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Abstract This paper presents a simulation and rendering model of three-dimensional

convective cloud evolution. The model is physically based; however, its purpose

is graphical. The main stress is put on balancing two parts of the model:

the atmosphere simulation with the convective motion of air and water vapor

combined with the rendering of semi-transparent and light-scattering clouds in

order to achieve realistic animation in real-time. We examine and compare two

algorithmic approaches based on CPU and GPU computations.
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1. Introduction

Computer graphics is a rapidly growing field with numerous applications, such as

video games, movies, visualization tools, and various simulators. In most cases in

which the scene presents open air and the sky, it is important to keep a high level

of realism in cloud modeling and rendering. A common way to obtain good image

quality is the use of cloudy-sky images created in advance by using graphics tools or

photos. The disadvantage of this approach is that the obtained image is static and

non-interactive.

In order to obtain a dynamic image of clouds, one can use methods that generate

random cloud-like images. These methods are not based in any way on a realistic

model of the atmosphere, but they can produce a decent dynamic image of the sky.

Using a realistic simulation of the atmosphere would provide better results, but this

task is beyond the capacity of an ordinary computer, especially if the image must

be generated in real-time. There are, however, simplified models of the atmosphere

that are much easier to compute. They give approximate results and do not include

all of the processes, yet they seem to be sufficient in meeting the needs of computer

graphics.

The aim of the study is to examine the possibility of using the resources of a mo-

dern personal computer for the generation of smooth real-time animation of a scene

with realistic time-varying clouds. The scope of the work includes the implementation

of a simplified model of atmosphere simulation that produces data for the modeling

of clouds as well as a rendering algorithm that is attached to it. Our computations

have been performed on both CPU and GPU processors.

The range of this model is limited to clouds resulting from the process of con-

vection. Due to the local nature of this phenomenon, it is possible to build relatively

simple models that can be calculated in real time.

2. Clouds – classification, and the process of formation

Clouds are composed of water droplets or ice crystals and are produced by the con-

densation of water vapor existing in the atmosphere.

Water vapor condenses when its volume in the air exceeds the saturation level.

Pressure of saturated vapor increases exponentially when temperatures increase.

Thus, warmer air can contain much more water vapor than cold air.

Increasing the amount of water vapor in the atmosphere or cooling the wet air

may, thus, lead to the formation of clouds.

2.1. Cloud classification

Clouds can be divided into several categories based on their appearance, method of

creation, and height at which they appear [15]. A brief classification below contains

the main cloud categories divided into strata.
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High stratum clouds.

• Cirrus clouds, occurring at high altitude (over 6 km), are composed of ice crystals

with a delicate fibrous appearance.

• Cirrostratus clouds, at a height of 6–12 km, are in the form of a transparent,

often almost invisible veil.

• Cirrocumulus clouds, small puffy clouds occurring at high altitude. The smallest

of the family are small enough that they do not cast shadows.

Medium stratum clouds.

• Altocumulus clouds consist primarily of water droplets, often in the form of small

clouds or belts. Larger than cirrocumulus clouds, they are distinguishable by the

occurrence of shadows.

• Altostratus cloud. Similar to cirrostratus but at a lower altitude and less trans-

parent – seen as a dense layer through which the Sun is barely visible.

Low stratum clouds.

• Nimbostratus, dark clouds whose base is mostly below 2 km, made up of water

droplets.

• Stratocumulus, cumulus clouds occurring at low altitudes, significantly larger

than altocumulus. They may be dark or light gray with shapes that enable us to

see patches of clear sky.

Vertically developed clouds.

• Cumulus Clouds, thick white clouds with flat bases. Formed as a result of con-

vection, they are powered by the warm moist air floating up from the surface of

the Earth.

• Cumulonimbus clouds, rainy, much larger than cumulus, may be several kilome-

ters high. Accompanied by strong air currents and storms.

In this work, we will concentrate only on the final group from the list above.

2.2. Convection

One of the processes leading to the formation of clouds is convection. The surface

of the Earth is heated by the Sun, which in turn heats the air. Warmer air rises

upward, where it mixes with cooler air. As a result of this process, convection cells

are formed; i.e., warm rising air current is accompanied by falling cooler air current,

which additionally causes a horizontal movement of air at the base and top of the

vertical currents. If water evaporation at the base of the current causes a subsequent

inflow of steam, this will rise to the higher parts of the atmosphere, where the lower

air temperature will cause the condensation of vapor to droplets of water or ice crystal

suspension, eventually forming clouds.

3. Methods for cloud modeling

There have been numerous attempts to model the evolution of clouds for computer

graphics needs. Many of these use the procedural methods – clouds are generated
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randomly, as in the case of Perlin noise [11, 12]. There are also models that use

simplified models of atmospheric convection.

According to the way clouds are represented and to the atmospheric state, the

models can be divided into two groups: those that simulate the formation of clouds

using spherical particles representing an element of a cloud (or steam), and those that

use three-dimensional mesh to keep the state of the atmosphere.

3.1. Particle-based models

In the models based on particles used by Neyret [8] and Bouthors [1], for example,

the simulations use spherical air bubbles that can interact with each other. Near the

Earth’s surface, warm air bubbles are generated. These float upwards; after reaching

the appropriate height at which water vapor condensation takes place, they transform

into clouds.

The fine details of cloud shapes are modeled by generating bubbles with smaller

radii and placing them on the surface of larger bubbles located at the edge of the

cloud. The calculation cost of particle models is dependent on the number of active

particles. This means that we can expect a slowdown in the simulation with increased

cloudiness.

3.2. Mesh-based models

Mesh-based models usually exploit a regular three-dimensional grid of equally spaced

points containing model data such as pressure, temperature, humidity, etc. Computa-

tional cost of such a model does not depend on the state - this is constant, regardless

if we are dealing with a cloudless sky or one completely full of clouds.

The simplest version of the mesh model introduced by Nagel [7] is based on

a cellular automaton. It describes the state of the atmosphere at the grid node

with three logical values specifying the presence of water vapor, clouds, and phase

transition. The values of water vapor and phase transition are initialized randomly,

while further evolution of the clouds is controlled by cellular automaton rules.

In his version of the model, Dobashi [2] develops a Nagel method by adding

the ability of disappearance and re-appearance of the clouds according to random

distribution. Additionally, water vapor can be added at random (to initiate phase

transitions) as well as wind (which can move clouds horizontally).

The simulation of cloud evolution implemented in our paper (which is also a mesh

model) is a modified version solution described by Miyazaki [6]. Miyazaki uses a Cou-

pled Lattice Model (CML) originally developed by Kaneko [4]. CML may be treated

as an extension of a cellular automaton. The idea behind it is the usage of recurrence

equations applied to a regular lattice. The model is widely used to describe a number

of dynamic systems, especially to demonstrate spatial chaotic phenomena in phase

transitions, chemical reactions, and others. In our model, bit values of the atmosphere

parameters are replaced by floating-point numbers, while cellular automaton rules are
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replaced by continuous functions. This allows us to better describe the gradual chan-

ges in the atmosphere.

The model is more complicated – we introduce air speed and temperature. The

change of the model state is influenced by such phenomena as diffusion, buoyancy,

phase transition dependent on temperature, and water vapor content, as well as the

effects of pressure affecting air velocity. Convection is modeled by increasing the tem-

perature and humidity as well as introducing vertical air currents.

We get a simplified yet realistic simulation model of phenomena in the atmosp-

here that lead to the formation of convective cumulus clouds. Among its advantages

are achieving high-quality realistic-looking results while maintaining relatively simple

rules; this allows the simulation to be performed in real time on a sufficiently large

mesh so that the results can be used to render a cloudy sky.

4. The model of the atmosphere

This section provides a detailed description of the simulation model, the way the state

of the atmosphere is represented, and which phenomena are taken under consideration.

We will explain how they affect the changes in the atmosphere.

The implementation of the simulation model of the atmosphere is a modified

version of the model described by Miyazaki [6].

The model is relatively simple computationally and has a linear complexity along

the number of grid nodes – for each node, a constant number of operations is perfor-

med. Since the operations for each node are the same and are local in all interactions,

the model is well-suited for parallelization.

4.1. Computing mesh

Calculations are performed on a three-dimensional mesh of equally spaced points in

space. For each node, its state is described by six floating point numbers correspon-

ding to four parameters of the atmosphere:

• Air temperature T . The preset value is defined as the difference of the current

temperature and the base temperature at a given height, which means that, at

the beginning of the simulation, T = 0 is set everywhere. The base temperature

is set as the temperature at ground level modified by the temperature decline

per unit height.

• Humidity wv.

• Number of water droplets w.

• Velocity vector ~v = [vx, vy, vz] describing the direction and speed of the movement

of air masses. For the sake of simulation stability, it is required that the absolute

value of velocity vector components does not exceed 1, which corresponds to

displacement by a distance equal to the distance of adjacent grid cells.

The boundary conditions are periodic for horizontal directions (x and y) and

closed-absorbing conditions for vertical direction (z).
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4.2. Included phenomena

4.2.1. Diffusion

The simulation uses a discrete diffusion model wherein a new value depends on the

difference values in a current, and the values in the six neighboring nodes spaced by

1 in each direction on x, y, z. Diffusion parameter P is calculated according to the

following formula:

P (x, y, z)∗ = P (x, y, z) +KdP ∗∆P (x, y, z)

where KdP is the parameter controlling the force effect, while ∆P (x, y, z) is:

1

6

(
P (x+ 1, y, z) + P (x− 1, y, z) + P (x, y + 1, z) + P (x, y − 1, z)

+ P (x, y, z + 1) + P (x, y, z − 1)
)
− P (x, y, z)

The parameters for which diffusion is considered are water vapor, water droplets,

temperature, and air speed (separately for each component).

4.2.2. Pressure

The role of pressure is to equalize the quantity of air entering and exiting from the

node of the mesh. For x, the component of the formula is as follows:

gx(x, y, z) =
1

2

(
vx(x+ 1, y, z) + vx(x− 1, y, z)− 2vx(x, y, z)

)
+

1

4

[
vy(x+ 1, y + 1, z) + vy(x− 1, y − 1, z)− vy(x− 1, y, z + 1)

− vy(x+ 1, y − 1, z) + vz(x+ 1, y, z + 1) + vz(x− 1, y, z − 1)

− vz(x− 1, y, z + 1)− vz(x+ 1, yz − 1)
]

Values for the components of y and z are calculated in a similar way.

If more air flows in than out in any of the neighboring cells, the velocity compo-

nent that generates the flow of air out is increased and vice versa, thus reducing the

amount of the flow to zero in average.

The complete formula for the new speed value in the next step (taking the vis-

cosity and pressure into account) is as follows:

vnewi (x, y, z) = vi(x, y, z) + kdv∆vi(x, y, z) + kpgi(x, y, z),

for i ∈ (x, y, z), where kdv is the viscosity coefficient and kp is the pressure-effect

coefficient.
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4.2.3. Buoyancy

The buoyancy effect modifies the vertical component of vz velocity in the current node

according to the difference between itself and four neighboring nodes in the directions

of x and y. The model implemented in the standard version provides a buoyancy

force facing up to the nodes of a higher temperature than its neighbors. Additionally,

we have also included the buoyancy force introduced by Harris [3]; this is directed

upward depending on the amount of water vapor and facing down depending on the

rate of the water droplets. The numerical scheme is as follows:

vnewz (x, y, z) = vz(x, y, z) +
Kbt

4
(vz(x− 1, y, z) + vz(x+ 1, y, z)

+ vz(x, y − 1, z) + vz(x, y + 1, z))

where Kbt is the factor that controls the force effect.

4.2.4. Advection

Advection is responsible for the displacement of the values stored in a mesh node

to a new location due to air movement. The cell parameters that are subject to

advection are the amount of water vapor, number of water droplets, and temperature.

Data from the point of ~P = (nx, ny, nz) are transferred to the point of ~Pn = ~P +
~V (nx, ny, nz). Subsequently, they are distributed between the eight vertices of the

unit cube containing point ~Pn. The cell parameters that are subject to advection are

the amount of water vapor, number of water droplets, and temperature.

4.2.5. Heating Earth surface and water evaporation

To simulate the heating of air masses over a heated Earth surface, the temperature of

the lowest layers of the mesh is increased by the value imported from two-dimensional

temperature maps loaded from an image file. Bilinear interpolation is performed

between the map elements.

Analogously, the same map is used to control the increase of the amount of water

vapor in the lowest layer of the grid. Placing the source of vapor at heated points

causes its advection together with rising air.

4.2.6. Phase transition

Phase transition refers to the process of vapor condensation and the inverse conversion

process that changes water droplets into steam. The maximum amount of water

vapor in the air, vmax, depends on temperature T and is described by the Clausius-

Clapeyron formula in terms of vapor pressure, where pressure p ∼ exp(−1
T ). We follow

an empirical formula from Miyazaki’s work [6]:

vmax(T ) = 217
˙

e(19.482−
4303.4
T−29.5 )/T

If the amount of vapor in the cell is greater than the critical value, it will partly

condense; otherwise, the reverse process occurs. The amount of water that will change
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the physical state of the simulation step depends on phase transition speed parame-

ter α. The new values of water vapor v∗ and water droplets w∗ are as follows:

v∗ = v − α(v − vmax)

in∗ = w + α(v − vmax)

Temperature changes in the node due to the exo-/endo-thermic character of the

phase transition are also taken into account:

T ∗ = T −Q(v − vmax(T ))

Coefficient Q is a parameter specifying the amount of emitted or absorbed heat.

4.2.7. Wind effects

The effect of wind is the same for each cell and is used to allow for the movement of

clouds. Large shifts breach a condition limiting velocity components to [−1, 1] and

cause problems with interpolation used during rendering, which results in “jumpy”

motion instead of smooth motion. To prevent this effect, the wind has been imple-

mented in the form of translation vector ~Wi = (wx, wy) assigned to each step of the

simulation.

This allows for the smooth animation of cloud shifts equal to a few distances

between grid nodes in a single frame of the simulation.

The new offset value in step i + 1 is calculated by adding the current strength of

the wind to step i. The current wind strength is calculated on the basis of the simu-

lation input parameters (base strength and wind direction), which are subsequently

distorted in a random fashion.

The formula for instantaneous wind vector for i in the frame simulation is as

follows:

~Wi = (Fi sin(βi), Fi cos(βi))

Angle βi and wind strength Fi are calculated on the basis of angle βb and strength

Fb as well as on the variation of wind direction (βvar) and its strength (Fvar ).

βi = βb + rββvar

Fi = Fb + rfFvar

where rβ , rf are random variables with normal distribution and variance equal to 1.

4.2.8. Turbulence

Stam [14] showed that presenting phenomena such as smoke, gas, and steam as well

as the use of small-scale small random turbulence helps to achieve more realistic,

less-regular shapes.
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Due to performance reasons, the turbulence model implemented here is much

simpler than that described by Stam. During the advection step, a velocity vector is

added to a vector of length in range [0, Ft] and random direction. Ft is the parameter

controlling the strength of turbulence.

4.3. Input parameters

The following table 1 lists all of the parameters of the model along with a brief

description of their meanings for the simulation.

Table 1

Parameters of the model

Parameter Description

α Phase transition speed

βb Base wind direction

βvar Variability of wind direction

cs Distance in meters between adjacent nodes of the computational grid

Fb Base wind force

Ft Turbulence strength

Fvar Variability of wind force

hlow Height that is at the bottom level of computing box

kbt Scaling parameter for air buoyancy resulting from temperature

kbv Scaling parameter for air buoyancy resulting from mass of water vapor

kb Scaling parameter for air buoyancy resulting from mass of water droplets

kdt Scaling parameter for thermal diffusion

kdv Scaling parameter for water vapor diffusion

kd Scaling parameter for effect of condensed water diffusion

kdwv Scaling parameter for effect of thermal diffusion

nt Amount of energy added in a simulation step

tv Amount of steam added in a simulation step

kp Scaling parameter for pressure effect

T0 Initial temperature on 0 height level (in Kelvin)

Tf Temperature decline for every 100 m of altitude

sx, sy, sz Computational grid size

Q Ratio of amount of energy absorbed/released during phase transition

5. Model implementation

The following section describes the implementation of a simulation in a multithre-

aded version running on a CPU as well as a GPU version using the Nvidia CUDA

technology. The performance of the two implementations is compared.

In general, the simulator keeps the state of the grid in the set of arrays; one

for each parameter in a grid cell. A second identical set of arrays is used to store

temporary data when calculating the next step of the simulation.
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The simulations use periodic boundary conditions in the x and y directions, and

closed absorbing ones in the z direction. The coordinates have to be processed as

follows:
xn = x (mod sx)

yn = y (mod sy)

zn = max(0,min(1, z))

A separate table is used to store the data for rendering purposes. Four sets of

data (two for the density of the water droplets and two for the amount of light) are

alternately stored as four-component RGBA color elements in texture memory so the

program executed on the GPU can read them in a single operation.

5.1. Structure of the simulation step

In both implementations, the simulation of a step is divided into several sub-steps

within which it is possible to parallelize the calculations. These are as follows:

The calculation of the new cell value includes the effects of diffusion, buoyancy,

and phase transition as well as pressure and viscosity. Since these functions make use

of the neighboring cells, the original content of the cell must remain unchanged, so

the result is written to a temporary array.

5.1.1. Adding energy and humidity

This part is separated from the main part of the simulation for performance reasons.

Operations contained therein have to be calculated only for the lowest layer of the

grid. Since there are no references to other cells of the operation, it is done “in place” –

the old values are overwritten by the new plus the new energy and water vapor.

5.1.2. Advection

The data from each cell is divided between the other cells depending on the velocity

vector. The final value of the cell is the sum of several values from different locati-

ons. This makes parallelization more difficult and enforces the use of the additional

synchronization mechanisms described in detail in the implementation section.

5.2. Simulation modes

The application allows for two modes of execution simulation:

• Simulation with maximum speed, when the next step is started immediately after

the previous one has ended. In this mode, rendering is turned off.

• Simulation with a fixed-time interval defined by the user. It is used with rendering

turned on. The rendering system interpolates the results from Steps i and i+1 for

visualization while the simulation system calculates and stores Step i+ 2. After

the defined time step, results from i + 2 are moved to i + 1 and the simulator

starts the calculation of Step i + 3. Setting smaller time intervals speeds up

animation; however, if they are smaller than the time required to calculate the

simulation step, the animation is no longer smooth.
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5.3. CPU Implementation

The implementation on a CPU parallelizes calculations using a thread mechanism

(with the help of the POSIX Threads library).

In the first two sub-steps of the simulation step, the computational mesh is

divided into layers along x-coordinate, from 0 to sx. Having k threads, current thread i

performs calculations in layers n · k + i for n = 0, 1, 2, ... until sx is exceeded.

In the case of advection, calculations for cell in layer i may affect the values in

layers i − 1 and i + 1. This interaction is limited to the nearest layers, provided the

modulus of the velocity does not exceed 1. To prevent collisions in the calculations

performed by different threads, advection is calculated in three stages: in the first one,

layers (n ·k+i) are taken into account, (n ·k+i)+1 in the second, while (n ·k+i)+2 is

in the third and final step. Between subsequent stages, a thread synchronization

is performed. Such an organization of the tasks provides that, between any layers

calculated concurrently, there are always at least two layers for which no calculation

is performed so that synchronization is not necessary at the level of the individual

grid cells.

Figure 1. Time of a single frame calculation vs number of threads (averages over 100 frames

are calculated).

Figure 1 shows the average time of the single frame calculation for the different

number of threads. The test was performed on a dual-core processor 2.2GHz AMD

Athlon X2.
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5.4. GPU implementation

The increased computing capabilities of modern graphics cards, the opportunities

they offer to parallelize computations, and the creation of dedicated environments for

them to perform calculations for general-purpose arrays all have lead to an increase

in the popularity of calculations performed on a GPU. The implemented simulation

uses the Nvidia CUDA environment that runs on Nvidia graphics cards. The program

code written in a language similar to C makes it easy to adjust the version intended

for execution on a CPU.

A GPU consists of one or more multiprocessors that represent the SIMD (Single

Instruction Multiple Data) architecture. Each of them can simultaneously execute

the same instructions for hundreds of data sets (the exact number depends on the

model of the graphics card). A GPU operates at a frequency lower than the average

CPU; however, due to their massive parallelism, calculations on a GPU are almost

always faster than on a CPU.

The parallelization of calculations is carried out by dividing them into threads

grouped into blocks. At any given moment, the multiprocessor performs threads that

belong to a single block. The scheduling of thread calculation is performed automati-

cally by the CUDA environment.

The graphics processor architecture is best suited for performing a large number

of identical threads. Differences in multiprocessor instructions executed for the vari-

ous threads resulting from a conditional statement, for example, results in the fact

that different options are executed sequentially, which significantly increases compu-

tation time.

The presented atmospheric simulation model perfectly meets the requirements of

the algorithm to be well-suited to run on graphics processors. For each cell in a three-

dimensional grid, the same calculations are performed (one cell per thread). Memory

organization is the same as in the CPU implementation. The only addition element

is an integer array that stores the state of the random number generator values for

each cell separately. This is because all threads in an entire grid run simultaneously,

and each of them must have a separate random number generator with its own state.

The simulation step is divided into the same sub-steps as in the CPU implemen-

tation. Calculation of new values in the cells (adding heat, humidity, and advection)

can be performed using a single CUDA kernel call per step. In the case of advection,

the parallel execution of threads can cause collisions to occur when the displaced

values are added in their new locations. This is resolved through the atomic incre-

mentation available on graphic processors that support a computing capability 2.0 or

higher.

Lighting calculations of successive layers of mesh are calculated in separate calls

of the GPU kernels in order to provide an appropriate sequence of calculations.

One of the obvious advantages of performing simulations on a graphics processor

is that the results do not have to be transferred between computer RAM and graphics

memory. CUDA can perform operations directly on the available texture memory.
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5.5. Modeling light in the atmosphere

The realistic visualization of clouds needs to consider the phenomenon of light being

scattered in the atmosphere, which affects the appearance of the sky and clouds.

Scattering, its intensity, and direction all depend on the wavelength and size of

particles in the atmosphere. In general, this phenomenon is described by the Mie

solutions of the Maxwell equations. In this simplified model, we use two popular

approaches: approximation of Mie theory for small particles (called Rayleigh scatte-

ring) and Mie scattering for large particles.

Rayleigh scattering approximation is suitable for particles much smaller than the

light wavelength, such as oxygen and nitrogen molecules found in the atmosphere.

For a single particle of diameter d amount of light that is scattered at angle θ by

a light beam with I0 intensity for a distance from molecule R and the λ wavelength

is equal to:

I = I0
1 + cos2 θ

2R2

(2π

λ

)4(n2 − 1

n2 + 2

)2(d
2

)6
,

where n is the refraction coefficient.

As we can see, λ occurs in the fourth power, which means that the amount

of light that is scattered strongly depends on the wavelength. Shorter waves are

more scattered, creating a visible blue color in the sky. Rayleigh scattering is also

responsible for the yellow color of the Sun as well as its red color when it is low over

the horizon (even though sunlight appears to be white in space).

The second phenomenon of the interaction of light with the atmosphere is Mie

scattering for particles much larger than the wavelength, such as dust particles or

water. In this case, the amount of scattered light weakly depends on the wavelength

and is scattered mainly in the forward direction. This phenomenon is responsible for

the brighter white sky near the sun as well as for white or gray clouds.

6. Rendering

The entire rendered scene consists of the three following elements: clouds rendered

using a ray-casting algorithm, the surface of the Earth and the Sky.

The final image is generated in a series of successive steps:

1. Background rendering; calculation of the sky and Sun colors.

2. Terrain rendering.

3. Merging background images with the terrain; the result contains all of the ele-

ments of the final scene except for the clouds. At this stage, transparency effects

are added to the atmosphere.

4. Clouds rendering clouds; the algorithm utilizes the data (esp. distances between

elements) stored in the previous step.

5. Creating the final image – merging all of the images and the transformation from

HDR color space to standard RGBA.
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The dependencies between the steps are shown in Figure 2.

Figure 2. Stages of rendering a scene. Roman numbers indicate the image-generation step,

while the numbers in parentheses show the number of the buffer in which the results are

stored (three RGBA buffers are used).

6.1. Sky rendering

Rendering the sky uses an approach developed by O’Neil [10] and is based on the

Nishita work [9] that simplifies the phenomena described in the previous section.

This simplification is designed to quickly be evaluated in real time, giving us results

that are close to reality (see Fig. 3).

Figure 3. Sky rendering using a ray intersecting the atmosphere.

The color of the sky is calculated by summing up the number of samples along

radius ~R whose beginning ~Rstart lies on the edge of the atmosphere in the direction

of the apex processed, and the end of ~Rend is equal to the position of the observer.
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The radius of the Earth is denoted by ri, the distance from the center of the

Earth to the edge of the atmosphere by ro, and the distance of the observer from

the center of the Earth by h. The end point of the radius is equal to ~Rend = (0, 0, h).

The distance from the eye at Rend to the edge of the atmosphere at Rstart can be

easily calculated from the cosine theorem for the triangle, assuming that we know h,

r0 and α = γ+90◦, where γ is the angle at which the observer looks over the horizon.

For each of the samples along l, we calculate the amount of light scattered towards

the camera. The light value depends on the density of the atmosphere at this height,

the angle between the direction of incidence of the light, and the radius. Each color

component is calculated separately according to the amount of light scattered to the

camera. The sum of the individual points of light gives the final color of the sky for

the calculated point.

The resulting color obtained due to Rayleigh scattering and the angle between

the radius and incoming light direction are copied to a fragment shader. On this

basis, the Mie scattering is calculated. The final color of the light is the sum of these

two types of scattering. The results are shown in Figure 4.

Figure 4. Images of the sky from horizon to zenith for different levels of the Sun above the

horizon. From the left height of the Sun: −5◦, 0◦, 5◦, 10◦, 20◦, 30◦ and 40◦.
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6.2. Lighting conditions

Lighting affects the color of the rendered elements – clouds and terrain consist of

ambient light that uniformly illuminate all of the elements and the scattered light

coming directly from the light source that reaches the camera. Its amount depends on:

• the angle of incidence and shadowing by the clouds (for the terrain),

• occlusion by other parts of the clouds (for the clouds).

The colors and light intensity are calculated automatically by the same method as

the color of the sky. This allows us to keep the scene illumination consistent, especially

enabling us to show smooth illumination changes during sunrise or sunset.

Ambient light is obtained here as an average calculated in several equally spaced

points in the sky. In these calculations, we do not include Mie scattering, because

the Sun moving through one of the points taken into account would result in large

changes in the color and intensity of light in a short amount of time. Instead, the

color of the scattered light is calculated on the basis of a single point that lies in

the direction of the light; in other words, where the sun is visible.

6.3. Cloud rendering

Usually, real-time computer graphics rendering is based on surfaces made of triangle

meshes. This works very well in the most-common cases representing solids, but it

is less suitable for partially transparent objects with fuzzy contours (such as clouds).

There is no simple way to translate the results obtained from the simulation on the

set of triangles to obtain smooth transitions between the values of the successive

frames of the simulation.

For this reason, the cloud-rendering algorithm uses a ray-casting algorithm that

is common in rendering volumetric data. This allows us to obtain very high image

quality based on the data stored in the form of three-dimensional maps of density

and color. Using of ray casting allows us to generate images seen from any direction

as well as from any point in space (and also from inside the object).

6.3.1. Ray casting

The basic principle of the algorithm is to compute the color of the final portion of the

image based on the values obtained from the three-dimensional data by sampling the

data at a specified distance along the beam coming out of the camera and transmitted

by rendering the image (Fig. 5).

One disadvantage of ray casting is the large quantity of operations that must be

performed for each rendered fragment. This forces the use of a number of optimiza-

tions, which complicates the basic version of the algorithm.

6.3.2. Implementation

The algorithm is performed entirely on a GPU as a fragment shader used to determine

the color fragments making up the rectangular area that limits a simulation box.
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Figure 5. Ray casting – selected sample radius extending from the camera to the border of

the simulation area (red line) with sampling points marked.

Vertices of this box are assigned to colors that match their coordinates. These

colors are interpolated on the faces of the cuboid, which allows us to specify the

coordinates of a point where the light ray leaves the rendered area for each fragment.

The starting point of the ray is the camera position.

The input data are supplied in the form of a three-dimensional texture in which

each texel contains four components of floating-point numbers. They contain the num-

ber of water droplets in each mesh node and the amount of light that reaches the node

during the two most-recently-calculated simulation frames: Fi and Fi−1. The current

value at time t is calculated according to the time assigned to each frame. Once the

current time exceeds the value assigned to frame Fi, the values of frame Fi−1 are

swapped with the previously prepared values of frame Fi+1, and at the same time,

the demand to calculate frame Fi+2 is sent to the simulator.

Designated points on the ray are sampled, starting from those located closest to

the camera. For each point P1...n, the transparency tI and color ci of the corresponding

section are calculated. The new values of resulting color Ci and transparency Ti are

calculated using the following formulas:

Ci = Ci−1 + Ti−1tici

Ti = Ti−1ti

The initial values are 1 for transparency and 0 for color. With this method at

the end of the loop, we get the color from range [0, Tn]. Final color Ck is obtained by

linear scaling to the [0, 1] range:

Ck =
Cn
Tn
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6.3.3. Ray casting optimizations

The implemented algorithm includes a number of optimizations that speed up its

operations and improve the quality of the results.

Handling intersections with other objects

To properly handle the mutual occlusion of clouds and other objects, any samples that

are hidden behind another element should be rejected. For this reason, the clouds

must be rendered as the last element of the scene.

During the rendering of other objects, information about the distance from the

camera is recorded for each fragment. As the scene does not contain any transparent

objects other than clouds, it is sufficient to use the texture alpha channel to which

the rendering is performed to store this information.

If the distance to obstacle d0 is smaller than the length of the ~V ray, the end of

the ray is moved so as to be at the point of intersection with the obstacle:

~V ∗ =
~V d0

|~V |

Limiting the number of samples

In some cases, if the camera is close to the edge of the rendered area or to the obsta-

cles, the sampling points may be very close to each other. This causes unnecessary

calculations more than a few samples in the space between the two adjacent nodes do

not visibly improve the final result.

So, one can speed up the algorithm without any visible quality loss as a result of

introducing a minimum distance between points. For short-rays where the distance

is smaller than this value, the number of samples is reduced according to n∗ =
n

|~V |
Early ray termination

In situations where the scene contains dense clouds, the space situated behind them

can be completely obscured. In such cases, sampling invisible space does not affect

the final result and should be terminated.

For this purpose, the ray-casting loop is aborted if transparency falls below a Tmin
value, usually slightly greater than 0. Because subsequent transparency values (Ti)

are obtained by multiplying the previous value by a number from the (0, 1] range, it

is possible that Tmin = 0 and the threshold can never be reached.

Using too high Tmin is also not recommended because it sharpens the cloud edges,

which become completely opaque in places where the background should still be seen.

In practice, with a value of 0.01, early ray termination is not noticeable, while the

speed of the algorithm is increased.

Since the value of Tmin > 0, this could create a situation in which the background

is always seen slightly through the clouds, regardless of their color and thickness.
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To avoid this effect, transparency range [Tmin, 1] is mapped to [0, 1], and final opacity

Tk is equal to:

Tk =
Ti − Tmin
1− Tmin

Figure 6 shows that this technique reduces the sampling area obscured by a cloud,

allowing for the significant reduction of the total number of operations performed for

the scene with many objects near the camera.

Figure 6. Ray-casting optimizations allow for the omission of unnecessary sampling points.

The brightness of the pixels in the image corresponds to the number of collected data sam-

ples: the darker the gray shade, the more samples that are applied. 1) standard view;

2) early ray termination; 3) occupancy map (boundaries of cubic map elements are visible);

4) early ray termination and occupancy map.

Occupancy map

The use of occupancy maps allows for the efficient rendering of data that contains

a large amount of empty space by enabling the abiity to quickly jump through the

empty areas without the time-consuming re-sampling and interpolation from the tex-

ture data. The mesh has been divided into cubes with an edge length of 4. For each,

if any mesh node belonging to the cube has a non-zero number of water droplets, it

is flagged as occupied; otherwise, it is labeled as free. In practice, instead of compa-

ring to zero, we use a comparison to a very small positive value low enough that the

omission of such an element is not noticeable.

The map is created each time after the calculation of a frame is done. It is the

logical sum of two successive frames used for rendering. It is passed to the shader as

a one-component three-dimensional texture for further rendering. In each iteration

of the main ray-casting loop, the corresponding cell in an occupancy map is checked

before loading the values from the texture data. If the cell has a state of 0, the loop

is skipped, and the algorithm proceeds to the next step.

Regardless of the value read from the map, the new reading is performed only if

the processed point falls into a different cell than the previous one. This allows for

a further reduction of the number of reads from the texture.

In his solution, Meissner [5] proposes a hierarchical division of the mesh into

unit cubes grouped into larger ones with a side length equal to 4. In this approach,

collecting data from a small cube is done using fast bit operations. However, for the
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application described herein, such a method proved to be less efficient than a simple

single-level grid division. The tested cube sizes (2, 4, and 8) showed that the the

highest efficiency was achieved for the edges equal to 4.

As can be seen in Figure 6, the occupancy map is very effective in situations where

the rendered scene contains a lot of empty space. This optimization complements the

early ray termination, which gives the best results when the scene is densely filled

with clouds.

Interleaved sampling

The interleaved sampling mechanism first proposed for a GPU in [13] allows us to

avoid the artifacts described above. The idea is that a sampling vector moves at

a pace depending on the position on the screen of the rendered part of the image,

therefore the sampling process may be perceived as less regular.

The original method has been dedicated to work with opaque objects and assu-

mes the calculation of vector movements according to a small regular pattern. When

applied to transparent clouds in which the final color is made up of many samples,

the use of a regular pattern gives new artifacts. Better results can be achieved using the

random offset in a predetermined range. The best results are obtained when the range

of the random offset is equal to the spacing between successive samples, which results

in a uniform distribution of the samples in space.

Applying the interleaved sampling to a small number of samples can lead to noise

arising from the fact that the color of the adjacent portions is calculated on the basis

of different locations in the input data. For clouds, to reduce the visual effects of the

noise, one can use a Gaussian filter to blur the image.

Figure 7 shows the results with the interleaving mechanism switched on and off.

In a situation in which the neighboring sampling points are close to each other and the

space between the two mesh nodes is sampled several times, the interleaved sampling

application does not affect the results. However, in a situation with small number

of samples, the difference becomes very apparent. An image obtained by using the

described technique is substantially better than that which is achieved without it.

This technique can, therefore, be successfully used to improve the performance

in situations where the performance of the hardware is too low to perform a rendering

of a sufficiently large number of samples.

6.4. Terrain rendering

The surface of the Earth is an example of how to add new elements rendered in the

standard way to the algorithm used to render clouds (Fig. 8). Using this method in

the scene, one can add any other elements (including trees, buildings, or characters).

The terrain is rendered as a rectangular grid of triangles whose vertical coordinate

is calculated based on the height maps loaded from an image file. The color depends

on the height of the terrain and is calculated on the basis of a one-dimensional texture.
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Figure 7. Effect of interleaving mechanism for rendering results for different sampling density.

The numbers in the rows indicate the number of samples. Column description: A) inter-

leaving switched off; B) interleaving switched on; C) interleaving and blur switched on.

The images obtained from the data of size 64 × 64 × 32.
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Figure 8. Render of the terrain – a sample view.

The effect of shadows cast on the terrain through the clouds is obtained by

calculating the coordinates of a point P = (px, py, pz) on the terrain. According to

a given light vector vecL, we calculate the shadow point in the lowest data layer.

~Pshadow = ~P + (pz~L)

The amount of light reaching the earth is calculated on the basis of the value

taken from the texture data in the same way as in the cloud rendering.

6.5. Final image generation

The final image is obtained by superimposing the images of the sky, terrain, and

clouds with regard to the transparent parts of these images. Subsequently, the color

is converted from the HDR range to a standard [0, 1] interval according to the following

formula:

Ck = e−EChdr

where E is the camera-sensitivity coefficient.

7. Performance and sample results

The following tables 2, 3, 4 present the data on the speed of the simulation and

rendering for several different scenarios.

Table 2

The dependence of speed of simulation vs number of grid points.

CPU time (ms) GPU time (ms) Grid size (number of points)

12 3 16 × 16 × 16(212)

33 6 32 × 32 × 16(214)

213 29 64 × 64 × 32(217)

828 109 128 × 128 × 32(219)

3112 425 256 × 256 × 32(221)

5982 881 512 × 512 × 16(222)
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Table 3

Rendering speed versus image resolution and number of samples. Rendering uses data of

64 × 64 × 32 (217 points).

Rendering time (ms) Number of samples Resulting image resolution

22 32 800 × 600

37 64 800 × 600

65 128 800 × 600

116 256 800 × 600

5 32 400 × 300

9 64 400 × 300

17 128 400 × 300

30 256 400 × 300

Table 4

Simultaneous rendering and simulation.

Only CPU simulation GPU simulation Resolution Number Mesh

render simul. render simul. render image samples size

31 252 273 35 43 800 × 600 64 64 × 64 × 32

45 940 609 52 69 800 × 600 128 128 × 128 × 32

65 4217 1547 68 139 800 × 600 256 256 × 256 × 32

The tests were performed on a computer with a dual-core 2.2GHz AMD Athlon

processor and a rather-modest graphics card (an Nvidia GeForce GT 430 containing

2 multiprocessors with 48 cores each).

A description of the experiments is as follows:

1. Simulation speed dependent on the number of grid points in the mesh (Table 2).

With rendering switched off, the simulation is performed during 100 steps with

the same parameters for different mesh sizes.

2. Rendering speed dependent on the resolution of the image and number of sam-

pling points (Table 3). With disabled simulation, rendering the same previously

generated data is performed for different sizes of the resulting image and the size

parameter for different numbers of the collected data samples.

3. Simultaneous rendering and simulations (Table 4). The speed of rendering and

simulation for a single frame is performed for three cases: only rendering enabled,

integrated rendering, and simulation on a CPU and GPU.

Conclusions:

• As expected, the simulation scales linearly depending on the number of grid

points for both simulations performed on the CPU or the GPU.

• Cloud-rendering algorithm scales linearly with the number of rendered points

and number of data samples collected for each point.

• On the hardware used for tests, the simulation runs much faster on the graphics

card than on the main processor.
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• The simultaneous execution of simulation and rendering has a much greater im-

pact on the time required to execute individual components when performing

simulations on the GPU. For the CPU, the simulation load is distributed bet-

ween the main processor and the graphics processor, and the overhead is much

smaller.

• For the smooth animation of cloud evolution, it is necessary to calculate the simu-

lation frame every few seconds (and tens of frames per second for the rendering

part). At the same time, the number of data samples for the rendering algorithm

should not be less than the largest dimension of the mesh. The largest network

for which we could perform calculations on our hardware fast enough was a size

of256× 256× 32. Such a mesh is sufficient to obtain good-quality results.

A few examples of the results obtained using the implemented application are

presented in Figures 9 through 14.

Figure 9. The evolution of clouds – in 120, 150, 200, and 300 steps of simulation (relative

time units).

Figure 10. Cirrocumulus-type clouds.
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Figure 11. Light cumulus clouds.

Figure 12. More-developed and denser cumulus clouds.

Figure 13. Clouds illuminated during sunset.
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Figure 14. With the proper selection of parameters (high humidity combined with a low

temperature near the ground), simulation can be used to generate heterogeneous fog.

The illustration shown a residual mist in a valley.

8. Conclusion

The results obtained show that it is possible to obtain a smooth animation of cloud

evolution in real time by using atmosphere simulation together with a cloud-rendering

algorithm. The advantage of this method is that it is fully three-dimensional, which

is important for applications where the camera is not connected to the ground and

can pass through the layers of clouds.

The proper selection of the simulation parameters allows for the generation of

different types of clouds. A large number of these parameters makes their selection

difficult.

The method applied is demanding when it comes to the amount of memory

consumption and CPU time. However, given the rapid development of computer

capabilities and ease of adjustment of both simulation and rendering systems as well

as the available resources at the expense of the quality of the results, it seems that the

method may be useful where it is necessary to generate a dynamically changing sky.

The resulting cloud images are of good quality but still lack details as compa-

red to actual clouds. Obtaining an image similar to the real one requires a greater

computational mesh as well as a more-advanced atmosphere model.
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