturing techniques. The expected distance and weight requirements of the robot are calculated alongside the forces the robot is required to generate in order to achieve them. The whegged design incorporated into the tracks is also analysed to measure the capability of the robot over rough terrain. Finally, the experiments to find the actual driving forces of the tracks are performed and used to calculate the actual range of the robot in comparison to the target range. The potential of reconfigurable mobile robots for deployment through boreholes is limited by the requirement for conventional gears, motors, and joints. This chapter explores the use of smart materials and innovative manufacturing techniques to form a novel concept of a self-folding robotic joint for a self-assembling robotic system. The design uses shape memory alloys fabricated in laminate structures with heaters to create folding structures

    Modeling and Experimental Validation of a Compliant Underactuated Parallel Kinematic Manipulator

    Get PDF
    © 1996-2012 IEEE. Parallel kinematic manipulators (PKMs) are increasingly used in a wide range of industrial applications due to the characteristics of high accuracy and compact structure. However, most of the existing PKMs are structured with heavy actuators and high stiffness. In this respect, this article proses a simple, yet effective, parallel manipulator that distinguishes itself through the following basis. First, underactuation: it employs only a single motor and a driving cable to actuate its three legs. Second, novel foot location: it uses a smart shape memory alloy clutch-based driving system (SCBDS), which catches/releases the driving cable, thus, making possible the robot underactuation. Finally, adjustable compliance: its double compliant joints on each limb with a stiffness-adjustable section, which renders a safe human-robotic interaction. To support and predict the performance of this underactuated compliant manipulator, a novel kinetostatic model was developed by considering the generalized internal loads (i.e., force and moment) in three compliant limbs and the external loads on the upper platform. Finally, based on the physical prototype, a set of experiments were conducted to validate the model proposed in this article. It was found that the proposed kinetostatic model can be validated with the average deviations of 1.8% in position and 2.8% in orientation, respectively. Furthermore, the workspace of the system (e.g., discrete and continuous workspace) was studied when different actuating strategies were employed, thus, emphasizing the advantages and the limitations of this novel system

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system

    A Soft Continuum Robot with Self-Controllable Variable Curvature

    Full text link
    This paper introduces a new type of soft continuum robot, called SCoReS, which is capable of self-controlling continuously its curvature at the segment level; in contrast to previous designs which either require external forces or machine elements, or whose variable curvature capabilities are discrete -- depending on the number of locking mechanisms and segments. The ability to have a variable curvature, whose control is continuous and independent from external factors, makes a soft continuum robot more adaptive in constrained environments, similar to what is observed in nature in the elephant's trunk or ostrich's neck for instance which exhibit multiple curvatures. To this end, our soft continuum robot enables reconfigurable variable curvatures utilizing a variable stiffness growing spine based on micro-particle granular jamming for the first time. We detail the design of the proposed robot, presenting its modeling through beam theory and FEA simulation -- which is validated through experiments. The robot's versatile bending profiles are then explored in experiments and an application to grasp fruits at different configurations is demonstrated.Comment: Accpeted for IEEE Robotics and Automation letters in January 2024, Imperial's open access research REF 2029 open access polic

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces
    corecore