
1

A Framework for the Definition of Metrics for Actor-Dependency Models

Xavier Franch, Gemma Grau, Carme Quer
Universitat Politècnica de Catalunya (UPC)

C/Jordi Girona 1-3, UPC-Campus Nord (C6), Barcelona (Spain)
{franch, ggrau, cquer}@lsi.upc.es

http://www.lsi.upc.es/~gessi/

Abstract
Actor-dependency models are a formalism aimed at

providing intentional descriptions of processes as a
network of dependency relationships among actors.
This kind of models is currently widely used in the
early phase of requirements engineering as well as in
other contexts such as organizational analysis and
business process reengineering. In this paper, we are
interested in the definition of a framework for the
formulation of metrics over these models. These
metrics are used to analyse the models with respect to
some properties that are interesting for the system
being modelled, such as security, efficiency or
accuracy. The metrics are defined in terms of the
actors and dependencies of the model. We distinguish
three different kinds of metrics that are formally
defined, and then we apply the framework at two
different layers of a meeting scheduler system.

1. Introduction

Goal-oriented analysis methods and languages such
as KAOS, i*, GRL or TROPOS [1, 2, 3] are
widespread in the requirements engineering
community as cornerstones for the refinement and
decomposition of the customer needs into concrete
goals in the early phase of the requirements
specification [4].

Goal-oriented models define a network of actors
and dependencies and their decomposition into simpler
concepts. In this paper, we are especially interested in
the consideration of goal-oriented models without
analysing decomposition aspects. In other words, we
focus on the static nature of a goal-model, showing the
actors and dependencies that exist at one layer of the
system. We call actor-dependency models this restric-
ted class of goal-oriented models. An example of
actor-dependency models would be i* Strategic
Dependency (SD) models [2], whilst i* Strategic
Rationale (SR) models are not objective of our current
work.

Actor-dependency models are very interesting by
themselves. In the context of requirements
engineering, they are the formalism to express a first,
organizational view of the system. Once the actor-
dependency model exists, it can be used in different
ways. For instance, we may analyse the model itself to
reason about the modelled world, focusing on
properties such as opportunity and vulnerability [2] to
explore different alternatives. When the actor-
dependency model is considered complete it may be
used in further activities usual in goal-oriented
modelling: we may undertake a deeper analysis of its
actors by making explicit their rationale and form a
more complete goal-oriented model by decomposition;
or we may use the model to formulate the prescriptive
system requirements using classical artefacts such as
use cases [5].

In this paper we are interested in the structural
analysis of actor-dependency models. More precisely,
we want to take profit of the structure of actor-
dependency models to analyse the modelled system
with respect some designated properties of interest
using some adequate metrics.

The use of metrics for analysing the adequacy of
proposed system models is well-known in other type of
models. For instance, there are some suites of metrics
in the field of object-oriented models [6, 7], which
refer to structural properties like cohesion and
coupling. Properties referring to the system itself, such
as security, efficiency or cost, which mainly fall in the
category of non-functional or organizational
requirements, appear when considering models of the
system architecture [8]. These metrics are usually
defined in terms of the components, nodes,
connections, pipes, etc., that compose the final
configuration of the system.

In this paper, we propose the use of metrics defined
over actor-dependency models to analyse non-
functional and organizational goals. As a result, we
obtain metrics that are closer to the universe of
discourse than to the internal structure of the system,
since their definition will be given not in terms of

2

connectors and pipes but of actors and dependencies.
We articulate our proposal as a general framework for
defining these kind of metrics. We introduce the
framework in a formal way, first characterising the
concept of actor-dependency model and then
proposing three different categories of metrics. All
three are built upon the same idea, namely the use of
functions that give weights to actors or dependencies
of the model; the weight may be given individually to
each element, or else we may give the same weight to
elements of the same kind or exhibiting a particular
property. Depending on the element of interest, i.e.
actors or dependencies, we obtain actor-dependency or
dependency-based general forms of metrics.

The paper is structured as follows. In section 2, we
introduce our notion of actor-dependency models and
provide formal definitions for them and their
components. In section 3, we identify three categories
of metrics and we give general forms for each of them.
In sections 4 to 6, we study the applicability of the
framework in a particular, well-known case study, a
meeting scheduler [4, 9]. Last, in section 7 we provide
the conclusions and some future work. Throughout the
paper, we use i* strategic dependency (SD) models [2]
to provide examples and draw system models.

2. A Definition of Actor-dependency Models

An actor-dependency model comprises two types of

elements, the actors themselves and the dependencies
among them. Actors are intentional entities, that is,
there is a rationale behind the activities that they carry
out. Dependencies connect source and target actors,
called depender and dependee respectively.
Altogether form a network of knowledge that allows
understanding “why” the system behaves in a
particular way [10].

In this paper, we consider two types of actors,
namely roles and agents. According to [2], we define a
role as an abstract characterization of the behaviour of
a social actor within some specialized context or
domain of endeavour, whilst an agent is an actor with
concrete, physical manifestations that plays a role.

Actors and dependencies may exhibit attributes1,
such as product fabricant, physical location, etc., or
others more oriented to their use during the require-
ments engineering activity, as priority or importance.

For our purposes, it is helpful to consider that
agents and dependencies belong to one sort that group
elements of the same kind; therefore we can talk about

1 Probably “property” would have been a better term than “attribute”,
but we are using “property” throughout the paper with another
meaning, then we have preferred to avoid confusion.

human agents, goal dependencies, and so on.
Concerning roles, we are more flexible and we allow
them to belong to zero, one or more sorts. This rule fits
with the case that although some roles are inherently of
a given sort, others are more open; for example, a
meeting scheduler role may be covered by human or
software agents and therefore we classify it as
belonging to the human and software roles as well.

Definition 1 formalizes the concept of actor-
dependency model. To simplify matters, we do not
consider in the rest of the paper the case of
dependencies with multiple dependers or dependees,
whose treatment in our context is straightforward but
technically cumbersome.

Definition 1. Actor-dependency model.
An actor-dependency model is a pair M = (A, D),

being A a set of actors and D the dependencies among
them, such that:

1) The set A has a mapping typeA: A → {role,
agent} that classifies model actors into roles and
agents. When convenient, we consider A as a pair A =
(Arole, Aagent).

2) The set A has a mapping sortA: A → P(TA), being
TA the permissible sorts of actors. It holds that:

typeA(a) = agent ⇒ || sortA(a) || = 1
3) The actors in the set A may have attributes

modelled as mappings { propA,i: A × Ki → Vi }.
4) D is defined as a set of ordered pairs of actors

with the name of the dependency, D⊆ A×A×string.
5) The set D has a mapping sortD: D → TD, being

TD the permissible sorts of dependencies.
6) The dependencies in the set D may have attrib-

utes modelled as mappings { propD;i: D × Ki → Vi }.

Fig. 1 presents an example of actor-dependency
model expressed with the i* notation, namely a
Strategic Dependency (SD) model, for a meeting
scheduler system in the ACME company, based on that
of [2]. There are a few changes; remarkably, we
introduce an actor that plays the part of directory. The
3 actors are roles; although not in the example, other
types of actors, namely agents and an intermediate
concept called position, are supported in i*. About
dependencies, SD models allow 4 sorts:
• Goal. The depender depends upon the dependee to

bring about a certain state in the world. See Attend
Meeting in the figure.

• Task. The depender depends upon the dependee to
attain a goal in a particular way. We have not
included any in the example.

• Resource. The depender depends upon the
dependee for the availability of a physical or
informational entity (see Agreement Date in fig. 1).

3

• Soft goal. The depender depends upon the
dependee to meet some non-functional
requirement. We have not included any in the
example.

Initiator

Addresses
maintained

Participant
Address

Directory Personal Data

Updates Inquired

Participant

Proposed
Dates

Agreement
Date

Exclusion
Dates

Preferred
Dates

Attend Meeting

D

D

D

D

D
D

D
D

D D

D D

D D

D
D

D

D
Figure 1. An i* SD model for a meeting scheduler.

Actor-dependency models can be refined from the

starting system model passing through different
refinement steps, each intermediate model capturing a
notion in the requirements engineering activity. We
can say that actors from one model are assigned to
actors from the other model, and the dependencies go
with them. Eventually, we could reach an state where
all the actors are agents, representing how physical
entities play the system roles. Many times we do not
need to reach such a level of detail, but just two or
three different layers of vision of the system. In this
paper, we will address 2 different layers of interest in
our case study, representative enough of our vision of
actor-dependency models application and well-suited
to apply our metrics framework.

3. Metrics for Actor-Dependency Models

In this section, we propose the use of structural

metrics for analysing the model properties of an actor-
dependency model, i.e., those properties that depend
on the form of the model and the types, sorts and
attributes of its elements. Structural metrics are
valuable for both analysing a highly abstract model of
a system of any kind, composed basically by roles, and
for comparing different feasible realizations of this
abstract model (which take the form of actor models
too, but composed basically by agents) with respect to
the most relevant criteria established in the modelled
world.

For a given model property object of measure, it
may be the case that all its elements (actors and
dependencies) influence the metric. However, it is
more likely that just elements of some particular sorts
affect this property. Furthermore, some individual
elements may be identified as especially relevant for

the property; in the most general case, all the elements
may have a different weight in the metric. We need
then to take into account all these situations if we aim
at having a widely applicable metrics formulation
framework.

We distinguish three types of structural metrics.
Global structural metrics take the model as a whole
and produce a single measure for the property of
interest. Local structural metrics focus on the
individual elements of the model, producing then a set
of values that can be examined looking for thresholds
or weak points of the model. On top of local structural
metrics we define sensitivity metrics, finding out the
element that maximizes the values of a local structural
metric. All types of metrics rely on two fundamental
concepts, actor evaluation and dependency evaluation.

3.1. Evaluation of actors and dependencies

The atomic concept in our metrics framework is the

evaluation of the individual elements that are in the
actor-dependency model. The evaluation of actors and
dependencies are defined as functions that yield a
value in the interval [0, 1]. In both cases, the
evaluation is computed as the multiplication of two
factors, the first one taking into account just the type,
sorts and attributes of the element itself, and the
second one considering the other model elements it
relates to, i.e. the dependencies stemming from, or
going onto, the actor in actor evaluation; or the actors
linked to the dependency in dependency evaluation.

Definition 5. Actor evaluation.
Given a model property P, an actor-dependency

model M = (A, D) and an actor inside the model, a∈ A,
the actor evaluation of a for P over M is of the form:

P
M,A

(a) = f
A
(a) × g

A,D
(a))

being fA: A → [0, 1] a mapping that assigns a weight to
every actor of the model, and gA,D: A × D → [0, 1] a
mapping that corrects the weight of an actor conside-
ring the dependencies stemming from or going onto it.

Definition 6. Dependency evaluation.
Given a model property P, an actor-dependency

model M = (A, D) and a dependency inside the model,
d=(a, b, x)∈ D, the dependency evaluation of d for P
over M is of the form:

P
M,D

(d) = f
D
(d) × g

D,A
(d)

being fD: D → [0, 1] a mapping that assigns a weight
to every dependency of the model, and gD,A: D → [0,
1] a mapping that corrects the weight of a dependency
considering the depender and dependee actors,
respectively.

4

3.2. Global Structural Metrics

Definitions 7 and 8 provide a generic framework

for the definition of global structural metrics. There we
define two different types of global structural metrics,
actor-dependency and dependency-based, depending
on which type of element the metric focuses on. The
metrics just sum the evaluations of its elements, and
make a final normalization of the value taking into
account the number of actors or dependencies of the
system that satisfy a particular condition. Sometimes
the metric value must be considered as-is without any
normalization and then the limitP function yields 1.

Definition 7. Actor-dependency global structural
metrics.

Given a model property P, an actor-dependency
model M = (A, D) and a function limitP: A → [1, ||A||],
an actor-dependency global structural metric for P
over M is of the form:

Σa∈ A: P
M,A

(a)
 PM =

limitP(A)

Definition 8. Dependency-based global structural
metrics.

Given a model property P, an actor-dependency
model M = (A, D) and a function limitP: D → [1, ||D||],
a dependency-based global structural metric for P over
M is of the form:

Σd∈ D: P
M,D

(d)
 PM =

limitP(D)

3.3. Local and Sensitivity Structural Metrics

The definition of local structural metrics follows the

same layout than global ones but keeping track of the
measures of individual elements. We use this kind of
metrics for having a complete analysis of the
individual actors or dependencies of an actor-
dependency model. Sensitivity metrics are a kind of
summary providing the maximum value of a local
structural metrics.

Definition 9. Actor-dependency local and sensitivity
structural metrics.

Given a model property P, an actor-dependency
model M = (A, D) and a function limitP: A → [1, ||A||],
an actor-dependency local structural metric for P over
M is of the form:

PM: A → [0, 1] such that P
M

(a) = P
M,A

(a)

We define the actor-based sensitivity structural metrics
bound to P as:

PMaxM = max a∈ A: P
M

(a)

Definition 10. Dependency-based local and sensitivity
structural metrics.

Given a model property P, an actor-dependency
model M = (A, D) and a function limitP: D → [1, ||D||],
a dependency-based local structural metric for P over
M is of the form:

PM: D → [0, 1] such that P
M

(d) = P
M,D

(d)
We define the dependency-based sensitivity structural
metrics bound to P as:

PMaxM = max d∈ D: P
M

(d)

4. The Meeting Scheduler Case Study

In the rest of the paper, we are going to present some
examples of application of structural metrics for actor-
dependency model properties in different contexts. We
use the meeting scheduler system as example, and we
study 2 different contexts of applications in the next
following 2 sections: first, deciding whether a software
meeting scheduler is adequate with respect to some
non-functional requirements, expressed as model
properties; once the convenience of a software system
has been established, selecting the most convenient
combination of software packages for implementing
this system as COTS-based. This example is
representative of the kind of uses that we envisage for
structural metrics. The metrics defined will be of
different kinds: actor- and dependency-based; global
and sensitivity; using properties or not; with special
cases or just taking into account sorts and types.

5. Studying the Adequacy of a Software
System for Scheduling Meetings

In fig. 1, we have introduced as example an

organizational environment for a meeting scheduler in
the ACME organization. Let’s assume now that
ACME has found that the meeting scheduling process
is currently not satisfactory enough: too often, people
do not get aware of meetings or misunderstand their
dates; from time to time, people seems to manage
information, such as email addresses, with less privacy
than required; the meeting date determination is not as
agile as desired; etc. Therefore, the ACME’s executive
board has decided to analyse other possible strategies.
In particular, it has decided to include the figure of a
meeting scheduler such that the meeting initiator may
delegate most of the duties. It becomes necessary to
compare the behaviour of such an organizational

5

alternative to the existing one. In particular, we explore
two possibilities about the meeting scheduler: to be a
human role, carried out by some administrative figure,
or to be a software system.

5.1. A new Organization Alternative for
Scheduling Meetings

In fig. 2 we show the actor-dependency model that

represents the new organizational system for
scheduling meetings. There are some differences with
respect to Yu’s [2] (apart from the directory actor and
its dependencies) because we have preferred to obtain
a model as similar as possible to the previous one, to
support easy comparison using the metrics.

We keep the 3 former actors and add a new one for
the meeting scheduler. The dependencies from/to the
Directory actor are similar, except for the change of
the Participant Address dependency to Participant
Name (i.e., the directory provides help to find
participant names if necessary). The Meeting
Scheduler takes the responsibility of coordinating with
participants; it just needs the range of dates from the
Meeting Initiator to start the process. We add a goal
dependency from the Meeting Initiator to the Meeting
Scheduler, and we keep the one from the Meeting
Initiator to the Meeting Participant. Last, we consider
that the Meeting Scheduler obtains the participants’
names from the Meeting Initiator and then the
corresponding email addresses from the Directory.

Figure 2. A i* SD model for a meeting scheduler system
with explicit meeting scheduler actor.

5.2. Non-Functional System Requirements

Next we enumerate the non-functional requirements

that catch the problems that the previous organization
suffered from. For each requirement, we describe how
it can be related to the different parts of the actor-

dependency model considering the sorts of actors and
dependencies. Concerning the types, the statements
given below drives us to consider just resource
dependencies in the first three cases.
• The system shall respect privacy. Communication

of information among actors is a risk concerning
privacy. We consider that human actors introduce
an hazard when communicating data. Furthermore,
we consider more private software actors than
human ones, since one of the problems of the
former meeting scheduling process was lack of pri-
vacy caused by careless information management.

• The system shall be accurate. This is the most
important requirement of the system. Of course,
communication of information among software
actors is totally accurate; on the contrary, accuracy
gets damaged when people is involved. We also
consider that, once transmitted, software keeps the
information more accurately than human, who may
introduce errors when e.g. registering the meeting
in their agenda.

• The system shall be efficient. This means that the
process itself is required to be agile, minimizing
process of information. Needless to say, software
actors and dependencies makes efficiency better.

• The system shall be fault tolerant. In our system,
we try to avoid actors that are responsible of too
many things to minimize collapses when the actor
is unavailable. Responsibilities take the form of
incoming dependencies, i.e. dependencies in which
the actor plays the part of dependee.

5.3. Definition of the Structural Metrics

Given these descriptions, we define one model

property bound to each requirement and for each
property, we introduce a single structural metric: data
privacy, data accuracy, process agility and
responsibility dissolution, respectively. A more
complete analysis could introduce other metrics bound
to the properties, and then some technique for
combining the value of all the metrics of one property
into a single one should be applied, using some kind of
weighting factor matrix as proposed by McCall in a
context similar to ours [11].

Since the flow of data is a crucial factor in the first
three cases, we define the metrics as global and
dependency-based. Table 1 shows the corresponding
dependency evaluation. We define g

D,A
(d) as a function

h on the sort of the actor, g
D,A

((a, b, x)) = h
A
(a)×h

A
(b)

and show this factor at the table. We consider the four
sorts of dependencies given by i* (represented by their
capital letter: G, SG, T, R), two sorts of actors, human

Initiator

Addresses
maintained

Participant
Address

Directory Personal Data

Updates Inquired

Participant

Proposed
Dates

Agreement
Date

Exclusion
Dates

Preferred
Dates

Attend Meeting

D

D

D

D

D

DD

D

D D

D D

D D

D D

D D

Meeting
Scheduler

Date Range

Participant
Names

D D

D

D D

D

Participant
Address

Address
Maintained

D

D
D

D

Meeting Be
Scheduled

Name

6

(H) and software (S) and three derived types of
dependencies, human-human (H-H), software-software
(S-S) and human-software (S-H). Dependency
evaluation depends only on this information. The
values assigned range in [0, 1]; we assign 1 to the best
(accuracy) or worst (privacy and agility) possible case
and then the rest of values try to measure the deviation
that the sorts of actors and dependencies and the type
of dependencies provoke in the corresponding
evaluation. We may use weighting techniques such as
the AHP [12] to compute the values in a more
confident way.

Dependency Attribute
Sort Type DP DA PA
G any 0 0 0

SG any 0 0 0
T any 0 0 0

H-H 1 0,6 1
H-S 0,9 0,8 0,7

fD

R
S-S 0,8 1 0,5

Sort DP DA PA
H 0,7 0,7 0,8 hA
S 1 1 1

Table 1. Dependency evaluation for the data
privacy (DP), data accuracy (DA) and process agility
(PA) metrics.

The definition of the three metrics on top of these

dependency evaluations consists on giving values to
the function limitP. In the case of data privacy and
process agility, we find convenient to use an absolute
metric, i.e. we do not normalize the result, which
means that the number of resource dependencies is
more important than the percentage: every resource
dependency endangers by itself the model property of
interest. As a result, for these two metrics, we define
limitP(D) = 1. On the contrary, for data accuracy, we
divide by the number of resource dependencies of the
model, limitP(D) = || {d∈ D: sortD(d) = resource} ||,
since the concrete number of resource dependencies is
not really relevant.

Concerning the fourth metric, responsibility
dissolution (RD) is better defined as a sensitivity actor-
based metric. We do not assign different weights to
actor sorts; we just count incoming dependencies and
divide by the total number of dependencies, to make
sure the [0, 1] range of values. The lesser the value is,
the better the system behaves with respect this metric.

5.4. Some Alternatives for the Metrics

The proposal of metrics appearing in the previous

section does not distinguish any particular actor or
dependency. However, one could easily find
arguments to prioritise some of the model elements
according to the rationale of the properties addressed.
Next we comment some examples:
• Data privacy. It is clear that the information about

participants should be more protected than the
information about meeting dates (in fact, it should
be totally protected). So, we could assign a higher
value to the evaluation of these dependencies.

• Data accuracy. We could assign a value to the
agreement date resource higher than to the other
date resources, since a misunderstanding
concerning this resource makes the meeting fail.

• Process agility. Unlike data privacy, we may
consider more important for agility the
dependencies about dates than the others, since
there may be some negotiation with the dates that
does not exist with the participant addresses.

• Responsibility dissolution. We could consider that
software actor failure is more severe because the
data contained there in is not available until the
system recovers, while the probability of this in
human actors is smaller. This makes a great
difference in case of needing some information
urgently and timely.

5.5. Evaluation of the Alternatives

Table 2 provides the evaluation of the three

considered organizational systems using the version of
the metrics defined in section 5.3 (current system has
been shown in fig. 1, proposed system in fig. 2). To
make easier comparisons, we translate the results to the
interval [0, 1] being 1 the best value and preserving the
distances found in the measurement. Concerning the
two proposed alternatives, software meeting scheduler
is better than human meeting scheduler. When we
compare this best new solution with the current system
the situation is not so clear, but in fact we have
mentioned in 5.2 that accuracy is the most important
property and so the data accuracy results, in which the
distance among the new solution and the current one is
large, point out that the proposed system is worth.

Let’s assume that these results, among others,
makes the ACME company to acquire a software
system for scheduling meetings. Once taken this
decision, a further study could be carried out to define
cost prediction metrics. For instance, we could define
an equivalent to the notion of function point [13] to

7

make a prediction in terms of the functionalities that
are to be implemented. We skip this analysis here. The
next activity to be taken is thus procuring the system.

 Current

system

Proposed system
with human

meeting scheduler

Proposed system
with software

meeting scheduler
DP 1 0,64 0,55
DA 0,42 0,63 1
PA 1 0,66 0,74
RD 0,64 1 1

Table 2. Evaluation of the metrics for the three
alternative systems.

6. Selection of a COTS-based Solution for
the Meeting Scheduler System

To carry out system procurement, we first enlarge

our vision of the system. We take advantage of the
current functionalities available in the market and
propose a more advanced solution including anti-virus
control. We also prefer to split the meeting scheduler
into two actors, the scheduler itself and a message
delivery service in charge of sending data to, and
receiving data from, the human actors. We add also a
system administrator for the meeting scheduler. The
resulting i* model is in fig. 3; we include just some i*-
like dependencies among the roles, enough for our
illustrative purposes, and we also change some
resources to tasks for the same reason. It can be argued
that this new model should have been issued when
carrying out the viability analysis of the previous
section, and in fact this could be the case, but we tend
to think that for the high-level organizational analysis
it is better to abstract the system and focus on its basic
facilities as we have done before.

At this point, we face the problem of deciding the
best architecture of the system, including all the
software components identified. In other words, we
would like to obtain architectures as instances of the
socio-technical i* system model and compare them in
the light of some architectural properties. This is the
objective of the section.

6.1. Considering some COTS-based Alternatives

Following the current best practices, we choose a

COTS-based solution for our system [14]. Many
COTS components exist in the market playing the
roles required in the model. Most meeting scheduler
systems incorporate mail facilities that allow
participants to communicate, whilst others offer
features ranging from meeting management to the

detection of conflicts that then necessitate resolution
with conventional e-mail components. Furthermore,
some existing e-mail components incorporate time-
specific functions for managing calendars and agendas
that may be used for scheduling meetings. Facilities for
anti-virus protection and directory services might also
be included; if not, independent components exist in
the market fulfilling these functionalities. In other
words, in most cases, a meeting scheduling solution is
implemented as the composition of several COTS
components that play the roles of the system presented
in fig. 3. For this reason, a reliable COTS selection
process should explore all the possible systems formed
from combinations of existing COTS components.

Figure 3. An actor-dependency model for the meeting
scheduler socio-technical system example (excerpt)

In fig. 4 we give a partial view of three actor-

dependency models for three feasible COTS-based
system architectures coming from three different
assignments of types of COTS components to model
actors (for layout problems, we focus on the software
actors and we just show the total number of
dependencies among them). The architecture on the
left is developed as the combination of 4 COTS
components, each assigned to a single actor, whilst the
one on the middle includes a meeting scheduler
component that includes address lists and so the
directory actor is duplicated. Finally, the one on the
right provides a solution in which the meeting
scheduler also deals with message delivery.

6.2. Evaluation of the COTS-based Architectures

Besides the usual compliance tests for the

individual COTS components, the analysis of the
software architectures that correspond to the
considered combinations of COTS components may be
a great help when comparing the explored alternatives.

Initiator
Meeting

Scheduled

Message
Delivery

User
Directory
Manager

Anti-virus

Participant

Admin-
istrator

Ensure safety

Meeting
Scheduled

Meeting
Proposal

Effective
Communication

Provided

Read and
Receive

Messages

Proposed
Dates

Mail Address

Groups List

Scan Attached
Files

Participant
Addresses

Personal Data

Communicate
Available

Dates

D

D

D

D

D

D

D

D

D
D

D

D

D

D

D D

D D

D

D

DD

DD

8

Methodologies such as ATAM [15] perform these
architectural analysis, but they tend to work on the
physical layer of the architecture. In a previous paper
[16], we shown a preliminary, informal work on the
use of structural metrics that in fact can be seen as the
motivation of the current, much more formal work.

As an example, we define next a structural metric,
namely complexity of user interface, that measure the
usability non-functional property [17].

Our first choice is an actor-dependency metric
counting how many different COTS components
interact with human actors, i.e. are dependers or
dependees with some human actor (fig. 5, top and left).
This is just a first approximation, easy to define and
compute but not much accurate, giving better results to
coarse-grained COTS-based solutions.

This first proposal may be refined by discarding
those software actors whose link with human actors is
based exclusively on soft goal dependencies,
considering that this kind of dependencies will not
affect the user interface. We use this idea to define a
second kind of dependency-based metrics by taking
into account goal, resource and task dependencies.
Furthermore, we choose to give more weight to a goal
dependency than the others, since a goal may involve
(i.e., be decomposed into) some other dependencies.
Concerning weights, we take the chance to prioritise
types of users, for instance giving less importance to
usability issues for the administrators. Fig 5, top and
right, presents this option. Of course, it can be said that
discarding soft goals is a very simplistic assumption,
since there can be some related to usability that may
have impact on the property under study; therefore, a
more accurate definition should take into account the
type of soft goal, using classifications such as some
quality standard (e.g., [17]) and expressing them
somehow in the model (for instance, using the concept
of type proposed by the NFR framework [18]).

Last, we explore more precise metrics by assigning
individual weights to dependencies that connect human
and software actors (the others are given a zero value).
These dependencies are: MS, Meeting Scheduled
(goal); CAD, Communicate Available Dates (task);
PD, Personal Data (resource); MP, Meeting Proposal
(resource); ECP, Effective Communication Provided
(goal); ES, Ensure Safety (soft-goal). We can use
either quantitative or qualitative criteria for doing so.
For instance, a quantitative criteria for prioritising
resource dependencies is to consider the number of
fields that the data screen requires to be filled, whilst
task dependencies can be prioritised by the number of
clicks the user is required to press in the worst case;
for goals and soft goal dependencies we make some
kind of estimation. In all these cases, we normalize

again for obtaining values among 0 and 1, see fig. 5,
bottom and left.

For qualitative analysis, we may apply criteria such
as AHP [12] or laddering [19] to weight dependencies
and/or actors. In fig. 5, bottom and right, we show an
example of human-software dependency prioritisation
using the AHP to define the weighting function.
Needless to say, the convenience of such a detailed
analysis must be considered.

To complete this and the previous metric we just
need to define the values of gA,D(a) taking into account
the actor assignment to concrete COTS components.

We do not include the results of the evaluation for
both for space limitations and because we should
consider the whole model and not the excerpt
presented in fig. 3 to obtain valid data. We have done
some experiments with this and other properties (such
as data integrity, facility of integration, dependability,
and others) with a larger model. In this particular
example of complexity of user interface, we have
observed that the first metric gives different results
compared with the others, and this fact aligns with the
small accuracy of its definition. The second metric
gives the right tendency, but the differences are very
small. The third and fourth metrics are similar,
although the concrete values are different because of
the difference of the dependency evaluation function.
Of course, variations on the values used for this
function may even change the ordering of the
alternatives. We think that requirements priorisation
existing approaches such as WinWin [20] may help in
assigning the correct weights to the model elements.

6.3. Other Models to be Considered

In the previous set of metrics, we have studied the

actor-dependency model resulting of instantiating the
software roles of the meeting scheduler socio-technical
system by other software roles corresponding to types
of COTS components2. However other possible
instantiations of the same origin actor-dependency
model may be studied. For instance, we may argue that
the complexity of user interface in fact depends on the
variety of COTS component fabricants more than on
the number of components. For instance, if both the
meeting scheduler and the message delivery service are
different products but from the same fabricant, they
probably will use the same interface layout. Therefore,
we could define an actor assignment using as assigned
actors not the COTS components but their fabricants
that appear in the model as attributes of the actors.

2 In i*, we would model the types of COTS components not as roles
but as positions.

9

Fig. 4. Three different COTS-based architectures for the meeting scheduler system (MS, meeting scheduler;

MD, message delivery; AV: anti-virus; UDM, user directory manager; G, goal; S: soft goal; R: resource; T: task).

 1, sortA(a) = {software} 1, sortD(d) = {goal}
fA(a) =
 0, otherwise fD(d) = 0.5, sortD(d) = {resource} ∨ sortD(d) = {task}

 1, ∃ h∈ A: sortA(h) = {human}: 0, sortD(d) = {soft goal}
gA,D(a) = ((a, h, x)∈ D ∨ (h, a, x)∈ D) 0, sortA(a) = {software} ∧ sortA(b) = {software}
 gD((a, b, x)) = 0.5, a = Administrator ∧ sortA(b) = {software}
 0, otherwise 0.5, b = Administrator ∧ sortA(a) = {software}
 1, otherwise

 Interface interaction fD(d) PCA IUD LF AUP PD AD fD(d)
CAD 8 0,8 CAD 1 5 1 1 3 7 0,26
MP 4 0,4 MP 1/5 1 1/3 1/5 1 5 0,08
MS 7 0,7 MS 1 3 1 3 7 5 0,32
PD 10 1 PD 1 5 1/3 1 5 5 0,23
ECP 5 0,5 ECP 1/3 1 1/7 1/5 1 5 0,08
ES 2 0,2 ES 1/7 1/5 1/5 1/5 1/5 1 0,03

Fig. 5. Four different proposals of metrics for the complexity of user interface property.

7. Conclusions and Future Work

In this paper we have presented a framework for the

definition of structural metrics for actor-dependency
models. The object of measure are the properties of the
system model, which usually represent non-functional
or organizational requirements. The framework
consists of three categories of metrics with two general
forms each, one for actor-dependency metrics and
another for dependency-based. We have illustrated our
proposal in a particular case, a meeting scheduler
system, using structural metrics as assessment for
deciding the convenience of software support, then
selecting a particular combination of COTS
components for the system. As a result, and this is the
main contribution of the paper, we may say that actor-
dependency models can be analysed in a systematic
way with respect to a given set of model properties: it
is enough with choosing and tuning the appropriate
type (or types) of metrics for each property.

The most relevant characteristics of our approach:

• Expressiveness. It takes into account roles, sorts
and attributes of actors and dependencies;
distinguishes global, local and sensitivity model
analysis; allows to focus on actors or dependencies
taking into account which concept is predominant
in the particular metric.

• Accuracy. We have provided a formal definition of
actor-dependency models that is used as a baseline
upon which we have build our framework.

• Cost-sensitivity. Metrics can be defined more or
less accurately depending on the effort put in their
definition, up to the level of defining the weight of
every model element individually.

• Skill support. Since the process to define metrics is
the same over and over, namely tailoring a metric
general form to the specific needs of a model
property, accumulated knowledge may provide
skills for augmenting productivity. Tool support
helps in developing such skills, both in the form of
spreadsheets or ad-hoc software systems which we
are already developing.

MS

AV

MD

UDM

MS

AV

MD

UDM

MS

AV

MD

UDM UDM

1T,1R

1R 2R 1T

1T,1R

2R
1T

2R

1R

3R 1T

10

• Reusability. Metrics can be used in different
models of the same kind of domain.

• Generality. It has not been tightened to any
particular goal-oriented language or formalism. The
underlying concepts have been defined in an
abstract way allowing therefore customisation.

To the best of our knowledge, there is not much related
work in the field. Yu proposed in his definition of i*
[2] concepts such as opportunity and vulnerability that
could be modelled within our framework. The most
remarkable proposal in this area is part of the AGORA
method [21] that provides techniques for estimating the
quality of requirements specifications in a goal-
oriented setting. In fact, AGORA puts more emphasis
in the analysis of the AND/OR graph resulting from
decomposition than in the kind of actor-dependency
models that we have analysed in this paper. AGORA is
expressive and accurate enough, although the method
does not address explicitly to the other 3 issues
mentioned for our framework (cost-sensitivity,
reusability and generality). The basic difference is that
AGORA does not provide any kind of general forms of
the metrics, making then harder and less systematic to
define new metrics or to reuse (parts of) them.

We have identified several ways to proceed ahead
in this line of research. For making our proposal
useful, we remark the following:
• Construction of a catalogue of reusable metrics.

Model properties addressing non-functional aspects
such as security, efficiency and so on are likely to
appear over and over in system analysis. Thus, we
aim at providing a complete and versatile catalogue
of metrics for such properties.

• Integration of the framework with other proposals.
In particular, we are especially interested in using
this framework in the analysis of system
architectures [15, 22]. We think that metrics on
goal-oriented models may provide a first-cut
criteria for classifying candidate architectures.

7. References

[1] A. Dardenne, A. van Lamsweerde, S. Fickas, “Goal-

directed Requirements Acquisition”, Science of Computer
Programming, 20, 1993, pp. 3-50.

[2] E. Yu, Modelling Strategic Relationships for Process
Reengineering, PhD. thesis, University of Toronto, 1995.

[3] J. Castro, M. Kolp, J. Mylopoulos, “Towards
Requirements-Driven Information System Engineering:
The Tropos Project”, Information Systems, 27, 2002.

[4] E. Yu, “Towards Modeling and Reasoning Support for
Early-Phase Requirements Engineering”, Proceedings of

the 3rd IEEE International Symposium in Requirements
Engineering (ISRE’97), 1997.

[5] V. Santander, J. Castro, “Deriving Use Cases from
Organizational Modeling”, Proceedings of the IEEE 10th
Joint International Requirements Engineering Conference
(RE’02), Essen (Germany), Sept. 2002, pp. 32-42.

[6] M. Lorenz, J. Kidd. Object-oriented software metrics: a
practical guide. Prentice-Hall, 1994.

[7] S.R. Chidamber, C.F. Kemerer. “A Metrics Suite for
Object-Oriented Design”. IEEE TSE 20(6), 1994.

[9] A. van Lamsweerde, R. Darimont, P. Massonet, “Goal-
Directed Elaboration of Requirements for a Meeting
Scheduler: Problems and Lessons Learned”, Proceedings
of the IEEE 2nd International Symposium on Requirements
Engineering (ISRE’95), 1995, pp. 194-203.

[10] E. Yu. “Understanding 'why' in software process
modeling, analysis and design”. In Proc. of the 16th Int.
Conf. on Software Engineering, ICSE'94, pages 159-168,
Sorrento, Italy, May 1994

[11] J.P. Cavano, J.A. McCall, “A Framework for the
Measurement of Software Quality”, Proceedings of the
ACM Software Quality Assurance Workshop, 1978.

[12] T.L. Saaty, The Analytic Hierarchy Process, McGraw-
Hill, 1990.

[13] D. Garmus, D. Herron. Measuring The Software
Process: A Practical Guide to Functional Measurements.
Prentice-Hall, 1995.

[14] B.C. Meyers, P. Oberndorf, Managing Software
Acquisition, Addison-Wesley, 2001.

[15] L. Baas, P. Clements, R. Kazman. Software Architecture
in Practice, 2nd edition. Addison-Wesley, 2003.

[16] X. Franch, N.A.M. Maiden, “Modeling Component
Dependencies to Inform their Selection”, Proceedings of
the 2nd International Conference on COTS-Based Software
Systems (ICCBSS’03), LNCS 2580, Springer-Verlag, 2003.

[17] ISO/IEC Standard 9126-1 Software Engineering –
Product Quality – Part 1: Quality Model, 2001.

[18] L. Chung, B. Nixon, E. Yu, J. Mylopoulos, Non-
Functional Requirements in Software Engineering, Kluwer
Academic Publishers, 2000.

[19] T.J. Reynolds, J. Gutman, “Laddering Theory, Method,
Analysis and Interpretation”, Journal of Advertising
Research, vol. 28, 1988, pp. 11-31.

[20] B. W. Boehm, P. Grünbacher, R. O. Briggs,
“EasyWinWin: A Groupware-Supported Methodology for
Requirements Negotiation”, Proceedings of the 23rd ICSE
2001, 12-19 May 2001.

[21] H. Kaiya, H. Horai, M. Saeki, “AGORA: Attributed
Goal-Oriented Requirements Analysis Method”,
Proceedings of the IEEE 10th RE, Sept. 2002, pp. 13-22.

[22] Grünbacher, P., Egyed, A., Medvidovic, N.
“Reconciling Software Requirements and Architectures -
The CBSP Approach,”. Proceedings of the 5th IEEE
International Symposium on Requirements Engineering
(RE), Toronto, Canada, August 2001, pp. 202-211.

