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Abstract

Optimal design of a standalone wiRd~diesel hybrid system is a multi-objective optimisation
problem with conflicting objectives of cost and reliability. Uncertainties in renewable resources,
demand load and power modelling make deterministic methods of multi-objective optimisation fall
short in optimal design of standalone hybrid renewable energy systems (HRES). Firstly,
deterministic methods of analysis, even in the absence of uncertainties in cost modelling, do not
predict the levelised cost of energy accurately. Secondly, since these methods ignore the random
variations in parameters, they cannot be used to quantify the second objective, reliability of the
system in supplying power. It is shown that for a given site and uncertainties profile, there exist an
optimum margin of safety, applicable to the peak load, which can be used to size the diesel
generator towards designing a cost-effective and reliable system. However, this optimum value is
problem dependent and cannot be obtained deterministically. For two design scenarios, namely,
finding the most reliable system subject to a constraint on the cost and finding the most cost-
effective system subject to constraints on reliability measures, two algorithms are proposed to find
the optimum margin of safety. The robustness of the proposed design methodology is shown
through carrying out two design case studies.

Keywords: design under uncertainties; hybrid renewable energy systemsPWhaiesel;
probabilistic reliability analysis; multiobjective optimisation

1 Introduction

In optimal design of standalone hybrid renewable energy systems (HRES), reliability of the system
in supplying power for a demand loasdas important as the levelised cost of energy (LCE)

produced by the system. the system. Reliability of a standalone HRES in supplying power depends
on various parameters, including, system configuration (e.g. Rifbattery, wind-diesel, etc),

size ofits components, reliability of each component in terms of operation and the availability of
renewable resources. The availability of resources has the major influence on the reliability of
standalone HRES as stochastic nature of renewable resources imposes a great deal of uncertainty
the system operation and the power produced. Stochastic nature of renewable resource makes the
reliability analysis of a standalone HRES impossible without employing probabilistic methods of
analysis. In other words, multi-objective optimisation of standalone HRES (with cost and reliability
as two objectives) cannot be performed deterministically.

Results of probabilistic analyses have random errors that can be régunerkasing the size of
sampling space. In order to achieve a desired level of accuracy in the results of probabilistic
methods of analysis high computational time is required. This becomes a major concern within a
design process, as evaluation of design candidates with respect to their cost and reliability becomes
highly time-consuming. In practice, to circumvent this problem, adopting a deterministic approach,
design of standalone HRES is carried out for a worst-case-scenario, while applying a load factor on
the demand load. All calculations are based on the averaged values and the stochastic nature of
demand load and renewable resources as well as the possible errors in the results due to employing
low fidelity models are ignored. No reliability measure is calculated as part of the design candidate
assessment. It is assumed thatitable selection of the worst-case-scenario and safety factors will
lead to reliable solutions. In fact, the multi-objective optimisation problem with two objectives of
reliability and cost is reduced to a single-objective optimisation problem with the objective of cost
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only. In practice, normally, the size of the storage or backup/auxiliary components are determined
based on a suitable worst-case-scenario to achieve a level of confidence in the expected power
supply, while the remaining components are optimised for minimising the cost. After sizing the
storage or backup/auxiliary components a single-objective optimisation search can be carried out to
find the optimum size of the renewable components. Most of the literature on design of standalone
HRES adopt this approach; for instance [4e£0].

In deterministic optimal sizing of a standalone wid-diesel hybrid system, the margin of safety
applied on the demand load affects the nominal size of the diesel generator and consequently the
reliability of the power supply and the levelised cost of produced energy. Adopting high-enough
margins of safety leads to reliable systems. However, as mentioned above since in deterministic
design methods no actual reliability measure is calculated as part of the design candidate
assessment, these methods cannot be used for quantifying the optimum value for margin of safety.
A procedure including both deterministic and probabilistic analyses is required to find the margin of
safety which corresponds to a desired reliability with minimal cost.

More recently, recognising the shortfall of deterministic methods in design of reliable and cost-
effective standalone HRES, development of robust nondeterministic design methods has received
increasing attention from the research community [11, 12]. The aine pfeékent study is to

develop a robust method of design under uncertainties for MNAdiesel configuration with

minimal number of probabilistic analysis. Section 2 begins with definition of reliability measures
used in this study, and then elaborates on power and cost modelling. Section 3 explains the
fundamentals of the proposed design methodology and its development steps. Section 4 details two
algorithms proposed for performingad design scenarios and the results of case studies delivered
using the proposed design methodology.

2 Rédiability assessment and system modelling

21 Rédiability assessment measures

Performance of a standalone HRES in supplying power can be evaluated against different
assessment criteria, amongst them total unmet load, blackout duration distribution aadrthe m
time between failures. For a standalone HRES the total unmet load is defined as:

U, = [ (L®) - P,0)dt (1)

where, P, and L are, respectively, the usable available power and the demandlsdd £ L ).
Usable available power is defined as:

P, =min{P_,L} (2)

ta?

in which,P, , stands for the total renewable and non-renewable available power. Using hourly-

averaged loadl(») and hourly-averaged useable available povwe.{, and a period of analysis of
T =1year=8760h, Equations (1) can be rewritten as

U= %O([h —Pha )i ()

i=1

Total, maximum and average blackout durations are three parameters which indicate the system
downtime periods due to power deficiency irrespective of the amount of power deficiency. In

2
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contrast to the unmet load, assessment of design candidates based on blackout duration allows
performing customer-need driven designs. Using hourly-averaged data, total blackout duration is
defined as:

BO, = 3 [ Pre/Ln )] (4)

i=1

where, pair of square brackdts | stands for the integer value function. The information that can
be extracted from the blackout distribution, such as the maximum blackout duration (the longest
continuous blackoutBO,, and the average blackout durati,, (the average duration of each
blackout), also can play an important role in evaluation of the system performance.

Mean time between failures (MTBF) is defined as the duration of the successful system operation
over a period of time divided by the number of failures during that period. If the successful system
operation is defined as the case when available usable power is greater than or equal to the load (

P, =z L), using hourly-averaged quantities, the MTBF can be defined as:

8760~ 3 |1~ Pra/Ln) ]
MTBF = < (5)

wheren,,, is the number of blackout occurrences during peTiee876.

2.2  Power modelling and dispatch strategies
The power produced by a wind turbine is given by:

1
Rur = EpVh:ibA\NTCPnEG (6)
in whichp is the air densityy, ,,is the wind speed at hub elevatiod,, is the rotor areay., Is

the overall efficiency of the electrical components and the gearbo)C aiscthe rotor power
coefficient given by:

C, =-2025x107V,?, +1926x10°V,>,

(7)
~7421x10°V,*, +1483x 102V -0162/2, + 0887/, ,,-1508

This model is extracted via curve fitting and using the power coefficient data of about 60 wind
turbines within the range of 10-500 kW. The wind turbines used for developing this model are of
both types of constant and variable speeds and also both types of pitch controlled and stall

regulated. This model has a maximum relative error of 7% for the rarigje\df,, < 25m/s.

Given wind speed  at elevationh

logarithmic law:

h hre
thb :Vref In[ hUbj/In(fJ (8)
Z0 ZO

the wind speed at the hub elevation can be calculated by the

ref ref 1
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in which, z,stands for the site surface roughness length. The hub Hejgbdepends on the size of

the wind turbine, which is unknown prior to the design. For small to medium size wind turbines the
hub height can be estimated via the rule of thumb:

hous = Max{h, + R, 2R} (9)
where h, is the minimum blade tip-ground clearance &g the rotor radius.
Power produced by PV panels is given by

Pov = 1Ay 775y (10)

in which, | stands for the solar irradianca,, is the PV panel area ang, is the overall PV unit
efficiency.

In this study, using hourly-averaged data, the following diesel dispatch strategy is used:

e Excess powel?’h,R —Ln = 0: No need for diesel generator poﬁera =0.

e Power deficit less than the nominal power of the diesel genedatan — Phr < P, The

power deficit is compensated by the diesel geneﬁd,t@r: Lh—Phg.
o Power deficit greater than the nominal power of the diesel generatd®nr > P,

Blackout; The diesel generator works at its nominal p&wer= Py nom-

Parameterdso andPnr, respectively, stand for the hourly-averaged diesel and renewable power
andP, stands for the diesel generator nominal power.

D,nom

2.3  Cost modelling

Using levelised cost of energy allows design alternatives to be compared when different scales of
operation and investment exist. For systems with constant annual output over the life-span of the

system LCEC,, can be calculated as follows:
C == (11)

where P, denotes the annual energy output &ydstands for the annualised cost. Since the power

produced by a standalone HRES excess to the demand load is dumped, in Equation (11), the usable
amount of produced energy should be used instead of the system total energy output:

8760

P = Zmin{ﬁh,[h}j (12)

j=1

The annualised co$t, is given by [13]:
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C, =CUCRF (13)

ParametersC, andUCRFin Equation (12) are, respectively, total life-span cost (TLSC) and
uniform capital recovery factor, given by:

d(d+d)"

UCRF =
@+d)* -1

(14)

in which, d is the annual discountteeand N represents the life-span of the system in years.

Assuming there is no escalation in the price of the components, the formula for calculating the
present value of TLSC is as follows:

N5 C,
Co= ; @+d)’ (13)

whereC, is the cost in yeaj including capital cos€,, fixed operation and maintenance (O&M)
costsC,, r ,» Variable O&M costg,,,, , , and the replacement caSt. Casej = Orepresents the

beginning of the life span with its corresponding c@st, standing for the capital cost only. The
capital cost of the system (including installation cost) is given by:

CC - ZCUacompSCOmp(l-i_ ains,comp) (16)

comp

in which Sis the size of the componer, is the unit cost and,,.is the installation cost as a

Ins
fraction of the total cost of the component. Cost estimation at conceptual design phase of HRES can
be based on either cost per unit of nominal power production or cost per unit of size. To be
consistent with the power models, for wind turbine and PV array the cost per unit size is used whilst
for the diesel generator the cost per nominal output power is used. The O&M cost includes fixed
and variable parts:

CO&M = ZCO&M,F,comp+ ZCO&M V,comp (17)

comp comp

The fixed part can be representsd

CO&M ,F,comp = aO&M ,compCc,comp (18)

The variable part of the O&M cost for wind turbine and PV panel is zero. Using hourly-averaged
data, the annual variable part of the O&M cost for diesel generator (the cost of consumed fuel) is
given by [14]

8760

0.246> Php, +0.0814%, . T,

CO&M v.D — = 1000 Cfuel (19)

in which T, stands for the total number of hours that the diesel generator op@raﬁe’s,the
hourly-averaged diesel power aqyg,,is the fuel price.
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For each component the replacement cost is given by:

Cr = an,compcc,comp (20)

comp

wheren_is the number of replacements during the life-span of the system. Having the nominal life
of system (), wind turbine (N, ,.,) and PV panelll . .. ) in years and the nominal life of

diesel generatoN ., in hours of operation, the following equations can be used to find the
number of replacements of these components.

N
nr,comp: —
Nnomcomp
nr,D :|: NSTD :|
NnomD

In this study the following parameters are used: air depsit$.22%g/m*; wind turbine electrical
and gearbox efficienoy, = 09; surface roughness length= 0.03; minimum blade tip-ground

for wind turbine and PV panel (21)

for diesel generator (22)

clearancé, =8m; overall PV unit efficiency,, =12%; the life-span of the systefd = 20years

and the real discount ratk= 4%. Table (1) summarises other parameters required for the cost
analysis.

Table 1-Cost modelling parameters
Wind turbine PV panel Diesel generator
s Rotor area Panel area Nominal power
A/\/T(mz) ADV (mz) PD,nom(\N)

Cu 4806/ m2 830k/ m2 O'4$/Wnom

e 0.2 0.4 0
Xogm 0.03 0.01 0.15

Nom 20 years 20 years 15000 hours

See Equation (19)

C 0 0

0&M V Che =18/1

3 Design methodology development

Probabilistic analyses are highly time-consuming. A robust design method must include minimal
number of probabilistic analyses. In order to develop such a method, the effect of margin of safety
(MoS) used in the deterministic design method on the reliability measures is first investigated. The
deterministic design method encompasses two steps. In the first step, size of diesel generator is
found assuming that the diesel generator can cover the maximum peak load with a reasonable
margin of safetyMoSwithout any contribution from the renewable resources. Using hourly-
averaged data the nominal size of the diesel genePatqy, is obtained by

P, ... = Lnmax (1+ M0S)

D,nom

(23)
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in which L mxstands for the maximum hourly-averaged demand load. In the second step of the
deterministic design method, using a single-objective optimisation, the size of wind turbine and PV
panel which minimise LCE are determined. Using this method, for different margins of safety the
optimal size of wind?V-diesel components are obtained.

A genetic algorithm (GA) was developed to find the optimal size of components. The solution space
for hybrid systems is clustered with multiple local optima. This can impact the search performance
of an ordinary GA. Special care has been therefore made in design of reproduction opera®rs for th
developedGA. In order to increase the exploratory behaviour of the GA, avoiding stagnation in

local optima, a dynamic mutation operator combined with a mixed parent selection strategy has
been used. At earlier generations, identifiedityy/ fit ., < 09, the GA explores the design space

towards finding the cluster of the global optima by using a high mutationRate (.7) and a

random parent selection strategy (irrespective of the individual fitness). At latest generations (
fit ./ fit ., > 09) when the GA has found the cluster of the global optima, the algorithm exploits the

design space towards finding the global optima itself by adopting a parent selection based on the
individual fitness. In this stage still a high mutation rate is used but the mutation effect is limited.
The random perturbation of tin¢h design variablg is selected from a shrinking interval

av

I = (1— ﬁﬁtt J(Xi’” - X ) wherex , and x,, are, respectively, the lower and the upper limit of

design variable; . This is aimed at a refine search in the vicinity of the global optima. Individual

fitness in this algorithm is defined as the reciprocal of individual LCE. In the developed GA an
arithmetic crossover operator is used. The infeasible solutions are defined as those with nonzero
total blackout duration and are rejected on creation. The algorithm terminates when

fit fit ., <1x107°.

max av =

For each deterministic design case, employing the Monte Carlo simulation method of Algorithm 1
below, the reliability of the system is evaluated.

Algorithm 1- Monte Carlo simulation for reliability and cost analysis
Given:

e X =X+ X i=12,...,n,the set ofn,uncertain parameters and their range and form of
distributions & stands for the known mean value of param&teand X is the random
variation of x, with known distributioi.

e The desired level of confidence (LOC) corresponding to each one of the evaluated reliability
assessment criteriggo, , BO, ,, BO, ., MTBF ,U, }and LCE .

e The design candidat{aqm,Apv, PD'nom} to be assessed
1. For j=12,...,n
1.1.For eaclx;: i =12,...,n,, select a random valuein the range consistent with its

corresponding distribution.
1.2.Find the value of the assessment meagB@s BO

2. For each assessment criterion
2.1.Using a histogram, find the probability of failure distribution.
2.2.Find the value of assessment measure corresponding to the probability of failure of
PF=1-LOC

sim

BO,..MTBF U, } and LCE;.

av?
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Figure 1 illustrates how Step 2 of Algorithm 1 is carried out to find the assessment measures at a
given LOC (here total unmet loadl,, at LOC 99.9%): First the range of the unmet load is divided
seg =1000). Then, for each segment=12,...,nthe probability of

failure is found:PF, =Probability of having &J, greater than or equal to,, = the total number of
counts to the right of), , divided by n, (for MTBF : PF, =Probability of having aMTBF less

into n., segments (hera

sim
than or equal taMTBF, = the total number of counts to the rightMTBF, divided byn,,). In this
studyn,, =10" is used.
System Configuration : R, (m) = 6.3; A, [mz:l =0; N, =0 PI],num (W) = 15000
"I‘”:”:I T T T T T T T
200 - Wlinimum . 4172 -
Maximum ; 15850
2 Awerage 10263
§ 200 Highest Frequency : 9805 -
=
100 .
1] L
0.4 0.6 0.g 1 1.2 1.4 1.6 1.8 2

Unmet Load (Whj

''''''''''''' R

.-’LOC—HH El"r'u (PF= I] 1%]

............................

Probability of Failure {%t})
=]

10

Unmet Lua'd (Wh)
Figure 1-lllustrative example of finding reliability measures at a given level of confidence.

In reliability analysis, uncertainties in resources (wind speed and solar irradiance), demand load and
modelling (wind turbine power coefficiel, and PV array efficiency) are considered. Table (2
shows two cases considered in this study. In this télépresent the variation limit as a fraction of

the mean value. In this study two sets of resource and demand load data are used. Table (3)
compares the site data for these two sites.
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Table 2-Uncertainties in resources, demand load and modelling

Parameter/Model

Distribution

Case Ul

Case U2

Wind speed

Uniform (6 = +0.15)

Uniform (5 = +0.30)

Solar irradiance

Uniform (5 =+0.05)

Uniform (6 = +0.10)

Demand load

Uniform (5 = +0.10)

Uniform (85 = +0.20)

C, model

Uniform (6 = £0.07)

Uniform (6 = £0.07)

PV array efficiency

Uniform (6 = +0.05)

Uniform (6 = +0.05)

Table 3-Resources and demand load

Site S1 Site S2
. Wind speed as in [15 | % of the wind speedf
Wind speedy.q (h., =3m) [15], (h, =3m)

Solar irradiance)

Solar irradiance as in [1

Solar irradiance as ir
[15]

Demand loadL

Three times of the
demand load of [15]

Three times of the
demand load of [15]

Tables (4) and (5) show the results of deterministic designs for different margins of safety as well as
the results of probabilistic reliability analysis. The last row of these tables includes the results of
optimisation without considering a margin of safety, in which the size of the diesel generator is

determined along with the other design variables.

Table 4-Results of deterministic designs for differsatSand reliability analysis for site S1

o Monte Carlo simulation @99.99% LOC
Deterministic Uncertainties U1 Uncertainties U2
:

% El g5 | |E]e c Sz c
AR < 2|33 2 2/8g s
o 5|2/ 2|5 2 |8|8|5|s/g/ S|8|8 5|s|El 3
L) °l g1 3|38 9 |TlslElSIZS| | TIslElelSYy | T
808z 25 2 |8|BlE|E|2|E|y B8 E Y
Q| = |=2|la| a|a = J|-|=2| < |D| = JF|=2|x|2D)| = =
D1|0.00 (63| 0 | 15 [126[239,200(41.3 32| 1 | 1 |5.0|274 |429 |51 | 1 | 1 [18.7 171 | 449
D2|0.05|7.0| 0 |15.75/160(243,850(42.1| 8 | 1 | 1 | .5 1096|436 |34 | 1 | 1 |8.7| 259 | 46.2
D3|0.10|7.0| 0 | 16.5|160(247,800|42.8| 0 | 0 | O | O |8760|44.3 |20 | 1 | 1 [3.6| 446 | 47.1
D4|0.20|7.0| O | 18 |160(255,720|442| 0 | O | O | O [8760|458| 0 | O | O | O |8760| 48.7
D5|0.50(7.0| 0 |22.5|160|279,450(48.3| 0 | 0 | O | 0 |8760(502| 0 | 0 | O | O |8760| 53.6
D6|1.00|/79| 0 | 30 |209(313,020|541| 0 | O | O | O [8760|56.7| O | O | O | O |8760| 61.7
D7 |2.00 (81| 0 | 45 |221|373,980|64.6| 0 | 0| O | O |8760|68.8| 0 | 0 | O | O |8760| 75.7
D8 | N/A |6.3]| 0 |14.2[126|234,150|40.4 62| 1 | 1 [16.1] 140 |42.0| 71 | 1 | 1 [30.1| 140 | 43.9
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Table 5-Results of deterministic designs for differ®iSand reliability analysis for sit82

o Monte Carlo simulation @99.99% LOC
Deterministic Uncertainties U1 Uncertainties U2
3
AR | |Ele | |Sle c
LR slgl2)g 2|8 :
2 5|8l 2lg| 2 | 8|8 5|s|g| |88 5s/g|T 8
S5 °S|g| 3|8 O = _|E|lg|2 |y | = |- |E|lg|l2|y | =
8l S lc|>| 8|5 2 |8|S|2|S|Z|E|8|8|2|8|2E|8
Q| = |=|la| 8 |a = J|-|=2|<|D| = J|lF|=2|x|D]| = =
D9|0.00(6.2|26| 15 |61|341,030|58.9|65| 1 | 1 [14.4/ 134 | 613 |[104| 1 | 1 [37.1| 83 | 61.8
D10| 0.05 |6.2| 26 |15.75| 61 |347,720/60.1 |36 | 1 | 1 |4.1|243 |626| 73 | 1 | 1 |20.0| 119 | 63.1
D11/ 0.10 |6.2| 41 | 16.5| 69 |354,320/61.2| 0 | O | O | O |8760|63.7 |46 | 1 | 1 |8.7| 190 | 64.4
D12|0.20 (6.2 41| 18 |69 |366,230/63.3| 0 | 0| O | O |8760|/66.0| O | O | O | O |8760| 66.8
D13/ 0.50 |6.2| 41 |22.5|69 |401,960|/69.4| 0 | O | O | O |8760|728| O | O | O | O [8760]| 73.7
D14/ 1.00 |6.8|37 | 30 |78 (459940795 0 | 0| O | O |8760/843| 0 | O | O | O |8760]| 85.8
D15/ 2.00 [10.2{ 12 | 45 (162]568,300/98.2| 0 | 0 | O | O |8760(105.0f O | O | O | O [8760|108.2
D16| N/A |6.2|26 | 15 | 61 [341,030|58.9 |65 | 1 1 |14.4] 134 | 61.3 (104 | 1 1 |37.1] 83 | 61.8

Figures (2) through (4) show three reliability measures: total unmet load, mean time between
failures and total blackout duration agatimoS. Figures (5) and (6) show trends of the variations

of reliability measures with respect MoSversusvioS. Figure (7) shows LCE obtained
deterministically and the LCE obtained using Monte Carlo simulation @ 99.99% LOC MaxSus
Solution spaces in two planes of LCE-total unmet load and LCE-total blackout duration are shown
in Figures (8) and (9).

These figures show

0] Strong dependency of the reliability measures on the site data anastheciated
uncertainties (Figures (1) through (6)).

(i) Regardless of the site data andrtlassociated uncertainties, using a large-enaugb
leads to reliable designs (Figures (1) through (4)). That is, optimisation for reliability is
equivalent to maximisation &oS.

(i)  Probabilistic LCE deviates from deterministic LCE and this deviation increasedoih
(Figure (7)). In other words, the LCE calculated using deterministic methods is not accurate
and should be found via probabilistic methods.

(iv) ParameteMoSused in deterministic design has significant effect on the LCE, and that both
deterministic and probabilistic LCE vary linearly witoS (Figure (7)). In other words,
optimisation for cost is equivalent to minimisation\bS.

(V) The LCE calculated using probabilistic methods depends on both site data and uncertainties
profile (Figure (7)).

(vi)  Predictable effect of increasing/decreasvag on the direction of forming Pareto Front in
2D solution space (Figures (8) and (9)).

Observations (ii)(iv) and (vi) lead us to the conclusion thdbSused in deterministic design is a
key design parameter which can be used for directing the design towards solutions with desired
reliability or cost. However, referring to observation (i), this key parameter is highly problem
dependent and cannot be obtained deterministically. Moreover, according to obseinviaéiod (i

10
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(v), even in the absent of uncertainties in cost modelling, design candidate assessment with respect
to cost must be based on probabilistic cost analysis.

In summary, for each design problem, there exists an optimosithat can be used to produce a
Pareto solution. Hence, the original multi-objective optimisation problem in which the optimum
size of the system components are to be found through probabilistic analysis, can be reduced to a
single-objective problem in which the optimuwos is to be determined via probabilistic analysis

and a single-objective optimisation in which the optimum size of system components are to be
found deterministically.

35 1
= 30
E o5 | —o—Site S1, Uncertainties profile U1
o —&— Site S1, Uncertainties profile U2
520 - —&—Site S2, Uncertainties profile U1
g 15 —+— Site S2, Uncertainties profile U2
[=
210
8
P 5
0 % . o
0 0.5 1 1.5 2
MoS
Figure 2-Total unmet load versMeS.
__10000
£
2 @
g 8000
= / —6—Site S1, Uncertainties profile U1
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4 Design scenarios

There are three main approaches being adopted in performing a multi-objective optimisation. In the
first approach, known as a priori method, a multi-objective optimisation problem is transformed to a
single objective problem by combining all design objectives using a weighting system and forming
a single aggregate or cost function. Weighting systems comprise of a set of weighting factors and/or
tuning exponents representing the relative degree of importance of design objectives. At the end of
a successful search process, the design alternative that minimises the cost function is entitled the
optimum solution. This solution is a single point on the Pareto frontier of the corresponding original
problem. In the second approach, known as a posteriori methods, no weighting system is used and
the search process forms the Pareto frontier itself, or its best viable approximation. Here the first
goal is to find Pareto front solutions. The designer evaluates the generated design alternatives
against the assessment criteria and looks for trade-off solution. This is the chief advantage of this
method compared to the first approach. However, the high computational time required to produce
enough uniformly distributed Pareto solutions is the main drawback of this approach when adopted
for design optimisation problems including probabilistic analyses. In the third approach of multi-
objective optimisation, by treating all-but-one design objectives as constraints, the multi-objective
optimisation problem is transformed to a single objective one. This method is most suited for cases
in which one objective is dominant and other objectives either have known target values or have
known upper and/or lower bounds. In case of conflicting objectives, solution obtained by this
method is again a single point on the Pareto frontier of the original problem, while unlike the first
approach the designer actually directly imposes constraints on the locus of the solution prior to
commencing the optimisation. Adopting the third approach, the following two design scenarios are
developed.

4.1  Design Scenario 1
In this design scenario the most reliable hybrid widdiesel system subject to the constraint

LCE<LCE, is obtained. Herel CE is calculated using the probabilistic analysis method of
Algorithm 1 and therefore a LOC must be associaté@, . Algorithm 2 below details the design

method for this design scenario. The optimiaSwhich maximises the reliability subject to the
constraintLCE < LCE is represented biloS,; and is calculated through Steps 1 and 2 of this

algorithm.

Algorithm 2-Most reliable system subject to a constraint on the cost
Given:

e Goal levelised cost of enerdyCE, and its corresponding LOC
e Tolerances: LCE<LCE  +¢ ; £20

e Site data
e The set of uncertain parameters and their range and form of distributjoas(+ X, -
i=12,...,n,)

Step 1For two arbitraryMoS and MoS, do:
1.1.Using Equation (23), calculate the nominal size of diesel genefatgy, .

1.2. Useadeterministic optimisation methdd find the optimum size of other components.
1.3. For the obtained optimal solution run the Monte Carlo simulation of Algorithm 1 to find its
corresponding.CE.
Step 2 Calculate the corrspondingloS to the goalLCE using Equation (24)

MoS, =¢,LCE; +¢, (24)
14



Published in Renewable Energy 66 (2014) 650-661 Alireza Maheri
Step 3ForMoS = MoS, do:
3.1. Employ Equation (23fo calculate the nominal size of diesel generaor, ..

3.2.Use a deterministic optimisation method to find the optimum size of the other components.

3.3. For the obtained optimal solution run the Monte Carlo simulation of Algorithm 1 to find its
corresponding.CE and reliability measures.

3.4.1f LCE < LCE, +¢ stop the search; otherwise: update coefficiengdc, ; go to Step 2.

For the first time in Step 2 parameteggndc, are found using two poin{dvioS,, LCE, Jand
(MoS,,LCE,) in MoS— LCEplane:

_ MoS, —MoS

_ 25.a
' LCE,-LCE, #

_ MoS|LCE, —MoS,LCE, (25.b)
2 LCE, - LCE, |

Updating coefficients, andc, in Step 3.4 can be carried out either via Equations (25) by using the
new point(MoS, LCE) from latest iteration and one of the previous points or via data regression

(e.g. least square method) using all points. It should be noted that in case of a perfect linear
correlation between probabilisticCE and MoS, the first iteration should lead to the final solution.

Case study 1
It is desired to find the most reliable hybrid wiRd¥~diesel system for site S1 with uncertainty

profile U2 subject toLCE < 455cent/ kWh @ LOC 99.99% [CE, = 45.5cent/ kWh).

A tolerance ofs = 0.0Icent/ kWh is used.By selectingMoS =0 and MoS, =1, Step 1 of

Algorithm 2 leads to the results shown in the first two rows of Table (6). The genetic algorithm
optimisation explained in Section 3 is used for performing the deterministic optimisation of Steps

1.2 and 3.2. Using Equatio(@4) and (25) the goaMosSis calculated asMoS, = 0.036. Using
this value Step 3 of Algorithm 2 leads to the results shown in the third row of Table (6).

Table 6-Results of case study 1

. 2
Diesel Nom. Power WT rotor rqd!ug (m)/| PV panel area _(m )/ LCE @ 99.99% LOC
MoS (KW) Deterministic Deterministic (cent/kWh)
optimisation for LCE |optimisation for LCE
0 (1% initial point) 15.00 6.3 0 44.9
1 (2nd initial point) 30.00 7.9 0 61.7
0.036 (1% iteration) 15.54 6.3 0 45.5

As it can be observed the first iteration leads to the final solution. The reliability measures for this

solution are BO, = 38n, BO,,=1h,BO,, =1h, MTBF =237 andU, =11.2kWh (all ata LOC

of 99.99%).

For this case by performing only three Monte Carlo simulations a multi-objective optimal design

under uncertainty is carried out. This highlights the robustness of this design method.
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4.2  Design Scenario 2
In this design scenario the most cost-effective hybrid iANediesel system subject to satisfying
some goal reliability measure® = {R } = {BO, ;, BO, ,, BO,u,, MTBF,,U, , | is obtained. Each

g’ avg’
goal reliability measure considered for the assessment is associated with a LOC. Algorithm 3 details
the design method for this design scenario. The optirma8which minimises the.CE subject

to the constraistR <R ;is represented biloS, and is calculated through Steps 1 to 3 of this
algorithm.

maxg ?

Algorithm 3- Most cost-effective system subject to constraints on reliability measures

Given:

e Goal values for a selected subset of the reliability measures
R={R}<{BO,,,BO,,q,BO ., MTBF,,U,, | and their corresponding LOC

tg’ avg’
e Setoftolerance ={¢ }: R <R +¢ for eachR e Rto be minimised BO,,BO

andR >R —¢ foreachR e Rto be maximised MTBF ) (¢ >0)

maxg ?

BO,ux: Y, )

av?

e Site data
e The set of uncertain parameters and their range and form of distributjoas(+ X, -
i=12,....n,)

Step 1For three arbitraryMoSdo:
1.1.Using Equation (23), calculate the nominal dieselRizeg. .

1.2. Useadeterministic optimisation methdd find the optimum size of other components.
1.3. For the obtained optimal solution run the Monte Carlo simulation of Algorithm 1 to find its
corresponding_CE and reliability measures.
Step 2For eachR € R, using Equation (2ffind its correspondingvioS . .

MoS,; =C;R”+¢,R +¢; (26)

Step 3Assign MoS, = max{MoSg’R }
Step 4For MoS = MoS, do:
4.1.Employ Equation (2Bto calculate the nominal diesel siBg,, ..

4.2.Useadeterministic optimisation method to find the optimum size of the other components.

4.3.For the obtained optimal solution run the Monte Carlo simulation of Algorithm 1 to find its
corresponding_CE and the set of reliability measurfes

4.4.1f desired reliability achieved end the search; otherwise updates param#teosighc,

and go to Step 2.

Calculating/updating coefficients, throughc, is carried out via data regression (e.g. least square
method) using all available poir(MoSgR R ) It should be noted that three arbitravipS of Step

1 should produce at least two distinct points in eBch MoS plane to be able to correlaR to

MoS through Equation (26). LowdvloSare more likely to produce distinct points.

Case study 2
In this design case study it is desired to design a Whtdliesel system for site S2 under
uncertainties U2. The reliability measuB&3, < 40h, MTBF > 20thandU, <5kWh at a

LOC=99.99% are desired.

16



Published in Renewable Energy 66 (2014) 650-661

Alireza Maheri

Tolerancess = {ln 50Ah 1h} for the reliability measuré® = {BO, U, MTBF | are used.

Results are shown in Table (7). The designed system in the second iteration satisfies all constraints

within the tolerated margins. Table (8) summarises the results of Steps 2 and 3 leagtigg for
the first and second iterations.

Table 7-Results of Steps 1 and 4 of Algorithm 3 for case study 2

Diesel rZZL?’(T%S/ aﬁgap?rgze)l/ LlCE@ | g @ | V@ | yurEFe

MoS F’,\'OOVU;} Deterministic | Deterministic| | oo " | 99.99% | “Y0%° | 99.99%

(KW) opftcl)rrll_sgtéon opftcl)Tll_sgtéon (cent/kWh) LOC (h) (KWh) LOC (h)
0 (1¥initial point) | 15.0 6.2 26 61.8 104 37.1 83
0.05 (2™ initial point) | 15.8 6.2 26 63.1 73 20.0 119
0.1 (3% initial point) | 16.5 6.2 41 64.4 46 8.7 190
0.1215 (1% iteration) | 16.8 6.2 41 64.9 37 5.45 243
0.1219 (2" iteration) | 16.82 6.2 41 64.9 36 5.03 243

Figures (10) through (13) show the histograms and probability of failure distributions obtained via

Table 8-Results of Steps 2 and 3 of Algorithm 3 for case study 2

lteration R [c;,c,,ClasinEq. (4) | MoS, . MoS,
BO, (h) [+4E-6, -0.0023, +0.199] 0.1134

1 U, (kWh) [+5E-5,-0.0059,+0.1477] |0.11945 0.1215
MTBF (h) [-6E-6,+0.0027,-0.1785] 0.1215
BO,(h) | [+3E-6,-0.0021, +0.1914] | 0.1122

2 |U,(kWh) | [+6E-5,-0.0064,+0.1524] | 0.1219 | 0.1219
MTBF (h) [-4E-6,+0.002,-0.1372] 0.1028

Monte Carlo simulation of Algorithm 1 for four design qualities (three reliability measures and
LCE) of the final design.
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5 Summary and Concluding Remark

Optimal design of a standalone wiRd~diesel HRESs a multi-objective optimisation problem

with conflicting objectives of cost and reliability. Due to uncertainties in renewable resources and
demand load, probabilistic analysis methods such as Monte Carlo simulation are required to
guantify the system reliability. Performing probabilistic analysis within a search process, in which
tens of thousands of design candidates are produced and evaluated towards finding the global
optima, is highly time-consuming and inefficient.

Uncertainties in renewable resources, demand load and power modelling make deterministic
methods of multi-objective optimisation fall short in optimal design of standalone HRES. Firstly,
deterministic methods of analysis, even in the absence of uncertainties in cost modelling, do not
predict the LCE accurately. Secondly, since these methods ignore the random variations in
parameters, they cannot be used to quantify the second objective, reliability of the system in
supplying power. While it is well established that using safety factors and design for worst-case-
scenarios leads to reliable solutions, it is also well known that deterministic designs can lead to non-
optimal over-designed /under-designed systems as a result of employing improper safety factors.

ParametemMosS used in deterministic sizing of the diesel generator plays the key role in the
development of the new design methodology. First it is showrnMbgthasa major and

predictable influence on both LCE and reliability-related design qualities. It is also shown that in

the context of multi-objective optimisation with conflicting objectives of cost and reliability, for

each design problem, there exists an optimuns that can be used to produce a Pareto solution.
Hence, the original multi-objective optimisation problem in which the optimum size of the system
components are to be found through tens of thousands of probabilistic analysis, can be reduced to a
single-objective problem in which the optimuwos is to be determined via few probabilistic

analysis and a single-objective optimisation in which the optimum size of system components are to
be found deterministically. As a result of this the number of probabilistic analysis reduces
dramatically.

Optimum MoS depends on: (i) site data, (ii) uncertainties and (iii) deggoal) design qualities in
terms of the system cost and reliability of power supply (eGE < 45.5cent/ kWh, BO, <40h,

etc). For a given site and set of uncertainty profiles, different goal design qualities correspond to
different optimumMoS, and consequently different Pareto solutions.

For two design scenarios, namely, most reliable system subject to a constraint on the cost and most
cost-effective system subject to constraints on reliability measures, two algorithms are proposed to
find the optimunMoS. The robustness of the proposed design methodology is shown through
carrying out two design case studies. Design case study 2 also shows that how the proposed design
methodology can be employed to design systems compatible with the end-user requirements.
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Nomenclature

A Area (m?)

BO Blackout duration

C Cost ($)

C, Unit cost ($/unit)

d Discount rate (-)

h, Ground-blade tip clearance()

I Solar irradiancewW / m?)

L Demand load W)

MoS Margin of safety

MTBF Mean time to failure

N Nominal life-span (years; hours of operation)
n Number

n, Number of uncertain parameter
P Power (V)

PF Probability of failure (-)

S Size (various units)

U, Total unmet loadWh)

UCRF Uniform capital recovery factor
z, Site surface roughnesm(
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a Cost as a fraction of initial cost (-)
Moy Overall PV unit efficiency (-)

P Air density (kg/m®)

Mlec Wind turbine electrical and gearbox efficiency (-)
Subscripts

a Available; Usable available; Annualised
av Average

c Capital

comp HRES component (WT, PV, D)

D Diesel

d Daily

F Fixed

fail Failure

h Hourly

hub Hub elevation

ins Installation

max Maximum

min Minimum

nom Nominal

O&M Operation and maintenance

PV Photovoltaic

p Performance measures

R Renewable

r Replacement

S System

sim Simulation

t Total

u Unit, Uncertain parameter

Vv Variable

WT Wind turbine

Symbols

@; Averaged value of quantity over time periodl
o Mean value of uncertain parameter
17 Random part of uncertain parameger
o] Integer value of parameter

Abbreviations

HRES Hybrid renewable energy system
LCE Levelised cost of energy

LOC Level of confidence

O&M Operating and maintenance
TLSC Total life-span cost
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