709,745 research outputs found

    Validation of highly reliable, real-time knowledge-based systems

    Get PDF
    Knowledge-based systems have the potential to greatly increase the capabilities of future aircraft and spacecraft and to significantly reduce support manpower needed for the space station and other space missions. However, a credible validation methodology must be developed before knowledge-based systems can be used for life- or mission-critical applications. Experience with conventional software has shown that the use of good software engineering techniques and static analysis tools can greatly reduce the time needed for testing and simulation of a system. Since exhaustive testing is infeasible, reliability must be built into the software during the design and implementation phases. Unfortunately, many of the software engineering techniques and tools used for conventional software are of little use in the development of knowledge-based systems. Therefore, research at Langley is focused on developing a set of guidelines, methods, and prototype validation tools for building highly reliable, knowledge-based systems. The use of a comprehensive methodology for building highly reliable, knowledge-based systems should significantly decrease the time needed for testing and simulation. A proven record of delivering reliable systems at the beginning of the highly visible testing and simulation phases is crucial to the acceptance of knowledge-based systems in critical applications

    Preliminary Design of Reactive Distillation Columns

    Get PDF
    A procedure that combines feasibility analysis, synthesis and design of reactive distillation columns is introduced. The main interest of this methodology lies on a progressive introduction of the process complexity. From minimal information concerning the physicochemical properties of the system, three steps lead to the design of the unit and the specification of its operating conditions. Most of the methodology exploits and enriches approaches found in the literature. Each step is described and our contribution is underlined. Its application is currently limited to equilibrium reactive systems where degree of freedom is equal to 2 or less than 2. This methodology which provides a reliable initialization point for the optimization of the process has been applied with success to different synthesis. The production of methyl-tert-butyl-ether (MTBE) and methyl acetate are presented as examples

    Reliable control using redundant controllers

    Get PDF
    This paper presents a methodology for the design of reliable control systems by using multiple identical controllers to a given plant. The resulting closed-loop control system is reliable in the sense that it provides guaranteed internal stability and H ∞ performance (in terms of disturbance attenuation), not only when all controllers are operational but also when some controller outages (sensor and/or actuator) occur. A numerical example is given to illustrate the proposed design procedures.published_or_final_versio

    Design optimization for cost and quality: The robust design approach

    Get PDF
    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process

    Multi-objective design optimisation of standalone hybrid wind-PV-diesel systems under uncertainties

    Get PDF
    Optimal design of a standalone wind-PV-diesel hybrid system is a multi-objective optimisation problem with conflicting objectives of cost and reliability. Uncertainties in renewable resources, demand load and power modelling make deterministic methods of multi-objective optimisation fall short in optimal design of standalone hybrid renewable energy systems (HRES). Firstly, deterministic methods of analysis, even in the absence of uncertainties in cost modelling, do not predict the levelised cost of energy accurately. Secondly, since these methods ignore the random variations in parameters, they cannot be used to quantify the second objective, reliability of the system in supplying power. It is shown that for a given site and uncertainties profile, there exist an optimum margin of safety, applicable to the peak load, which can be used to size the diesel generator towards designing a cost-effective and reliable system. However, this optimum value is problem dependent and cannot be obtained deterministically. For two design scenarios, namely, finding the most reliable system subject to a constraint on the cost and finding the most cost-effective system subject to constraints on reliability measures, two algorithms are proposed to find the optimum margin of safety. The robustness of the proposed design methodology is shown through carrying out two design case studies

    CSTI Earth-to-orbit propulsion research and technology program overview

    Get PDF
    NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification

    Macromodelling for analog design and robustness boosting in bio-inspired computing models

    Get PDF
    Setting specifications for the electronic implementation of biological neural-network-like vision systems on-chip is not straightforward, neither it is to simulate the resulting circuit. The structure of these systems leads to a netlist of more than 100.000 nodes for a small array of 100×150 pixels. Moreover, introducing an optical input in the low level simulation is nowadays not feasible with standard electrical simulation environments. Given that, to accomplish the task of integrating those systems in silicon to build compact, low power consuming, and reliable systems, a previous step in the standard analog electronic design flux should be introduced. Here a methodology to make the translation from the biological model to circuit-level specifications for electronic design is proposed. The purpose is to include non ideal effects as mismatching, noise, leakages, supply degradation, feedthrough, and temperature of operation in a high level description of the implementation, in order to accomplish behavioural simulations that require less computational effort and resources. A particular case study is presented, the analog electronic implementation of the locust's Lobula Giant Movement Detector (LGMD), a neural structure that fires a collision alarm based on visual information. The final goal is a collision threat detection vision system on-chip for automotive applications.European Union IST-2001-38097, TIC2003 - 09817-C02-0

    Reliability and maintainability assessment factors for reliable fault-tolerant systems

    Get PDF
    A long term goal of the NASA Langley Research Center is the development of a reliability assessment methodology of sufficient power to enable the credible comparison of the stochastic attributes of one ultrareliable system design against others. This methodology, developed over a 10 year period, is a combined analytic and simulative technique. An analytic component is the Computer Aided Reliability Estimation capability, third generation, or simply CARE III. A simulative component is the Gate Logic Software Simulator capability, or GLOSS. The numerous factors that potentially have a degrading effect on system reliability and the ways in which these factors that are peculiar to highly reliable fault tolerant systems are accounted for in credible reliability assessments. Also presented are the modeling difficulties that result from their inclusion and the ways in which CARE III and GLOSS mitigate the intractability of the heretofore unworkable mathematics
    corecore