420 research outputs found

    Design: the quintessential business transaction

    Get PDF
    The fundamental structures that underpin business activities must evolve and change in order to equip companies to thrive in a market whose characteristics are increasing competition and instability. The incremental advances in applied computing technology and business methodologies which focus on improving one aspect of company operations ignore the need for an underlying structure and model through which to engage any and all functions in a consistent and integrated fashion. Indeed, many exacerbate the problem through closed architectures, isolationist views of entity data storage and rigid methodologies imposed on the company that employs them. The Product Model proposed fulfils that role. It is a model of the processes and entities that a company uses to conduct its business, at all levels and across all departments. Two other concepts are exposed: product model data and the design history record. Product model data are the values of instances of product model entities and relations, created to represent a particular design, artefact or object. The design history record captures the data and functions used in a transaction and the order and context in which they are used. To exercise these concepts, a software suite was written, the Glasgow Utility for Integrated Design, Guide. It supports the definition of a proud model and its subsequent use in the creation of product model data. Each interaction with the system is recorded, thus capturing the design history record, which can subsequently be processes to various advantageous ends. The major such uses are for re-use of part information in other designs and the extraction of design best practice with which to augment the company's design methodology. It is a comprehensive record, since all business processes are supported by, and can be transacted through Guide. Guide has been used to validate the adequacy of the product model and has established many benefits through its use. Applications in many spheres are possible; engineering has been the primary focus for exemplars and case studies. The development was carried out under the scrutiny of constant validation and testing in live situations with several industrial partners. Guide is built on industry standard tools and uses relational database technology to store frame-based representations of entities, methods and relationships. The design of project plans is carried out on the same platform used to support the project itself; the design data are not dissociated from the project controlling mechanism. Resources, including staff, are engaged according to requirements and audit mechanisms allow for constant re-evaluation of the project development. Control and communication mechanisms support applications in an extended enterprise environment and the distribution of resources that this entails

    An incremental constraint-based approach to support engineering design.

    Get PDF
    Constraint-based systems are increasingly being used to support the design of products. Several commercial design systems based on constraints allow the geometry of a product to be specified and modified in a more natural and efficient way. However, it is now widely recognised the needs to have a close coupling of geometric constraints (i.e. parallel, tangent, etc) and engineering constraints (Le. performance, costs, weight, etc) to effectively support the preliminary design stages. This is an active research topic which is the subject of this thesis. As the design evolves, the size of the quation set which captures the constraints can get very large depending on the complexity of the product being designed. These constraints are expected to be solved efficiently to guarantee immediate feedback to the designer. Such requirement is also necessary to support constraint-based design within Virtual Environments, where it is necessary to have interactive speed. However, the majority of constraint-based design systems re-satisfy all constraints from scratch after the insertion of a new design constraint. This process is time consuming and therefore hinders interactive design performance when dealing with large constraint sets. This thesis reports research into the investigation of techniques to support interactive constraint-based design. The main focus of this work is on the development of incremental graph-based algorithms for satisfying a coupled set of engineering and geometric constraints. In this research, the design constraints, represented as simultaneous sets of linear and non-linear equations, are stored in a directed graph called Equation Graph. When a new constraint is imposed, local constraint propagation techniques are used to satisfy the constraint and update the current graph solution, incrementally. Constraint cycles are locally identified and satisfied within the Equation Graph. Therefore, these algorithms efiiciently solve large constraint sets to support interactive design. Techniques to support under-constrained geometry are also considered in this research. The concept of soft constraints is introduced to represent the degrees of freedom of the geometric entities. This is used to allow the incremental satisfaction of newly imposed constraints by exploiting under-constrained space. These soft constraints are also used to support direct manipulation of under-constrained geometric entities, enabling the designers to test the kinematic behaviour of the current assembly. A prototype constraint-based design system has been developed to demonstrate the feasibility of these algorithms to support preliminary desig

    Material Parameter Identification using Finite Elements and Digital Image Correlation

    Get PDF
    In der Natur gibt es viele Materialien, die ein unterschiedliches Verhalten aufweisen. Im Bereich der Festkörpermechanik wird dieses Materialverhalten mit Hilfe von konstitutiven Modellen wie Elastizität, Plastizität usw. beschrieben. Heutzutage helfen computergestützte Simulationen bei der Analyse von realen Prozessen, indem sie komplizierte Probleme numerisch lösen. Im Rahmen der Festkörpermechanik werden diese komplizierten Probleme im Allgemeinen mit den weithin bekannten Finite-Elemente-Methoden gelöst. Um die verschiedenen Prozesse korrekt vorhersagen zu können, ist es wichtig, die Materialparameter zu kennen, die zur Charakterisierung des konstitutiven Modells verwendet werden, das zur Modellierung der physikalischen Eigenschaften wie Elastizitätsmodul, Poisson-Zahl usw. dient. In diesem Zusammenhang wird das Verfahren der Materialparameteridentifikation eingesetzt. Das Ziel dieser Arbeit ist es, verschiedene Aspekte der Identifizierung von Materialparametern zu diskutieren. Um das Verhalten eines Materials unter verschiedenen Belastungsbedingungen vorhersagen zu können, ist es wichtig, Materialparameter mit einer gewissen Sicherheit zu identifizieren. Dies ist die Grundlage für diese Forschungsarbeit. Es werden die Grundlagen der Kontinuumsmechanik und die Methode der finiten Elemente zur Lösung der partiellen Differentialgleichung formuliert. Zur Diskretisierung des Problems im zeitlichen Bereich werden Zeitintegratoren hoher Ordnung verwendet. Dies hat den Vorteil höherer Genauigkeit und größerer Flexibilität, so dass das Konzept der Zeitadaptivität genutzt werden kann. Das durch die räumliche und zeitliche Diskretisierung erhaltene nichtlineare Gleichungssystem wird mit dem klassischen Newton-Raphson-Verfahren oder dem Mehrebene-Newton-Verfahren (MLNA) gelöst. Das Grundproblem der Identifikation wird zusammen mit dem Konzept der lokalen Identifizierbarkeit formuliert. Das Konzept der lokalen Identifizierbarkeit ist ein sehr wichtiger Aspekt der Festkörpermechanik, der von Forschern meist ignoriert wird. Der Grund dafür ist unbekannt. Die Vorhersage des Materialverhaltens kann zu sehr fehlerhaften Ergebnissen führen, wenn die identifizierten Materialparameter nicht genau sind. Dies ist einer der Hauptschwerpunkte dieser Arbeit. Bei inhomogenen Verformungen muss die Finite-Elemente-Methode zur Ermittlung der Materialparameter verwendet werden. Wenn zusätzlich zur Anwendung der Finite-Elemente-Methode auch Vollfelddaten mit einem Digital Image Correlation (DIC)-System während der Experimente gemessen werden können, liefert dies eine Vielzahl von Informationen zur genauen Bestimmung der Materialparameter. Die Bestimmung der für die Identifizierung erforderlichen Empfindlichkeiten kann ein langwieriger Prozess sein. Üblicherweise werden Finite-Differenzen-Schemata (auch bekannt als External Numerical Differentiation (END)) verwendet, was ein zeitaufwändiger Prozess ist, wenn viele Materialparameter identifiziert werden müssen. Alternativ können die Empfindlichkeiten mit Hilfe der Internal Numerical Differentiation (IND) bestimmt werden. Dieses Konzept wird anhand von MLNA im Detail erläutert. In dieser Arbeit werden verschiedene Aspekte der Parameteridentifikation anhand mehrerer Beispiele diskutiert. Mehrere einfache Beispiele werden analysiert, um die grundlegenden Probleme bei der Parameteridentifikation zu verstehen. Es kann festgestellt werden, dass bestimmte Qualitätsmaße analysiert werden müssen, um sicherzustellen, dass die identifizierten Parameter innerhalb eines bestimmten Vertrauensbereichs liegen. Schließlich wird der Identifizierungsprozess durchgeführt, um Parameter eines viskoelastischen Modells mit große Deformation des Überspannungstyps zu identifizieren, das für eine Gummiprobe modelliert wurde. An der Gummiprobe wurden verschiedene ratenabhängige biaxiale Experimente und ein biaxiales Multistep-Relaxations-Experiment mit vollständigen Felddaten unter Verwendung eines DIC-Systems durchgeführt. Die Sensitivitäten für Dehnungsmaße und Reaktionskräfte werden dem Optimierer explizit zur Verfügung gestellt. Dies ermöglichte den Vergleich der Berechnungszeit für die Ermittlung der Parameter mit END und IND. Aus den Ergebnissen lässt sich schließen, dass IND schneller ist als END. Diese Forschungsarbeit verdeutlicht die Bedeutung einer korrekten Identifizierung der Materialparameter.In nature, there exists many materials exhibiting different behavior. In the field of Solid Mechanics, these material behaviors are characterized with the help of constitutive models like elasticity, plasticity etc. Nowadays, computer aided simulations assist in analyzing real processes by solving complicated problems numerically. Within the context of Solid Mechanics, these complicated problems are generally solved using the widely known Finite Element Methods. In order to predict correctly the different processes, it is essential to know the material parameters that are used to characterize the constitutive model used in modeling the physical properties like Young’s modulus, Poisson’s ratio etc. To this extent, the process of material parameter identification is used. The aim of the thesis is to discuss several aspects of material parameter identification. In order to predict the behavior of a material under different loading conditions, it is essential to identify material parameters with a certain confidence. This is the foundation of this research work. The basics of continuum mechanics and the method of finite elements to solve the partial differential equation are formulated. High-order time integrators are used to discretize the problem in temporal domain. It has the advantage of higher accuracy and greater flexibility so that concept of time adaptivity can be used. The non-linear system of equations obtained by the spatial and temporal discretization is solved using classical Newton-Raphson method or Multilevel-Newton Algorithm (MLNA). The basic problem of identification along with the concept of local identifiability is formulated. The concept of local identifiability is a very important aspect of Solid Mechanics which is mostly ignored by researchers. The reason for this is unknown. The prediction of material behavior might lead to highly erratic results, if the identified material parameters are not accurate. This is one of the primary focus of this thesis work. For inhomogeneous deformations, finite element method has to be used to identify material parameters. In addition to the usage of finite elements, if full-field data by using a Digital Image Correlation (DIC) system can also be measured during experiments, it provides a great deal of information to identify the material parameters accurately. The determination of sensitivities required for the identification can be a tedious process. Typically, finite difference schemes (also known as External Numerical Differentiation (END)) are used, which is a time-consuming process if there are many material parameters to be identified. Alternatively, the sensitivities can be determined using the Internal Numerical Differentiation (IND). This concept is explained in detail with the help of MLNA. In this thesis, different aspects of parameter identification are discussed with the help of several examples. Several simple examples are analyzed to understand the basic problems in parameter identification. It can be concluded that certain quality measures must be analyzed to ensure that the identified parameters are within a certain confidence. Finally, the identification process is performed to identify parameters of an overstress-type finite strain viscoelastic model, modeled for a rubber specimen. Different rate-dependent biaxial experiments and multistep relaxation biaxial experiment with full field data using a DIC-system were performed on the rubber specimen. The sensitivities for strain measures and reaction forces are explicitly provided to the optimizer. This enabled the comparison of the computational time to identify the parameters using END and IND. From the results, it can be concluded that IND is faster than END. This research work points out the significance of proper material parameter identification

    In the opponent’s shoes: modelling dynamic preferences of malicious agents

    Get PDF
    Given the increasing concerns over insecurity caused by terrorism, and the difficulty in quantifying the risk of crime or violent outbreaks in general, several experts have highlighted the importance of understanding the objectives and motivations of terrorists. If one could infer their preferences, it would be possible to understand better their possible nefarious actions in order to guide efforts towards proper counter-terrorism measures. Indeed, one way to anticipate terrorists’ actions in counter-terrorism analysis is to consider their judgments when modelling the decisions they might make. Such judgments will drive their chosen actions. Current efforts in modelling terrorist decision making make several assumptions such as rationality of the agents, agents who have a set of constant and ordered preferences, with the ability to perform a cost benefit analysis of their alternatives, among others. However, are such assumptions reasonable? This research seeks to analyse the types of assumptions made across various models for counter-terrorism analysis that represent the agents’ judgments and discuss their suitability from a descriptive point of view by drawing knowledge from the fields of behavioural decision analysis, politics, philosophy of choice, public choice and conflict management in terrorism. This research then explores the modelling implications resulting from this insight and provides some recommendations as to how some of these assumptions could be modified in order to describe terrorists’ preferences more accurately. An empirical research is also carried out, to analyse the effect of anger on the prioritisation of objectives, and to confirm the findings drawn from secondary research. Subsequently, we present a way of addressing some of the areas highlighted in the critical analysis. We suggest modelling state-dependent judgements of a terrorist organisation - making the assumption it behaves as an individual via a multi-attribute utility model that incorporates state-dependent priorities to account for preference change caused by exogenous triggers and representing the environment as a system dynamics model

    Design behaviors : programming the material world for responsive architecture

    Get PDF
    The advances of material science, coupled with computation and digital technologies, and applied to the architectural discipline have brought to life unprecedented possibilities for the design and making of responsive, collectively created and intelligent environments. Over the last two decades, research and applications of novel active materials, together with digital technologies such as Ubiquitous Computing, Human-Computer Interaction, and Artificial Intelligence, have introduced a model of Materially Responsive Architecture that presents unique possibilities for designing novel performances and behaviors of the architectural Beyond the use of mechanical systems, sensors, actuators or wires, often plugged into traditional materials to animate space, this dissertation proves that matter itself, can be the agent to achieve monitoring, reaction or adaptation with no need of any additional mechanics, electrical or motorized systems. Materials, therefore, become bits and information uniting with the digital world, while computational processes, such as algorithmic control, circular feedback, input or output, both drive and are driven by the morphogenetic capacities of matter, uniting, therefore, with the material world. Through the applications and implications of Materially Responsive Architecture we are crossing a threshold in design where physicality follows and reveals information through time and through dynamic configurations. Design is not limited to a finalised form but rather associated to a performance, where the final formal outcome consists in a series of animated and organic topologies rather than static geometries and structures. This new paradigm, is referred to, in this thesis, as the Design Behaviors paradigm (in the double sense of "behaviors of design" and "designing behaviors"), and is characterized by unique exchanges and dialogues between users and the environment, facilitated by the conjunction of human, material and computational intelligence. Buildings, objects and spaces are able to reconfigure themselves, in both atomic and macro scale, to support environmental changes and users' needs, behavioral and occupational patterns. At the same time the Design Behaviors paradigm places not only matter and the environment at the center of design and morphogenesis, but also the users, that become active participants of their built environment and play the final creative role. This paradigm shift, boosts new relations among the human's perception and body and the inhabited space. The new design paradigm is also a new cultural one, in which statics, repetition and Cartesian grids, traditionally related with safety, orientation and comfort, give way to motion, unpredictability and organic principles of evolution. Materially Responsive Architecture and the Design Behaviors paradigm define uniquely enhanced "environments" and "ecologies" where human, nature, artifice and technology collectively and evolutionally co-exist within a framework of increased consciousness and awareness. This thesis argues that, while there is no doubt that our future cities will consist in an extensive layer of distributed sensors, actuators and digital interfaces, they will also consist in an additional layer of novel materials, that are dynamic and soft, rather than rigid and hard, able to sense as sensors, actuate as motors, and be programmed as a software. The new materiality of our cities relies on the advances of material science, coupled with the cybernetic and computational power, and can be actuated by the environment to change states (Re-Active Matter), can be controlled by the users to respond (Co-Active Matter), and eventually can be designed and programmed to learn and evolve as living organisms do (Self-Active Matter). The physical space of the city is, thus, the seamless intertwining of digital and material content, becoming an active agent in the dynamic relationship between the environment and humans.Los avances en la ciencia de los materiales, junto con la computación y las tecnologías digitales, y aplicados a la disciplina arquitectónica, han dado vida a posibilidades sin precedentes para el diseño y la realización de entornos responsivos, inteligentes y creados de forma colectiva. En las últimas dos décadas, la investigación y aplicación de nuevos materiales activos junto con tecnologías digitales como la Computación Ubicua, la Interacción Hombre-Ordenador y la Inteligencia Artificial, han introducido el modelo de Materially Responsive Architecture (Arquitectura Materialmente Responsiva), que presenta posibilidades únicas para el diseño de nuevas actuaciones y comportamientos del espacio arquitectónico. Más allá del uso de sistemas mecánicos, sensores, o motores, a menudo conectados a materiales tradicionales para activar el espacio, esta disertación demuestra que la materia en sí misma puede ser el agente que consiga monitoreo o reactividad sin necesidad de añadir ningún sistema mecánico o eléctrico. Los materiales, en este caso, se convierten en bits e información fundiéndose con el mundo digital, mientras que los procesos computacionales, como el feedback circular y el input o output, a la vez impulsan y son impulsados por la capacidad morfogenética de la materia, uniéndose, por lo tanto, con el mundo material. A través de las aplicaciones y las implicaciones de la Materially Responsive Architecture, estamos cruzando un umbral en el diseño donde el mundo físico sigue y revela información a través de configuraciones dinámicas en el tiempo. El diseño no se limita a una forma finalizada, sino se relaciona a una performance, donde el resultado formal final consiste en una serie de topologías orgánicas y animadas en lugar de estructuras y geometrías estáticas. En esta tesis doctoral, este nuevo paradigma se denomina paradigma de Design Behaviours (en el doble sentido de "comportamientos de diseño" y de "diseño de comportamientos") y se caracteriza por intercambios únicos entre el usuario y el entorno, facilitados por la conjunción de inteligencia humana, material y computacional. Los edificios, objetos y espacios pueden reconfigurarse a sí mismos, tanto a nivél atómico como a macro escala, para responder a los cambios ambientales y a las necesidades de los usuarios. Al mismo tiempo, el paradigma Design Behaviors coloca en el centro del diseño y la morfogénesis no solo la materia y el medio ambiente, sino también a los usuarios, que se convierten en participantes de su entorno construido y desempeñan el papel creativo final. El nuevo paradigma define "entornos" y "ecologías" aumentados de manera singular, donde el ser humano, la naturaleza, el artificio y la tecnología coexisten de manera colectiva y evolutiva dentro de un marco de mayor conciencia consciente. El nuevo paradigma de diseño es también un nuevo paradigma cultural, en el que las redes estáticas, repetitivas y cartesianas, tradicionalmente relacionadas con la seguridad, la orientación y el confort, dan paso al movimiento, la imprevisibilidad y la evolución orgánica. Esta tesis sostiene que, si bien no hay duda de que nuestras ciudades futuras consistirán en una capa extensa de sensores distribuidos e interfaces digitales, también contarán con una capa adicional de materiales dinámicos y suaves, en lugar de rígidos y duros, capaces de sentir como sensores, actuar como motores y ser programados como un software. La nueva materialidad de nuestras ciudades puede ser activada por el medio ambiente para cambiar su estado (Re-Active Matter), puede ser controlada por los usuarios para responderles (Co-Active Matter), y eventualmente puede diseñarse y programarse para aprender y evolucionar por sí misma así como lo hacen los organismos vivos (Self-Active Matter). El espacio físico de la ciudad es, por lo tanto, el entrelazado holístico entre contenido digital y material, convirtiéndose en un agente activo en la relación dinámica entre el medio ambiente y los humanos

    An Approach for ISA-95 Application to Industrial Systems

    Get PDF
    During last years software starts to play a significant role in the development of industrial automation systems such as automated production systems. The growth of computational resources of industrial controllers and computers, the communication and information processing capabilities increase. As one of the benefits of this increase of capabilities, it allows the implementation of functionally-rich protocols originally developed by the IT world on the industrial devices and their supportive computer systems. The simplification of network reconfiguration often relies on the ability to dynamically plug or un-plug network nodes during the operation of the networked system. Similar capability is desired in industrial automation, which extends it to a new level – the ability to handle information not only on changing equipment and its state, but on changing orders to be able to react to potentially new orders introduced to the automated production system at run time. A set of standards were proposed by the industrial and the research communities to represent information on industrial automation systems. Among those, ISA-95-the No.95 standard for the Instrumentation, Systems, and Automation Society-addresses many aspects of the automation systems from manufacturing operations management point of view. The standard includes models for equipment, material, personnel, process segment, and others. Thus, to allow reconfigurability of industrial automation systems the ISA-95 has been selected for the implementation of information models. This thesis work provides a solution for the industrial application of ISA-95. The thesis also defines an approach for the application of ISA-95 to industrial system, as there is a lack of a generalized approach and supportive applications for the standard implementation in industrial systems. A software tool (ISA-95 Tool) is implemented to facilitate the application of the standard. The Industrial System Development Life Cycle is revised to show the applicability of the standard for modelling industrial enterprise entities. B2MML is used as XML-based format representation for ISA-95. The developments are illustrated using two automated production lines
    corecore