9 research outputs found

    Rendering Clouds in Real Time

    Get PDF
    Práce se zabývá algoritmy schopnými zobrazit mraky v reálném čase. Teoretická část popisuje fyzikální princip oblaků a seznamuje s vybranými metodami pro jejich modelování a vykreslování. Cílem praktické části je implementovat jeden z algoritmů, schopný běžet v reálném čase a vyvinout aplikaci, která jej bude demonstrovat.This thesis is about algorithms which render clouds in real time. The theoretical section deals with clouds in real world and also describes some algorithms for modeling and rendering them. The aim of practical section is implement one of these real time algorithms and develop demonstrational application.

    Procedural Cloudscapes

    Get PDF
    International audienceWe present a phenomenological approach for modeling and animating cloudscapes. We propose a compact procedural model for representing the different types of cloud over a range of altitudes. We define primitive-based field functions that allow the user to control and author the cloud cover over large distances easily. Our approach allows us to animate cloudscapes by morphing: instead of simulating the evolution of clouds using a physically-based simulation, we compute the movement of clouds using key-frame interpolation and tackle the morphing problem as an Optimal Transport problem. The trajectories of the cloud cover primitives are generated by solving an Anisotropic Shortest Path problem with a cost function that takes into account the elevation of the terrain and the parameters of the wind field

    MODELING AND RENDERING OF CONVECTIVE CUMULUS CLOUDS FOR REAL-TIME GRAPHICS PURPOSES

    Get PDF
    The paper presents a simulation and rendering model of three dimensional covective cloud evolution. The model is physically based, however its purpose is graphical. The main stress is put on balancing two parts of a model: the atmsphere simulation with convective motion of air and water vapor combined with rendering of semi-transparent and light-scattering clouds, in order to achieve realistic animation in real-time. We examine and compare two algorithmic approaches based on CPU and GPU computations

    Atmospheric cloud representation methods in computer graphics: A review

    Get PDF
    Cloud representation is one of the important components in the atmospheric cloud visualization system. Lack of review papers on the cloud representation methods available in the area of computer graphics has directed towards the difficulty for researchers to understand the appropriate solutions. Therefore, this paper aims to provide a comprehensive review of the atmospheric cloud representation methods that have been proposed in the computer graphics domain, involving the classical and the current state-of-the-art approaches. The reviewing process was conducted by searching, selecting, and analyzing the prominent articles collected from online digital libraries and search engines. We highlighted the taxonomic classification of the existing cloud representation methods in solving the atmospheric cloud-related problems. Finally, research issues and directions in the area of cloud representations and visualization have been discussed. This review would be significantly beneficial for researchers to clearly understand the general picture of the existing methods and thus helping them in choosing the best-suited approach for their future research and development

    Doctor of Philosophy

    Get PDF
    dissertationStochastic methods, dense free-form mapping, atlas construction, and total variation are examples of advanced image processing techniques which are robust but computationally demanding. These algorithms often require a large amount of computational power as well as massive memory bandwidth. These requirements used to be ful lled only by supercomputers. The development of heterogeneous parallel subsystems and computation-specialized devices such as Graphic Processing Units (GPUs) has brought the requisite power to commodity hardware, opening up opportunities for scientists to experiment and evaluate the in uence of these techniques on their research and practical applications. However, harnessing the processing power from modern hardware is challenging. The di fferences between multicore parallel processing systems and conventional models are signi ficant, often requiring algorithms and data structures to be redesigned signi ficantly for efficiency. It also demands in-depth knowledge about modern hardware architectures to optimize these implementations, sometimes on a per-architecture basis. The goal of this dissertation is to introduce a solution for this problem based on a 3D image processing framework, using high performance APIs at the core level to utilize parallel processing power of the GPUs. The design of the framework facilitates an efficient application development process, which does not require scientists to have extensive knowledge about GPU systems, and encourages them to harness this power to solve their computationally challenging problems. To present the development of this framework, four main problems are described, and the solutions are discussed and evaluated: (1) essential components of a general 3D image processing library: data structures and algorithms, as well as how to implement these building blocks on the GPU architecture for optimal performance; (2) an implementation of unbiased atlas construction algorithms|an illustration of how to solve a highly complex and computationally expensive algorithm using this framework; (3) an extension of the framework to account for geometry descriptors to solve registration challenges with large scale shape changes and high intensity-contrast di fferences; and (4) an out-of-core streaming model, which enables developers to implement multi-image processing techniques on commodity hardware

    Realistic simulation and animation of clouds using SkewT-LogP diagrams

    Get PDF
    Nuvens e clima são tópicos importantes em computação gráfica, nomeadamente na simulação e animação de fenómenos naturais. Tal deve-se ao facto de a simulação de fenómenos naturais−onde as nuvens estão incluídas−encontrar aplicações em filmes, jogos e simuladores de voo. Contudo, as técnicas existentes em computação gráfica apenas permitem representações de nuvens simplificadas, tornadas possíveis através de dinâmicas fictícias que imitam a realidade. O problema que este trabalho pretende abordar prende-se com a simulação de nuvens adequadas para utilização em ambientes virtuais, isto é, nuvens com dinâmica baseada em física que variam ao longo do tempo. Em meteorologia é comum usar técnicas de simulação de nuvens baseadas em leis da física, contudoossistemasatmosféricosdeprediçãonuméricasãocomputacionalmente pesados e normalmente possuem maior precisão numérica do que o necessário em computação gráfica. Neste campo, torna-se necessário direcionar e ajustar as características físicas ou contornar a realidade de modo a atingir os objetivos artísticos, sendo um fator fundamental que faz com que a computação gráfica se distinga das ciências físicas. Contudo, simulações puramente baseadas em física geram soluções de acordo com regras predefinidas e tornam-se notoriamente difíceis de controlar. De modo a enfrentar esses desafios desenvolvemos um novo método de simulação de nuvens baseado em física que possui a característica de ser computacionalmente leve e simula as propriedades dinâmicas relacionadas com a formação de nuvens. Este novo modelo evita resolver as equações físicas, ao apresentar uma solução explícita para essas equações através de diagramas termodinâmicos SkewT/LogP. O sistema incorpora dados reais de forma a simular os parâmetros necessários para a formação de nuvens. É especialmente adequado para a simulação de nuvens cumulus que se formam devido ao um processo convectivo. Esta abordagem permite não só reduzir os custos computacionais de métodos baseados em física, mas também fornece a possibilidade de controlar a forma e dinâmica de nuvens através do controlo dos níveis atmosféricos existentes no diagrama SkewT/LogP. Nestatese,abordámostambémumoutrodesafio,queestárelacionadocomasimulação de nuvens orográficas. Do nosso conhecimento, esta é a primeira tentativa de simular a formação deste tipo de nuvens. A novidade deste método reside no fato de este tipo de nuvens serem não convectivas, oque se traduz nocálculodeoutrosníveis atmosféricos. Além disso, atendendo a que este tipo de nuvens se forma sobre montanhas, é também apresentadoumalgoritmoparadeterminarainfluênciadamontanhasobreomovimento da nuvem. Em resumo, esta dissertação apresenta um conjunto de algoritmos para a modelação e simulação de nuvens cumulus e orográficas, recorrendo a diagramas termodinâmicos SkewT/LogP pela primeira vez no campo da computação gráfica.Clouds and weather are important topics in computer graphics, in particular in the simulation and animation of natural phenomena. This is so because simulation of natural phenomena−where clouds are included−find applications in movies, games and flight simulators. However, existing techniques in computer graphics only offer the simplified cloud representations, possibly with fake dynamics that mimic the reality. The problem that this work addresses is how to find realistic simulation of cloud formation and evolution, that are suitable for virtual environments, i.e., clouds with physically-based dynamics over time. It happens that techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems based on physics laws are computationally expensive and provide more numerical accuracy than the required accuracy in computer graphics. In computer graphics, we often need to direct and adjust physical features, or even to bend the reality, to meet artistic goals, which is a key factor that makes computer graphics distinct from physical sciences. However, pure physically-based simulations evolve their solutions according to pre-set physics rules that are notoriously difficult to control. In order to face these challenges we have developed a new lightweight physically-based cloudsimulationschemethatsimulatesthedynamicpropertiesofcloudformation. This new model avoids solving the physically-based equations typically used to simulate the formation of clouds by explicitly solving these equations using SkewT/LogP thermodynamic diagrams. The system incorporates a weather model that uses real data to simulate parameters related to cloud formation. This is specially suitable to the simulation of cumulus clouds, which result from a convective process. This approach not only reduces the computational costs of previous physically-based methods, but also provides a technique to control the shape and dynamics of clouds by handling the cloud levels in SkewT/LogP diagrams. In this thesis, we have also tackled a new challenge, which is related to the simulation oforographic clouds. From ourknowledge, this isthefirstattempttosimulatethis type of cloud formation. The novelty in this method relates to the fact that these clouds are non-convective, so that different atmospheric levels have to be determined. Moreover, since orographic clouds form over mountains, we have also to determine the mountain influence in the cloud motion. In summary, this thesis presents a set of algorithms for the modelling and simulation of cumulus and orographic clouds, taking advantage of the SkewT/LogP diagrams for the first time in the field of computer graphics

    Realistic natural atmospheric phenomena and weather effects for interactive virtual environments.

    Get PDF
    Clouds and the weather are important aspects of any natural outdoor scene, but existing dynamic techniques within computer graphics only offer the simplest of cloud representations. The problem that this work looks to address is how to provide a means of simulating clouds and weather features such as precipitation, that are suitable for virtual environments. Techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems are computationally expensive, give more numerical accuracy than we require for graphics and are restricted to the laws of physics. Within computer graphics, we often need to direct and adjust physical features or to bend reality to meet artistic goals, which is a key difference between the subjects of computer graphics and physical science. Pure physicallybased simulations, however, evolve their solutions according to pre-set rules and are notoriously difficult to control. The challenge then is for the solution to be computationally lightweight and able to be directed in some measure while at the same time producing believable results. This work presents a lightweight physically-based cloud simulation scheme that simulates the dynamic properties of cloud formation and weather effects. The system simulates water vapour, cloud water, cloud ice, rain, snow and hail. The water model incorporates control parameters and the cloud model uses an arbitrary vertical temperature profile, with a tool described to allow the user to define this. The result of this work is that clouds can now be simulated in near real-time complete with precipitation. The temperature profile and tool then provide a means of directing the resulting formation

    A Method for Modeling Clouds Based on Atmospheric Fluid Dynamics

    No full text
    The simulation of natural phenomena such as clouds, smoke, fire and water is one of the most important research areas in computer graphics. In particular, clouds play an important role in creating images of outdoor scenes. The proposed method is based on the physical simulation of atmospheric fluid dynamics which characterizes the shape of clouds. To take account of the dynamics, we used a method called the coupled map lattice (CML). CML is an extended method of cellular automaton and is computationally inexpensive. The proposed method can create various types of clouds and can also realize the animation of these clouds. Moreover, we have developed an interactive system for modeling various types of clouds
    corecore