
N89-19833

VALIDATION OF HIGHLY RELIABLE, REAL-TIME KNOWLEDGE-BASED SYSTEMS

Sally C. Johnson
System Validation Methods Branch, MS 130

NASA Langley Research Center
Hampton, VA 23665-5225

ABSTRACT

Knowledge-based systems have the potential to
greatly increase the capabilities of future
aircraft and spacecraft and to significantly
reduce support manpower needed for the space
station and other space missions. However, a
credible validation methodology must be developed
before knowledge-based systems can be used for
life- or mission-critical applications.

Experience with conventional software has shown
that the use of good software engineering
techniques and static analysis tools can greatly
reduce the time needed for testing and simulation
of a system. Since exhaustive testing is
infeasible, reliability must be built into the
software during the design and implementation
phases.
engineering techniques and tools used for
conventional software are of little use in the
development of knowledge-based systems.
Therefore, research at Langley is focused on
developing a set of guidelines, methods, and
prototype validation tools for building highly
reliable, knowledge-based systems.

The use of a comprehensive methodology for
building highly reliable, knowledge-based systems
should significantly decrease the time needed for
testing and simulation. A proven record of
delivering reliable systems at the beginning of
the highly visible testing and simulation phases
is crucial to the acceptance of knowledge-based
systems in critical applications.

INTRODUCTION

Highly reliable, real-time knowledge-based systems
(KBSs) have been proposed for many aerospace
applications, including space station, manned and
unmanned spacecraft, as well as civilian and
military aircraft and other life-critical
applications. For example, continuous operation
of a space station will require extensive, around-
the-clock monitoring by large numbers of expert
ground control personnel unless some degree of
system autonomy is obtained through the use of
knowledge-based expert systems. Many of the
systems proposed for the space station would
result in loss of life if they were to fail during
operation.

Unfortunately, many of the software

Even when personnel are not involved,

PRECEDING PAGE BLANK NOT FILMDD 123

the loss of equipment and/or experiments can be
prohibitively expensive. Therefore, these on-
board systems must be reliable and validatable.
Similarly, a pilot's associate or other advisory
system, even if not in direct control of the
craft, could only be used if the pilot were
confident of its outputs. In many emergency
situations, a pilot does not have the time to
consider how the system arrived at its conclusion
but must quickly and confidently follow the
directions he is given.
case, then the advisory system would never have
been needed in the first place.

If this were not the

A credible validation methodology for highly
reliable KBSs does not exist today.
research efforts in verification and validation of
KBSs focus on a rapid-prototyping life cycle,
review panels, testing, and development of limited
static analysis tools for checking consistency and
completeness of a rule base 111. These techniques
are necessary, but alone are not comprehensive
enough to validate a system to be used in a life-
critical application. Consistency and
completeness checking only tests for a limited
number of prespecified types of errors. The
complexity of the knowledge base in a realistic
system makes exhaustive testing impossible. More
rigorous validation techniques must be developed.

This paper documents the ongoing research at NASA
Langley to develop concepts, guidelines, and
methodologies for the validation of KBSs. The
scope of the effort and how Langley's research
plan was developed are discussed.
the art in validation of conventional software is
presented. Characteristics of KBSs affecting
validation are discussed, and how validation of
KBSs differs from conventional software is
characterized. The research approach being
followed at Langley is then presented, followed by
details of the methods, guidelines, and prototype
tools being developed. Finally, the expected
results from this research project are discussed.

BACKGROUND

The research plan presented in this paper is the
culmination of a research effort that began at
NASA Langley in 1986 [l - 4 1 . The first step was
to characterize the potential needs for, and
identify current research in, validat.ion of KBSs

Most current

The state of

https://ntrs.nasa.gov/search.jsp?R=19890010462 2020-03-20T04:08:32+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42829062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ORIGINAL PAGE IS
OF POOR QUALITY

through workshops, classes, and industrial
contacts. A research team with varied backgrounds
from artificial intelligence, software
engineering, and validation was then established.
The differences between validation of a
conventional software system and validation of a
KBS were characterized, and applicability of
conventional techniques to KBSs was assessed.
major issues and requirements particular to KBS
validation were identified. A number of
deficiencies in methods available for KBS
validation became apparent, and a preliminary set
of tools and methods to be developed were then
identified to address those deficiencies.

Concepts, guidelines, methodologies, and
supporting tools for the validation and
verification of KBSs are to be developed. Because
of the lack of available validation methods and
the proliferation of KBS development projects, the
methods and tools developed will be made available
to near-term and mid-term KBS development efforts
as soon as practicable. Feedback from these
development efforts will provide valuable insight
as to the effectiveness and comprehensiveness of
the tools and methodologies developed.

The target applications are life-critical KBSs for
NASA OK military aircraft or spacecraft
applications with any one or a combination of
rule, frame, or object knowledge representations.
Most of the tools and techniques developed will
also be useful and cost effective for developing
high quality KBSs for applications with less
stringent reliability requirements. To keep the
development effort feasible and within the bounds
of realistic funding expectations, a number of
issues will not be addressed, including the
following topics: automatic programing,
validation of learning, cost/reliability
tradeoffs, and validation of advanced hardware
architectures.
realistically addressed after significant advances
are made in other KBS validation and verification
areas.

VALIDATION OF CONVENTIONAL SOFTWAFE

The development and validation of reliable
conventional software is a major concern within
NASA, the Department of Defense, and industry.
After many years of research and the development
of a new engineering discipline -- Software
Engineering -- to address this problem, a number
of techniques have been developed. Yet, the
discovery of software "bugs" in operational life-
critical software is not uncommon [5]. The FA4
has not yet certified any civil air transports
with flight-critical digital avionics. Thus, the
techniques used today for conventional software
may actually be inadequate for life-critical
applications.

When conventional software is developed for life-
critical military or space applications,
validation is an ongoing process throughout the
life cycle [6]. Limited design tools are
available to aid in dividing the problem into a
hierarchical set of modules. These modules are
developed and tested separately and then
integrated. The programmers adhere to strict
coding standards and other techniques such as

The

These aspects can only be

information hiding that have been found to lead to
more reliable code. The developed code is
subjected to extensive code walkthroughs and
inspections in addition to the static checking
provided by sophisticated compilers and other
static code analysis tools.
developed module is subjected to extensive
testing. The interactions between modules are
carefully tested during system integration.
system is then subjected to functional testing and
finally simulation.

A system developed for a space application is
reviewed periodically throughout the development
life cycle by a safety assessment team from NASA
to ensure that the procedures discussed above are
closely followed [7]. Likewise, the developers of
a system for a NASA experimental aircraft must
convince a NASA safety team that the system is
reliable before flight testing can begin. Similar
procedures are followed by the Air Force to ensure
adherence to MIL-STD-2167 and by the FAA for civil
aircraft systems.
base their estimates of the reliability of a given
system on evidence of rigorous adherence to good
software engineering techniques and documentation
of traceability to specifications as well as on
the absence of serious errors uncovered during
testing.

Experience with conventional software has shown
that the use of good software engineering
techniques and static analysis tools can greatly
reduce the time needed for testing and simulation
of a system.
implementation phase are signiEicantly easier and
less expensive to correct than those uncovered
during the testing phase. The focus of the
testing phase should be tuning system performance
and promoting confidence about the inherent
reliability of the program being tested.
caught during this phase should represent the
occasional translation and coding errors, not
major oversights or misunderstandings of the
specifications.

Reliability is a characteristic that must be built
into the program from the beginning.
poorly written program into a reliable one simply
by extensive testing is at least extremely
difficult and expensive, if not impossible.

Each independently

The

The assessment teams typically

Errors caught early in the

Errors

Making a

CHARACTERISTICS OF KNOWLEDGE-EASED SYSTEMS

There are two major differences between KBSs and
conventional software that affect the validation
process -- structure and functionality.

A KBS is divided into some form of knowledge base,
which may be rules, frames, procedures, OK some
other structure or combination of structures, and
a reasoning algorithm, such as an inference
engine, which operates on the knowledge. This
separation of the system into algorithm and data,
plus the inherent structuring of the knowledge
base may actually aid in the validation process.

Unfortunately, many of the techniques and tools
used for conventional software are of little use
in the development of KBSs. Researchers are just
beginning to develop guidelines for implementing
software engineering concepts such as

124

modularization, information hiding, and structured
coding.
languages such as LISP and Prolog do not support
strong typing and other features used in static
code analysis, and the compilers do little static
checking for errors. Code walkthroughs are less
effective for KBSs because each piece of the
knowledge is viewed individually and interactions
are difficult to conceptualize.
symbolic OK parallel architectures significantly
compounds the validation problem.

In addition to the above differences attributable
to the KBS implementation method, there are
further differences caused by the fact that KBSs
are often used to implement "expert systems." A
KBS is usually expected to have considerably more
functionality than would be expected for a
conventional software system, especially in the
case of an expert system.
is to operate is not explicitly known at the start
of the project and is to be determined by the
knowledge engineer during system development.
Expert system applications are typically
characterized by the absence of a well-understood
algorithm OK even well-known performance
requirements.
understood and may come from different and even
conflicting sources.
may be limited.
life cycle is used, making traceability of
requirements to the code more difficult to ensure.
The rapid-prototyping life cycle is not unique to
KBSs and is beginning to be studied extensively as
an acceptable method for developing conventional
software. However, it is still generally
recommended that the prototype be discarded or
used as a working specification for the
development of the real system. Without a well-
understood algorithm to follow and with often
limited access to the "expert," compiling test
cases to assess whether the system is operating
"correctly" is usually expensive and difficult.
These characteristics have given KBSs a well-
deserved reputation for ad hoc, trial-and-error
development. Therefore, very rigorous
verification of safety will be necessary before a
KBS can be certified for use in a life-critical
application.

A complete validation methodology must necessarily
include guidelines for system development
throughout the software life cycle. The rapid
prototype scheme of software development, which is
very favorable for the development of KBSs, must
be accompanied by a specification of the system.
The rules used in the prototype represent the
knowledge that has been collected about how the
system should perform. However, there may be
unanticipated interactions between these rules.
The system specification should include
information about the contents of the knowledge
base and deductions that should be possible from
it. This "metaknowledge" becomes the basis for
the validation effort and should include both
"do's"--a specification of what the system should
do--as well as "don' ts"--what the system
explicitly should not do. Each of these
assertions about the system must be classified as
to level of criticality--whether failure of the
assertion could cause l o s s of life or property or
simply inefficiency or passenger discomfort.

Development shells and preferred KBS

The use of new

Much of how the system

The knowledge is often poorly

Access to the expert sources
A rapid-prototyping development

Most

applications will contain a mix of assertions of
various criticality levels.

The most critical assertions of what the system
should and should not do, such as crash the plane,
must be verified using rigorous techniques, such
as formal verification. The search algorithms
employed and their implementations and
interactions must also be rigorously verified.
This includes verification that the search
algorithms will complete within real-time
deadlines.

APPROACH

The emphasis on KBS validation research at NASA
Langley has been placed on aiding the KBS
developer in building a quality product and
assessing it before the final phases of testing
and simulation are reached.
simulation are then used to assess and tune how
well the KBS performs the desired functionality
requirements, rather than to try to verify safety
properties.

Testing and

There are several reasons for concentrating
research efforts on the design and implementation
phases. Two reasons come from experience with
conventional software. First, errors are much
easier and less expensive to correct if uncovered
early in the development life cycle. Also, since
exhaustive testing of a nontrivial system is
impossible, testing cannot be expected to catch
enough errors to change an inherently unreliable
program into a reliable one. Most importantly,
the largest impediment to deployment of KBS for a
life- OK mission-critical application is a
categoric lack of confidence in all KBSs on the
part of those who ultimately make such decisions.
This is true of any methods or technologies that
are viewed as being radically new and different.
The only way to change this image is to arrive at
the highly visible testing phase with reliable
software and use testing merely to tune system
performance.
serious errors during the testing phase of any
piece of software alarms safety review teams.

Thus, NASA Langley's efforts in KBS validation
research will consist of developing and assessing
a number of guidelines and methods for building
high reliability into KBSs before they reach the
testing phase. The research topics being pursued
by NASA Langley and its contractors and grantees
are discussed in the following section. Some of
the projects discussed below have not even begun
yet, and few have progressed past an initial
feasibility study phase.

THE PRELIMINARY SET OF TOOLS AND METHODS

A preliminary set of guidelines, methods, and
tools have been identified as promising for the
development and validation of highly reliable,
real-time KBSs. prototypes of the tools will be
developed and integrated with a development
environment. The methods and guidelines will be
developed, documented, and demonstrated on KBS
applications. The preliminary research projects
to be pursued include:

Seeing the uncovering of a number of

125

- guidelines for scoping the application
- requirements documentation tool
- guidelines for knowledge acquisition
- a development environment supporting software

- consistency and completeness checking tool
- sensitivity analysis tool and guidelines
- methods and tools for formal verification of
- a base of reasoning algorithms formally
- methods for real-time performance analysis
- methods for implementing a KBS on a fault-

engineering techniques

safety properties

characterized to support formal verification

tolerant parallel processor

The tools and methods will be applied to several
applications, such as the Systems Autonomy
Demonstration Project (SADP) demonstration
systems, to assess their effectiveness.

scoping the Application

Before development begins, it is essential to
determine a feasible application, or to "scope"
the application.
important for a KBS because of the overzealous
selling of AI leading to statements such as "we
don't have to know how to do it, we can program it
using AI."
guidelines will be developed for choosing and
scoping applications for development.
development and validation tools and software
engineering methods become available, these
guidelines will be modified to reflect the current
state of the art in KBS development.

Requirements Definition

Validation must be in mind from the beginning of
system development. To be useful later in the
validation phase, the requirements for the system
are divided into the following categories [I]:

1. Desired Competency Requirements -- How well
the system is expected to perform.
the functionality desired from the system is
often poorly understood before the system is
built, these may of necessity be vague and
incomplete.

2. M i n i m Competency Requirements -- What the
system explicitly must do and must not do to
ensure safe operation.
precise and comprehensive to Support
validation and should be rated as to level
of criticality.

This is especially difficult and

A set of periodically updated

As more KBS

Since

These must be

The requirements developed during this phase
and the metaknowledge collected during the
knowledge acquisition phase will be documented
using a requirements documentation tool. This
tool will support traceability between the
requirements and the implementation. A l s o , the
consistency and completeness checker and safety
property verification tool will directly access
this information during the validation phase.
Guidelines for developing specifications and
guidelines for specification of safeiy ptoperties
will also be developed.

Knowledge Acquisition

A set of guidelines for knowledge acquisition to
support validation will be developed.
of information should be collected from the
experts during the knowledge acquisition phase:

1. Knowledge -- Procedural information about

Three types

how the system should perform its operation.

2. Metaknowledge -- Metaknowledge, or knowledge
about knowledge, describes constraints on
the knowledge that can later be used for
consistency and completeness checking. The
metaknowledge should be documented using the
Requirements Documentation Tool.

3 . Test cases -- Examples of what proper
outputs would be for given inputs to the
system.

System Development

The knowledge base is developed from the above
information using rapid prototyping on a system
development environment, similar to an expert
system shell.
will form the core of the integrated toolset. The
development environment must be able to support
the development of a KBS composed of a combination
of knowledge representations of rules, frames, and
objects.
must be able to directly access the KBS as it is
developed. The reasoning algorithm will be chosen
from a suite of algorithms or separately developed
and formally characterized.

A basic development environment will be chosen
from the available environments. The chosen
environment will then be enhanced to extend its
capabilities, provide support for frames and
objects as well as rules, and target it to support
probable future NASA applications. Much research
will also be done in assessing the software
engineering techniques being developed for KBS and
in developing new methods such as those used for
conventional software, including coding standards
for modularization, information hiding, and strong
typing. AII example of the application of software
engineering techniques to KBSs may be found in
[E] .
techniques will be added to the development
environments.

The system development environment

The validation and verification tools

Support for these software engineering

Consistency and Completeness Checking

A static analysis tool, including a completeness
and consistency checker will be integrated with
the toolset to automatically check that the
knowledge in the system meets the conditions
described by the metaknowledge collected during
knowledge acquisition.
analysis tools with various capabilities are
currently being developed in industry [9-121.
Lockheed AI Center has been identified as the
source for research and development of a static
analysis tool because of their extensive
background and sizeable accomplishments in the
development of the EVA system.

Current tools are still limited in what they can
check for; however, checking of more complex forms

Quite a number of static

The

126 ORIGINAL PAGE IS
OF POOR QUAUTY

ORIGINAL PAGE 1s
OF POOR QUALITY

of metaknowledge should be possible in the future.
Research will be conducted to assess the
usefulness of various types of static KBS
analysis. The tool will then be enhanced to
provide the types of checking found to be most
useful. The static analysis tool will be very
useful for finding some types of errors in a
knowledge base, but it can only find errors that
specifically violate the metaknowledge given.
Some verification that the system meets its
minimum competency requirements could be done by
this tool.

Sensitivity Analysis

Because of the trial-and-error methods often
employed in KBS development, KBSs frequently
exhibit "instability" or "fragility" properties.
These include sensitivities to:

1.

2.

3 .

Sequence dependencies -- Depending on the
order of rule firings, the same input can
produce wildly different outputs.

Input values -- Slight changes in input
values produce extreme changes in output
values.

Constants -- Slight changes of numerical
values contained within the knowledge
base, such as constants encoded within the
rules or certainty factors, produce
extreme changes in output values.

These sensitivities do not necessarily mean that
an error is present, but point to likely errors
and to values which must be very accurate because
the system computation is extremely sensitive to
them.

The sensitivity analysis research and tool
development is being conducted under a grant to
Worcester Polytechnic Institute. A sensitivity
analysis tool will be developed to automatically
perform specified sensitivity analyses.
development is based on the use of Evidence Flow
Graphs, which are independent of the knowledge
representation of the KBS [3 1 . A rules-to-graph
translator is already being developed to
automatically translate a knowledge base of rules
from the system development tool into a graphical
structure. Other translators to perform
translation of other knowledge representations
will also be developed.
conducted to extend the types of sensitivity
analyses performed and assess their usefulness in
finding errors in the knowledge base.

If the system is to be used in a control
application, its stability must be validated (1 3 1 .
Each input value is known only within certain
error tolerances.
mathematically using other input values and
parameters that also have degrees of error.
must be shown that the result computed by the
system is within the tolerance needed by the
system.
parameters as well as the error tolerances
allowable on the outputs must be included in the
specification.

The tool

Research will be

This value is manipulated

It

The maximum error of input values and

Verification of Safety Properties

The KBS must be mathematically verified to meet
the m i n i m competency requirements for safe
operation. This is an expensive step, but one
that is necessary for life-critical applications.
Research into specification of safety properties
and mathematical verification of them is being
conducted by SRI International. These procedures
will be applied to an example application to
demonstrate the feasibility of formal verification
of safety properties of a realistically complex
system.
developed to aid the user in this process. The
actual mathematical verification will be performed
by a theorem prover being developed by SRI for
conventional software and hardware (141. The
safety verification tool is basically an interface
between the development environment and the
theorem prover and will directly access the
knowledge base and reasoning control information
stored in the development environment.

Reasoning Algorithms

Although many KBSs are written in rules that look
like sentences in formal logic, reasoning
algorithms typically perform operations that bear
no resemblance to first-order logic, such as
Prolog's treatment of negation and "cuts."
formal verification of safety properties to be
possible, the formal semantics of these features
must be defined and adherence of the algorithm
used to the defined semantics must be verified.
For most applications, one or a combination of
several reasoning (inference) algorithms will be
chosen from an established base of al-gorithms.
a new reasoning algorithm must be developed for
the application, the semantics of the new
algorithm must be defined and verified.
to develop techniques for semantic
characterization of reasoning algorithms
verification of those characterizations, as well
as establishment of a base of characterized
reasoning algorithms will be performed by SRI
International.

Real-time Performance Analysis

Large WSs are notorious for their very slow
performance. ~ n y performance gains expected from
the development of faster symbolic processors and
more efficient implementations will probably be
offset by the growing size and complexity of
systems. Because of interactions between
knowledge, addition of knowledge to the system can
result in exponential increases in search times.
Verification that the search algorithms will
complete within real-time deadlines will be very
important in applications such as aircraft control
and advisory systems that have deadlines on the
order of a few milliseconds.

A worst case analysis will probably be too
conservative to be useful for many systems.
However, it may be possible to show analytically
that the probability of missing a real-time
deadline is within the reliability requirements of
the system.

Real-time performance is a function of the
hardware architecture, the reasoning algorithm,

A safety verification tool will be

Fgr

If

Research

127

how that algorithm is implemented on the hardware
arChiteCtUKe, plus the structure and contents of
the knowledge base.
real-time performance analysis based on measurable
parameters o f the system will be developed by the
Charles Stark Draper Laboratory.

Parallel Architectures

AS KBSs become larger and more complex, the use of
parallel architectures will be necessary to obtain
acceptable performance. The Charles Stark Draper
Laboratory is developing a functional programming
model for implementation of a KBS on a fault-
tolerant parallel processor. The programming
model will provide for graceful degradation,
deadlock detection and recovery from excessive
generation of parallelism, and distributed
checkpointing and error recovery as well as load
balancing to increase system performance.
the programming model is implemented, the system
will be used to study optimal KBS parallelization
schemes for maximizing performance on a parallel
processor and to study real-time performance
analysis.

EXPECTED RESULTS

Although none of the tools and methods will be
completed in the near term, many of the basic
concepts behind those tools and methods are
already being developed.
and validation methodology will be useful to
system builders in the near term even before
details are worked out and tools are developed.
This includes guidelines for what types of
information should be collected during the
requirements specification and knowledge
acquisition phases, how this knowledge can support
the validation effort, and various sensitivity
analyses to be performed. Guidelines for choosing
and scoping a feasible application will have been
documented, and a description of software
engineering practices that are useful for KBS will
have been developed. The first flight test of a
simple KEG application, the Mode Control Logic
Panel developed by Langley's Aircraft Guidance and
Controls Branch, will be conducted in Summer 1988
on the Advanced Transport Operating Systems
(ATOPS) aircraft at Langley. This system was
developed as a rule-based system then coded in the
C programming language.

An integrated prototype toolset with limited
validation capabilities should be available for
system builders to use by the mid 1990's.
tools and methodologies will be made available to
interested KBS developers as beta-test sites, and
documentation and consultation on the use of the
tools will be made available. Feedback as to the
usability and effectiveness of the tools and
techniques will be a crucial part of future
planning.

CONCLUDING REMARKS

The aim of research at NASA Langley in validation
of KBSs is to develop a set of guidelines,
methods, and tools to aid a KBS developer in
building a highly reliable KBS.
toolset of prototype tools will be developed to
demonstrate the methods and how to implement them.

Techniques for performing

Once

Much of the development

The

An integrated

The integrated toolset will in no way be
comprehensive enough to support the development of
all OK even most future NASA KBS applications.
The development of a user-friendly toolset with an
advanced, corrprehensive development environment
will be left to industry, but will hopefully be
supported by the core research of this project.

The methods and tools being developed purposefully
end at the beginning of the testing phase.
Exhaustive testing of a realistically complex KBS
is impossible.
considerably more functionality than conventional
software and to operate correctly in unanticipated
environments. Testing over various expected
scenarios will typically uncover only very obvious
errors and will not significantly add to the
robustness of the KBS or its ability to operate
correctly in other unanticipated scenarios. Thus,
the system should be relatively reliable before it
reaches the testing phase, and testing and
simulation should be concentrated on tuning system
performance.

REFERENCES

Many KBSs are expected to have

1. Rushby, John, "Quality Measures and Assurance
for AI Software," Contract W1-17067 Task 5
Final Report, SRI International, Menlo Park,
CA., 1988.

2. Morell, Larry, "Use of Metaknowledge in
Verification of Knowledge-Based Systems,"
First International Conference on Industrial
and Engineering Applications of Artificial
Intelligence and Expert Systems, 'lb1lahoma,
Tennessee, June 1-3, 1988.

3 . Green, Peter, and Becker, Lee, "Evidence Flow
Graph Methods for Validation and Verification
of Expert Systems," NASA CR to be published.

4 . Beaton, Robert, "Reliability and Performance
Evaluation of Systems Containing Embedded
Rule-Based Expert Systems," NASA CR to be
published.

5. NeumaM, Peter G., "Some Computer-Related
Disasters and Other Egregious Horrors," ACM
Software Engineering Notes, Vol. 10, No. 1,
January 1985.

6. Spector, Alfred, and Gifford, David, "The
Space Shuttle Primary Computer System,"
Communications of the ACM, Vol. 27, No. 9,
September 1984.

7 . Culbert, Chris, Riley, Gary, and Savely,
Robert, "Approaches to the Verification of
Rule-Based Expert Systems, " First Annual
Workshop on Space Operations, Automation, and
Robotics (SOAR87), NASA CP 2491, August 1987.

8. Jacob, Robert J. K., and Froscher, Judith N.,
"Developing a Software Engineering Methodolow
for Knowledge-Based Systems," Naval Research
Laboratory, Arlington, Va., NRL Report 9019,
December 1986.

9. Stachowitz, R. A., Combs, J. B., and Chanq, C.
L., "Validation of Knowledge-Based Systems,"
Second AIAA/NASA/USAF Symposium on Automation,

128

Robotics and Advanced Computing for the
National Space Program, Arlington, Va., March
1987.

10. Bellman, Kirstie L. and Walter, Donald O.,
"Testing Rule-Based Expert Systems," November
1987, submitted for publication.

11. Suwa, Motoi, Scott, A. Carlisle, and
Shortliffe, Edward H., "An Approach to
Verifying Completeness and Consistency in a
Rule-Based Expert System," AI Magazine, Vol.
3 , No. 4, Fall 1982.

12. Nguyen, Tin A., Perkins, Walton A., Laffey,
Thomas J., and Pecora, Deanne, "Knowledge Base
Verification," AI Magazine, Vol. 8, No. 2,
Summer 1987.

13. Castore, Glen, "A Formal Approach to
Validation and Verification for Knowledge-
Based Control Systems," First Annual Workshop
on Space Operations, Automation, and Robotics
(SOAR87), NASA CP 2491, August 1987.

14. Moser, Louise, Melliar-Smith, Michael, and
Schwartz, Richard, "Design Verification of
SIFT," NASA CR 4097, September 1987.

129

