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Abstract 
Actor-dependency models are a formalism aimed at 

providing intentional descriptions of processes as a 
network of dependency relationships among actors. 
This kind of models is currently widely used in the 
early phase of requirements engineering as well as in 
other contexts such as organizational analysis and 
business process reengineering. In this paper, we are 
interested in the definition of a framework for the 
formulation of metrics over these models. These 
metrics are used to analyse the models with respect to 
some properties that are interesting for the system 
being modelled, such as security, efficiency or 
accuracy. The metrics are defined in terms of the 
actors and dependencies of the model. We distinguish 
three different kinds of metrics that are formally 
defined, and then we apply the framework at two 
different layers of a meeting scheduler system.  
 
1. Introduction 
 

Goal-oriented analysis methods and languages such 
as KAOS, i*, GRL or TROPOS [1, 2, 3] are 
widespread in the requirements engineering 
community as cornerstones for the refinement and 
decomposition of the customer needs into concrete 
goals in the early phase of the requirements 
specification [4]. 

Goal-oriented models define a network of actors 
and dependencies and their decomposition into simpler 
concepts. In this paper, we are especially interested in 
the consideration of goal-oriented models without 
analysing decomposition aspects. In other words, we 
focus on the static nature of a goal-model, showing the 
actors and dependencies that exist at one layer of the 
system. We call actor-dependency models this restric-
ted class of goal-oriented models. An example of 
actor-dependency models would be i* Strategic 
Dependency (SD) models [2], whilst i* Strategic 
Rationale (SR) models are not objective of our current 
work. 

Actor-dependency models are very interesting by 
themselves. In the context of requirements 
engineering, they are the formalism to express a first, 
organizational view of the system. Once the actor-
dependency model exists, it can be used in different 
ways. For instance, we may analyse the model itself to 
reason about the modelled world, focusing on 
properties such as opportunity and vulnerability [2] to 
explore different alternatives. When the actor-
dependency model is considered complete it may be 
used in further activities usual in goal-oriented 
modelling: we may undertake a deeper analysis of its 
actors by making explicit their rationale and form a 
more complete goal-oriented model by decomposition; 
or we may use the model to formulate the prescriptive 
system requirements using classical artefacts such as 
use cases [5]. 

In this paper we are interested in the structural 
analysis of actor-dependency models. More precisely, 
we want to take profit of the structure of actor-
dependency models to analyse the modelled system 
with respect some designated properties of interest 
using some adequate metrics. 

The use of metrics for analysing the adequacy of 
proposed system models is well-known in other type of 
models. For instance, there are some suites of metrics 
in the field of object-oriented models [6, 7], which 
refer to structural properties like cohesion and 
coupling. Properties referring to the system itself, such 
as security, efficiency or cost, which mainly fall in the 
category of non-functional or organizational 
requirements, appear when considering models of the 
system architecture [8]. These metrics are usually 
defined in terms of the components, nodes, 
connections, pipes, etc., that compose the final 
configuration of the system. 

In this paper, we propose the use of metrics defined 
over actor-dependency models to analyse non-
functional and organizational goals. As a result, we 
obtain metrics that are closer to the universe of 
discourse than to the internal structure of the system, 
since their definition will be given not in terms of 
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connectors and pipes but of actors and dependencies. 
We articulate our proposal as a general framework for 
defining these kind of metrics. We introduce the 
framework in a formal way, first characterising the 
concept of actor-dependency model and then 
proposing three different categories of metrics. All 
three are built upon the same idea, namely the use of 
functions that give weights to actors or dependencies 
of the model; the weight may be given individually to 
each element, or else we may give the same weight to 
elements of the same kind or exhibiting a particular 
property. Depending on the element of interest, i.e. 
actors or dependencies, we obtain actor-dependency or 
dependency-based general forms of metrics. 

The paper is structured as follows. In section 2, we 
introduce our notion of actor-dependency models and 
provide formal definitions for them and their 
components. In section 3, we identify three categories 
of metrics and we give general forms for each of them. 
In sections 4 to 6, we study the applicability of the 
framework in a particular, well-known case study, a 
meeting scheduler [4, 9]. Last, in section 7 we provide 
the conclusions and some future work. Throughout the 
paper, we use i* strategic dependency (SD) models [2] 
to provide examples and draw system models. 
 
2. A Definition of Actor-dependency Models 

 
An actor-dependency model comprises two types of 

elements, the actors themselves and the dependencies 
among them. Actors are intentional entities, that is, 
there is a rationale behind the activities that they carry 
out. Dependencies connect source and target actors, 
called depender and dependee respectively.  
Altogether form a network of knowledge that allows 
understanding “why” the system behaves in a 
particular way [10]. 

In this paper, we consider two types of actors, 
namely roles and agents. According to [2], we define a 
role as an abstract characterization of the behaviour of 
a social actor within some specialized context or 
domain of endeavour, whilst an agent is an actor with 
concrete, physical manifestations that plays a role. 

Actors and dependencies may exhibit attributes1, 
such as product fabricant, physical location, etc., or 
others more oriented to their use during the require-
ments engineering activity, as priority or importance. 

For our purposes, it is helpful to consider that 
agents and dependencies belong to one sort that group 
elements of the same kind; therefore we can talk about 

                                                           
1 Probably “property” would have been a better term than “attribute”, 
but we are using “property” throughout the paper with another 
meaning, then we have preferred to avoid confusion. 

human agents, goal dependencies, and so on. 
Concerning roles, we are more flexible and we allow 
them to belong to zero, one or more sorts. This rule fits 
with the case that although some roles are inherently of 
a given sort, others are more open; for example, a 
meeting scheduler role may be covered by human or 
software agents and therefore we classify it as 
belonging to the human and software roles as well.  

Definition 1 formalizes the concept of actor-
dependency model. To simplify matters, we do not 
consider in the rest of the paper the case of 
dependencies with multiple dependers or dependees, 
whose treatment in our context is straightforward but 
technically cumbersome. 

Definition 1. Actor-dependency model.  
An actor-dependency model is a pair M = (A, D), 

being A a set of actors and D the dependencies among 
them, such that: 

1) The set A has a mapping typeA: A → {role, 
agent} that classifies model actors into roles and 
agents. When convenient, we consider A as a pair A = 
(Arole, Aagent). 

2) The set A has a mapping sortA: A → P(TA), being 
TA the permissible sorts of actors. It holds that: 

typeA(a) = agent ⇒ || sortA(a) || = 1 
3) The actors in the set A may have attributes 

modelled as mappings { propA,i: A × Ki → Vi }. 
4) D is defined as a set of ordered pairs of actors 

with the name of the dependency, D⊆ A×A×string. 
5) The set D has a mapping sortD: D → TD, being 

TD the permissible sorts of dependencies. 
6) The dependencies in the set D may have attrib-

utes modelled as mappings { propD;i: D × Ki → Vi }.  

Fig. 1 presents an example of actor-dependency 
model expressed with the i* notation, namely a 
Strategic Dependency (SD) model, for a meeting 
scheduler system in the ACME company, based on that 
of [2]. There are a few changes; remarkably, we 
introduce an actor that plays the part of directory. The 
3 actors are roles; although not in the example, other 
types of actors, namely agents and an intermediate 
concept called position, are supported in i*. About 
dependencies, SD models allow 4 sorts: 
• Goal. The depender depends upon the dependee to 

bring about a certain state in the world. See Attend 
Meeting in the figure. 

• Task. The depender depends upon the dependee to 
attain a goal in a particular way. We have not 
included any in the example. 

• Resource. The depender depends upon the 
dependee for the availability of a physical or 
informational entity (see Agreement Date in fig. 1). 
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• Soft goal. The depender depends upon the 
dependee to meet some non-functional 
requirement. We have not included any in the 
example. 
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Figure 1. An i* SD model for a meeting scheduler.  

 
Actor-dependency models can be refined from the 

starting system model passing through different 
refinement steps, each intermediate model capturing a 
notion in the requirements engineering activity. We 
can say that actors from one model are assigned to 
actors from the other model, and the dependencies go 
with them. Eventually, we could reach an state where 
all the actors are agents, representing how physical 
entities play the system roles. Many times we do not 
need to reach such a level of detail, but just two or 
three different layers of vision of the system. In this 
paper, we will address 2 different layers of interest in 
our case study, representative enough of our vision of 
actor-dependency models application and well-suited 
to apply our metrics framework. 

 
3. Metrics for Actor-Dependency Models 

 
In this section, we propose the use of structural 

metrics for analysing the model properties of an actor-
dependency model, i.e., those properties that depend 
on the form of the model and the types, sorts and 
attributes of its elements. Structural metrics are 
valuable for both analysing a highly abstract model of 
a system of any kind, composed basically by roles, and 
for comparing different feasible realizations of this 
abstract model (which take the form of actor models 
too, but composed basically by agents) with respect to 
the most relevant criteria established in the modelled 
world. 

For a given model property object of measure, it 
may be the case that all its elements (actors and 
dependencies) influence the metric. However, it is 
more likely that just elements of some particular sorts 
affect this property. Furthermore, some individual 
elements may be identified as especially relevant for 

the property; in the most general case, all the elements 
may have a different weight in the metric. We need 
then to take into account all these situations if we aim 
at having a widely applicable metrics formulation 
framework.  

We distinguish three types of structural metrics. 
Global structural metrics take the model as a whole 
and produce a single measure for the property of 
interest. Local structural metrics focus on the 
individual elements of the model, producing then a set 
of values that can be examined looking for thresholds 
or weak points of the model. On top of local structural 
metrics we define sensitivity metrics, finding out the 
element that maximizes the values of a local structural 
metric. All types of metrics rely on two fundamental 
concepts, actor evaluation and dependency evaluation. 
 
3.1. Evaluation of actors and dependencies 

 
The atomic concept in our metrics framework is the 

evaluation of the individual elements that are in the 
actor-dependency model. The evaluation of actors and 
dependencies are defined as functions that yield a 
value in the interval [0, 1]. In both cases, the 
evaluation is computed as the multiplication of two 
factors, the first one taking into account just the type, 
sorts and attributes of the element itself, and the 
second one considering the other model elements it 
relates to, i.e. the dependencies stemming from, or 
going onto, the actor in actor evaluation; or the actors 
linked to the dependency in dependency evaluation. 

Definition 5. Actor evaluation. 
Given a model property P, an actor-dependency 

model M = (A, D) and an actor inside the model, a∈ A, 
the actor evaluation of a for P over M is of the form: 

P
M,A

(a) = f
A
(a) × g

A,D
(a)) 

being fA: A → [0, 1] a mapping that assigns a weight to 
every actor of the model, and gA,D: A × D → [0, 1] a 
mapping that corrects the weight of an actor conside-
ring the dependencies stemming from or going onto it. 

Definition 6. Dependency evaluation. 
Given a model property P, an actor-dependency 

model M = (A, D) and a dependency inside the model, 
d=(a, b, x)∈ D, the dependency evaluation of d for P 
over M is of the form: 

P
M,D

(d) = f
D
(d) × g

D,A
(d) 

being fD: D → [0, 1] a mapping that assigns a weight 
to every dependency of the model, and gD,A: D → [0, 
1] a mapping that corrects the weight of a dependency 
considering the depender and dependee actors, 
respectively. 
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3.2. Global Structural Metrics 
 
Definitions 7 and 8 provide a generic framework 

for the definition of global structural metrics. There we 
define two different types of global structural metrics, 
actor-dependency and dependency-based, depending 
on which type of element the metric focuses on. The 
metrics just sum the evaluations of its elements, and 
make a final normalization of the value taking into 
account the number of actors or dependencies of the 
system that satisfy a particular condition. Sometimes 
the metric value must be considered as-is without any 
normalization and then the limitP function yields 1. 

Definition 7. Actor-dependency global structural 
metrics. 

Given a model property P, an actor-dependency 
model M = (A, D) and a function limitP: A → [1, ||A||], 
an actor-dependency global structural metric for P 
over M is of the form: 

Σa∈ A: P
M,A

(a) 
      PM =  

limitP(A) 

Definition 8. Dependency-based global structural 
metrics. 

Given a model property P, an actor-dependency 
model M = (A, D) and a function limitP: D → [1, ||D||], 
a dependency-based global structural metric for P over 
M is of the form: 

Σd∈ D: P
M,D

(d) 
      PM =  

limitP(D) 
 
3.3. Local and Sensitivity Structural Metrics 

 
The definition of local structural metrics follows the 

same layout than global ones but keeping track of the 
measures of individual elements. We use this kind of 
metrics for having a complete analysis of the 
individual actors or dependencies of an actor-
dependency model. Sensitivity metrics are a kind of 
summary providing the maximum value of a local 
structural metrics. 

Definition 9. Actor-dependency local and sensitivity 
structural metrics. 

Given a model property P, an actor-dependency 
model M = (A, D) and a function limitP: A → [1, ||A||], 
an actor-dependency local structural metric for P over 
M is of the form: 

PM: A → [0, 1] such that P
M

(a) =  P
M,A

(a)  

We define the actor-based sensitivity structural metrics 
bound to P as: 

PMaxM = max a∈ A: P
M

(a)  

Definition 10. Dependency-based local and sensitivity 
structural metrics. 

Given a model property P, an actor-dependency 
model M = (A, D) and a function limitP: D → [1, ||D||], 
a dependency-based local structural metric for P over 
M is of the form: 

PM: D → [0, 1] such that P
M

(d) =  P
M,D

(d) 
We define the dependency-based sensitivity structural 
metrics bound to P as: 

PMaxM = max d∈ D: P
M

(d)  
 
4. The Meeting Scheduler Case Study 
 
In the rest of the paper, we are going to present some 
examples of application of structural metrics for actor-
dependency model properties in different contexts. We 
use the meeting scheduler system as example, and we 
study 2 different contexts of applications in the next 
following 2 sections: first, deciding whether a software 
meeting scheduler is adequate with respect to some  
non-functional requirements, expressed as model 
properties; once the convenience of a software system 
has been established, selecting the most convenient 
combination of software packages for implementing 
this system as COTS-based. This example is 
representative of the kind of uses that we envisage for 
structural metrics. The metrics defined will be of 
different kinds: actor- and dependency-based; global 
and sensitivity; using properties or not; with special 
cases or just taking into account sorts and types. 
 
5. Studying the Adequacy of a Software 
System for Scheduling Meetings 

 
In fig. 1, we have introduced as example an 

organizational environment for a meeting scheduler in 
the ACME organization. Let’s assume now that 
ACME has found that the meeting scheduling process 
is currently not satisfactory enough: too often, people 
do not get aware of meetings or misunderstand their 
dates; from time to time, people seems to manage 
information, such as email addresses, with less privacy 
than required; the meeting date determination is not as 
agile as desired; etc. Therefore, the ACME’s executive 
board has decided to analyse other possible strategies. 
In particular, it has decided to include the figure of a 
meeting scheduler such that the meeting initiator may 
delegate most of the duties. It becomes necessary to 
compare the behaviour of such an organizational 
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alternative to the existing one. In particular, we explore 
two possibilities about the meeting scheduler: to be a 
human role, carried out by some administrative figure, 
or to be a software system. 
 
5.1. A new Organization Alternative for 
Scheduling Meetings 

 
In fig. 2 we show the actor-dependency model that 

represents the new organizational system for 
scheduling meetings. There are some differences with 
respect to Yu’s [2] (apart from the directory actor and 
its dependencies) because we have preferred to obtain 
a model as similar as possible to the previous one, to 
support easy comparison using the metrics. 

We keep the 3 former actors and add a new one for 
the meeting scheduler. The dependencies from/to the 
Directory actor are similar, except for the change of 
the Participant Address dependency to Participant 
Name (i.e., the directory provides help to find 
participant names if necessary). The Meeting 
Scheduler takes the responsibility of coordinating with 
participants; it just needs the range of dates from the 
Meeting Initiator to start the process. We add a goal 
dependency from the Meeting Initiator to the Meeting 
Scheduler, and we keep the one from the Meeting 
Initiator to the Meeting Participant. Last, we consider 
that the Meeting Scheduler obtains the participants’ 
names from the Meeting Initiator and then the 
corresponding email addresses from the Directory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A i* SD model for a meeting scheduler system 
with explicit meeting scheduler actor. 

 
5.2. Non-Functional System Requirements 

 
Next we enumerate the non-functional requirements 

that catch the problems that the previous organization 
suffered from. For each requirement, we describe how 
it can be related to the different parts of the actor-

dependency model considering the sorts of actors and 
dependencies. Concerning the types, the statements 
given below drives us to consider just resource 
dependencies in the first three cases. 
• The system shall respect privacy. Communication 

of information among actors is a risk concerning 
privacy. We consider that human actors introduce 
an hazard when communicating data. Furthermore, 
we consider more private software actors than 
human ones, since one of the problems of the 
former meeting scheduling process was lack of pri-
vacy caused by careless information management. 

• The system shall be accurate. This is the most 
important requirement of the system. Of course, 
communication of information among software 
actors is totally accurate; on the contrary, accuracy 
gets damaged when people is involved. We also 
consider that, once transmitted, software keeps the 
information more accurately than human, who may 
introduce errors when e.g. registering the meeting 
in their agenda. 

• The system shall be efficient. This means that the 
process itself is required to be agile, minimizing 
process of information. Needless to say, software 
actors and dependencies makes efficiency better. 

• The system shall be fault tolerant. In our system, 
we try to avoid actors that are responsible of too 
many things to minimize collapses when the actor 
is unavailable. Responsibilities take the form of 
incoming dependencies, i.e. dependencies in which 
the actor plays the part of dependee. 
 

5.3. Definition of the Structural Metrics 
 
Given these descriptions, we define one model 

property bound to each requirement and for each 
property, we introduce a single structural metric: data 
privacy, data accuracy, process agility and 
responsibility dissolution, respectively. A more 
complete analysis could introduce other metrics bound 
to the properties, and then some technique for 
combining the value of all the metrics of one property 
into a single one should be applied, using some kind of 
weighting factor matrix as proposed by McCall in a 
context similar to ours [11]. 

Since the flow of data is a crucial factor in the first 
three cases, we define the metrics as global and 
dependency-based. Table 1 shows the corresponding 
dependency evaluation. We define g

D,A
(d) as a function 

h on the sort of the actor, g
D,A

((a, b, x)) = h
A
(a)×h

A
(b) 

and show this factor at the table. We consider the four 
sorts of dependencies given by i* (represented by their 
capital letter: G, SG, T, R), two sorts of actors, human 
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(H) and software (S) and three derived types of 
dependencies, human-human (H-H), software-software 
(S-S) and human-software (S-H). Dependency 
evaluation depends only on this information. The 
values assigned range in [0, 1]; we assign 1 to the best 
(accuracy) or worst (privacy and agility) possible case 
and then the rest of values try to measure the deviation 
that the sorts of actors and dependencies and the type 
of dependencies provoke in the corresponding 
evaluation. We may use weighting techniques such as 
the AHP [12] to compute the values in a more 
confident way. 
 

Dependency Attribute 
Sort Type DP DA PA 
G any 0 0 0 

SG any 0 0 0 
T any 0 0 0 

H-H 1 0,6 1 
H-S 0,9 0,8 0,7 

fD 

R 
S-S 0,8 1 0,5 

      
Sort DP DA PA 
H 0,7 0,7 0,8 hA 
S 1 1 1 

Table 1. Dependency evaluation for the data 
privacy (DP), data accuracy (DA) and process agility 
(PA) metrics.  

 
The definition of the three metrics on top of these 

dependency evaluations consists on giving values to 
the function limitP. In the case of data privacy and 
process agility, we find convenient to use an absolute 
metric, i.e. we do not normalize the result, which 
means that the number of resource dependencies is 
more important than the percentage: every resource 
dependency endangers by itself the model property of 
interest. As a result, for these two metrics, we define 
limitP(D) = 1. On the contrary, for data accuracy, we 
divide by the number of resource dependencies of the 
model, limitP(D) = || {d∈ D: sortD(d) = resource} ||, 
since the concrete number of resource dependencies is 
not really relevant. 

Concerning the fourth metric, responsibility 
dissolution (RD) is better defined as a sensitivity actor-
based metric. We do not assign different weights to 
actor sorts; we just count incoming dependencies and 
divide by the total number of dependencies, to make 
sure the [0, 1] range of values. The lesser the value is, 
the better the system behaves with respect this metric. 

 
 
 

5.4. Some Alternatives for the Metrics 
 
The proposal of metrics appearing in the previous 

section does not distinguish any particular actor or 
dependency. However, one could easily find 
arguments to prioritise some of the model elements 
according to the rationale of the properties addressed. 
Next we comment some examples: 
• Data privacy. It is clear that the information about 

participants should be more protected than the 
information about meeting dates (in fact, it should 
be totally protected). So, we could assign a higher 
value to the evaluation of these dependencies. 

• Data accuracy. We could assign a value to the 
agreement date resource higher than to the other 
date resources, since a misunderstanding 
concerning this resource makes the meeting fail. 

• Process agility. Unlike data privacy, we may 
consider more important for agility the 
dependencies about dates than the others, since 
there may be some negotiation with the dates that 
does not exist with the participant addresses. 

• Responsibility dissolution. We could consider that 
software actor failure is more severe because the 
data contained there in is not available until the 
system recovers, while the probability of this in 
human actors is smaller. This makes a great 
difference in case of needing some information 
urgently and timely. 
 

5.5. Evaluation of the Alternatives 
 
Table 2 provides the evaluation of the three 

considered organizational systems using the version of 
the metrics defined in section 5.3 (current system has 
been shown in fig. 1, proposed system in fig. 2). To 
make easier comparisons, we translate the results to the 
interval [0, 1] being 1 the best value and preserving the 
distances found in the measurement. Concerning the 
two proposed alternatives, software meeting scheduler 
is better than human meeting scheduler. When we 
compare this best new solution with the current system 
the situation is not so clear, but in fact we have 
mentioned in 5.2 that accuracy is the most important 
property and so the data accuracy results, in which the 
distance among the new solution and the current one is 
large, point out that the proposed system is worth. 

Let’s assume that these results, among others, 
makes the ACME company to acquire a software 
system for scheduling meetings. Once taken this 
decision, a further study could be carried out to define 
cost prediction metrics. For instance, we could define 
an equivalent to the notion of function point [13] to 



7 

make a prediction in terms of the functionalities that 
are to be implemented. We skip this analysis here. The 
next activity to be taken is thus procuring the system. 

 
 Current 

system 

Proposed system 
with human 

meeting scheduler 

Proposed system 
with software 

meeting scheduler 
DP 1 0,64 0,55 
DA 0,42 0,63 1 
PA 1 0,66 0,74 
RD 0,64 1 1 

Table 2. Evaluation of the metrics for the three 
alternative systems. 
 
6. Selection of a COTS-based Solution for 
the Meeting Scheduler System 

 
To carry out system procurement, we first enlarge 

our vision of the system. We take advantage of the 
current functionalities available in the market and 
propose a more advanced solution including anti-virus 
control. We also prefer to split the meeting scheduler 
into two actors, the scheduler itself and a message 
delivery service in charge of sending data to, and 
receiving data from, the human actors. We add also a 
system administrator for the meeting scheduler. The 
resulting i* model is in fig. 3; we include just some i*-
like dependencies among the roles, enough for our 
illustrative purposes, and we also change some 
resources to tasks for the same reason. It can be argued 
that this new model should have been issued when 
carrying out the viability analysis of the previous 
section, and in fact this could be the case, but we tend 
to think that for the high-level organizational analysis 
it is better to abstract the system and focus on its basic 
facilities as we have done before. 

At this point, we face the problem of deciding the 
best architecture of the system, including all the 
software components identified. In other words, we 
would like to obtain architectures as instances of the 
socio-technical i* system model and compare them in 
the light of some architectural properties. This is the 
objective of the section. 
 
6.1. Considering some COTS-based Alternatives 

 
Following the current best practices, we choose a 

COTS-based solution for our system [14]. Many 
COTS components exist in the market playing the 
roles required in the model. Most meeting scheduler 
systems incorporate mail facilities that allow 
participants to communicate, whilst others offer 
features ranging from meeting management to the 

detection of conflicts that then necessitate resolution 
with conventional e-mail components. Furthermore, 
some existing e-mail components incorporate time-
specific functions for managing calendars and agendas 
that may be used for scheduling meetings. Facilities for 
anti-virus protection and directory services might also 
be included; if not, independent components exist in 
the market fulfilling these functionalities. In other 
words, in most cases, a meeting scheduling solution is 
implemented as the composition of several COTS 
components that play the roles of the system presented 
in fig. 3. For this reason, a reliable COTS selection 
process should explore all the possible systems formed 
from combinations of existing COTS components.  

Figure 3. An actor-dependency model for the meeting 
scheduler socio-technical system example (excerpt) 

 
In fig. 4 we give a partial view of three actor-

dependency models for three feasible COTS-based 
system architectures coming from three different 
assignments of types of COTS components to model 
actors (for layout problems, we focus on the software 
actors and we just show the total number of 
dependencies among them). The architecture on the 
left is developed as the combination of 4 COTS 
components, each assigned to a single actor, whilst the 
one on the middle includes a meeting scheduler 
component that includes address lists and so the 
directory actor is duplicated. Finally, the one on the 
right provides a solution in which the meeting 
scheduler also deals with message delivery.  
 
6.2. Evaluation of the COTS-based Architectures 

 
Besides the usual compliance tests for the 

individual COTS components, the analysis of the 
software architectures that correspond to the 
considered combinations of COTS components may be 
a great help when comparing the explored alternatives. 
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Methodologies such as ATAM [15] perform these 
architectural analysis, but they tend to work on the 
physical layer of the architecture. In a previous paper 
[16], we shown a preliminary, informal work on the 
use of structural metrics that in fact can be seen as the 
motivation of the current, much more formal work. 

As an example, we define next a structural metric, 
namely complexity of user interface, that measure the 
usability non-functional property [17].  

Our first choice is an actor-dependency metric 
counting how many different COTS components 
interact with human actors, i.e. are dependers or 
dependees with some human actor (fig. 5, top and left). 
This is just a first approximation, easy to define and 
compute but not much accurate, giving better results to 
coarse-grained COTS-based solutions. 

This first proposal may be refined by discarding 
those software actors whose link with human actors is 
based exclusively on soft goal dependencies, 
considering that this kind of dependencies will not 
affect the user interface.  We use this idea to define a 
second kind of dependency-based metrics by taking 
into account goal, resource and task dependencies. 
Furthermore, we choose to give more weight to a goal 
dependency than the others, since a goal may involve 
(i.e., be decomposed into) some other dependencies. 
Concerning weights, we take the chance to prioritise 
types of users, for instance giving less importance to 
usability issues for the administrators. Fig 5, top and 
right, presents this option. Of course, it can be said that 
discarding soft goals is a very simplistic assumption, 
since there can be some related to usability that may 
have impact on the property under study; therefore, a 
more accurate definition should take into account the 
type of soft goal, using classifications such as some 
quality standard (e.g., [17]) and expressing them 
somehow in the model (for instance, using the concept 
of type proposed by the NFR framework [18]).  

Last, we explore more precise metrics by assigning 
individual weights to dependencies that connect human 
and software actors (the others are given a zero value). 
These dependencies are: MS, Meeting Scheduled 
(goal); CAD, Communicate Available Dates (task); 
PD, Personal Data (resource); MP, Meeting Proposal 
(resource); ECP, Effective Communication Provided 
(goal); ES, Ensure Safety (soft-goal). We can use 
either quantitative or qualitative criteria for doing so. 
For instance, a quantitative criteria for prioritising 
resource dependencies is to consider the number of 
fields that the data screen requires to be filled, whilst 
task dependencies can be prioritised by the number of 
clicks the user is required to press in the worst case; 
for goals and soft goal dependencies we make some 
kind of estimation. In all these cases, we normalize 

again for obtaining values among 0 and 1, see fig. 5, 
bottom and left. 

For qualitative analysis, we may apply criteria such 
as AHP [12] or laddering [19] to weight dependencies 
and/or actors. In fig. 5, bottom and right, we show an 
example of human-software dependency prioritisation 
using the AHP to define the weighting function. 
Needless to say, the convenience of such a detailed 
analysis must be considered. 

To complete this and the previous metric we just 
need to define the values of gA,D(a) taking into account 
the actor assignment to concrete COTS components. 

We do not include the results of the evaluation for 
both for space limitations and because we should 
consider the whole model and not the excerpt 
presented in fig. 3 to obtain valid data. We have done 
some experiments with this and other properties (such 
as data integrity, facility of integration, dependability, 
and others) with a larger model. In this particular 
example of complexity of user interface, we have 
observed that the first metric gives different results 
compared with the others, and this fact aligns with the 
small accuracy of its definition. The second metric 
gives the right tendency, but the differences are very 
small. The third and fourth metrics are similar, 
although the concrete values are different because of 
the difference of the dependency evaluation function. 
Of course, variations on the values used for this 
function may even change the ordering of the 
alternatives. We think that requirements priorisation 
existing approaches such as WinWin [20] may help in 
assigning the correct weights to the model elements. 

6.3. Other Models to be Considered 
 
In the previous set of metrics, we have studied the 

actor-dependency model resulting of instantiating the 
software roles of the meeting scheduler socio-technical 
system by other software roles corresponding to types 
of COTS components2. However other possible 
instantiations of the same origin actor-dependency 
model may be studied. For instance, we may argue that 
the complexity of user interface in fact depends on the  
variety of COTS component fabricants more than on 
the number of components. For instance, if both the 
meeting scheduler and the message delivery service are 
different products but from the same fabricant, they 
probably will use the same interface layout. Therefore, 
we could define an actor assignment using as assigned 
actors not the COTS components but their fabricants 
that appear in the model as attributes of the actors.

                                                           
2 In i*, we would model the types of COTS components not as roles 
but as positions. 



9 

 
Fig. 4. Three different COTS-based architectures for the meeting scheduler system (MS, meeting scheduler; 

MD, message delivery; AV: anti-virus; UDM, user directory manager; G, goal; S: soft goal; R: resource; T: task).  

             1, sortA(a) = {software} 1, sortD(d) = {goal} 
fA(a)  =       
                   0, otherwise             fD(d) =  0.5, sortD(d) = {resource} ∨   sortD(d) = {task} 
   

   1, ∃ h∈ A: sortA(h) = {human}:                0, sortD(d) = {soft goal} 
gA,D(a) =              ((a, h, x)∈ D ∨  (h, a, x)∈ D)       0,  sortA(a) = {software} ∧  sortA(b) = {software} 
  gD((a, b, x)) =     0.5, a = Administrator ∧  sortA(b) = {software} 
                   0, otherwise 0.5, b = Administrator ∧  sortA(a) = {software} 
  1, otherwise 

 Interface interaction fD(d)   PCA IUD LF AUP PD AD fD(d) 
CAD 8 0,8  CAD 1 5 1 1 3 7 0,26 
MP 4 0,4  MP 1/5 1 1/3 1/5 1 5 0,08 
MS 7 0,7  MS 1 3 1 3 7 5 0,32 
PD 10 1  PD 1 5 1/3 1 5 5 0,23 
ECP 5 0,5  ECP 1/3 1 1/7 1/5 1 5 0,08 
ES 2 0,2  ES 1/7 1/5 1/5 1/5 1/5 1 0,03 

 
Fig. 5. Four different proposals of metrics for the complexity of user interface property.  
 

7. Conclusions and Future Work 
 
In this paper we have presented a framework for the 

definition of structural metrics for actor-dependency 
models. The object of measure are the properties of the 
system model, which usually represent non-functional 
or organizational requirements. The framework 
consists of three categories of metrics with two general 
forms each, one for actor-dependency metrics and 
another for dependency-based. We have illustrated our 
proposal in a particular case, a meeting scheduler 
system, using structural metrics as assessment for 
deciding the convenience of software support, then 
selecting a particular combination of COTS 
components for the system. As a  result, and this is the 
main contribution of the paper, we may say that actor-
dependency models can be analysed in a systematic 
way with respect to a given set of model properties: it 
is enough with choosing and tuning the appropriate 
type (or types) of metrics for each property.  

The most relevant characteristics of our approach: 

• Expressiveness. It takes into account roles, sorts 
and attributes of actors and dependencies; 
distinguishes global, local and sensitivity model 
analysis; allows to focus on actors or dependencies 
taking into account which concept is predominant 
in the particular metric. 

• Accuracy. We have provided a formal definition of 
actor-dependency models that is used as a baseline 
upon which we have build our framework. 

• Cost-sensitivity. Metrics can be defined more or 
less accurately depending on the effort put in their 
definition, up to the level of defining the weight of 
every model element individually. 

• Skill support. Since the process to define metrics is 
the same over and over, namely tailoring a metric 
general form to the specific needs of a model 
property, accumulated knowledge may provide 
skills for augmenting productivity. Tool support 
helps in developing such skills, both in the form of 
spreadsheets or ad-hoc software systems which we 
are already developing.  
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• Reusability. Metrics can be used in different 
models of the same kind of domain. 

• Generality. It has not been tightened to any 
particular goal-oriented language or formalism. The 
underlying concepts have been defined in an 
abstract way allowing therefore customisation. 

To the best of our knowledge, there is not much related 
work in the field. Yu proposed in his definition of i* 
[2] concepts such as opportunity and vulnerability that 
could be modelled within our framework. The most 
remarkable proposal in this area is part of the AGORA 
method [21] that provides techniques for estimating the 
quality of requirements specifications in a goal-
oriented setting. In fact, AGORA puts more emphasis 
in the analysis of the AND/OR graph resulting from 
decomposition than in the kind of actor-dependency 
models that we have analysed in this paper. AGORA is 
expressive and accurate enough, although the method 
does not address explicitly to the other 3 issues 
mentioned for our framework (cost-sensitivity, 
reusability and generality). The basic difference is that 
AGORA does not provide any kind of general forms of 
the metrics, making then harder and less systematic to 
define new metrics or to reuse (parts of) them. 

We have identified several ways to proceed ahead 
in this line of research. For making our proposal 
useful, we remark the following: 
• Construction of a catalogue of reusable metrics. 

Model properties addressing non-functional aspects 
such as security, efficiency and so on are likely to 
appear over and over in system analysis. Thus, we 
aim at providing a complete and versatile catalogue 
of metrics for such properties.  

• Integration of the framework with other proposals. 
In particular, we are especially interested in using 
this framework in the analysis of system 
architectures [15, 22]. We think that metrics on 
goal-oriented models may provide a first-cut 
criteria for classifying candidate architectures. 
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