43,742 research outputs found

    A framework for the definition of metrics for actor-dependency models

    Get PDF
    Actor-dependency models are a formalism aimed at providing intentional descriptions of processes as a network of dependency relationships among actors. This kind of models is currently widely used in the early phase of requirements engineering as well as in other contexts such as organizational analysis and business process reengineering. In this paper, we are interested in the definition of a framework for the formulation of metrics over these models. These metrics are used to analyse the models with respect to some properties that are interesting for the system being modelled, such as security, efficiency or accuracy. The metrics are defined in terms of the actors and dependencies of the model. We distinguish three different kinds of metrics that are formally defined, and then we apply the framework at two different layers of a meeting scheduler system.Postprint (published version

    Compressed Sensing Based Direct Conversion Receiver With Interference Reducing Sampling

    Full text link
    This paper describes a direct conversion receiver applying compressed sensing with the objective to relax the analog filtering requirements seen in the traditional architecture. The analog filter is cumbersome in an \gls{IC} design and relaxing its requirements is an advantage in terms of die area, performance and robustness of the receiver. The objective is met by a selection of sampling pattern matched to the prior knowledge of the frequency placement of the desired and interfering signals. A simple numerical example demonstrates the principle. The work is part of an ongoing research effort and the different project phases are explained.Comment: 3 pages, 5 figures, submitted to IEEE International Conference On Sensing Communication and Networking 2014 (poster

    Feasibility Study of RFID Technology for Construction Load Tracking

    Get PDF
    INE/AUTC 10.0

    Management issues in systems engineering

    Get PDF
    When applied to a system, the doctrine of successive refinement is a divide-and-conquer strategy. Complex systems are sucessively divided into pieces that are less complex, until they are simple enough to be conquered. This decomposition results in several structures for describing the product system and the producing system. These structures play important roles in systems engineering and project management. Many of the remaining sections in this chapter are devoted to describing some of these key structures. Structures that describe the product system include, but are not limited to, the requirements tree, system architecture and certain symbolic information such as system drawings, schematics, and data bases. The structures that describe the producing system include the project's work breakdown, schedules, cost accounts and organization

    Production of Reliable Flight Crucial Software: Validation Methods Research for Fault Tolerant Avionics and Control Systems Sub-Working Group Meeting

    Get PDF
    The state of the art in the production of crucial software for flight control applications was addressed. The association between reliability metrics and software is considered. Thirteen software development projects are discussed. A short term need for research in the areas of tool development and software fault tolerance was indicated. For the long term, research in format verification or proof methods was recommended. Formal specification and software reliability modeling, were recommended as topics for both short and long term research

    Automated software quality visualisation using fuzzy logic techniques

    Get PDF
    In the past decade there has been a concerted effort by the software industry to improve the quality of its products. This has led to the inception of various techniques with which to control and measure the process involved in software development. Methods like the Capability Maturity Model have introduced processes and strategies that require measurement in the form of software metrics. With the ever increasing number of software metrics being introduced by capability based processes, software development organisations are finding it more difficult to understand and interpret metric scores. This is particularly problematic for senior management and project managers where analysis of the actual data is not feasible. This paper proposes a method with which to visually represent metric scores so that managers can easily see how their organisation is performing relative to quality goals set for each type of metric. Acting primarily as a proof of concept and prototype, we suggest ways in which real customer needs can be translated into a feasible technical solution. The solution itself visualises metric scores in the form of a tree structure and utilises Fuzzy Logic techniques, XGMML, Web Services and the .NET Framework. Future work is proposed to extend the system from the prototype stage and to overcome a problem with the masking of poor scores
    corecore