2,776 research outputs found

    Introduction

    Get PDF

    Introduction

    Get PDF

    Evaluating the Impact of an Integrated Urban Design of Transport Infrastructure and Public Space on Human Behavior and Environmental Quality: A Case Study in Beijing

    Get PDF
    Urban transport infrastructure can result in the physical, psychological and environmental separation of neighborhoods, public spaces and pedestrian networks, leading to negative impacts on citizens’ daily commutes, social activities and the quality of the ecosystem. An integrated design of transport infrastructure and public space is beneficial for mediating these negative impacts. In this paper, we propose an integrated methodology, which combines urban design, computational scenario evaluation and decision-making processes, based on a conceptual model of human and ecological needs-driven planning. To evaluate the impacts of the road network and public space design on individual outdoor activities, travel behavior and air pollution, an agent-based model is demonstrated. This model is then applied to a case study in Beijing, leading to hourly traffic volume maps and car-related air pollution heat maps of a baseline road network-public space design

    Simulating residential electricity and heat demand in urban areas using an agent-based modelling approach

    No full text
    Cities account for around 75% of the global energy demand and are responsible for 60-70% of the global greenhouse gasses emissions. To reduce this environmental impact it is important to design efficient energy infrastructures able to deal with high level of renewable energy resources. A crucial element in this design is the quantitative understanding of the dynamics behind energy demands such as transport, electricity and heat. In this paper an agent-based simulation model is developed to generate residential energy demand profiles in urban areas, influenced by factors such as land use, energy infrastructure and user behaviour. Within this framework, impact assessment of low carbon technologies such as plug-in electric vehicles and heat pumps is performed using London as a case study. The results show that the model can generate important insights as a decision support tool for the design and planning of sustainable urban energy systems

    Participatory design of robust and sustainable development pathways in the Omo-Turkana river basin

    Get PDF
    Study region: Omo-Turkana Basin, trans-boundary basin between Ethiopia and Kenya (North eastern Africa). Study focus: Significant investments in large dams have been mobilized in the Omo-Turkana basin to expand hydropower and support extensive irrigation projects. Assessing the impacts of these infrastructures, particularly on local stakeholders, constitutes a crucial foundation for socially inclusive as well as environmentally and economically sustainable development. This study showcases the potential of a participatory decision-analytic framework in investigating the impacts of alternative development pathways on competing stakeholders' interests in the OmoTurkana basin to support strategic planning under both current and projected hydroclimatic and socio-economic conditions. The optimal operation of the planned system expansion, including the current and future dam cascade and the irrigation projects, is investigated to provide insights into multisectoral trade-offs. Five main sectors with competing interests are considered: hydropower production, environmental protection, indigenous recession agriculture, fish yield in Lake Turkana, and large-scale commercial irrigated agriculture. New hydrological insights for the region: Results show that the planned infrastructure can negatively impact local stakeholders, particularly in terms of fish yields in Lake Turkana. Still, a potential exists for negotiating operational compromises that are both efficient and socially inclusive. Moreover, even though the performance of the planned infrastructure is expected to decline in the future under changing climate and irrigation demands, this can be mitigated by timely implementing robust solutions triggered by the alterations of streamflows in the northern part of the basin

    Water and energy systems in sustainable city development: a case of Sub-saharan Africa

    Get PDF
    Current urban water and energy systems are expanding while increasing attention is paid to their social, economic and environmental impacts. As a research contribution that can support real-world decision making and transitions to sustainable cities and communities, we have built a model-based and data-driven platform combining comprehensive database, agent-based simulation and resource technology network optimization for system level water and energy planning. Several use cases are demonstrated based on the Greater Accra Metropolitan Area (GAMA) city-region in Ghana, as part of the Future Cities Africa (FCA) project. The outputs depict an overall resource landscape of the studied urban area, but also provide the energy, water, and other resource balance of supply and demand from both macro and micro perspectives, which is used to propose environmental friendly and cost effective sustainable city development strategies. This work is to become a core component of the resilience.io platform as an open-source integrated systematic tool gathering social, environmental and economic data to inform urban planning, investment and policy-making for city-regions globally

    Supporting an integrated transportation infrastructure and public space design: A coupled simulation method for evaluating traffic pollution and microclimate

    Get PDF
    Traditional urban and transport infrastructure planning that emphasized motorized transport has fractured public space systems and worsened environmental quality, leading to a decrease in active travel. A novel multiscale simulation method for supporting an integrated transportation infrastructure and public space design is presented in this paper. This method couples a mesoscale agent-based traffic prediction model, traffic-related emission calculation, microclimate simulations, and human thermal comfort assessment. In addition, the effects of five urban design strategies on traffic pollution and pedestrian level microclimate are evaluated (i.e., a “two-fold” evaluation). A case study in Beijing, China, is presented utilizing the proposed urban modeling-design framework to support the assessment of a series of transport infrastructure and public space scenarios, including the Baseline scenario, a System-Internal Integration scenario, and two External Integration scenarios. The results indicate that the most effective way of achieving an environmentally- and pedestrian- friendly urban design is to concentrate on both the integration within the transport infrastructure and public space system and the mitigation of the system externalities (e.g., air pollution and heat exhaustion). It also demonstrates that the integrated blue-green approach is a promising way of improving local air quality, micro-climatic conditions, and human comfort

    Multi-hazard socio-physical resilience assessment of hurricane-induced hazards on coastal communities

    Get PDF
    Hurricane-induced hazards can result in significant damage to the built environment cascading into major impacts to the households, social institutions, and local economy. Although quantifying physical impacts of hurricane-induced hazards is essential for risk analysis, it is necessary but not sufficient for community resilience planning. While there have been several studies on hurricane risk and recovery assessment at the building- and community-level, few studies have focused on the nexus of coupled physical and social disruptions, particularly when characterizing recovery in the face of coastal multi-hazards. Therefore, this study presents an integrated approach to quantify the socio-physical disruption following hurricane-induced multi-hazards (e.g., wind, storm surge, wave) by considering the physical damage and functionality of the built environment along with the population dynamics over time. Specifically, high-resolution fragility models of buildings, and power and transportation infrastructures capture the combined impacts of hurricane loading on the built environment. Beyond simulating recovery by tracking infrastructure network performance metrics, such as access to essential facilities, this coupled socio-physical approach affords projection of post-hazard population dislocation and temporal evolution of housing and household recovery constrained by the building and infrastructure recovery. The results reveal the relative importance of multi-hazard consideration in the damage and recovery assessment of communities, along with the role of interdependent socio-physical system modeling when evaluating metrics such as housing recovery or the need for emergency shelter. Furthermore, the methodology presented here provides a foundation for resilience-informed decisions for coastal communities
    • …
    corecore