80 research outputs found

    HW/SW codesign techniques for dynamically reconfigurable architectures

    Full text link

    Netzwerk-Management und Hochgeschwindigkeits- Kommunikation. Teil XII

    Get PDF
    Der vorliegende interne Bericht enthält die Beiträge zum Seminar "Netzwerkmanagement und Hochgeschwindigkeitskommunikation", das im Sommersemester 1995 zum zwölften Mal abgehalten wurde. Entsprechend dem Titel ist der Band in zwei Teile gegliedert. In dem Teil "Netzwerkmanagement" werden in den ersten beiden Kapiteln Fragen der MIB-Implementierung behandelt. Die beiden folgenden Beiträge führen in Problemstellungen der Verwaltung verteilter Anendungen ein und stellen jeweils Forschungsergebnisse aus aktuellen Veröffentlichungen vor. Das letzte Kapitel dieses Teils führt in das Konzept des "Network Managemen by Delegation" ein. Der zweite Teil des Seminars befaßt sich mit aktuellen Fragestellungen zum Bereich "Hochgeschwindigkeitskommunikation", insbesondere zu ATM und FDDI. Die ersten beiden Beiträge widmen sich dem Einsatz von Vorwärts- fehlerkorrekturverfahren und der Diskussion zweier Signalisierungsprotokolle in ATM-Netzen. Es folgen eine Vorstellung von Mechanismen zur Bereitstellung eines verbindungslosen Dienstes sowie von Verfahren zur kreditbasierten Flußkontrolle, beide ebenfalls im Bereich ATM-Netze. Die darauffolgenden Beiträge diskutieren Mechanismen zur effizienteren Implementierung von Protokollfunktionen sowie Ansatzpunkte für ein mögliches Hardware/ Software Codesign. Das Seminar schließt mit Abhandlungen über Verfahren zur Regelung der Nutzungskontrolle von Diensten in ATM-Netzen und einer Beschreibung des GIGASwitch/FDDI-Systems

    Scheduling with Bus Access Optimization for Distributed Embedded Systems

    Get PDF
    In this paper, we concentrate on aspects related to the synthesis of distributed embedded systems consisting of programmable processors and application-specific hardware components. The approach is based on an abstract graph representation that captures, at process level, both dataflow and the flow of control. Our goal is to derive a worst case delay by which the system completes execution, such that this delay is as small as possible; to generate a logically and temporally deterministic schedule; and to optimize parameters of the communication protocol such that this delay is guaranteed. We have further investigated the impact of particular communication infrastructures and protocols on the overall performance and, specially, how the requirements of such an infrastructure have to be considered for process and communication scheduling. Not only do particularities of the underlying architecture have to be considered during scheduling but also the parameters of the communication protocol should be adapted to fit the particular embedded application. The optimization algorithm, which implies both process scheduling and optimization of the parameters related to the communication protocol, generates an efficient bus access scheme as well as the schedule tables for activation of processes and communications

    Frequency Interleaving as a Codesign Scheduling Paradigm

    Get PDF
    ABSTRACT Frequency interleaving is introduced as a means of conceptualizing and co-scheduling hardware and software behaviors so that software models with conceptually unbounded state and execution time are resolved with hardware resources. The novel mechanisms that result in frequency interleaving are a shared memory foundation for all system modeling (from gates to softwareintensive subsystems) and de-coupled, but interrelated time-and state-interleaved scheduling domains. The result for system modeling is greater accommodation of software as a conÞguration paradigm that loads system resources, a greater accommodation of shared memory modeling, and a greater representation of software schedulers as a system architectural abstraction. The results for system co-simulation are a lessening of the dependence on discrete event simulation as a means of merging physical and non-physical models of computation, and a lessening of the need to partition a system as computation and communication too early in the design. We include an example demonstrating its implementation

    Static Analysis of Transaction-Level Communication Models

    Full text link

    Resource efficient processing and communication in sensor/actuator environments

    Get PDF
    The future of computer systems will not be dominated by personal computer like hardware platforms but by embedded and cyber-physical systems assisting humans in a hidden but omnipresent manner. These pervasive computing devices can, for example, be utilized in the home automation sector to create sensor/ actuator networks supporting the inhabitants of a house in everyday life. The efficient usage of resources is an important topic at design time and operation time of mobile embedded and cyber-physical systems. Therefore, this thesis presents methods which allow an efficient use of energy and processing resources in sensor/actuator networks. These networks comprise different nodes cooperating for a “smart” joint control function. Sensor/actuator nodes are typical cyber-physical systems comprising sensors/actuators and processing and communication components. Processing components of today’s sensor nodes can comprise many-core chips. This thesis introduces new methods for optimizing the code and the application mapping of the aforementioned systems and presents novel results with regard to design space explorations for energy-efficient and embedded many-core systems. The considered many-core systems are graphics processing units. The application code for these graphics processing units is optimized for a particular platform variant with the objectives of minimal energy consumption and/or of minimal runtime. These two objectives are targeted with the utilization of multi-objective optimization techniques. The mapping optimizations are realized by means of multi-objective design space explorations. Furthermore, this thesis introduces new techniques and functions for a resource-efficient middleware design employing service-oriented architectures. Therefore, a service-oriented architecture based middleware framework is presented which comprises a lightweight service orchestration. In addition to that, a flexible resource management mechanism will be introduced. This resource management adapts resource utilization and services to an environmental context and provides methods to reduce the energy consumption of sensor nodes

    Researching methods for efficient hardware specification, design and implementation of a next generation communication architecture

    Full text link
    The objective of this work is to create and implement a System Area Network (SAN) architecture called EXTOLL embedded in the current world of systems, software and standards based on the experiences obtained during the ATOLL project development and test. The topics of this work also cover system design methodology and educational issues in order to provide appropriate human resources and work premises. The scope of this work in the EXTOLL SAN project was: • the Xbar architecture and routing (multi-layer routing, virtual channels and their arbitration, routing formats, dead lock aviodance, debug features, automation of reuse) • the on-chip module communication architecture and parts of the host communication • the network processor architecture and integration • the development of the design methodology and the creation of the design flow • the team education and work structure. In order to successfully leverage student know-how and work flow methodology for this research project the SEED curricula changes has been governed by the Hochschul Didaktik Zentrum resulting in a certificate for "Hochschuldidaktik" and excellence in university education. The complexity of the target system required new approaches in concurrent Hardware/Software codesign. The concept of virtual hardware prototypes has been established and excessively used during design space exploration and software interface design

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    Comparative performance evaluation of latency and link dynamic power consumption modelling algorithms in wormhole switching networks on chip

    Get PDF
    The simulation of interconnect architectures can be a time-consuming part of the design flow of on-chip multiprocessors. Accurate simulation of state-of-the art network-on-chip interconnects can take several hours for realistic application examples, and this process must be repeated for each design iteration because the interactions between design choices can greatly affect the overall throughput and latency performance of the system. This paper presents a series of network-on-chip transaction-level model (TLM) algorithms that provide a highly abstracted view of the process of data transmission in priority preemptive and non-preemptive networks-on-chip, which permit a major reduction in simulation event count. These simulation models are tested using two realistic application case studies and with synthetic traffic. Results presented demonstrate that these lightweight TLM simulation models can produce latency figures accurate to within mere flits for the majority of flows, and more than 93% accurate link dynamic power consumption modelling, while simulating 2.5 to 3 orders of magnitude faster when compared to a cycle-accurate model of the same interconnect
    • …
    corecore